)

Super seded by a morerecent version

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T

TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

DIRECTORY

X.518

(11/93)

INFORMATION TECHNOLOGY -
OPEN SYSTEMS INTERCONNECTION -
THE DIRECTORY: PROCEDURES
FOR DISTRIBUTED OPERATION

ITU-T Recommendation X.518
Superseded by a more recent version

(Previously “CCITT Recommendation”)

Super seded by a morerecent version

Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industrial organizations and
38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the Members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a
collaborative basis with 1ISO and IEC. The text of ITU-T Recommendation X.518 was approved on 16th of
November 1993. The identical text is also published as ISO/IEC International Standard 9594-4.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

0 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Super seded by a morerecent version

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

(February 1994)

ORGANIZATION OF X-SERIES RECOMMENDATIONS

Recommendation

Subject area eries
PUBLIC DATA NETWORKS
Services and Facilities X.1-X.19
Interfaces X.20-X.49
Transmission, Signalling and Switching X.50-X.89
Network Aspects X.90-X.149
Maintenance X.150-X.179
Administrative Arrangements X.180-X.199
OPEN SYSTEMS INTERCONNECTION
Model and Notation X.200-X.209
Service Definitions X.210-X.219
Connection-mode Protocol Specifications X.220-X.229
Connectionless-mode Protocol Specifications X.230-X.239
PICS Proformas X.240-X.259
Protocol Identification X.260-X.269
Security Protocols X.270-X.279
Layer Managed Objects X.280-X.289
Conformance Testing X.290-X.299
INTERWORKING BETWEEN NETWORKS
Genera X.300-X.349
Mobile Data Transmission Systems X.350-X.369
Management X.370-X.399
MESSAGE HANDLING SYSTEMS X.400-X.499
DIRECTORY X.500-X.599
OSlI NETWORKING AND SYSTEM ASPECTS
Networking X.600-X.649
Naming, Addressing and Registration X.650-X.679
Abstract Syntax Notation One (ASN.1) X.680-X.699
OSI MANAGEMENT X.700-X.799
SECURITY X.800-X.849
OSl| APPLICATIONS
Commitment, Concurrency and Recovery X.850-X.859
Transaction Processing X.860-X.879
Remote Operations X.880-X.899
OPEN DISTRIBUTED PROCESSING X.900-X.999

Super seded by a morerecent version

Contents
Page
SECTION 1 — GENERAL ...ooiiii ittt ettt e e e e s sttt e e e e s st bttt e e e e e e e e e e e e nne e 1
1 STl 0] o PP RRRRPPPRPPI 1
2 N o1 o Y SR] (=] (T o L PSPPSR 1
2.1 Identical Recommendations | International Standards............cccccceviiiiiiiie i 1.
2.2 Paired Recommendations | International Standards equivalent in technical content...........................
3 (D= 1] T 1T o 13O PUPPRURTPPRRP 2
3.1 OSIl Reference Model DEfiNItIONScoiiiiiiiee ittt e et e e e s ——— 2
3.2 BasiC Directory DEfiNtIONS.........cccoiiiiii i e e e e e e e s e e e e e e e e e e e s emmmmmmmmmmmme e 2
ICTRC I D11 = Tox (o] YA \Y (oo (=l D= 11 0T o] F- R 2
3.4 DSA Information Model definitioNSccuviiiiiiiiiiiiiee e sreeee e 2
3.5 Directory replication defiNitioNS..........ccuviiiiiiiiiiii e 3
3.6 Distributed operation defiNitioNS..........c.uviiiiiiiii e 3
4 Abbreviations 4
5 [010] 01Y/=T 11 o] o £ PRPROTRPRPR 5
SECTION 2 — OVERVIEW ...ttt ettt e e sttt e e e s sttt e e e e s ns b e e s smmmmmmnnenmt e s e e e e e e s 5
6 L@ Y] = PP 5
SECTION 3 — DISTRIBUTED DIRECTORY MODELSooiiiiiiiiiiiie st smneaee e 6
7 Distributed Directory SYyStem MOGE...........uviiiiiiiiiiie e e e srreee e s
8 DIy AN g1 (T =Tt o] E 1 o T 1= PSRRI
8.1 DeCcompOSition Of @ FEOUEST ...ttt r e e e e e e e e e e s e e e ——
8.2 UNI-ChaiNiNgo e —————— e es
S0 T V[ed = V1 Vo RS
8.4 RETEITAL ...t e e e e e e e e e e ————————————_
8.5 MOdE DeterMINAION.cciiiieiiitee ettt e et e et e e e e e e e e e e e e e e e e s e ——
SECTION 4 — DSA ABSTRACT SERVICE
9 Overview Of DSA ADSIFACE SEIVICE........uuuiiiiii ittt et eeeemnees
10 o] g g E=iToT oI 1Y 1T T OO UPPPRPPRTP 11
00 A 1o £ To [F o 1 o o SRR PPPPPPPPP 11
10.2 Information types defined elsewhere e 11
0 B @1 o - V1 T To AN o 8T 1T] £ 12
10.4 ChaiNiNg RESUITS.....coiiiiiiiii ettt e st e e e nn et e e e s e eannneeeeas 13
10.5 OPEIatiON PrOGIESSueeeeeeiteitiaiaaaaa e e e i ettt bttt ettt et eaaaaaaaaaaaaaaaaa e asbabbesbee s e s mmmmmnnmmmmnn e 1o 14
10.6 Trace INFOrMALION.......uiiiieiiiiiiiie et e e e e e e e s st b e e e e e s snbb et e smmmmmneeennnneeeeesans 14
O R = =Y (=Y =T Lo =T I/ o = PSP 15
10.8 ACCESS POIN INFOIMALION.uuiiiiiiiiiiiieii e e e e e e e e e e s e — 15
L10.9 EXCIUSIONS ..ottt ettt e e e e oo oo oo oo oot b bbbttt ettt ettt e et a2 2 a4+ smmmmmmmmmmnt 555 £ e e e e e 15
10.10 ContiNUALION REFEIEINCEuiiiiii i e e——— 16
11 (2] gTo = T o [a1 o] oo 1R TP PRPT 17
IO R S ¥ N 2 113 o PSP PPPRR 17
02 1S ¥ N W T o 1 o PP 18
12 (O g T T L= I o] o 1T = 4o o 1P 18
2 A O o - 11 <TI0 o =T = L1 1R 18
12.2 ChainedAbandon OPEIratiONceeeiiiiie it e e e e e e e e e s e s e e e e e e e s s mmmmaes 19

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version i

13 ChAINEO EITOS ...ttt ettt b et b et e bt e bt s e e b e Rt e e b e st s e b e Rt e e R e Rt ee e b e b e e b b et se e b e b e ne b e st e et ene e
G50 R 1 01 oo LF o1 Lo o TSRS
13.2 DSA REFEITA ...ttt ettt ettt et b e st bt e e se et e st s et e nese et aneseebeneseebaneneas
SECTION 5 — DISTRIBUTED PROCEDURES.........ccoiiiiiiiiieiie et enmmmnenn
14 11 oTo [V ox1To] o IR PO PUPRPPUPPRPPRIN
141 SCOPE AN LIMILS ittt ettt e e e e e e e et e et bbbt et ettt e e et e e e e e s mmmmnmeenananeeeeeeees
I O] o1 {0 1 0 - g o] = S PPPP
I B @0 o o= o U= 2 o o - R
14.4 Individual and cooperative operation 0f DSAScccccciiiiiiiiiie e
14.5 Cooperative agreements DEIWEEN DSAScooo oo s
15 Distributed DIreCtory DENAVIONcoiiiiiiiii e e e e e e e e
15.1 Cooperative fulfillment of OPEratioNSccccciiiiiiiiieie e e e e e e e
15.2 Phases Of Operation ProCESSING.........cciiciiuuriiiiiiirieireeeeeee e e e s e et iessssr e rerrreereaaaeeeeeeaeeaeaaaaaans
15.3 Managing Distributed OPEIatiONSccuiiiiiiaiiiiiiiiit ettt a e e e e e e e eaeeeaaaaaeaaeaas
T Mo To] o N g =T Lo | 1 o [OSSO U PRSP URRPR
15.5 Other considerations for distributed OPeration ..o e
15.6 Authentication of Distributed Operations
16 The Operation DISPALCRETccoii et e et e et e e e e e e e s smmmmmmmmmmemnes e esnneees
G R 1= o 1= v | o] g o= o) £ TP
16.2 Procedures of the operation diSpatCher ...
16.3 OVEIrVIEW Of PrOCEUUIES ...ttt e e ettt e e e e e e e e aeaeaeaeeeesaaaaannns
17 REQUEST VAlIHALION ...ttt ettt e et e e e e e e e e s e 44 s £ st s e e e
0 R | 1 (o To [F ot 1 o] I PSSP PPPPPPP
17.2 ProCEAUIE PArAMIELEIS ..coiiiii ittt et e e e e e e e e e e e e e e bbb ettt et e et e e e e e e e @ s——
17.3 Procedure defiNitiONooeiiiiiiiiiee ettt e e ——
18 NAME RESOIULION ...ttt e e e s ekt e e e s st b e e et e e s e aeeannreeeeaeessabbrneeaenaas
20 R | 1 (o To [F ot 1 o] o [PPSR PPPPPPPN
18.2 Find DSE proCedure ParameterS.cuoi ittt e e e e e e e e e e e e e e e e ebab bbb e e s e e« s——
18.3 Procedures
19 (@] o =T e iTe] g N =AY =1 [= U4 o) o O STP PP
19.1 MOdifiCAtION PrOCEAUIEttt ettt et e et e e e e e e e e e e e e e s e e s annnnnnneneeeeeaeas
19.2 Single entry interrogation ProCEAUIEooii ittt et e e e e e e e s eeesmmmmmmnnn s
19.3 Multiple entry interrogation PrOCEAUIEeeeiiiiiiiiae ettt e et e e e e e e e e e e e s e ammmmneneeeeee
20 Continuation ReferenCe PrOCERAUIES.........oooi ittt e e e e s s 11
20.2 Issuing chained sub-requests to a remote DSA ...t
20.3 ProCEUUIES’ PAIAMELEISuteieiiiiiiiiiaa e e e e ettt ettt e et e e aaaaaaaaaaasaa s aanbbbbbe s e s eeeeaammammmnnne s
20.4 Definition Of the PrOCEAUIES.ccoiiiiiiiie et mme e e
{0 NI\ o T- Tg (o (o]0 I o] (Tt =To [0 ¢ TP
21 RESUItS MEIgING PrOCEAUIE.......ueieiiiiieiie ettt e e e e e e e e e e e e e e b b s b e ————— s
22 Procedures for distributed authentiCationccouiiiiiiiiiiii e mmmmeeeenmmm e
22.1 Originator aUtNENTICATION.........coei ittt e e bbbt e e e e et e e s s £
22.2 ReSUItS aUNENTICALION.ccciiiiiiiii et e e s st emmmmneeeeesne e
ii ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version

Page

Super seded by a morerecent version

Page
SECTION 6 — KNOWLEDGE ADMINISTRATION ...ttt e e e e e e e s e eeeees 74
23 Knowledge adminiStration OVEIVIEWccooiiiiiiiiiiiie ittt e e e s 74
23.1 Maintenance of Knowledge REfEIENCESccccuiiiiiiiiiiieeicee e e e e s e e 74
23.2 ReqUESHING CrOSS FEfEIENCEci i it i e e e e e e e e e e e« — 75
23.3 KNOWIEdQE INCONSISIENCIESceeiiiiiiiiiieiiitiiie ettt st e st e e s 76
24 Hierarchical operational DINGINGSe e e 510 77
24.1 Operational binding type characteristics 77
24.3 DSA procedures for hierarchical operational binding management.............cccooooovvccciiiiiiiieieieceeee e,
24.4 Procedures fOr OPEIALIONSuuiiie ittt st e e st e e e s b b e et e e e aeesnneeeeaae s 83
24.5 Use Of appliCAtiON CONTEXES ...ooiiiiiiiiiiieiiee ittt e e e e e e et e e eaaaaaaaeens 83
25 Non-specific hierarchical operational BINING..........uuuiiiiiiiiiiii e — 84
25.1 Operational binding type CharacteriStiCSccvieeeiiiiii i o—— 84
25.2 Operational binding information object class definition ..., 85
25.3 DSA procedures for non-specific hierarchical operational binding management.................ccccveeeeeee.
A S el (o Tol=To [(=T 3R (o] gfe) o 1=T = 11 o] o 87
25.5 Use Of appliCation CONTEXLS ..ovvviiiiieieee i e e e e e e s e e e eeeeeeaaaaeaeeens 87
Annex A — ASN.1 for Distributed OPEratioNScooiiiuiriiieiiiiiiiie ettt e e s saeneeeeees 88
Annex B — Example of distributed name reSolUtioNuuiiiiiiiiiiii e 91
Annex C — Distributed use of authentication 93
L0t S T [o0 >V Y 93
C.2 SIMple aUtNENTICALIONcce i e e e et e e aeeee e e e s mmmmmmmmmmeen ee e 93
C.3 Distributed authentication MOGEoocuiiiiiiiii e e e 93
O B 18 (o T B 157 S TP 94
C.5 Transference from the DAP 10 the DSPcooiiiiiiiiiiiic e 94
C.6 Chaining through intermediate DSASc.uuiiiiiiiiiiiee e seeeeeee e saees 94
C.7 RESUIS QUINENTICALION.eiiieiiiiiiiiie ettt e et e e e e et et e e e emn e e e e eesnnes 94
Annex D — Specification of hierarchical and non-specific hierarchical operational binding typescccccccvveeeeennnn.
Annex E — Knowledge maintenance eXample ...t e s 99
Annex F — Amendments and COIMTIGENUEAcoiciiiiiieiiiee e e e e e e e e e s s s e e e e e e e e e e eeeeeeesanaannnreeneees 102

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version iii

Super seded by a morerecent version

Summary

This Recommendation | International Standard specifies the procedures by which the distributed components of the
Directory interwork in order to provide a consistent service to its users.

iv ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version

Introduction

This Recommendation | International Standard part together with other Recommendations | International Standards, has
been produced to facilitate the interconnection of information processing systems to provide directory services. A set of
such systems, together with the directory information which they hold, can be viewed as an integrated whole, called the
Directory. The information held by the Directory, collectively known as the Directory Information Base (DIB), is
typically used to facilitate communication between, with or about objects such as application entities, people, terminals
and distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to alow, with a minimum of
technical agreement outside of the interconnection standards themselves, the interconnection of information processing
systems:

« from different manufacturers;
e under different managements;
- of different levels of complexity; and

- of different ages.

This Recommendation | International Standard specifies the procedures by which the distributed components of the
Directory interwork in order to provide a consistent service to its users.

This second edition technically revises and enhances, but does not replace, the first edition of this Recommendation |
International Standard. Implementations may still claim conformance to the first edition.

This second edition specifies version 1 of the Directory service and protocols. The first edition also specifies version 1.
Differences between the services and between the protocols defined in the two editions are accommodated using the
rules of extensibility defined in this edition of Rec. X.519 | ISO/IEC 9594-5.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for
directory distributed operations.

Annex B, which is not an integral part of this Recommendation | International Standard, describes an example of
distributed name resolution.

Annex C, which is not an integral part of this Recommendation | International Standard, describes authentication in the
distributed operations environment.

Annex D, which is an integral part of this Recommendation | International Standard, provides the definitions of the
ASN.1 information object classes introduced in this Directory Specification.

Annex E, which is not an integral part of this Recommendation | International Standard, illustrates knowledge
maintenance.

Annex F, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect
reports that have been incorporated to form this edition of this Recommendation | International Standard.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version %

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY — OPEN SYSTEMS INTERCONNECTION —
THE DIRECTORY: PROCEDURES FOR DISTRIBUTED OPERATION

SECTION 1 — GENERAL

1 Scope

This Recommendation | International Standard specifies the behavior of DSAs taking part in the distributed Directory
application. The allowed behavior has been designed so as to ensure a consistent service given awide distribution of the
DIB across many DSASs.

The Directory is not intended to be a general purpose database system, athough it may be built on such systems. It is
assumed that there is a considerably higher frequency of queries than of updates.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
congtitute provisions of this Recommendation | International Standard part. At the time of publication, the editions
indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on
this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
editions of the Recommendations and Standards listed below. Members of IEC and SO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

21 Identical Recommendations| International Standards

— ITU-T Recommendation X.500 (1993) | ISO/IEC 9594-1:198fbrmation technology — Open Systems
Interconnection — The Directory: Overview of concepts, models and services.

— ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:198fbrmation technology — Open Systems
Interconnection —The Directory: Models.

— ITU-T Recommendation X.511 (1993) | ISO/IEC 9594-3:198fbrmation technology — Open Systems
Interconnection —The Directory: Abstract service definition.

— ITU-T Recommendation X.519 (1993) | ISO/IEC 9594-5:198fbrmation technology — Open Systems
Interconnection —The Directory: Protocol specifications.

— ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:198#rmation technology — Open Systems
Interconnection —The Directory: Selected attribute types.

— ITU-T Recommendation X.521 (1993) | ISO/IEC 9594-7:198fbrmation technology — Open Systems
Interconnection —The Directory: Selected object Classes.

— ITU-T Recommendation X.509 (1993) | ISO/IEC 9594-8:198fbrmation technology — Open Systems
Interconnection —The Directory: Authentication framework.

— ITU-T Recommendation X.525 (1993) | ISO/IEC 9594-9:198fbrmation technology — Open Systems
Interconnection — The Directory: Replication.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 1

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

— ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:198#rmation technology — Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:1%%rmation technology — Abstract Syntax
Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:19%rmation technology — Abstract Syntax
Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:19%rmation technology — Abstract Syntax
Notation One (ASN.1): Parametrization of ASN.1 specifications.

— ITU-T Recommendation X.880 (1994) | ISO/IEC 13712-1:19®ormation technology — Remote
Operations: Concepts, model and notation.

— ITU-T Recommendation X.881 (1994) | ISO/IEC 13712-2:19®ormation technology — Remote
Operations: OSI realizations — Remote Operations Service Element (ROSE) service definition.

2.2 Paired Recommendations | I nter national Standards equivalent in technical content
— CCITT Recommendation X.200 (1988) Reference Model of Open Systems Interconnection for CCITT
Applications.

ISO 7498:1984/Corr.1:1988nformation Processing Systems — Open Systems Interconnection — Basic
Reference Model.

3 Definitions

For the purpose of this Recommendation | International Standard the following definitions apply:

31 OSl Reference Model Definitions

The following terms are defined in CCITT Rec. X.200 and 1SO 7498:
— application entity title.

3.2 Basic Directory Definitions
The following terms are defined in ITU-T Rec. X.500 and ISO/IEC 9594-1:
a) (the) Directory;

b) Directory Information Base.

33 Directory Model Definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:
a) accesspoint;
b) alias
¢) distinguished name;
d) Directory Information Tree;
e) Directory System Agent;
f) Directory User Agent;
g) relative distinguished name.

34 DSA Information Model definitions

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:
a) category;
b) commonly usable;

c) context prefix;

2 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

d) crossreference;

e) DIB fragment;

f) DSAinformation tree;

0) DSA Secific Entry (DSE);

h) DSE type;

i) immediate superior reference;
i) knowledge information;

k) knowledge reference category;
I) knowledge reference type;

m) naming context;

n) non-specific knowledge;

0) non-specific subordinate reference;
p) operational attribute;

q) reference path;

r) specific knowledge;

s) subordinate reference;

t) superior reference.

35 Directory replication definitions
The following terms are defined in ITU-T Rec. X.525 | ISO/IEC 9594-9:
a) attribute completeness;
b) shadowing operational binding;
¢) subordinate completeness;
d) unit of replication.
3.6 Distributed operation definitions
The following terms are defined in this Recommendation | International Standard:
36.1 base object: The object or alias entry that is the target for an operation as issued by the originator.
36.2 chaining: The generic term for uni-chaining or multi-chaining.

3.6.3 context prefix information: Operationa and user information supplied by the superior DSA to the
subordinate DSA in a RHOB regarding DIT vertices superior to the subordinate context prefix.

3.6.4 distributed name resolution: The process by which name resolution is performed in more than one DSA.

3.65 error: Information sent from the performer to the requester conveying a negative outcome of a previously
received request.

3.6.6 hard error: A definite error which indicates that the operation cannot currently be performed without external
intervention.

3.6.7 hierar chical operational binding (HOB): Relationship between two master DSAs holding naming contexts,
one of which is immediately subordinate to the other, in which the superior DSA holds a subordinate reference to the
subordinate DSA.

3.6.8 modification operations: These are the Directory Modify Operations, i.e. Modify Entry, Add Entry, Remove
Entry and ModifyDN.

3.6.9 multi-chaining: A mode of interaction in which a DSA processing a request itself sends multiple requests
either in parallel or sequentially to a set of other DSAS.

3.6.10 multipleentry interrogation operations: These are the Directory Search Operations, i.e. List and Search.

3.6.11 nameresolution: The process of locating an entry by sequentially matching each RDN in a purported name to
avertex of the DIT.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 3

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

3.6.12 non-specific hierarchical operational binding (NHOB): Relationship between two master DSAs holding
naming contexts, one of which isimmediately subordinate to the other, in which the superior DSA holds a non-specific
subordinate reference to the subordinate DSA.

3.6.13 NSSR decomposition: Decomposition of non-specific knowledge references into subrequests for other DSAs
to pursue; these subrequests may be either chained to these DSAs by the DSA performing the decomposition, or a
continuation reference identifying the DSAs may be returned to the requester for it to pursue, or the decomposing DSA
may pursue some of the subrequests, leaving others unexplored for the requester to pursue.

3.6.14 operation progress: A set of values which denotes the extent to which name resolution has taken place.
3.6.15 originator: The DUA that has initiated a specific (distributed) operation.
3.6.16 performer: DSA receiving arequest (i.e. to perform an operation).

3.6.17 procedure: An (informal) specification of how a DSA maps a given set of input arguments and its DSA
information tree into aresult.

NOTE — Input arguments and results may correspond to information received in a requested operation and information sent
in a reply, or they may represent intermediate stages in the computation of a reply from a requested operation. In t#e? the for
variety of input arguments and results are termed external.

3.6.18 relevant hierarchical operational binding (RHOB): Either aHOB or a NHOB, depending on the context.

3.6.19 referral: An outcome which can be returned by a DSA which cannot perform an operation itself, and which
identifies one or more other DSAs more able to perform the operation.

3.6.20 reply: A result or an error.

3.6.21 request: Information consisting of an operation code and associated arguments to convey a directory operation
from arequester to a performer.

3.6.22 request decomposition: Decomposition of a request into subrequests for other DSAs to pursue; these
subrequests may be either chained to these DSAs by the DSA performing the decomposition, or continuation references
identifying the DSAs may be returned to the requester for it to pursue, or the decomposing DSA may pursue some of the
subrequests, leaving others unexplored for the requester to pursue.

3.6.23 requester: A DUA or DSA sending arequest to perform (i.e. invoke) an operation.
3.6.24 singleentry interrogation operations: These are the Directory Read Operations, i.e. Read and Compare.

3.6.25 soft error: An error which may be transient, or which may indicate a localized problem, in which case the use
of adifferent knowledge reference or access point may enable aresult or hard error to be obtained.

3.6.26 subordinate DSA: Of the two DSAs sharing a HOB or a NHOB, the DSA holding the subordinate naming
context.

3.6.27 subrequest: A request generated by request decomposition.
3.6.28 superior DSA: Of the two DSAs sharing aHOB or aNHOB, the DSA holding the superior naming context.

3.6.29 superior, subordinate DSA: Two master DSAs holding naming contexts, one of which is immediately
subordinate to the other; the relationship between the two DSAs is managed explicitly viaa HOB (or NHOB), or exists
implicitly by virtue of the superior DSA holding a subordinate (or non-specific subordinate) reference to the subordinate
DSA.

3.6.30 target object name: The name of an entry either to which the operation is to be directed at a particular stage
of name resolution, or which isinvolved in the evaluation of the operation.

3.6.31 uni-chaining: A mode of interaction optionally used by a DSA which cannot perform an operation itself. The
DSA chains by invoking an operation of another DSA and then relaying the outcome to the original requester.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
DOP Directory Operational Binding Management Protocol
DISP Directory Information Shadowing Protocol

4 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

DMD Directory Management Domain

DSE DSA Specific Entry

HOB Hierarchical Operational Binding

NHOB Non-specific Hierarchical Operational Binding
NSSR Non-specific Subordinate Reference

RHOB Relevant Hierarchical Operational Binding

5 Conventions

With minor exceptions this Directory Specification has been prepared according to the “Presentation of ITU-
TS/ISO/IEC common text” guidelines in the Guide for ITU-TS and ISO/IEC JTC 1 Cooperation, March 1993.

The term “Directory Specification” (as in “this Directory Specification”) shall be taken to mean ITU-T Rec. X.518 |
ISO/IEC 9594-4. The term “Directory Specifications” shall be taken to mean the X.500-Series Recommendations and all
parts of ISO/IEC 9594,

This Directory Specification uses the term “1988 edition systems” to refer to systems conforming to the previous (1988)
edition of the Directory Specifications, i.e. the 1988 edition of CCITT X.500-Series Recommendations and the

ISO/IEC 9594:1990 edition. Systems conforming to the current Directory Specifications are referred to as “1993 edition
systems”.

If the items in a list are numbered (as opposed to using “—" or letters), then the items shall be considered steps in a
procedure.

This Directory Specification defines directory operations using the Remote Operation notation defined in ITU-T
Rec. X.880 | ISO/IEC 9072-1.

SECTION 2 — OVERVIEW

6 Overview

The Directory Abstract Service allows the interrogation, retrieval and modification of Directory information in the DIB.
This service is described in terms of the abstract Directory object as specified in ITU-T Rec. X.511 | ISO/IEC 9594-3.

Necessarily, the specification of the abstract Directory object does not in any way address the physical realization of the
Directory: in particular it does not address the specification of Directory System Agents (DSA) within which the DIB is
stored and managed, and through which the service is provided. Furthermore, it does not consider whether the DIB is
centralized, i.e. contained within a single DSA, or distributed over a number of DSAs. Consequently, the requirements
for DSAs to have knowledge of, navigate to, and cooperate with other DSAS, in order to support the abstract servicein a
distributed environment is also not covered by the service description.

This Directory Specification specifies the refinement of the abstract Directory object, the refinement being expressed in
terms of a set of one or more DSA objects which collectively constitute the distributed directory service.

In addition this Directory Specification specifies the permissible ways in which the DIB may be distributed over one or
more DSAs. For the limiting case where the DIB is contained within a single DSA, the Directory is in fact centralized;
for the case where the DIB is distributed over two or more DSAs, knowledge and navigation mechanisms are specified
which ensure that the whole of the DIB is potentially accessible from all DSAsthat hold constituent entries.

Portions of the DIB may aso be replicated in multiple DSAs. The protocols described in this Directory Specification

allow the use of replicated information to improve the availability, performance and efficiency of the distributed

directory service. The use of replicated information is, to some extent, under the user’'s control, through the use of
service control options. The procedures described in this Directory Specification also indicate some of the opportunities
for design optimizations when using the replicated information.

Additionally, request handling interactions are specified that enable particular operational characteristics of the Directory
to be controlled by its users. In particular, the user has control over whether a DSA, responding to a directory inquiry
pertaining to information held in other DSA(s), has the option of interrogating the other DSA(s) directly (chaining) or,
whether it should respond with information about other DSA(s) which could further progress the inquiry (referral).

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 5

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

Generally, the decision by a DSA to chain or refer is determined by the service controls set by the user, and by the
DSA’s own administrative, operational or technical circumstances.

Recognizing that, in general, the Directory will be distributed, and that directory inquiries will be satisfied by an
arbitrary number of cooperating DSAs which may arbitrarily chain or refer according to the above criteria, this Directory
Specification specifies the appropriate procedures to be effected by DSAs in responding to distributed directory
inquiries. These procedures will ensure that users of the distributed Directory service perceive it to be both user-friendly
and consistent.

SECTION 3 — DISTRIBUTED DIRECTORY MODELS

7 Distributed Directory System Model

The Directory abstract service as defined in ITU-T Rec. X.511 | ISO/IEC 9594-3 models the Directory as an object
which provides a set of directory services to its users. Users of the Directory access its services through an access point.
The Directory may have one or more access points and each access point is characterized by the services it provides and
the mode of interaction used to provide these services.

Figure 1 illustrates the distributed directory model which will be used as the basis for specifying the distributed aspects
of the directory. It illustrates the Directory as comprising a set of one or more DSAS.

access point peTTeeeel

. The Directory

chainedModify

TISO3580-94/d01

Figure 1 — Objects of the distributed Directory model

DSAs are specified in detail in the subsequent clauses of this Directory Specification. This clause merely states a number
of their characteristics in order to serve as an introduction and to establish the relationship between this Directory
Specification and the other Directory Specifications.

DSAs are defined in order that distribution of the DIB can be accommodated and that a number of physically distributed
DSAs can interact in a prescribed, cooperative manner to provide directory services to the users of the directory (DUAS).

Figure 1 illustrates the relationship between the Directory abstract service and the DSA abstract service. The Directory
abstract service defined in ITU-T Rec. X.511 | ISO/IEC 9594-3 is provided through a number of Directory operations.
To realize this service, the DSAs that comprise the Directory interact with one another. The nature of this interaction is
defined in terms of the service that one DSA may provide to another DSA, the DSA abstract service. The DSA abstract
service is provided through a number of operations, termed chained operations, each having a counterpart in the
Directory abstract service. Thus a given operation in the Directory abstract service, e.g. Read, may require that the DSA
providing the service interact with one or more other DSAs using chained operations, e.g. Chained Read.

6 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

8 DSA Interactions M odel

A basic characteristic of the Directory is that, given a distributed DIB, a user should potentially be able to have any
service request satisfied (subject to security, access control, and administrative policies) irrespective of the access point
at which the request originates. |n accommodating this requirement, it is necessary that any DSA involved in satisfying a
particular service request have some knowledge (as specified in ITU-T Rec. X.501 | ISO/IEC 9594-2) of where the
requested information is located and either return this knowledge to the requester or attempt to have the request satisfied
on its behalf. (The requester may either be aDUA or another DSA: in the latter case both DSAs shall support the DSP.)

Three modes of DSA interaction are defined to meet these requirements, namely “uni-chaining”, “multi-chaining”, and

“referral”. Throughout the remainder of this Directory Specification, the generic term chaining is used to refer to uni-

chaining and/or multi-chaining as appropriate to the context. “Chaining” refers to the attempt by a DSA to satisfy a
request by sending one or more chained operations to other DSAs; “referral”, to the return of knowledge information to
the requester, which may then itself interact with the DSA(s) identified in the knowledge information.

Uni-chaining or a referral interaction may result from a single request. Alternatively, the request may be decomposed
into several subrequests prior to the interaction. Multi-chaining or referral interactions, or a mixture of the two, may
result from a decomposed request. Two types of decomposition are defined; NSSR decomposition and request
decomposition.

8.1 Decomposition of a request

811 NSSR decomposition

NSSR decomposition is the process of preparing identical requests ready for transfer (either sequentially or in parallel) to
several subordinate DSAs as a result of encountering an NSSR during name resolution. Non-specific subordinate
references do not hold the RDNs of the referenced subordinate naming contexts, so the referencing DSA is unable to tell
which subordinate DSA holds which subordinate naming context(s). During name resolution a DSA encountering
NSSRs shall send an identical request to each subordinate DSA (in the absence of shadowing). This may be done
sequentially or in parallel Typically, only one DSA will be able to continue with hame resolution; the others will return
the Service ErrounableToProceed. In certain (rare) circumstances it is possible that more than one DSA will continue
with name resolution, giving rise to duplicate results.

8.12 Request decomposition

Request decomposition, the other form of decomposing a request, is a process performed internally by a DSA prior to

communication with one or more other DSAs. A request is decomposed into several, possibly different, sub-requests

such that each of the sub-requests accomplishes a part of the original task. Request decomposition can be used only
during operation evaluation of a List or Search. After request decomposition, each of the sub-requests may then be

chained to other DSAs to continue the task, or a partial result (an embedded referral) may be returned to the requester.
An example of the same sub-request being generated to different DSAs is when an entry has subordinate references
and/or NSSRs that together reference more than one DSA. An example of different sub-requests being generated to the
same or different DSAs is when two different entries are encountered during a Search (subtree), and each has a
subordinate reference.

8.2 Uni-chaining

This mode of interaction (depicted in Figure 2) may be used by one DSA to pass on a request to another DSA when the
former has knowledge about naming contexts held by the latter. Uni-chaining may be used to contact a single DSA
pointed to in a cross reference, a subordinate reference, a superior reference, a supplier reference, or a master reference.

NOTE — In Figure 2, the order of interactions is defined by the numbers associated with the interaction lines.

8.3 Multi-chaining

This mode of interaction is used by a DSA for transferring several outgoing requests which have resulted from one
incoming request, as aresult of either request decomposition or NSSR decomposition.

831 Parallel multi-chaining

With parallel multi-chaining, the DSA transfers several outgoing requests simultaneously (see Figure 3a). Whilst parallel
multi-chaining may give improved performance, it may under certain circumstances, e.g. in the presence of shadowing,
cause duplicate results to be received.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 7

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

TISO3590-94/d02

Figure 2 — Uni-chaining mode

832 Sequential multi-chaining

With sequential multi-chaining, the DSA transfers one outgoing request at atime and waits for the result or error of one
request before sending the next (see Figure 3b). Whilst sequential multi-chaining may not be the quickest mode of
interaction, it is unlikely that duplicate results will be received.

NOTE — A DSA may use a combination of parallel multi-chaining and sequential multi-chaining.

TISO3600-94/d03

Figure 3a— Parallel Multi-chaining

8 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

TISO3610-94/d04

3 Unable to proceed.

Figure 3b — Sequential Multi-chaining
(as a result of NSSR decomposition)

8.4 Referral

A referral (depicted in Figures 4a and 4b) is returned by a DSA in response to a request from either a DUA or another
DSA. The referral may constitute the whole response (in which case it is categorized as an error) or just part of the
response. The referral contains a knowledge reference, which may be either a superior, subordinate, cross, non-specific
subordinate, supplier, or master reference.

The DSA (Figure 44) receiving the referral may use the knowledge reference contained therein, to subsequently chain or
multi-cast (depending upon the type of reference) the original request to other DSASs. Alternatively, a DSA receiving a
referral, may in turn pass the referral back in its response. A DUA (Figure 4b) receiving a referral may use it to contact
one or more other DSAs to progress the request.

NOTE - In Figures 4a and 4b, the order of interactions is defined by the numbers associated with the interaction lines.

8.5 M ode Deter mination

If aDSA cannot itself fully resolve arequest, it shall chain the request (or arequest formed by decomposing the origina
one), to another DSA, unless:

a) chaining is prohibited by the user via the service controls, in which case the DSA shall return areferral or
achainingRequired ServiceError; or

b) the DSA hasadministrative, operational, or technical reasons for preferring not to chain, in which case the
DSA shdl return areferral.

NOTES
1 A *“technical reason” for not chaining is that the DSA identified in the knowledge reference does not support the DSP.
2 If thelocalScope service control is set, then the DSA (or DMD) shall either resolve the request or return an error.

3 If the user prefers referrals, the user shoulatsaihingProhibited.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 9

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

TISO3620-94/d05
3 Referral to B

B Referralto C

Figure 4a — Referral mode (DSA acts on referrals)

Response

TISO3630-94/d06

3 Referral to E.
b) Referralto F.

Figure 4b — Referral mode (DUA acts on referrals)

10 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

SECTION 4 — DSA ABSTRACT SERVICE

9 Overview of DSA Abstract Service

The service of the Directory is fully described in ITU-T Rec. X.511 | ISO/IEC 9594-3. When such a service is provided
in a distributed environment, as modeled in clause 7, it can be regarded as being provided by means of a set of DSAs.
Thisisillustrated in Figure 1.

For each operation defined in the Directory service, a corresponding “chained” operation is defined in the DSA abstract
service for use between DSAs cooperating in the accomplishment of that Directory service operation. Thus, a DSA
receiving a Read operation from a DUA might require the assistance of another DSA (e.g. a DSA holding the target
entry or a copy of it) to satisfy it, and so send that DSA a Chained Read operation.

The information types exchanged in the DSA abstract service are defined in clause 10. The operations and errors of the
DSA abstract service are defined in clauses 11 through 13.

10 Infor mation types

10.1 Introduction

This clause identifies, and in some cases defines, a number of information types which are subsequently used in the
definition of various of the operations of the DSA abstract service. The information types concerned are those which are
common to more than one operation, are likely to be in the future, or which are sufficiently complex or self-contained to
merit being defined separately from the operation which uses them.

Several of the information types used in the definition of the DSA abstract service are actually defined elsewhere.
Subclause 10.2 identifies these types and indicates the source of their definition. Subclauses 10.3 through 10.9 identifie
and define an information type.

10.2 Information types defined elsewhere

The following information types are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:
— aliasedEntryName;
— DistinguishedName;
— Name;
— RelativeDistinguishedName.

The following information types are defined in ITU-T Rec. X.511 | ISO/IEC 9594-3:
(Bind)
— DirectoryBind
(Operations)
— Abandon
(Errors)
— abandoned;
— attributeError;
— nameError;
— securityError;
— serviceError;
— updateError.
(Information Object Class)
— OPTIONALLY-SIGNED
(Data Type)
— SecurityParameters

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 11

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

The following information typeis defined in ITU-T Rec. X.520 | ISO/IEC 9594-6:

10.3

PresentationAddress.

Chaining Arguments

The ChainingArguments are present in each chained operation, to convey to a DSA the information needed to
successfully perform its part of the overall task:

ChainingArguments = SET {
originator [Q] DistinguishedName OPTIONAL,
targetObject [1] DistinguishedName OPTIONAL,
oper ationPr ogr ess [2] OperationProgress
DEFAULT { nameResolutionPhase notStarted },
tracel nformation [3] Tracel nformation,
aliasDer eferenced [4] BOOLEAN DEFAULT FALSE,
aliasedRDNs [5] INTEGER OPTIONAL,

-- absent unless aliasDer eferenced is TRUE
returnCrossRefs [6] BOOLEAN DEFAULT FALSE,
referenceType [7] ReferenceType DEFAULT superior,
info [8] Domaininfo OPTIONAL,
timeLimit [9] UTCTime OPTIONAL,
securityParameters [10] SecurityParameters DEFAULT {},
entryOnly [11] BOOLEAN DEFAULT FALSE,
uniquel dentifier [12] Uniqueldentifier OPTIONAL,
authenticationL evel [13] AuthenticationLevel OPTIONAL,
exclusions [14] Exclusions OPTIONAL,
excludeShadows [15] BOOLEAN DEFAULT FALSE,
nameResolveOnM aster [16] BOOLEAN DEFAULT FALSE}

The various components have the meanings as defined below:

12

a)

b)

d)

e)

f)

)

Theoriginator component conveys the name of the (ultimate) originator of the request unless already
specified in the security parametersréfjuester is present irCommonArguments, this argument may
be omitted.

ThetargetObject component conveys the name of the object whose directory entry is being routed to.
The role of this object depends on the particular operation concerned: it may be the object whose entry is
to be operated on, or which is to be the base object for a request or sub request involving multiple objects
(e.g.ChainedList or ChainedSearch). This component can be omitted only if it has the same value as
the object or base object parameter in the chained operation, in which case its implied value is that value.

TheoperationProgress component is used to inform the DSA of the progress of the operation, and hence
of the role which it is expected to play in its overall performance. The information conveyed in this
component is specified in 10.5.

Thetracel nformation component is used to prevent looping among DSAs when chaining is in operation.
A DSA adds a new element to trace information prior to chaining an operation to another DSA. On being
requested to perform an operation, a DSA checks, by examination of the trace information, that the
operation has not formed a loop. The information conveyed in this component is specified in 10.6.

ThealiasDer eferenced component is BOOLEAN value which is used to indicate whether or not one or
more alias entries have so far been encountered and dereferenced during the course of distributed name
resolution. The default value BAL SE indicates that no alias entry has been dereferenced.

The aliasedRDNs component indicates how many of the RDNs in térgetObject Name have been
generated from thaliasedEntryName attributes of one (or more) alias entrig¢be integer value is set
whenever an alias entry is encountered and dereferenced. This component shall be present if and only if
thealiasDer eferenced component i§ RUE.

The entryOnly component is set td RUE if the original operation was a search, with the subset
argument set tmneLevel and an alias entry was encountered as an immediate subordinate of the
baseObject. The DSA which successfully performs name resolution ontahgetObject name, shall
perform object evaluation on only the named entry.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

h)

)

k)

0)

p)

a)

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

The returnCrossRefs component is a Boolean value which indicates whether or not knowledge
references, used during the course of performing a distributed operation, are requested to be passed back
to the initial DSA as cross references, along with a result or referral. The default value of FALSE
indicates that such knowledge references are not to be returned.

The referenceType component indicates, to the DSA being asked to perform the operation, what type of
knowledge was used to route the request to it. The DSA may therefore be able to detect errors in the
knowledge held by the invoker. If such an error is detected it shall be indicated by a ServiceError with
theinvalidRefer ence problem. ReferenceTypeis described fully in 10.7.

NOTE - If ther eferenceType is missing then the value superior shall be assumed.

The info component is used to convey DM D-specific information among DSAs which are involved in the
processing of acommon request. This component is of type Domainlnfo, which is of unrestricted type:

Domainlnfo = ABSTRACT-SYNTAX.& Type

The timeLimit component, if present, indicates the time by which the operation is to be completed
(see 17.4.4b).

The SecurityParameters component is specified in ITU-T Rec. X.511 | ISO/IEC 9594-3. Its absence is
deemed equivalent to there being an empty set of security parameters.

AuthenticationLevel is optionaly supplied when it is required to indicate the manner in which
authentication has been carried out. The AuthenticationL evel element is described in ITU-T Rec. X.501 |
ISO/IEC 9594-2.

Uniquel dentifier is optionally supplied when it is required to confirm the originator name. The
Uniquel dentifier element isdescribed in ITU-T Rec. X.501 | ISO/IEC 9594-2.

The entryOnly component is set to TRUE if the original operation was a Search with the subset
argument set to onelLevel, and an alias entry was encountered as an immediate subordinate of the
baseObject. The DSA which successfully performs name resolution on the targetObject name shall
perform object evaluation on only the named entry.

The exclusions component has significance only for Search operations; it indicates, if present, which
subtrees of entries subordinate to the targetObject shall be excluded from the result of the Search
operation (see 10.9).

The excludeShadows component has significance only for Search and List operations; it indicates that the
search shall be applied to entries and not to entry copies. This optional component may be used by a DSA
as one way to avoid the receipt of duplicate results (see 20.1).

The nameResolveOnMaster component only has significance during name resolution, and is only set if
NSSRs have been encountered. If set to TRUE, it signals that subsequent name resolution, i.e. matching
the remaining RDNs from nextRDNT oBeResolved, shall not employ entry copy information; subsequent
resolution of each remaining RDN shall be done in the master DSA for the entry identified by that RDN
(see 20.1).

104 Chaining Results

The ChainingResults are present in the result of each operation and provide feedback to the DSA which invoked the

operation.

ChainingResults = SET {
info [Q] Domaininfo OPTIONAL,
crossReferences [1] SEQUENCE OF CrossReference OPTIONAL,
securityParameters [2] SecurityParametersDEFAULT { },
alreadySear ched [3] Exclusions OPTIONAL }

The various components have the meanings as defined below:

a)

b)

The info component is used to convey DM D-specific information among DSAs which are involved in the
processing of acommon request. This component is of type Domainlnfo, which is of unrestricted type:

The crossReferences component is not present in the ChainingResults unless the returnCrossRefs
component of the corresponding request had the value TRUE. This component consists of a sequence of
CrossRefer ence items, each of which contains a contextPr efix and an accessPoint descriptor (see 10.8).

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 13

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

CrossReference = SET {
contextPrefix [0] DistinguishedName,
accessPoint [1] AccessPointInformation }

A CrossReference may be added by a DSA when it matches part of the targetObject argument of an
operation with one of its context prefixes. The administrative authority of a DSA may have a policy not to
return such knowledge, and will in this case not add an item to the sequence.

¢) The SecurityParameters component is specified in ITU-T Rec. X.511 | ISO/IEC 9594-3. Its absence is
deemed equivalent to there being an empty set of security parameters.

d) ThealreadySearched component, if present, indicates which subordinate RDNs immediately subordinate
to the targetObject have been processed as a part of a chained Search operation and therefore shall be
excluded in a subsequent subrequest.

105 Operation Progress

An OperationProgress value describes the state of progress in the performance of an operation which several DSAs
shall participatein.

OperationProgr ess = SET {
nameResolutionPhase [Q] ENUMERATED {
notStarted (1),
proceeding (2),
completed (3) },
nextRDNT oBeResolved [1] INTEGER OPTIONAL }

The various components have the meanings as defined below:

a) The nameResolutionPhase component indicates what phase has been reached in handling the
targetObject name of an operation. Where this indicates that name resolution has notStarted, then a
DSA has not hitherto been reached with a naming context containing the initial RDN(s) of the name. If
name resolution is proceeding, then the initial part of the name has been recognized, although the DSA
holding the target object has not yet been reached. The nextRDNToBeResolved indicates how much of
the name has already been recognized (see 10.5.b). If name resolution is completed, then the DSA
holding the target object has been reached, and performance of the operation proper is proceeding.

b) The nextRDNToBeResolved indicates to the DSA which of the RDNs in the targetObject name is the
next to be resolved. It takes the form of an integer in the range one to the number of RDNs in the name.
This component isonly present if the nameResolutionPhase component has the value proceeding.

10.6 Trace Information

A Tracelnformation value carries forward a record of the DSAs which have been involved in the performance of an
operation. It is used to detect the existence of, or avoid, loops which might arise from inconsistent knowledge or from
the presence of aliasloopsinthe DIT.

Tracel nformation = SEQUENCE OF Traceltem
Traceltem = SET {

dsa [Q] Name,

targetObject [1] Name OPTIONAL,

oper ationProgress [2] OperationProgress}

Each DSA which is propagating an operation to another adds a new item to the end of the sequence of Traceltem.
Each such Traceltem contains:

a) the Name of the dsa which is adding the item;

b) thetargetObject name which the DSA adding the item received on the incoming request. This parameter
isomitted if the request being chained came from a DUA (in which case its implied value is the object or
baseObject in XOperation), or if its value is the same as the (actual or implied) targetObject in the
ChainingArgument of the outgoing request;

c) theoperationProgress which the DSA adding the item received on the incoming request.

14 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

10.7 Reference Type
A ReferenceType vaue indicates one of the various kinds of reference defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

ReferenceType = ENUMERATED {
superior 2,
subordinate (2),
Cross 3),
nonSpecificSubor dinate (4),
supplier 5),
master (6),
immediateSuperior (7),
self @)}

10.8 Access point information

There are three types of access points:

a) An AccessPoint value identifies a particular point at which access to the Directory, specifically to a DSA,
can occur. The access point has a Name, that of the DSA concerned, and a PresentationAddress, to be
used in OSI communications to that DSA.

AccessPoint = SET {
ae-title [Q] Name,
address [1] PresentationAddr ess,
protocoll nformation [2] SET OF Protocoll nformation OPTIONAL }

b) A Master Or ShadowAccessPoint value identifies an access point to the Directory. The category, either
master or shadow, of the access point is dependent upon whether it points to a naming context or
commonly usable replicated area.

M aster Or ShadowA ccessPoint = SET {
COMPONENTSOF AccessPoint,
category [8] ENUMERATED {
master (0),
shadow (1) } DEFAULT master }}

¢) A Master AndShadowAccessPoints value identifies a set of access points to the Directory, i.e. a set of
related DSAs. These access points share the property that each refers to a DSA holding entry information
from a common naming context (or a common set of naming contexts mastered in one DSA when the
value is a vaue of the nonSpecificKnowledge attribute. A Master AndShadowA ccessPoints value
indicates the category of each AccessPoint value it contains. The access point of the master DSA of the
naming context need not be included in the set.

M aster AndShadowA ccessPoints = SET OF Master Or ShadowA ccessPoint

An AccessPointI nformation value identifies one or more access points to the Directory.

AccessPointl nformation = SET {
COMPONENTSOF M aster Or ShadowA ccessPoint ,
additional Points [4] SET OF Master Or ShadowAccessPoint OPTIONAL }

In the case of 1988 edition DSAs producing an AccessPointInformation value, the optional component of the set is
absent. In the case of 1988 edition DSAs interpreting an AccessPointlnformation value, any Master AndShadow-
Access Points values present are ignored.

In the case of 1993 edition DSAs, the Master Or ShadowAccessPoint value component produced for an
AccessPointl nformation value may be of category master or shadow, as determined by the knowledge selection
procedure of the DSA producing the value. It may be viewed as a suggested access point provided by the DSA
generating the value to the DSA receiving it. A set of Master AndShadowA ccessPoints values may optionally also be
produced for an AccessPointl nformation value. This constitutes additional information which may be employed by the
receiving DSA’s knowledge selection procedure to determine an alternative access point.

10.9 Exclusions

As defined in 10.3, thexclusions component ofChainingArguments is used to limit the scope of a Search operation

by identifying a number of entries subordinate to the target object which, together with all of their subordinates, shall not
be included in the processing of a Search operationeXdiesion component is defined as a value of the ASN.1 type
Exclusions.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 15

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)
Exclusions = SET OF RDNSequence

Each RDNSequence value in the Exclusions set should identify the context prefix of a naming context subordinate to
the target object. If a DSA receives a Search request with an RDNSequence value that does not conform to this
constraint, the DSA may ignore that value. The RDNSequence is relative to the target object, and is not the
distinguished name of the context prefix.

Exclusions can, besides being part of a user request, be used by DSAs to minimize duplicate information returned from
Search sub-requests performed in the presence of shadowed information.

Figure 5 illustrates an example of the use of Exclusions. In this example, a DSA holds two replicated areas, one beneath
the other. One starts with context prefix X, the other with context prefix C. An entry copy at Y has three subordinate
references to naming contexts, A, B and C.

If, as an example, a subtree Search is performed in this DSA, starting with a base object within naming context X, the
DSA can provide information from replicated areas X and C. The information from naming contexts A and B has to be
provided via the subordinate references. When performing request decomposition, ContinuationRefer ences, to be used
in either partialResults or chaining, will specify Y asthe target object and C as a single element of an Exclusions set.

TISO3640-94/d07

Figure5— Exclusions

10.10 Continuation Reference

A ContinuationRefer ence describes how the performance of all or part of an operation can be continued at a different
DSA or DSAs. It is typically returned as a referral when the DSA involved is unable or unwilling to propagate the
request itself.

ContinuationReference ::= SET {
targetObject [Q] Name,
aliasedRDNs [1] INTEGER OPTIONAL,
oper ationPr ogr ess [2] OperationProgr ess,
rdnsResolved [3] INTEGER OPTIONAL,
referenceType [4] ReferenceType,
accessPoints [5] SET OF AccessPointlnformation,
entryOnly [6] BOOLEAN DEFAULT FALSE,
exclusions [7] Exclusions OPTIONAL,
returnToDUA [8] BOOLEAN DEFAULT FALSE,
nameResolveOnM aster [9] BOOLEAN DEFAULT FALSE}

16 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

The various components have the meanings as defined below:

a) The targetObject Name indicates the name which is proposed to be used in continuing the operation.
This might be different from the tar getObject Name received on the incoming request if, for example, an
alias has been dereferenced, or the base object in a search has been located.

b) The aliasedRDNs component indicates how many (if any) of the RDNSs in the target object name have
been produced by dereferencing an dias. The argument is only present if an alias has been dereferenced.

¢) The operationProgress indicates the amount of name resolution which has been achieved, and which will
govern the further performance of the operation by the DSAs named, should the DSA or DUA receiving
the ContinuationRefer ence wish to follow it up.

d) TherdnsResolved component value (which need only be present if some of the RDNs in the name have
not been the subject of full name resolution, but have been assumed to be correct from a cross reference)
indicates how many RDNs have actually been resolved, using internal references only.

€) The referenceType component indicates what type of knowledge was used in generating this
continuation.

f) The accessPoints component indicates the access points which are to be contacted to achieve this
continuation. Only where non-specific subordinate references are involved can there be more than one
AccessPointInfor mation item.

g) The entryOnly component is set to TRUE if the original operation was a search, with the subset
argument set to onelLevel, and an dias entry was encountered as an immediate subordinate of the
baseObject. The DSA which successfully performs name resolution on the targetObject name, shall
perform object evaluation on only the named entry.

h) The exclusions component identifies a set of subordinate naming contexts that should not be explored by
the receiving DSA.

i) The returnToDUA element is optionally supplied when the DSA creating the continuation reference
wishes to indicate that it is unwilling to return information via an intermediate DSA (e.g. for security
reasons), and wishes to indicate that information may be directly available via an operation over DAP
between the originating DUA and the DSA. When returnToDUA is set to TRUE, referenceType may
be set to salf.

i) The nameResolveOnMaster element is optionally supplied when the DSA creating the continuation
reference has encountered NSSRs. If set to TRUE, it signals that subsequent name resolution,
i.e. matching the remaining RDNs from nextRDNToBeResolved, shal not employ entry copy
information; subsequent resolution of each remaining RDN shall be done in the master DSA for the entry
identified by that RDN (see 20.1).

11 Bind and Unbind

DSABind and DSAUnNbind, respectively, are used by a DSA at the beginning and at the end of a period of accessing
another DSA.

111 DSA Bind

A DSABINnd operation is used to begin of a period of cooperation between two DSAs providing the Directory service.

DSABind = BIND
ARGUMENT DirectoryBindArgument
RESULT DirectoryBindResult
BIND-ERROR DirectoryBindError

The components of the DSABInd are identical to their counterparts in the DirectoryBind (see ITU-T Rec. X.511 |
| SO/IEC 9594-3 with the following differences.

— The Credentials of the DirectoryBindArgument allows information identifying the AE-Title of the
initiating DSA to be sent to the responding DSA. The AE-Title shall be in the form of a Directory
Distinguished Name.

— The Credentials of the DirectoryBindResult allows information identifying the AE-Title of the
responding DSA to be sent to the initiating DSA. The AE-Title shall be in the form of a Distinguished
Name.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 17

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

11.2 DSA Unbind
A DSAUnNbind is used to end a period of cooperation between two DSASs providing the Directory service.
DSAUnNbind = UNBIND

There are no arguments, results or errors.

12 Chained operations

For each of the operations used to access the Directory abstract service, there is an operation used between cooperating
DSAs in an one-to-one correspondence. The names of the operations have been chosen to reflect that correspondence by
prefixing the names of operations used between cooperating DSAs with the term “Chained”.

The arguments, results, and errors of the chained operations are, with one exception, formed systematically from the
arguments, results, and errors of the corresponding operations in the Directory abstract service (as described in 14.3).
The one exception is th€hainedAbandon operation, which is syntactically equivalent to its Directory service
counterpart (described in 14.4).

121 Chained operations

A DSA, having received an operation from a DUA, may elect to construct a chained form of that operation to propagate
to another DSA. A DSA, having received a chained form of an operation may also elect to chain it to another DSA. The
DSA invoking a chained form of an operation may optionally sign the argument of the operation; the DSA performing
the operation, if so requested, may sign the result of the operation.

The chained form of an operation is specified using the parameterizechyped {}.

chained { OPERATION : operation } OPERATION = {

ARGUMENT OPTIONALLY-SIGNED { SET {

chainedArgument ChainingArguments,

argument [0] operation.& ArgumentType }}
RESULT OPTIONALLY-SIGNED { SET {

chainedResult ChainingResults,

result [0] operation.& ResultType}}
ERRORS { operation.& ErrorsEXCEPT (referral | dsaReferral) }
CODE operation.& operationCode }

NOTES

1 Theoperations of the Directory abstract service which may be used as the actual parameter of chained {} include the
abandoned error. The presence of this error among the set of possible errors of a chained operation reflects the possibility discussed
in 14.4, that a ChainedAbandon can be generated for a ChainedM odify operation when alinked association fails.

2 The definitive specification of the DSA abstract service in Annex A applies this parameterized type to construct all
the chained operations of the abstract service.

The argument of the derived operation has the components:

a) chainedArgument — This is a value o€hainingArguments which contains that information, over and
above the original DUA-supplied argument, which is needed in order for the performing DSA to carry out
the operation. This information type is defined in 10.3.

b) argument — This is a valueperation.& Argument and consists of the original DUA-supplied argument,
as specified in the appropriate clause of ITU-T Rec. X.511 | ISO/IEC 9594-3.

Should the request succeed, the result of the derived operation has the components:

a) chainedResult — This is a value o€hainingResults which contains that information, over and above
that to be supplied to the originating DUA, which may be needed by previous DSAs in a chain. This
information type is defined in 10.4.

b) result — This is a valuemperation.& Result and consists of the result which is being returned by the
performer of this operation, and which is intended to be passed back in the result to the originating DUA.
This information is as specified in the appropriate clause of ITU-T Rec. X.511 | ISO/IEC 9594-3.

Should the request fail, one of the errors of theopetation.& Errors will be returned, except thatsaReferral is
returned instead afeferral. The set of errors which may be reported are as described for the corresponding operation in
ITU-T Rec. X.511 | ISO/IEC 9594-3. The erdsaReferral is described in 13.2

18 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)
12.2 ChainedAbandon operation

A ChainedAbandon operation is used by one DSA to indicate to another that it is no longer interested in having a
previously invoked distributed operation performed. This may be for any of a number of reasons, of which the following
are examples:

— the operation which led to the DSA originally chaining has itself been abandoned, or has implicitly been
aborted by the breakdown of an association;

— the DSA has obtained the necessary information in another way, e.g. from a faster responding DSA
involved in the parallel multi-chaining.

A DSA is never obliged to issueGhainedAbandon, or indeed to actually abandon an operation if requested do so.

If ChainedAbandon actually succeeds in stopping the performance of an operation, then a result will be returned, and
the subject operation will return aabandoned error. If the ChainedAbandon does not succeed in stopping the
operation, then it itself will return aabandonFailed error.

13 Chained errors

13.1 Introduction

For the most part, the same errors can be returned in the DSA abstract service which can be returned in the Directory
abstract service. The exceptions are thatddaReferral ‘error’ is returned (see 13.2), instead Réferral, and the
following service problems have the same abstract syntax but different semantics:

a) invalidReference — The DSA returning this error detected an error in the calling DSA's knowledge as
specified in the eferenceType chaining argument;

b) loopDetected — The DSA returning this error detected a loop in the knowledge information in the
Directory.

The precedence of the errors which may occur is as for their precedence in the Directory abstract service, as specified in
ITU-T Rec. X.511 | ISO/IEC 9594-3.

13.2 DSA Referral

The dsaReferral error is generated by a DSA when, for whatever reason, it doesn’t wish to continue performing an
operation by chaining the operation to one or more other DSAs. The circumstances where it may return a referral are
described in 8.3.

dsaReferral ERROR = {
PARAMETER SET {
reference [Q] ContinuationReference,
contextPrefix [1] DistinguishedName OPTIONAL }
CODE id-errcode-dsaReferral }

The various parameters have the meanings as described below:

a) TheContinuationReference contains the information needed by the invoker to propagate an appropriate
further request, perhaps to another DSA. This information type is specified in 10.9.

b) If thereturnCrossRefs component of th€hainingArguments for this operation had the valldRUE,
and the referral is being based upon a subordinate or cross-reference, ttmriext®refix parameter
may optionally be included. The administrative authority of any DSA will decide which knowledge
references, if any, can be returned in this manner (the others, for example, may be confidential to
that DSA).

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 19

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

SECTION 5 — DISTRIBUTED PROCEDURES

14 I ntroduction

141 Scope and Limits

This clause specifies the procedures for distributed operation of the Directory which are performed by DSAs. Each DSA
individually performs the procedures described below; the collective action of all DSAs produces the full set of services
provided to users by the Directory.

14.2 Conformance

The description of DSA procedures in this section is based on the models in clauses 8 and 9 of ITU-T Rec. X.501 |
ISO/IEC 9594-2 and clauses 7 and 8. The flow charts and their corresponding textual descriptions are one means of
mapping a given set of external (DAP and/or DSP) inputsto a DSA into one or more external outputs (i.e. aresult, error,
referral or chained requests) produced by that DSA, depending on the particular DSA information tree held by that DSA.

It is probable that the Directory will be distribute across DSAs implemented according to different editions of the

Directory Specifications, e.g. 1988 and 1993 editions. The DUA initiating the request will be unaware as to which

edition the DSA or DSAs satisfying the DUA’s request will have been implemented. Therefore to allow operation in
such a heterogeneous environment, a DSA shall be implemented according to the rules of extensibility defined in
clause 7 of ITU-T Rec. 519 | ISO/IEC 9594-5.

A DSA implementation shall be functionally equivalent to the external behavior specified by these procedures described
here. The algorithms used by a particular DSA implementation to derive the correct output(s) from the given inputs
and DSA information tree held are not standardized.

14.2.1 Interaction between 1988 edition and 1993 edition DSAS

If the modify operations evaluate across DSA boundariesAddEntry with TargetSystem, Remove or Rename a
context prefix), then this directory Specification only specifies how two 1993 edition DSAs shall behave. The interaction
between two 1988 edition DSAs, or between a 1988 edition DSA and a 1993 edition DSA, is outside the scope of the
Directory Specifications. When mixed edition DSAs have a hierarchical operational binding, knowledge of each other’s
edition may allow a consistent error to be given to the user.

14.3 Conceptual model

The complexity of the Directory’s distributed operation gives rise to a need for conceptual modeling using both narrative
and pictorial descriptive techniques. However, neither the narrative nor graphic diagrams should be construed as a
formal description of distributed Directory operation.

144 Individual and cooper ative operation of DSAs

The model views DSA operation from two separate perspectives, which, taken together, provide a complete, operational
picture of the Directory.

a) DSA-centered perspective — In this perspective the set of procedures that support the directory is
described from the viewpoint of a single DSA. This makes it possible to provide a definitive specification
of each procedure and to fully account for their interrelationships and overall control structure. Clauses 16
through 22 describe the DSA procedures from a DSA-centered perspective.

b) operation-centered perspective — The DSA-centered view provides complete detail but makes it difficult
to understand the structure of individual operations, which may undergo processing by multiple DSAs.
Consequently Clause 15 adopts a primarily operation-centered view to introduce the processing phases
applicable to each.

To support the distributed operation of the directory, each DSA shall perform actions needed to realize the intent of each

operation and additional actions needed to distribute that realization across multiple DSAs. Clause 15 explores the
distinction between these two kinds of actions. In clauses 16 through 22 both kinds of actions are specified in detail.

20 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

145 Cooperative agreements between DSAs

All DSAs which are in a subordinate/superior relationship due to the naming contexts that they hold, have hierarchical
and/or non-specific hierarchical operationa bindings between them, depending upon the types of knowledge reference
held by the subordinate DSA.

Hierarchical and non-specific hierarchica operational bindings between DSAs may be administered using the
procedures of clauses 24 and 25 of this specification, or by other means (e.g. telephone).

A DSA holding entries which are within the administrative area of its superior DSA shall administer the sub-schema and
shall control access to the entries as required by the administrative authority. The regulation of entries within an
administrative area may be performed as defined in ITU-T Recommendation X.501 | ISO/IEC 9594-2 or may be by local
mechanisms.

15 Distributed Directory behavior

151 Cooper ative fulfillment of operations

Each DSA is equipped with procedures capable of completely fulfilling al Directory operations. In the case that a DSA
contains the entire DIB all operations are, in fact completely carried out within that DSA. In the case that the DIB is
distributed across multiple DSAs the completion of a typical operation is fragmented, with just a portion of that
operation carried out in each of potentially many cooperating DSASs.

In the distributed environment, the typical DSA sees each operation as a transitory event: the operation is invoked by a
DUA or some other DSA; the DSA carries out processing on the object and then directs it toward another DSA for
further processing.

An dternative view considers the total processing experienced by an operation during its fulfillment by multiple,
cooperating DSAs. This perspective reveal s the common processing phases that apply to all operations.

15.2 Phases of operation processing

Every Directory operation may be thought of as comprising three distinct phases:

a) the Name Resolution phase in which the name of the object on whose entry a particular operation is to be
performed is used to locate the DSA which holds the entry;

b) the Evaluation phase in which the operation specified by a particular directory request (e.g. Read) is
actually performed;

c) the Results Merging phase in which the results of a specified operation are returned to the requesting
DUA. If a chaining mode of interaction was chosen, the Results Merging phase may involve several
DSAs, each of which chained the original request or sub request (as defined in 15.3.1 Request
Decomposition) to another DSA during either or both of the preceding phases.

In the case of the operations Read, Compare, List, Search, Modify Entry, ModifyDN and Remove Entry, name
resolution takes place on the object name provided in the argument of the operation. In the case of Add Entry name
resolution’s target entry is the immediately superior entry of that provided in the argument of the operation - it can be
easily derived by removing the final RDN from the name provided in the operation argument. (This is done via local
argumenim in the FindDSE procedure of 18.2.5)

An operation on a particular entry may initially be directed at any DSA in the Directory. That DSA uses its knowledge,
possibly in conjunction with other DSAS, to process the operation through the three phases.

1521 Name Resolution phase

Name Resolution is the process of sequentially matching each RDN in a purported Name to an arc (or vertex) of the
DIT, beginning logically at the Root and progressing downwards in the DIT. However, because the DIT is distributed
between arbitrarily many DSAs, each DSA may only be able to perform a fraction of the name resolution process. A
given DSA performs its part of the Name Resolution process by traversing its local DSA information tree. This process
is described in clause 18 and the accompanying diagrams (see Figures 9 through 12). Based on its local DSA
information tree, and the knowledge information contained therein, a DSA is able to infer whether the resolution can be
continued by one or more other DSAs, or whether the name is erroneous.

15.2.2 Evaluation phase

When the name resolution phase has completed, the actual operation requifRebeay.Sear ch) is performed.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 21

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

Operations that involve a single entry interrogation - Read and Compare - may be carried out entirely within the DSA in
which the entry is located.

Operations that involves multiple entries interrogation - List and Search - need to locate subordinates of the target, which
may or may not reside in the same DSA. If they do not al reside in the same DSA, operations need to be directed to the
DSAs specified in the subordinate, non-specific subordinate, supplier or master references (as appropriate) to complete
the evaluation process.

15.23 Resultsmerging phase
The results merging phase is entered once some of the results of the evaluation phase are available.

In those cases where the operation affected only a single entry, the result of the operation can ssimply be returned to the
requesting DUA.. In those cases where the operation has affected multiple entries on multiple DSAS, results need to be
combined.

The permissible responses returned to aregquester after results merging include:
a) acomplete result of the operation;

b) aresult which is not complete because some parts of the DIT remain unexplored (applies to List and
Search only). Such a partial result may include continuation references for those parts of the DIT not
explored;

¢) anerror (areferral being aspecial case);

d) andif therequester wasaDSA, a ChainingResult.

15.3 Managing Distributed Oper ations

Information is included in the argument of each operation which a DSA may be asked to perform indicating the progress
of each operation as it traverses various of the DSAs of the Directory. This makes it possible for each DSA to perform
the appropriate aspect of the processing required, and to record the completion of that aspect before directing the
operation outward toward further DSASs.

Additional procedures are included in the DSA to physicaly distribute the operations and support other needs arising
from their distribution.

1531 Request Decomposition

Request decomposition is a process performed internally by a DSA prior to communication with one or more other
DSAs. A reguest is decomposed into several subrequests such that each of the latter accomplishes a part of the original
task. Request decomposition can be used, for example, in the search operation, after the base object has been found.
After decomposition, each of the subrequests may then be uni-chained or multi-chained to other DSAS, to continue the
task.

1532 DSA asRequest Responder

A DSA that receives a request can check the progress of that request using the oper ationProgr ess parameter. This will
determine whether the operation is gtill in the name resolution phase or has reached the evaluation phase, and what
portion of the operation the DSA should attempt to satisfy. If the DSA cannot fully satisfy the request it shall either pass
(by uni-chaining or multi-chaining) the operation on to one or more DSAs which can help to fulfill the request, or return
areferra to another DSA, or terminate the request with an error.

15.3.3 Completion of Operations

Each DSA that has initiated an operation or propagated an operation to one or more other DSAs shall keep track of that

operation’s existence until each of the other DSAs has returned a result or error, or the operation’s maximum time limit
has expired. This requirement applies to all operations, propagation modes and processing phases. It ensures the orderl
closing down of distributed operations that have propagated out into the Directory.

154 L oop handling

The DIT may be in a state that can cause looping. As an example, looping can occur during name resolution where
dereferencing one or more aliases brings the resolution back to the same branch of the DIT. Another potential cause of
looping is through misconfigured knowledge references.

22 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

Within the context of a particular directory operation, a loop occurs if at any time the operation returns to a previous
state, where state is defined by the following components:

— the name of the DSA currently processing the operation;
— the name of theargetObject as contained within the argument of the operation;
— theoperationProgress as contained within the argument of the operation and as defined in 10.5.

This does not mean that an operation cannot be processed multiple times by a particular DSA. However, it does mean
that the DSA will not process the same operation in the same state multiple times.

Looping is controlled using thieacel nformation argument as defined in 10.6, which records the sequence of states a
particular operation has gone through. Two strategies are defined to determine whether looping has occurred, or is about
to occur. These are loop detection and loop avoidance, and they are described in 15.4.1 and 15.4.2 respectively.

Loop detection is mandatory and loop avoidance is optional.

15.4.1 Loop detection

On receipt of a directory operation a DSA shall initially validate the operation to ensure that it can be progressed. An
important task of validation is to check for loops, by determining whether the current state of the operation appears in the
sequence of previous states recorded irtrtheel nfor mation argument for that operation. This step of loop checking is

loop detection.

15.4.2 Loop avoidance

Loop avoidance requires that a DSA, immediately prior to forwarding an operation to another DSA as part of a chaining
procedure, determines whether the consequential state of the operation (whictnasdhem that the receiving DSA

will add to tracelnformation when it receives it) appears on the sequence of previous states recorded in the
tracel nformation argument for the original incoming operation.

In the case where referrals are received or acted upon, loop avoidance and loop detection cannot be achieved purely by
examiningtracel nformation. In this case, each time a DSA acts on a referral, it needs to store the consequential state of
the operation (i.e. thigacel tem that the receiving DSA is going to add when it receives the request) along with a record

of the incoming request. Before acting on or returning a referral, a DSA needs to check through this list, in order to
check that an identical request has not been previously sent whilst trying to service the incoming operation.

155 Other considerationsfor distributed operation

155.1 Servicecontrols

Some service controls need special consideration in the distributed environment in order that the operation is processed
the way that was requested.

a) chainingProhibited — A DSA consults this service control when determining the mode of propagation of
an operation. If it is set then the DSA always uses referral mode. If, however, it is not set, the DSA can
choose whether to use chaining or referral depending on its capabilities.

b) timeLimit — A DSA needs to take account of this service control to ensure that the time limit is not
exceeded in that DSA. A DSA requested to perform an operation by a DUA, initially he¢ahsdhinit
expressed by the DUA as the available elapsed time in seconds for completion of the operation. If
chaining is required, themeL imit is included in the chaining argument to be passed to the next DSA(S).

In this case the same value of the limit is used for each chained request, and is the (UTC) time by which
the operation shall complete to meet the originally specified constraint. On receiving
ChainingArguments with atimeLimit specified, the receiving DSA respects this limit.

c) sizeLimit — A DSA needs to take account of this service control to ensure that the list of results does not
exceed the size specified. The limit, as included in the common argument of the original request, is
conveyed unchanged as the request is chained. If request decomposition is required, the same value is
included in the argument to be passed to the next DSA, the full limit is used for each subrequest. When
the results are returned the requester DSA resolves the multiple results and applies the limit to the total to
ensure that only the requested number are returned. If the limit had been exceeded, this is indicated in the
reply.

d) priority — In all modes of propagation, each DSA is responsible for ensuring that the processing of
operations is ordered so as to support this service control if present.

e) localScope — The operation is limited to a locally defined scope and each DSA shall not propagate the
request outside of this.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 23

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

f) scopeOfReferral — If the DSA returns a referral or partial result thiat or Search operation, then the
embeddedContinuationRefer ences shall be within the requested scope.

All other service controls need to be respected, but their use does not require any special consideration in the distributed
environment.

15.5.2 Extensions

If a DSA encounters an extended operation in the name resolution phase of processing and determines that the operatior
should be chained to one or more DSAs, it shall include unchanged in the chained operation any extensions present.

NOTE — An Administrative Authority may determine that it is appropriate to retusar\daceError with problem
unwillingToPerform if it does not wish to propagate an extension.

If a DSA encounters an extension in the execution phase of processing, two possibilities may arise. If the extension
isnot critical, the DSA shall ignore the extension. If the extension is critical, the DSA shall return a serviceError
with problem unavailableCriticalExtension. A critical extension to a multiple object operation may result in both
results and service errors of this variety. A DSA merging such results and errors shall discard these service errors and
employ the unavailableCritical Extension component of PartialOutcomeQualifier as described in ITU-T Rec. X.511 |
ISO/IEC 9594-3.

1553 Aliasdereferencing

Alias dereferencing is the process of creating a new target object name, by replacing the alias entry distinguished name
part of the original target object name with figasedEntryName attribute value from the alias entry. Tolg ect name
in the operation is not affected by alias dereferencing.

15.6 Authentication of Distributed Operations

Users of the Directory together with administrative authorities that provide directory services may, at their discretion,
require that directory operations be authenticated. For any particular directory operation the nature of the authentication
process will depend upon the security policy in force.

Two sets of authentication procedures are available which collectively enable a range of authentication requirements to
be met. One set of procedures are those provided by Bind: these facilitate authentication between two directory
application-entities for the purposes of establishing an association. The Bind procedures accommodate a range of
authentication exchanges from a simple exchange of identities to strong authentication.

In addition to the peer entity authentication of an association as provided by Bind, additional procedures are defined
within the directory to enable individual operations to be authenticated. Two distinct sets of directory authentication
procedures are defined. One facilitates originator authentication services, which address the authentication, by a DSA, of
the initiator of the original service request. The second set facilitate results authentication services which address the
authentication, by an initiator, of any results that are returned.

For originator authentication two procedures are defined, one based upon a simple exchange of identities, termed
identity based authentication, and one based upon digital signature techniques, tersggthture based
authentication. The former of these procedures is rudimentary in nature since the identity exchange is based upon the
exchange of distinguished names which are transmitted in the clear.

For authentication of results a singlesults authentication procedure is defined, based upon digital signature
techniques; due to the generally complex nature of results collation a simpler, identity-based procedure is not defined.

Authentication of error responsesist supported by these procedures.

The services described below are to be considered as augmenting those provided by the Bind service; Bind procedures
are assumed to have been effected successfully prior to authentication of directory operations.

The procedures to be effected by a DSA in providing originator and results authentication are specified in clause 22.

16 The Operation Dispatcher

The Operation Dispatcher is the main controlling procedure in a DSA. It guides each operation through the three phases
of processing a request. The Operation Dispatcher therefore makes use of a set of procedures to fully process the reques
as shown in Figure 6.

24 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

16.1

16.1.1 Procedures

General Concepts

Super seded by

amorerecent version

| SO/IEC 9594-4 : 1995 (E)

Each of the procedures employed by the operation dispatcher consists of a definition of its conceptual interface in terms
of its parameters i.e. arguments, results and errors, and a description of the procedure steps itself. The behavior of the
procedures is described by flowcharts and text. Within a flow chart the used symbols have the following semantics

(see Figure 7):
Local DAP/DSP DSP DSP Local DAP/DSP
Request Request Request Reply Reply Reply
Result Merging DSP
Abandon .
Request Aband A 4 Result Request
Validation o an ed"” Merging
Procedure rocedure Procedure |y QST
+ — Ermror A A A eply
Return Name Resolution
I'with error A E | I
Find DSE rror Result
Procedure Name Resolution
. Continuation Reference
Return with
| | entry unsuitable ' Procedure 4‘
[
Return with DSP [
entry suitable Request
|
Evaluati List Continuation | L L - DSP
vauation Reference Procedure Reply
| L . A P—
L Single object Multiple object Search Continuation .
Modification inte?rogatjion interrogation Reference Procedure
V A
Modification Single Object - I”";“.“e;,h No
Evaluation Interrogation e_so u 'OT gse
Procedures Procedures = complete
A ’ Yes ¥
reference-
Type is supplier -
or master? Yes
No
| A v Y
List (I1) List (1) Search (I1) Search ()
Procedure Procedure Procedure Procedure
[[[
Error or result Error Result
| | |
DOP/ DOP/
Local
DISP DISP Reply DARF;/SSP TISO3650-94/d08
Request Reply y

Figure 6 — Operation Dispatcher

ITU-T Rec. X.518 (1993 E)

Super seded by a morerecent version

25

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

. Return to the calling procedure with X.
The entry point of the procedure Return X | X may be aresult, null, an error, astring,
or areferral, or it may be absent.

Yes

Branch based on a condition Al X's

Loop
rocessed
(2 or more outcomes) | Process each X contained in... ’p—>

detected?

Process a set of steps for each value X

Settg)écr:]u:t;ons An Action to be performed until all values X have been processed

Continue with the execution of the steps Continuation of
. rocedures that span
rofggure - of the called sub-procedure. After completion Q ﬁmltiple flow charfs
P of the sub-procedure, continue with the
outgoing arrow of this box.

TISO3660-94/d09

Figure7 — Symbols Used in Flow Charts

16.1.2 Useof common data structures

All procedures make use of some data structures that are available during the processing of an operation within
the operation dispatcher. These data structures serve to coordinate the data flow within the operation dispatcher. Most
of these structures are directly associated with the argument of the operation and the result to be created for
the operation. Components of the argument and result are referred to using their names within the associated
ASN.1 definition (e.g. the operationProgress component of the chaining arguments). If any of these structures is
acompound structure, a component of this structure may be referred to as compound.component
(e.g. operationProgr ess.nameResolutionPhase).

The following data structures are defined within the operation dispatcher:

— NRcontinuationList — A list of continuation references created for use in Naene Resolution
Continuation Reference procedure.

— SRcontinuationList — A list of continuation references created for use in lth& or Search
Continuation Reference procedure.

— admPoints — A list of references to DSEs of type administrative point that is collected during Name
Resolution.

Further, a procedure may use a set of locally defined variables.

16.1.3 Errors

At each stage of the processing an error may be detected during the execution of any sub-procedure. The error identified
within this sub-procedure is normally returned to the requester as a corresponding protocol error. In this case, the
operation dispatcher is terminated immediately. In the case that multiple errors are received, local procedures may select
one of them to be returned.

Alternatively, a procedure may choose to process errors (&gvifceError busy is returned to a chained search sub-
request) at certain points of operation processing. In this case the procedure continues with its execution and no error is
returned to the requester.

16.1.4 Asynchronousevents

During the processing of an operation request within the Operation Dispatcher several asynchronous events may occur.
The following paragraphs specify how to handle an exceeded time limit or size limit or administrative limit, a loss of
association and an Abandon request for an operation that is being processed. The handling of all other asynchronous
events, e.g. local policy decisions etc., is outside the scope of this specification.

26 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

16.1.4.1 Timelimit

A timeL imit as specified in the commonArguments can expire at any point in time during the operation. In this case,
normally a ServiceError with problem timeLimitExceeded is returned to the requesting DUA or DSA and the
operation dispatcher is terminated. Alternatively, a procedure may choose to handle this event in a different way
(e.g. during processing of a search request).

If a DSA receives a request from another DSA with the time limit exceeded, it shall send a ServiceError with a
timeL imitExceeded error value without any further processing of the reguest.

If a DSA has outstanding (sub)requests, when the timeL imit expires, and there are no results available, it shall return a
ServiceError with atimeL imitExceeded error value to the requester.

If a DSA has outstanding sub-requests, when the timeLimit expires, and there are results available, it shall return a
result to the requester with the following contents:

a) dl the collected results, up to the timelL imit expiring;

b) the limitProblem component of the partialOutcomeQualifier result-parameter shall be set to
timeL imitExceeded;

c¢) the unexplored component of the partialOutcomeQualifier result-parameter shall contain a
Continuation Reference value for each set of DSAs to which sub-requests were sent but the result of
which are not included in the result to the requester, in addition to Continuation References to DSAs to
which this DSA did not attempt to send sub-requests.

16.1.4.2 Lossof an association

If the association to the requester is lost, the DSA may optionally for each outstanding interrogation (sub)request, send
an Abandon request, unless the association to the DSA in question has aso been lost. All replies to such Abandon
requests and all replies to outstanding (sub)requests shall be discarded.

If the association to one of the outstanding chained sub-requests is lost and the association with the requester is not lost,
the DSA may, for interrogation operations only, optionally try any alternative reference to another DSA that is able to
process the chained regquest (e.g. a reference to a shadow DSA, after loss of the association to the master DSA). If this
does not succeed, the DSA shall act asfollows:

1) if operationProgress.nameResolution is set to notStarted or proceeding, return either a ServiceError
with problem unavailable to the requester or areferral error whose continuation reference contains the set
of DSAs that are able to continue the operation If non-specific subordinate references are used during the
Name Resolution phase and not all the associations in question are lost, optionally attempt to do the name
resolution without the DSAs to which the associations are lost. If this fails, return either a ServiceError
with problem unavailable, or areferral error containing the complete set of NSSRs.

NOTE - It is a local choice which type of error is returned.

2) if operationProgress.nameResolution is set to completed and the request is a single object operation
return a ServiceError with an unavailable error-parameter to the requester.

3) if operationProgress.nameResolution is set to completed and the request is a multiple entry
interrogation operation, the DSA shall add a continuation reference to
partialOutcomeQualifier.unexplored of the operation result, with AccessPointl nformation identifying
the set of DSAs that are able to continue the operation, including any DSAs to which associations have
been lost.

16.1.4.3 Abandoning the operation

During the processing of an operation, an Abandon request can be received for this operation. In this case, during the
processing of the Abandon request, the Abandon procedureis called for the operation to be abandoned.

16.1.4.3 Administrative Limits
There may be limits imposed by the local DSA administrator e.g., the amount of time to spend on processing a request,

or the maximum size of data to be returned. If any of these limits are exceeded the DSA shall return ServiceError with
problem administrativel imitExceeded.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 27

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

16.1.4.4 SizeLimit

A size limit, as specified in Common Arguments, can be exceeded at any point in time during processing of a List or
Search operation. In this case, a partial result (taken from the set of already collected results) shall be returned to the
requester with limitProblem set to sizeL imitExceeded. In addition, the unexplored component may be used for
returning Continuation References of unaccessed DSAs. Operation Dispatcher is then terminated.

16.2 Procedur es of the oper ation dispatcher

The procedure that is performed by the operation dispatcher for processing each received request (either over DAP or
DSP) is defined by the following steps. Due to alias dereferencing, this procedure may also call itself (alocal request), in
which case alocal reply (rather than a DAP or DSP reply) is returned.

iy
2)

3

4)

5)

6)

7)

8)

9

10)

11)

Vadlidate several aspects of the operation arguments (Request Validation procedure). If an error is
encountered during validation, return this error locally or over DAP/DSP.

If the operation received was an Abandon operation, call the Abandon procedure and return a reply
afterwards.

Resolve the name of the target object by executing the Find DSE procedure (which includes the Tar get
Found and Target Not Found sub-procedures). If the requested entry was found and is suitable
(according to the setting of the service controls, chaining arguments and local policy decisions), continue
with the Evaluation Phase at step 6). If during Name Resolution an error was encountered, it is
returned. If the entry was found not to be suitable, continue at step 4).

The Name Resolution Continuation Reference Procedure is called to process the list of Continuation
References as stored in the NRcontinuationList. In order to process these Continuation References,
chained regquests may be issued to other DSASs (if service controls and local policy decision alowsit).

In case of an error, this error is directly returned either locally or via DAP/DSP. If the chained request
generated aresult, then continue with step 5).

The Result Merging Procedureis called to merge the local results with the received Chained Results. If
the Chained Results contain embedded Continuation References, these may first be resolved if the service
controls and local policy allow or requireit.

This may cause additional Chained Requests to be issued (whose Chained Results may aso contain
embedded Continuation References).

The merged results are returned to the caller, and processing of the request ceases.
If the operation is a modification operation continue at step 7.

If the operation isa single entry interrogation operation continue at step 8.

If the operation isamultiple entry interrogation operation continue at step 9.

When carrying out a modification procedure, Operational Bindings may need to be established,
modified or terminated, or shadows may need to be updated as a consequence of performing the
operation. Whether these are done synchronously or asynchronously with the performance of the original
operation depends on the respective modification operations (and on local policy). A local or a DAP/DSP
result or error isreturned to the caller.

The result of a single entry interrogation operation is directly returned to the caller as a local or a
DAP/DSP result.

If the operation is a multiple entry interrogation operation then check the nameResolutionPhase of
the operation. If it is not completed then call the List(l) or Search(l) procedure, otherwise call the
List(l1) or Search(l1) procedure, respectively.

The outcome of a call to the List(I1) procedure (result or error) and the outcome of a call to the List(l)
procedure (in case that the outcome is an error) can directly be returned to the caller (as aloca or a
DAP/DSP result).

If the procedure called was the List(l) procedure, the result might contain Continuation References that
have to be dereferenced (depending on service controls and local policy). This may result in chained List
Operations being sent off to the respective DSAs. To merge the results continue at step 5 with the call to
the Result Merging Procedure.

If the operation was a Search operation, any Continuation References are resolved by the Search
Continuation Reference Procedure (if required and allowed). This may cause chained Search requests
to be sent off to the respective DSAs. The Result Merging Procedure (see step 5) is caled to merge the
search results and to possibly dereference contained Continuation Reference, if any.

28 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

16.3 Overview of procedures

This clause gives an overview of the basic functionality of the procedures employed by the operation dispatcher which
are defined in clauses 17 through 22.

16.3.1 Request Validation procedure

This procedure, described in clause 17, is called to perform loop checking, limit checking and security checking prior to
performing local name resolution. This procedure also provides default settings for those parameters of the
chainingArgument that are not provided by the DAP in the case that the request came from a DUA. Further, this
procedure singles out any Abandon request and notify this to Operation Dispatcher.

16.3.2 Abandon procedure

This procedure, described in 20.5, tries to find the operation that is to be abandoned and terminate it. If there are any
outstanding sub-requests, Chained Abandon operations may be sent after them. The procedure either returns a Null
Result to the caller, or an error indication (e.g. AbandonError with problem tooL ate).

16.3.3 Find DSE procedure

This procedure, described in 18.2 and 18.3, matches the components of the name of the target object against the locally
held DSEs to resolve the target object name. If an alias DSE is encountered, the alias is dereferenced (if permitted) and
the procedure is restarted to resolve the new name.

If the target was not found, the procedure is continued at the Target Not Found sub-procedure. If the target was found,
the procedure is continued at the Target Found sub-procedure.

NOTE —Target Not Found andTarget Found are continuations of theind DSE procedure.

The procedure may result in various errors, in which case the associated protocol error is returned to the requester and
the operation dispatcher is terminated.

16.3.3.1 Target Not Found sub-procedure

This procedure, described in 18.3.2, performs an evaluation of the located intermediate DSEs and creates a set of
continuationReferences in NRcontinuationList, based on the set of knowledge references that have been detected
during the Find DSE procedure. This set of references is then further processed within the Name Resolution
Continuation Reference procedure.

The procedure may result in various errors, in which case the associated error is returned to the requester and the
operation dispatcher is terminated.

16.3.3.2 Target Found sub-procedure

This procedure, defined in 18.3.3, checks if the found DSE is suitable for the requested operation, i.e. in the case where
it is shadowed information. This may include checking the suitability of the whole subtree of shadowed information
below the target object in the case of a multiple object operation (e.g. subtree search).

If the located entry is suitable, the appropriate operation evaluation procedure is invoked. Otherwise a
continuationRefer ence pointing to the supplier (or master) of the information is created in NRcontinuationList and the
Name Resolution Continuation Refer ence procedure is invoked.

16.3.4 Singleentry interrogation procedure

This procedure, described in 19.2, is invoked to actually execute those operations that only affect a single entry,
i.e. Read and Compare. After completion, areply (result or error) created by the procedure is returned to the requesting
DSA/DUA.

16.3.5 Madification procedures

These procedures, described in 19.1, are executed to process the modification operations i.e. AddEntry, RemoveEntry,
ModifyEntry and ModifyDN. This is done by executing a specific sub-procedure defined for each of these operations.
During (or after) these sub-procedures, DOP and DISP requests may be issued to other DSAs. After successful
completion, aresult (created by the sub-procedures) is returned to the requesting DSA/DUA.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 29

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

16.3.6 Multipleentry interrogation procedures

These procedures, described in 19.3, are executed to process operations that affect multiple entries which may or may
not be located in the same DSA. This is done by executing specific sub-procedures defined for each of the Search and
List operations to accomplish request decomposition. These procedures create a local result of the operation evaluation
and optionally a set of continuation referencesin SRcontinuationList. If SRcontinuationList is empty at the end of this
procedure, the created result is directly returned to the requesting DSA/DUA. Otherwise, these continuation references
are processed by invoking List or Search Continuation Refer ence procedure, according to the operation type.

16.3.7 Nameresolution Continuation Reference procedure

This procedure, described in 20.4.1, processes the continuation references in NRcontinuationList created during the
Name Resolution phase. These continuation references are either used to issue chained sub-requests or returned in a
referral error. In the case of chaining, the results or errors returned from the chained request are returned for further
processing by the Result Merging Procedure.

16.3.8 List and Search Continuation Reference procedure

These procedures, described in 20.4.3 and 20.4.4, process the continuation references in SRcontinuationList created by
the Multiple entry interrogation Procedures and either resolve them by issuing a chained sub-requests or by creating
continuation reference(s) within the partialOutcomeQualifier.unexplored. When results or errors for all outstanding
sub-requests have been received, they are returned for further processing by the Result M erging Procedure.

16.3.9 Result Merging procedure

This procedure, described in clause 22, either examines the result from a chained request or combines the local operation
results with the results received from the chained sub-requests. If a sub-request had returned an error, this procedure
determines how this error has to be handled.

If there are any continuation references left in the result, they will (if local policy allows so and service controls require
it) be dereferenced by the Name Resolution, List, or Search Continuation Reference procedures, accordingly.
Duplicates are removed from the result if it is unsigned.

The merged result (with all merged results and unresolved continuation references) is returned to the requesting
DUA/DSA.

17 Request Validation

17.1 Introduction

The Request Validation procedure is the entry point of the Operation Dispatcher for inputs from DUAs and DSAS,
preparing such inputs for Name Resolution processing. The function of this procedure is to detect abandon operations, to
perform security checks, to adjust input received from DUAS so that it may be processed in the same way as input
received from DSAS, to check the arguments of the request for valid syntax and semantics, to perform loop detection,
and to perform other miscellaneous checks. The flow of Request Validation is depicted in Figure 8.

17.2 Procedure parameters

17.2.1 Arguments

The input argument to Request Validation consists of ChainingArguments (except in the case of ChainedAbandon
operations), if the request is received from a DSA, and the argument issued by the originator of the request.

17.2.2 Results

The output result of Request Validation consists of five possihilities.
a) |f the security check fails, an error is returned to the requester.
b) If theinput isan Abandon or ChainedAbandon operation, the output is the argument of the operation.

c) If the arguments of the request are invalid, then an error is returned to the requester. Depending on local
policy, the DSA may choose whether to return a ServiceError or a SecurityError.

30 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

d)

e)

f)

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

If aloop is detected, a ServiceError with problem loopDetected is returned to the requester.

If, based on resource problems or policy considerations, the DSA is unable or unwilling to perform the
operation, a ServiceError (with problem busy, unavailable, or unwillingT oPerform) is returned to the
requester.

In al other cases, the validated input, transformed by addition of ChainingArguments if received from a
DUA or the update of ChainingArguments.tracel nformation if received from a DSA, is the output of
the procedure and subsequently the input to Name Resol ution.

Enter

Return
Error

Abandon or
ChainedAbandon

Return
Abandon

Update or Create
ChainingArguments

Request
Parameters
Valid?

No Return

Error

Return
ServiceError
loopDetected

Loop
detected?

Return
ServiceError busy,
unavailable or
unwilling ToPerform

Unwilling
or unable?

TISO3670-94/d10

Return

Figure 8 — Request Validation procedure

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 31

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)
17.3 Procedur e definition

The security check described in 17.3.2 is performed. This may result in the return of an error and the termination of the
Operation Dispatcher.

If the input is an Abandon or ChainedAbandon operation, only the steps in 17.3.1 are subsequently performed,
otherwise the stepsin 17.3.3-17.3.5 are performed. 17.3.5 describes the loop detection procedure which may result in the
return of an error and the termination of the Operation Dispatcher.

Next the checks in 17.3.6 are performed. They may result in the return of an error and the termination of the Operation
Dispatcher.

If the checks in 17.3.2-17.3.6 do not result in the termination of the Operation Dispatcher, the steps in 17.3.7 are
performed and the procedure terminates with the transfer of its output to the Name Resolution procedure.

17.3.1 Abandon processing

The argument of an Abandon or ChainedAbandon is passed to the Abandon procedure, (see 20.5), to process the
abandon request.

17.3.2 Security checks

If the argument to the operation is signed, the signature may be checked. Should the signature be invalid, or absent in a
case when it should be present, an error may be returned to the requester. Alternatively, a DSA may perform any other
locally defined action.

17.3.3 Input preparation

17.3.3.1 DUA request

If the operation is received from aDUA, a ChainingArguments valueis created as follows.
a) ChainingArguments.originator isset asdescribed in 10.3.

b) ChainingArguments.tracel nformation is set to a sequence containing a single Traceltem value. This
value is constructed as follows. Traceltem.dsa is set to the name of the DSA executing Request
Validation. Traceltem.targetObject shall be omitted. Traceltem.operationProgress is set to the
incoming value.

c) If the service control of the operation specifies atime limit (the available elapsed time in seconds for com-
pletion of the operation), ChainingArguments.timeLimit is set to the (UTC) time by which the
operation shall complete to meet the user’s specified time limit.

d) ChainingArguments.AuthenticationL evel and ChainginArgument.Uniquel D are set according to the

local security policy.

e) The remaining optional elements@fainingArguments are omitted, with default values being assumed

where specified.

17.3.3.2 DSA request

If the operation is received from a DSBhainingArguments.tracel nformation is updated by appending a value at the

end of sequenceéraceltem. This value is constructed as follows.
a) Traceltem.dsais set to the name of the DSA executing Request Validation.

b) Traceltem.targetObject is set to the value ofChainingArgumentstargetObject unless the

object (orbaseObject in the case of search) of the request argument is identical

ChainingArguments.tar getObject, in which cas@ racel tem.tar getObject shall be omitted.

c) Traceltem.operationProgressis set to the value @hainingArguments.operationProgr ess.

32 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

to

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)
17.3.4 Validity assertion

The operation shall be checked for valid syntax and semantics of its arguments according to the rules contained in the
clauses defining each operation (e.g. it should be checked that the nextRDNToBeResolved does not provide a number
exceeding the number of RDNs in the targetObject). If the request is detected to contain invalid arguments, the
operation isterminated and an error is returned to the user, depending on the kind of invalidity detected.

17.35 Loop detection

If any two Traceltem values of ChainingArguments.tracel nformation (as prepared in 17.3.3) are identical,
processing of the operation has returned to a previous state, i.e. a loop has been detected. In this case a ServiceError
(with problem loopDetected) shall be returned to the requester and the Operation Dispatcher terminates.

17.3.6 Unable or unwilling to perform

Request Validation may assess available resources and determine that the operation cannot be performed. It may also
determine, based on policy considerations, that the operation should not be performed. In these cases a ServiceError
(with problem busy, unavailable, or unwillingToPerform) may be returned to the requester and the Operation
Dispatcher terminates.

17.3.7 Output processing

In the final phase of Request Validation the validated input, transformed by addition of ChainingArgumentsif received
from a DUA or the update of ChainingArguments.tracel nformation if received from aDSA, is returned and employed
asinput to the Name Resolution procedure.

18 Name Resolution

18.1 Introduction

This clause describes the Name Resolution procedure, its Arguments, Results, and its possible Error conditions. As
shown in Figure 16.1(Operation Dispatcher), the Name Resolution procedure consists of two procedures:

— Find DSE procedure;

— Nameresolution Continuation Reference procedure.

The FindDSE procedure is described in three flow charts, narRetg DSE, Target Found, andTarget Not Found.

The Find DSE procedure matches the target entry name to locally stored DSEs, component by component. If the target
entry is found locally, thefrind DSE continues with thé arget Found sub-procedure, which then calls tG&eck
Suitability procedure to check the suitability of the found DSE for evaluation. If the target entry is not found locally,
thenFind DSE continues with th&arget Not Found sub-procedure prepares Continuation Reference(s) to be added to
theNRcontinuationList for theName Resolution Continuation Reference procedure to dispatch it.

18.2 Find DSE procedur e parameters

18.2.1 Arguments

The procedure uses the following arguments:
a) chainingArguments.aliasDer eferenced;
b) chainingArguments.aliasedRDNS;
c) chainingArguments.excludeShadows;
d) chainingArguments.nameResolveOnMaster;
e) chainingArguments.operationProgress (hameResolutionPhase, nextRDNT oBeResolved);

f) chainingArguments.referenceType;

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 33

Superseded by a morerecent version 1SO/IEC 9594-4 : 1995 (E)
g) chainingArguments.targetObject;
h) commonArguments.serviceControls.copyShallDo;
i) commonArguments.serviceControls.dontDer efer enceAliases;
j) commonArguments.serviceControls.dontUseCopy.

NOTE — Where no actual values exist, default or implied values are used, as specified in 10.3.

18.2.2 Results
There are two cases of successful outcome from Find DSE (indicated by entry suitable or entry unsuitable):

The first successful case returns (from the Target Not Found sub-procedure) Continuation Reference(s) in
NRcontinuationList which is then passed on to the Name Resolution Continuation Reference procedure to continue
the Name Resolution phase.

The second successful case returns (from the Target Found sub-procedure) a (reference to @) DSE, which is passed to
one of the Evaluation procedures.

18.23 Errors
The following errors may be returned:
a) ServiceError: unableT oProceed, invalidRefer ence, unavailableCriticalExtension;

b) NameError: noSuchObject, aliasDer efer encingProblem.

18.2.4 Global Variables

The procedure uses the following global variables:

— NRcontinuationList list to store the Continuation Reference(s) needed to continue name resolution in the
Name Resolution Continuation Reference procedure.

18.25 Local and Shared Variables
The procedure uses the following local variables:
a) i Index used to identify the component of the target name being worked on.

b) m The length of the target object name to be used in name resolution. For operations
that name resolve to the parent entry, i.e. Add Enirig set to (the number of RDNs
in the target object) — 1. For all other operationgs set to the number of RDNs in
the target object.

c) lastEntryFound Index, so that DSE(lastEntryFound) is the last matched DSE that is dadryye

d) lastCP Index, so that DSE(lastCP) is the last shadowed context prefix encountered.

e) candidateRefs A set of continuation references.

The shared variabladmPoints (defined in Operation Dispatcher) is also used. For convenience, compariethie
target object name is denotedNys).

18.3 Procedures

18.3.1 Find DSE procedure

See Figure 9.

34 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

lastEntryFound = 0

LastCP =0

admPaints = {}

candidateRefs = { }

i=0
————— -~

Yes

nameResolution-
Phase = completed?

Match subordinates of
DSE(i) to RDN N (i + 1)

No

Reference
Type is supplier
or master?

No match

Yes

* Match) Subordinate of
i=i+1 Continue at -~ N DSE()) is of
DSE(i) = matched DSE Target Not o type cp?
Found

i = nextRDNToBe
Resolved?

Return

nameResolveOnMaster !
entry suitable

Is TRUE and DSE(i) is not

Yes

Return
NameError
aliasDereferencingProblem

master -
Return serviceError
unableToProceed
. et
Check next unprocessed type of DSE(i)?
T T T T T T . T T T
All types alias subentry entry subr X immSupr admPoint cp and other
processed shadow
—
Make a continuation
reference using lastCP =i
SpecificKnowledge
and add to candidateRefs
Return
NameError .
noSuchObject Add DSE() tc_) the
list of admPoints
don'tDereference-
Aliases set? ¢ \J
lastEntryFound =i

Yes

nameResolution-
Phase = completed?

Continue at
TargetFound

Reference

aliasDereferenced = true
nameResolutionPhase = notStarted
N = aliasedObjectName + RDNs

N(i + 1) to N(m)
aliaseRDNs = 1 (for 92 systems)

Type is supplier
or master?

Return
ServiceError

Any subordinate

NOTE — There are some tests in the flow chart that are only relevant to specific operations.
This is not shown in the flow charts, but is described in the accompanying text.

ITU-T Rec. X.518 (1993 E)

of DSE(i) is of
type cp?

invalidReference

Return
Entry suitable

. . TISO3680-94/d11
Figure9 — Find DSE procedure

Super seded by a morerecent version 35

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

This procedure attempts to resolve the target object name locally.

36

iy

2)

3

4)

5)

6)

7)

Initialize the local variables lastEntryFound and lastCP to O; admPoints and candidateRefs to an
empty set, and initializei to 0.

Comparei and m. If they are not equal, then continue with step 7).

If they are equal, check if nameResolutionPhase is completed. If not completed, continue at Target Not
Found sub-procedure.

If the Name Resolution Phase is already completed, then check if any subordinate of DSE(i) is a context
prefix (of type cp).

If one (or more) subordinate DSE(s) is of type cp, then return with entry suitable;

NOTE 1 — This case is fdrist (I1) andSearch (I1) sub-requests.
If no subordinates of DSE(i) is of type cp, then continue at Target Not Found sub-procedure.

Try to find a match for the (i + 1)-th component of the target object name with the name of a subordinate
of the last matched DSE. In the case of i = 0, try to match one of the DSEs immediately subordinate to the
root DSE. If no match can be found, continue at Target Not Found sub-procedure. If a match is found,
increment i, and store the matched DSE as the i-th element in the vector of found DSEs.

If i equals nextRDNT oBeResolved, then check if the following two conditions are both met:
— the chainingArgumentameResolveOnM aster is True;
— DSE(i) is not a master entry (i.e. is of type shadow).

If both conditions are met, then return service eurtableT oPr oceed.

NOTE 2 — This indicates the user@dmeResolveOnMaster to avoid multiple paths to the same target object.

Check all the DSE type bits of DSE(i). For each type bit, some processing is potentially required. The
action to take for each type found is given below:

— If both thecp andshadow bits are set, then remember the indexlastCP.

— If theadmPoint bit is set, check thadministrativeRole operational attribute. If this is the start of
an autonomous administrative area then emptydnePoints list. If this is the start of one or more
specific administrative areas, then checkatimPoints list and remove any existing points that are
no longer relevant (i.e. their roles have been superseded by the new administrative point). Store
DSE (i) in the list.

— If one of thesubr, xr or immSupr bits is set, then generate a continuation reference using the
SpecificKnowledge attribute with operationProgress.nameResolutionPhase set to proceeding,
nextRDNToBeResolved set toi, andaccessPoints andreferenceType set as appropriate. Add the
continuation reference to the list of continuation referencearididateRefs.

— If the entry bit is set, then test for equal tom (and therefore the target object name being
completely matched). If i does not equal m, then remember the found entry by setting
lastEntryFound to i and continue processing the type bits of DSE(i).afidm are equal, continue
at step 10).

— If the subentry bit is set, then test far equal tom (and therefore the target object name being
completely matched). If they are equal then continu€aaget Found procedure; if they are not
equal, then return adameError with problemnoSuchObject.

— Ifthealias bit is set, test iflontDer efer enceAliases is set.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

If dontDereferenceAliases is not set, the dias can be dereferenced. Therefore, set
chainingArguments.aliasDereferenced to TRUE, nameResolutionPhase to notStarted, the
name of the target object to the aliasedEntryName as supplied in the alias entry concatenated
with the remaining unmatched components of the previous target object name (i.e. concatenate with
the (i + 1)-th to m-th component of the previous target object name). 1993 edition DSAs set
aliasedRDNSs to 1, whereas 1988 edition DSAs set aliasedRDNs to i. Start Name Resolution again
by continuing at step 9).

If dontDer eferenceAliases is set, then the alias cannot be dereferenced. Check if the target object
name has been processed completely by comparing i and m for equality. If they are equal (and the
name therefore fully matched), then continue at Target Found sub-procedure. If they are not equal
(and the name therefore not fully matched), then return NameError with problem
aliasDer eferencingProblem.

— For all other possible DSE types, no action is needed. Internally mark that DSE type as processed
and continue processing the still unprocessed DSE type bits of the DSE().

— If all type bits of DSE(i) are processed, then continue at step 2).

8) Check if the Name Resolution Phase is already completed. If it is not, then contirargeitFound
sub-procedure.

9) If the Name Resolution Phase is completed, then check ittgenceT ype used issupplier or master;
if so, continue at th&arget Found sub-procedure.

NOTE 3 — This is for the chain-to-supplier subrequests.

10) Otherwise, check if any of the DSEs subordinate to DSE(i) is a Context Prefix (and therefore of type cp).
If there is (one or more), return entry suitable. If none of the subordinate entries is of type Context
Prefix, then return a ServiceError with problem invalidRefer ence.

NOTE 4 — This case is fdrist (I1) andSearch (I1) subrequests.

18.3.2 Target Not Found sub-procedure
See Figure 10.

This subprocedure is called when the target object name is not found in the local DSA, This subprocedure determines the
best type of knowledge reference to use to continue name resolution, unless an error is detected in which case the error is
returned.

1) When continuing from Find DSE procedure, distinguish between the three possible phases of the Name
Resolution Phase.

If nameResolutionPhase is notStarted, continue at step 2).
If nameResolutionPhase is proceeding, continue at step 8).
If nameResolutionPhase is completed, continue at step 12).

2) If an entry was found (lastEntryFound not equal to 0), set nameResolutionPhase to proceeding and
continue at step 9).

3) If noentry wasfound (lastEntryFound=0), then check if the DSA isaFirst Level DSA.

If itisaFirst Level DSA, then the root DSE does not contain a Superior Reference and therefore is not of
type supr. In this case, continue at step 4).

If the DSA isnot aFirst Level DSA, then the root DSE contains a Superior Reference and therefore is of
type supr. In this case, generate a Continuation Reference using the superior knowledge as found in the
root DSE. Set

— targetObject to the name of the target object;

— operationProgress.nameResolutionPhase to notStarted;
— referenceTypetosuperior; and

— accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation ReferenceandidateRefs. Continue at
step 6).

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 37

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

38

4)

5)

6)

7)

8)

9)

10)

11)
12)
13)

Check if the operation was directed to the root entry (m = 07?). If it was, continue at step 5). If it was not,
generate a Continuation Reference using any NSSR knowledge found in the root DSE. Set:

— targetObject to the name of the target object;

— operationProgress.nameResolutionPhase to proceeding;
— operationProgress.nextRDNToBeResolved to 1;

— referenceType to nonSpecificSubor dinate; and

— accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation ReferenceandidateRefs. Continue at
step 6).

At a First Level DSA, only List or Search operations may be performed with the root entry as base object.
Therefore, if the operation was not a List or Search operation, rétammeError with problem
noSuchObject. If it was a List or Search operation, semeResolutionPhase to completed and return

with entry suitable.

Check if there are any Continuation ReferencesaimdidateRefs. If candidateRefs is empty, return
NameError with problemnoSuchObject. Otherwise continue at step 7).

Use a local selection function to choose a Continuation Reference from the list of Continuation
References imandidateRefs, add it to the list of Continuation ReferencedNiRcontinuationList and
return withentry unsuitable.

If the DSA was unable to proceed with Name Resolution (in which laadentryFound is less than
nextRDNToBeResolved), continue at step 11). Otherwise continue with next step.

If DSE(i) is a shadow DSE with incomplete subordinate knowledgaofdinateCompletenessFlag is
FALSE), then generate a Continuation Reference from dmplierKnowledge attribute found in
DSE(lastCP). Set:

— targetObject to the name of the target object;

— operationProgress.nameResolutionPhase to proceeding;

— operationProgress.nextRDNToBeResolved to lastEntryFound;
— referenceType to supplier; and

— accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation ReferendRdontinuationList, and return
with entry unsuitable.

If the last entry found contains a NSSBSE(lastEntryFound) is of type nssr), then generate a
Continuation Reference from the NSSR knowledge fouridlSB(lastEntryFound). Set:

— targetObject to the name of the target object;

— operationProgress.nameResolutionPhase to proceeding;

— operationProgress.nextRDNToBeResolved to lastEntryFound+1;
— referenceType to nonSpecificSubordinate; and

— accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation ReferenceandidateRefs. Continue at
step 7).

If DSE(lastEntryFound) is not of typenssr, then continue at step 6).
If chainingArguments.referenceType is of typenssr, then continue at step 13), otherwise at step 12).
ReturnServiceError with probleminvalidRefer ence.

Ifi +1is equal tonextRDNToBeResolved, then the request was routed here due to an NSSR and the
DSA is unable to proceed with name resolution; in this case, r&emviceError with problem
unableT oProceed; otherwise continue at step 12).

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

Continue
from
Find DSE

Completed Return
ServiceError

invalidReference

notStarted

name
ResolutionPhase?

Proceeding

lastEntryFound
< nextRDNToBeResolved?

Reference Type

Yes = nssr?

lastEntryFound
=07?

nextRDNToBeResolved?

nameResolutionPhase =
proceeding =

Return
ServiceError
unableToProceed

Root DSE
of type supr?

Yes

Make continuation
reference using the superior
knowledge found in the root
DSE; and include it in
candidateRef

Is DSE(i) shadow
and with subordinate
completeness flag FALSE?

Make continuation
reference using the nssr
knowledge found in the root
DSE; and include it in
candidateRef

Make a continuation reference
using the supplierKnowledge
attribute found in DSE (lastCP);
and add it to NRcontinuation List

Is DSE
(lastEntryFound)
of type nssr?

Yes

Make an'nssr
continuation reference
and add it to the
candidateRefs

candidateRef
empty?

nextRDNToBeResolved

List or
Search? Return
NameError

noSuchObject

Use local Selection Function
to choose a continuation
reference from candidateRefs

- and add to NRcontinuation List
nameResolution- Return
Phase = completed entry suitable &

Return
entry unsuitable

-
Ll

Return
NameError
noSuchObject

Figure 10 — Target Not Found sub-procedure TISO3690-94/d12

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 39

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

18.3.3 Target Found sub-procedure

This sub-procedure is entered when the target object name matches with an entry DSEs locally. This sub-procedure
checksif the found entry is suitable for processing the request locally (it is shown in Figure 11):

1) Cadll the Check Suitability procedure.
2) If the entry is suitable (entry suitable), then set nameResolutionPhase to completed and return entry

suitable.
3) If the entry is not suitable (entry unsuitable), then generate a Continuation Reference using the

supplier Knowledge attribute found in DSE(lastCP). Set:

— targetObject to the name of the target object;

— operationProgress.nameResolutionPhase to proceeding;

— operationProgress.nextRDNToBeResolved toi;

— referenceType to supplier; and

— accessPoints as appropriate.

Add the Continuation Reference to the list of Continuation Referendd&éontinuationList. Return

entry unsuitable.

NOTE - If the serviceContrdiocal Scope is TRUE, however, the DSA could, based on local policies, decide to

consider this entry as suitable and proceed as in step 2).
4) If acritical extension is not supported (unsupported critical extension), then return ServiceError with

problem unavailableCritical Extension.

Continue
from
Find DSE
Call Check Suitability entry nameResolutionPhase = Return
Procedure suitable completed entry suitable
entry
unsuitable

nameResolutionPhase = Make a continu_ation reference

proceeding, and I using the suppl_lerKnowledge . Return

nextRDNToBeResolved =i attribute found n DS_E(Ias_tCP)_, entry unsuitable

and add it to NRcontinuation List

40

ITU-T Rec. X.518 (1993 E)

TISO3700-94/d13

Figure1l — Target Found sub-procedure

Super seded by a morerecent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

18.34 Check Suitability procedure

This procedure is called to decide whether a found DSE is suitable for performing the requested operation. It takes into
account the chainingArguments, the serviceControls, the arguments as supplied by the user, the operation type and the
characteristics of the DSE (shadow, subordinate knowledge, attributes present, etc.).

18.3.4.1 Procedure parameters

Theinput argument to this procedure is:

a reference to a DSE;
the operation type for which the suitability of the DSE is to be checked;
thechainingArguments; and

the serviceControls.

The output is either entry suitable, entry unsuitable, or unsupported critical extension.

1

2)

3)

4)

5)

6)

7

8)

9)

If the DSE is not of typshadow, then check if alcriticalExtensions are supported. If they are, then
return entry suitable, else return unsupported critical extension.

The DSE is of typshadow. Return entry unsuitable, if any of the following is true:
— The requested operation type is a Modification Operation.

— The service contralontUseCopy is set.

Otherwise, continue with the next step.

If the service contratopyShallDo is set, then check if atriticalExtensions are supported. If they are,
then return entry suitable, else return unsupported critical extension.

If the service controtopyShallDo is not set, then check if adfiticalExtensions are supported. If they
are, then got step 5) else return entry unsuitable.

Distinguish between operation types:

If List operation, continue at step 6).

If Read operation, continue at step 7).

If Search or Compare operation, continue at step 8).

If the entry has full subordinate knowledge, the List operation can be performed. In this case, return entry
suitable, otherwise return entry unsuitable.

If all the requested attributes are present in the DSE, then return entry suitable. If some attributes are
missing, then determine by local means whether the shadow copy holds all the attributes held by the
master (e.g. by reference to the shadowing agreement). If they are the entry is suitable (return entry
suitable). Otherwise, the supplier may hold the requested attributes which are not present at the shadow;
in this case, the request has to be chained (return entry unsuitable).

If the DSA supports the matching rule for comparing or searching as requested and the operation is
Compare or Search operation wilbset of baseObject, then continue at step 7). If the DSA supports

the matching rule and the operation is Search with sangktevel or subtree, then continue at step 9).
Otherwise return entry unsuitable.

If chainingArguments.excludeShadows is True, then return entry unsuitable. Otherwise check the local
understanding of the shadowed information specification against the operation filter and selection. If all
necessary entries and attributes are present, then return entry suitable. If any entry or attribute is missing,
then return entry unsuitable.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 41

42

Super seded by a morerecent version ISO/IEC 9594-4 ;

DSE of type

1995 (E)

No Return

shadow?

Return
entry unsuitable

k

copyShallDo
Set?

. Search.
Operation

type?

Full subordinate
knowledge and
ACI for each?

in DSE?

Return
entry suitable

entry suitable

All necessary entries,
attributes are present

Check current shadowing
agreement unit of replication
against operation filter and
selection

Entries or attributes
absent

Yes

excludeShadows
=TRUE?

Yes

Compare

All necessary
attributes present

Yes

(Search oneLevel
or subtree)

Is operation
matching rule
supported by
the DSA?

I
Yes

(compare, search
baseObject)

Return

entry unsuitable

Requested
attributes not held

No

by the supplier?

TISO3710-94/d14

Figure 12 — Check Suitability procedure

ITU-T Rec. X.518 (1993 E)

Super seded by a morerecent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

19 Operation evaluation

This clause defines the procedure that a DSA shall follow if the target entry of an operation has been found locally
(during Name Resolution). According to the type of operation, one of the following procedures are invoked:

— For an AddEntry, ChainedAddEntry, RemoveEntry, ChainedRemoveEntry, ModifyEntry,
ChainedModifyEntry, ModifyDN or ChainedModifyDN operation the procedures in 19.1 shall be
followed.

— For aRead, ChainedRead, Compare or ChainedCompare operation the procedures in 19.2 shall be
followed.

— For aSearch, ChainedSearch, List andChainedList operation the procedures in 19.3 shall be followed.

19.1 M odification procedure

According to the type of modification operation the corresponding procedures defined in 19.1.1 through 19.1.4 shall be
followed.

19.1.1 Add Entry Operation

1) The DSA shall check that the initiator has sufficient access rights, e.g. as defined, in 11.1.5 of ITU-T
Rec. X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

2) The DSA shall assure that an entry with the name of the entry to be added does not already exist,
otherwise it shall return abpdateError with problementryAlreadyExists. If the superior DSE is of
additional typenssr, the DSA shall follow the procedure defined in 19.1.5 (Modify Operations
and NSSRs) to ensure that the name of the new entry is unambiguous.

3) If targetSystem is present, and théccessPoint is not that of the current DSA, go to step 4). If
targetSystem is not present, or is present and ftaeessPoint is that of the current DSA, go to step 5).

4) If the entry is a subentry, the DSA shall retupdateError with problemaffectsMultipleDSAs. If the
entry is not a subentry, the DSA has a local choice as to whether or not it wishes to establish a HOB with
the specified DSA. If it does not, the DSA shall retS8enviceError with problemunwillingT oPerform,
otherwise the DSA shall establish a hierarchical operational binding with the specified subordinate DSA.
If the DOP is supported, the procedure in 24.3.1.1 shall be followed, otherwise local means are used to
establish the HOB. If the subordinate DSA is unwilling to establish the operational binding,
a ServiceError with problemunwillingToPerform is returned for théddEntry operation. If the HOB
is successfully established, continue at step 7).

NOTE 1 — This step of the procedure does not apply to the creation of autonomous administrative areas in a
subordinate DSA.

5) The DSA shall ensure that the new entry or subentry to be added conforms to the sub-schema or system
schema [e.g. that the immediate superior DSE is of type admPoint) respectively. If not, it shall return an
appropriate UpdateError or AttributeError, else it shall add the new entry or subentry. If entry,
continue at step 7)], if subentry continue at step 6).

6) The DSA shall forward, at an appropriate time, a modify operational binding to all relevant subordinate
DSAs with which it has hierarchical or non-specific hierarchical operational bindings. The relevant
bindings are those which are associated with naming contexts that are subordinate to the superior DSE.
Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.
If the DOP is supported, the procedures in 24.3.2.1 and 25.3.2 shall be followed. If the DOP is not
supported, local means shall be used to modify the RHOBs.

NOTE 2 — An appropriate time is specified by the DSA administrator, and might range from immediately after
(or even before) the operation result is returned to a periodic strategy (e.g. at an appointed hour). The time may vary
depending upon the reason for the modification, e.g. updates to ACI taking immediate effect and changes to schema
being done periodically.

7) If the added entry or subentry is within the UnitOfReplication of one or more shadowing agreements,
then the shadow consumers shall be updated using the procedures of the Directory information shadow
service specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 43

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

19.1.2

44

Check name
is unique

targetSystem
present?

Fails Return
L Error

Eails Return Return
- UpdateError ServiceError
entryAlreadyExists unwillingToPerform

targetSystem is
this DSA?

subentry Establish hierarchical

Return

Type of entry
to be added?

Subentry

Check
System-schema

service control operational binding with

Error

set? subordinate DSA
y
Check Add the new No
Sub-schema entry Successful?
i Yes
Note
Return L_deateError shadows(s)
or AttributeError will need to
be updated
Schedule modification *

Y

| Add the new of RHOBs with
Subentry subordinate DSAs Return

TISO3720-94/d15

Figure 13— Add Entry procedure

Remove Entry Operation

1

2)

3

4)
5)

The DSA shall check that the initiator has sufficient access rights, e.g. as defined, in 11.2.5 of ITU-T
Rec. X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

The DSA shall ensure that the entry to be removed is a leaf entry. Otherwise the DSA shall return an
UpdateError with problem notAllowedOnNonL eaf.

The DSE type of the entry to be removed is checked. If subentry, continue at step 5). If cp, continue at
step 6). If entry or alias, continue at step 4).

Remove the entry or alias entry and continue at step 7).

Remove the subentry. At an appropriate time, modify the operational bindings of all relevant subordinate
DSAs with which the current DSA has hierarchical or non-specific hierarchical operational bindings. The
relevant bindings are those which are associated with naming contexts subordinate to the superior DSE.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.
If the DOP is supported, the procedures in 24.3.2.1 and 25.3.2 shall be followed, otherwise local means
shall be used. Continue at step 7).

6) Remove the naming context. If the DSA has a hierarchical operational binding for this naming context, it
shall terminate the hierarchical operational binding with its immediately superior DSA. If the DSA has a
non-specific hierarchical operational binding for this naming context, and this is the last naming context
of the non-specific hierarchical operational binding, then it shall terminate the non-specific hierarchical
operational binding with its immediately superior DSA. If the DOP is supported, the procedures in
24.3.3.2 and 25.3.3.2 shall be followed, otherwise local means are used to terminate the RHOB.

7) If the removed naming context, entry, aias entry or subentry was within the UnitOfReplication of one or
more shadowing agreements, then the shadow consumers shall be updated using the procedures of the
Directory information shadow service specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

If the removed subordinate or non-specific subordinate reference in the immediately superior DSA
(whose RHOB was terminated), was within the UnitOfReplication of one or more shadowing
agreements, then the shadow consumers shall be updated using the procedures of the Directory
information shadow service specified in ITU-T Rec. X.525 | 1ISO/IEC 9594-9.

Return

!

Is target a leaf Return Note
entry? UpdateError shadow(s)
notAllowedOnNonLeaf will need to
be updated
Type of DSE to entry/alias Remove the _
be removed? entry
SubEntry
cp
Remove the Schedule modification o
subentry » of RHOBs with
subordinate DSAs
Non-specific . No .
hierarchical binding Last Naming © .| Removenaming | |
Context? context

exists?

Terminate NHOB
with superior DSA

Y

Terminate HOB -
with superior DSA

TISO3730-94/d16

Figure 14 — Remove entry procedure

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 45

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

19.1.3

19.14

46

Modify Entry Operation

1

2)

3

4)

The DSA shall check that the initiator has access rights, e.g. as defined, in 11.3.5 of ITU-T Rec. X.511 |
| SO/IEC 9594-3. If not, an appropriate error is returned.

The modifications to the entry, alias entry or subentry shall conform to the sub-schema or system schema
respectively, otherwise, the DSA shall return an appropriate UpdateError or AttributeError. After
performing the modifications, if the target DSE is of type subentry, continue at step 3), otherwise
continue at step 4).

The DSA shall, at an appropriate time, modify the operational bindings with al relevant subordinate
DSAs with which it has hierarchical or non-specific hierarchical operational bindings. The relevant
bindings are those which are associated with naming contexts that are subordinate to the administrative
point that the modified subentry is located below. Naming contexts whose context prefixes correspond to
autonomous administrative points are not relevant. If the DOP is supported, the procedurein 24.3.2.1 and
25.3.2 shall be followed, otherwise local means are used.

If the modified entry, alias entry or subentry was within the UnitOfReplication of one or more
shadowing agreements, then the shadow consumers shall be updated using the procedures of the
Directory information shadow service specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

Return
Return

Note

Type of DSE to entry/alias Check shadow(s)

be modified? Sub-schema Update entry —m=| il need to

be updated

Subentry A
e
Check Return UpdateError
System-schema or AttributeError
.
Schedule modification
pdate »| of RHOBS with
y subordinate DSAs TISO3740-94/d17

Figure 15 — Modify Entry procedure

M odify DN operation

1

2)

The DSA shall check that the initiator has sufficient access rights, e.g. as defined in 11.4.5 of ITU-T
Rec. X.511 | ISO/IEC 9594-3. If not, an appropriate error is returned.

If the operation isto move an entry to a new superior within the same DSA, go to step 3). If the operation
is to change the Relative Distinguished Name of an entry, go to step 4).

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

3

4)

5)

6)

7)

8)

9

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

The operation shall be performed according to the definition in 11.4.1 of ITU-T Rec. 511 | ISO/IEC
9594-3. If either the old superior, the new superior, the entry or any of its subordinates are in another
DSA, or if the new superior has NSSRs, then the operation shal be regjected with UpdateError
affectsM ultipleDSAs. Otherwise move the entries within the DSA and go to step 9).

The following text is applicable to changing the relative distinguished name of an entry, which may or
may not be aleaf entry, and which may or may not have one or more subordinates in one or more DSAS.
The DSE type of the entry to be renamed is checked. If subentry, continue at step 7). If cp, continue at
step 6). If entry or alias, continue at step 5).

The DSA shall ensure that no other entry with the new name already exists, otherwise it shall return an
UpdateError with problem entryAlreadyExists. If the superior DSE of the entry to be renamed is of
additional type nssr, the DSA shall follow the procedure defined in 19.1.5 (Modify Operations and
NSSRs) to ensure that the new name of the entry is unambiguous. The DSA shall ensure that the new
name of the entry conforms to the sub-schema, otherwise it shall return an appropriate AttributeError or
UpdateError. Rename the entry or dlias entry. If the entry is a non-leaf entry and has subordinates in
other DSAS, continue at step 8), otherwise continue at step 9).

The DSA shall ensure that the new name of the naming context conforms to the sub-schema, otherwise it
shall return an appropriate AttributeError or UpdateError.

If the DSA has a HOB with the superior DSA, then the subordinate DSA shall attempt to modify the HOB
before responding to the Modify DN operation. The superior DSA shall ensure that no other entry with
the new name already exists, before accepting the modification. If the DOP is supported, the procedure
in 24.3.2.2 shall be followed. If the DOP is not supported, it is a local matter how the HOB is modified
and the new name is checked for uniqueness. If the HOB is successfully modified, and the naming context
has subordinate naming contexts in other DSAS, go to step 8), otherwise go to step 9). If the HOB cannot
be modified return UpdateError with problem affectsMultipleDSASs.

If the DSA has a NHOB for this naming context with the superior DSA, then how duplicate entries are
detected is outside the scope of this Directory Specification. Rename the entry. If the naming context has
subordinate naming contexts in other DSAS, go to step 8), otherwise go to step 9).

The DSA shall ensure that the new name of the subentry conforms to the system schema, otherwise it
shall return an appropriate AttributeError or UpdateError. The DSA shall ensure that no other subentry
with the new name aready exists, otherwise it shal return an UpdateError with problem
entryAlreadyEXxists.

The DSA shall, at an appropriate time, modify the operational bindings of all relevant subordinate DSAs
with which it has hierarchical or non-specific hierarchical operationa bindings. The relevant bindings are
those which are associated with all naming contexts that are subordinate to the entry being renamed, or
relevant naming contexts that are subordinate to the administrative point whose subentry was renamed.
Naming contexts whose context prefixes correspond to autonomous administrative points are not relevant.
If the DOP is supported, the procedures in 24.3.2.1 and 25.3.2 shall be followed, otherwise local means
shall be used to update the RHOBS.

If the renamed naming context, entry or any of its subordinates, alias entry or subentry is within the
UnitOfReplication of one or more shadowing agreements held by the DSA, then the shadow consumers
shall be updated using the procedures of the Directory information shadow service specified in ITU-T
Rec. X.525 | SO 9594-9.

If the renamed subordinate reference in the immediately superior DSA [whose HOB was modified in
step 6) abovey, is within the UnitOfReplication of one or more of its shadowing agreements, then the
shadow consumers shall be updated using the procedures of the Directory information shadow service
specified in ITU-T Rec. X.525 | ISO/IEC 9594-9.

If components of a RHOB with a subordinate DSA [as modified in step 8) above] are within the
UnitOfReplication of one or more shadowing agreements held by the subordinate DSA, then the shadow
consumers shall be updated using the procedures of the Directory information shadow service specified in
ITU-T Rec. X.525 | ISO/IEC 9594-9.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 47

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

48

Return
affectsMultipleDSAs

New superior and
the whole subtree
are in the same DSA?

Modify RDN?

Return
Error

Note
shadow(s)
will need to
be updated

Already exists

Check new

Renar_ndee entries >
within subtree

name doesn't
exist

Return
Error

Yes

Yes

Referenced
by NSSR?

Modify hierarchical
operational binding
with subordinate DSA

»
Error

entry or alias

Check
Sub-schema

Type of DSE to
be renamed?

Subentry

Check

System-schema

Return UpdateError
or AttributeError

Figure 16 — Modify DN procedure

L Subentry

Rename
the DSE

Schedule modification
of RHOBSs with
subordinate DSAs

Rename the

TISO3750-94/d18

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

19.15 Modify operationsand Non-Specific Subor dinate Refer ences

If aDSA has NSSRs and does not know the compl ete set of names of the subordinates of an entry, to which either

a)
b)

an AddEntry operation has been directed; or
aModifyDN operation has been directed;

then the DSA may perform the following set of procedures prior to performing the operation.

1

2)

3

4)

5)
6)

7)

If the chainingProhibited ServiceControl is set on the AddEntry or ModifyDN operation, return
UpdateError with problem affectsM ultipleDSAs.

If the DSA is unwilling or unable to multi-chain outgoing requests, return ServiceError with problem
unwillingT oPerform or unavailable, respectively.

The DSA shall multi-chain a ChainedReadEntry operation to each master DSA in the set of
accessPointInformation of the NSSR (The DSA shal only use the master DSA from each
Master AndShadowA ccessPoints due to transient inconsistency caused by shadowing). The parameters
of the ReadArgument shall be set as follows:

object to either the name of the entry to be added (in the case of AddEntry), or to the proposed
name of an existing entry (in the case of ModifyDN).

selection the object class attribute.

The parameters of CommonArguments shall be set as follows:

— ServiceControls.options set talontDer efer enceAliases;

— OperationProgress.nameResolutionPhase set tocompleted.
The parameters @hainingArguments shall be set as follows:
— originator set to the name of the originator;

— targetObject is omitted;

— OperationProgress.nameResolutionPhase set to proceeding and nextRDNToBeResolved to
(number of RDNs in the object name) — 1;

— tracelnformation set to an empty sequence;

referenceType set tononSpecificSubor dinate.
Other parameters, e.gecurityParameters, may be set as appropriate e.g. by local policy.

The DSA waits for the complete set of responses. If any of the responBeddResult, then an error
shall be returned as in 6) below.

If all responses argerviceError with problemunableT oProceed, operation evaluation may proceed.

If a ReadResult is returned, atdpdateError with problementryAlreadyExists shall be returned for the
original operation;

If any other error is returned to th&eadEntry request, a ServiceError with problem
unwillingT oPerform shall be returned.

The DSA receiving the ChainedReadRequest shall give a response according to the presence or not of the entry, and its
access control policy.

19.2 Single entry interrogation procedure

The operationfead, ChainedRead, Compare, andChainedCompare fall into the group of single entry interrogation
procedures. These procedures contain only the following three steps:

1

2)
3)

Check access control, as described in clause 10 of ITU-T Rec. X.511 | ISO/IEC 9594-3. If the operation is
disallowed, return the appropriate security error.

Perform the operation on the found DSE as described in clause 9 of ITU-T Rec. X.511 | ISO/IEC 9594-3.

Prepare the reply, and return.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 49

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

19.3 Multiple entry interrogation procedure

According to the type of interrogation operation (List or Search), the corresponding procedures defined in 19.3.1
and 19.3.2 shall be followed.

19.3.1 List Procedure
This subclause specifies the evaluation procedure specific to List and ChainedL ist operations.

The List Procedure (I) procedure shall be followed when the List requegti ationProgress nameResolutionPhase
component is set tootStarted or proceeding and when the DSA, after performing Name Resolution, finds that it holds
the base object. Theist Procedure (I1) procedure shall be followed when the List requesésieResolutionPhase
component is set ttompleted.

19.3.1.1 Procedure parameters

1931.1.1 Arguments

The arguments that are used by this procedure are:
— theArgument;
— the target DSE;

— operationProgress of the chainingArgument.

19.3.1.1.2 Results

If this procedure is successfully executed, it returns:
— aset of subordinates efn listlnfo.subor dinates,
— limitProblem indicated inpartialOutcomeQualifier;

— a set of continuation referencesSRcontinuationList.

19.3.1.1.3 Errors

The procedure can result in one of the following errors returned to the requesting DUA/DSA:
— anaccessControlError or nameProblem;

— any error defined for thiénd DSE procedure, when an alias has been dereferenced.

19.3.1.2 Procedure definition

The sub-procedures as defined in 19.3.2.2.1 and 19.3.2.2.2 shall be invoked according to the following rules.

19.3.1.21 List procedure (1)

The List procedure (I) consists of the following steps as depicted in Figure 17:

1) |If the service contradubentry is set, then for each subentry for which access is permitted, add the RDNs
of the immediate subordinate DSEs (of tgobentry) of € to listResult.subordinates. If access is not
permitted to any one subentry, then ignore that subentry.

2) If DSEeis of typenssr, then add aontinuationReference to SRcontinuationList with the following
components:

— targetObject set to the name of DSE
— aliasedRDNs absent;

— operationProgress with nameResolutionPhase set to completed and nextRDNtoBe Resolved
absent;

— rdnsResolved absent;
— referenceType set tononSpecificSubor dinate;

— accessPoints set to a set of accessPointinformation each derived from a value wdériBpecific-
Knowledge attribute of DSEe.

50 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

3) For each DSE e’ immediately subordinate to DSE e execute the following steps:

a)

b)

©)

d)

Check the ACI in € if available. If the ACI disallows listing the RDN @f, then skip this DSE. If
the ACI is not available (for example in the case of subordinate references and glue), thenitisaloca
policy whether to proceed.

Check all the DSE typesof e'.

i) If e isof type subr, then there are two cases. In the first case, the subordinate entry’s ACI and
object class is available locally, in which case, based on local policy and the ACI's permission,
add the RDN of’ to listResult.subordinateswith aliasEntry set to True if €' is of type sa
and fromEntry set False The other case is when the ACI of the entry is not availablein e’, in
which case add a continuationReference to SRcontinuationList with the following
components:

— targetObject set to the name of DSE
— aliasedRDNSs absent;

— operationProgress with nameResolutionPhase set to completed and
nextRDNtoBeResolved absent;

— rdnsResolved absent;
— referenceType set tosubordinate;
— accessPoints set to the value contained in theecificKk nowledge attribute of DSEe’.

ii) If the DSE e’ is of type entry or glue, then add the RDN of e’ to listResult.subordinateswith
aliasEntry set to Falseand fromEntry set according to whether e’ is a copy.

NOTE — In the case that €’ is glue, it must have one or more subordinates which implies it cannot be an

aliasin the master DSA. Also, any ACI relevant to List is stored in this DSE, supplied via the shadowing
protocol.

iii) If the DSE e’ is of type alias, then add the RDN of e’ to listResult.subordinates with
aliasEntry set to True, and fromEntry set according to whether e’ isa copy.

Check if time, size or administrative is exceeded. If so, set limitProblem accordingly in
partialOutcomeQuialifier and return.

continue from step 3), a) until all subordinate DSEs have been processed.

4) if al subordinates DSEs have been processed, return to the operation dispatcher.

19.3.1.2.2 List procedure (I1)

The List procedure (I1) consists of the following steps as depicted in Figure 18:

1) For each DSEs e’ immediately subordinate to DSE e, execute steps 1), a) to 1), d):

a)

b)

d)

Check ACI in €'. If the operation is disallowed by the ACI, continue with the next immediate
subordinate of e.

Add the RDN of DSE e’ to listResult.subordinates with the aliasEntry component of
listResult.subordinatesto according to whether €’ is an dias, and the fromEntry component set
depending on whether e’ is a copy or not. Ignore those DSEs of type shadow,if excludeShadowss
TRUE.

Check if time, size or administrative limit is exceeded. If so, set the limitProblem of
partialOutcomeQuialifier accordingly and return.

continue from step 1), a) until all subordinate DSEs have been processed.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 51

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)
2) if al subordinate DSEs have been processed, check if this subrequest came from DAP or DSP. In case

this subrequest is submitted via DAP, and the listResult is empty, then return a serviceError
invalidRefer ence to the Operation Dispatcher. Otherwise, the listResult is returned.

NOTE —invalidReference is used as a security precaution in case the user does not have access to the superior
entry. If the superior’'s entry ACI is available (provided by the RMOB), then a null result may be returned if allowed.

Enter Return
error

Fail
Subentries
set?
No

DSE type
of target =
nssr?

OK Include all
subentry
RDNSs in result

Return
ListResult

Add a continuation reference
with all APIs contained in
nonSpecificKknowledge attribute
to SRcontinuationList

v

Process each DSE e' immediately subordinate to DSE e

Yes

Alle’s
processed

setlimitProblem of
No partialOutcomeQualifier

Yes +

Time,
size, administrative
limit exceeded?

Add RDN of e’ to listinfo. Set
aliasEntry and fromEntry |
according to dse type

Add RDN of e' to listinfo. Set
aliasEntry and fromEntry .
according to dse type

Availability of ACI
and local policy

Not OK
Add a continuation reference from
> access point information in -
specificKnowledge attribute
to SRcontinuationList TISO3760-94/d19

Figure 17 — List procedure (1)

52 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

listResult
Enter

A

No No

Return
ServiceError
invalid reference Yes Yes

Process each DSE €' immediately subordinate to DSE e

Alle’s
processed

Next e’

set limitProblem of
partialOutcomeQualifier

i

TISO3770-94/d20

No

Time,
size, administrative
limit exceeded?

Add RDN of e' to listinfo. Set aliasEntry
and fromEntry according to dse type

Figure 18 — List procedure (II)

19.3.2 Search procedure
This subclause specifies the evaluation procedure specific to Search and ChainedSear ch operations.

Search procedure (1) shall be followed when the search reqapstationPr ogress.nameResolutionPhase component

is set tonotStarted or proceeding and when the DSA, after performing Name Resolution, finds that it holds the base
object. TheSearch Procedure (I1) procedure shall be followed when the search requestiseResolutionPhase
component is set tmmpleted.

NOTE — WhennameResolutionPhase is completed, the target object is expected to be the immediate superior of a
context prefix.

19.3.2.1 Procedure parameters

193211 Arguments
The arguments that are used by this procedure are:
— thesearchArgument;
— the target DSE;
— operationProgress of thechainingArgument;

— exclusions of thechainingArgument (a list of RDNs to exclude from search).

19.3.21.2 Results

If this procedure is successfully executed, it returns:
— aset of matched Entriessear chResult.entrylnfor mation;
— alreadySearched in chainingResults;
— aset of continuation referencesSRcontinuationL ist.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 53

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)
19.3.2.1.3 Errors

The procedure can result in one of the following errors returned to the requesting DUA/DSA:
— anaccessControlError;

— any error defined for thénd DSE procedure, when an alias has been dereferenced.
19.3.2.2 Procedure definition

193221 Sear ch procedure (1)

This is a recursive procedure that applies to a search request that starts at a given tamydt eatijches the target
entry e and then processes the DSEs immediately subordinatdtee procedure is invoked by itself recursively in the
case that a whole subtree is to be searched. The procedure consists of the following steps as shown in Figure 19:

1) If the type of DSEe is of typecp (a DSE at a context prefix), check if any element ofekebusions
argument is a prefix afs DN.

a) If so, return.
b) Else, call Check Suitability.

i) If eis unsuitable, make@ntinuationReference as follows and add it tSRcontinuationList:

targetObject set to the DN of the immediate superior of DSE
— aliasedRDNs absent;

— operationProgress with nameResolutionPhase set to completed and
nextRDNtoBeResolved absent;

— rdnsResolved absent;
— referenceType set tosupplier;

— accessPoints set to accessPointinformation derived from the value(s) found in the
supplier Knowledge attribute ine.

Then return.

NOTE — This is the only place when a search subrequasteResolutionPhase is completed)
is chained to a shadow’s supplier. In other words, the target object for such a chained subrequest is
always a context prefix.

ii) Else, add the DistinguishedName of e to alreadySear ched in ChainingResults,

NOTE 1 —alreadySear ched only contains context prefixes.

2) If eis of type alias and searchAliases in searchArguement is True then call Search Alias procedure
and then return.

3) If subset isonel evel, then proceed to step 6).

NOTE 2 — Thee cannot be subordinate incomplete at this point since the Check Suitability at the context prefix
should have ascertained that this cannot happen.

4) If subset isbaseObject, or if entryOnly is TRUE, and in addition, one of the following is TRUE:
a) eisof type subentry and the service control subentry is set; or
b) eisnot of type subentry and the service control subentry is not set,
then do the following steps:

i) Check ACI. If the operation is disallowed, go to step 6).

54 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

ii) Apply the filter argument specified in the searchArgument filter to the DSE e. Ensure that
access to all attributes used in the filter is permitted as defined in ITU-T Rec. X.501 | ISO/IEC
9594-2. If the filter matches, add the attributes selected by the sear chArgument.selection to the
list of matched entries in searchResult.entrylnformation. Only add attributes that are not
greater than the attrributeSizeLimit. It is a local matter how the appropriate collective
attributes are handled once an entry, whose attributes are to be included in aresult, is found.

iii) Return.
If @) and b) are not true, then proceed to step 6).
5) If subset issubtree (and entryOnly isnot True), and in addition one of the following is True:
a) eisof typesubentry and the service control subentry is set; or
b) eisnot of type subentry and the service control subentry is not set,
then do the following steps:
i) Check ACI. If the operation is disallowed, go to step 6).

ii) Apply the filter argument specified in the searchArgument filter to the DSE e. Ensure that
access to all attributes used in the filter is permitted as defined in ITU-T Rec. X.501 | ISO/IEC
9594-2. If the filter matches, add the attributes selected by the sear chArgument.selection to the
list of matched entries in searchResult.entrylnformation. It is a local matter how the
appropriate collective attributes are handled once an entry, whose attributes are to be included in
aresult, isfound.

iii) Proceed to step 6).

6) If eis of type nssr, then add a continuationReference to SRcontinuationList with the following
components:

— targetObject set to the DN of DSE;
— aliasedRDNSs absent;

— operationProgress with nameResolutionPhase set to completed and nextRDNtoBeResolved
absent;

— rdnsResolved absent;
— referenceType set tonssr;

— accessPoints set to accessPointinformation derived from the value(s) found in the
nonSpecifick nowledge attribute.

7) Process all DSEs’ that are located immediately subordinate to the target DSE e until all subordinate
DSEs have been processed. During this loop, if the Ilist of matched entries in
searchResult.entrylnformation exceeds the size limit, or time or administrative limit is exceeded then
set limitProblem accordingly in partialOutcomeQualifier and return.

NOTE 3 — The check for size limit is also implicitly applied every tsesr chResult is updated.

a) If the DSE e’ is of type subr, and not of type cp, then add a continuationReference to
SRcontinuationList with the following components:

— targetObject set to the name of DSE
— aliasedRDNs absent;

— operationProgress with nameResolutionPhase set tocompleted andnextRDNtoBeResolved
absent;

— rdnsResolved absent;
— referenceType set tosubr;

— accessPoints set to the access point information contained insgieeifick nowledge attribute
of DSEe’.

NOTE 4 — Ife’ is of both type cp and subr, a search subrequest can be generated potentialy from
either the subordinate reference or the supplier knowledge, but not both. This procedure uses the latter
(supplier references found in cp).

b) For al other cases, if the value of the subset parameter is onel evel, set entryOnly to True and
recursively execute the Search Procedure(l) for target DSE €.

8) If all subordinates have been processed, return to the operation dispatcher for further processing.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 55

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

Yes !

Add continuation reference
SRcontinuationList which
points to supplier
(including master)

Isein
exclusions?

DSEe
of type cp?

Yes

Add DN of e to

* Entry unsuitable
alreadySearched

Call Check Suitability
Procedure for DSE e

of type
e of D | Entry suitable

alias and
searchAliases =
TRUE?

Yes

Call Search
Alias Procedure -

e is not
subentry and
subentries
not set?

e of type
subentry and
subentries set?

Subset =
onelLevel?

Yes

No match

Match e against
filter

Add selected
attributes of DSE ———
to searchinfo

subset =
baseObject or entry
Only = TRUE?

Yes

Add a continuation reference with

all access points contained in Yes ;
. o DSE f
attribute nonSpecificknowledge to - type ﬁslzr(;
SRcontinuationList)
* Alle’s
’ Set targetObjeCt to DN of e processed

Process each DSE e’ immediately subordinate to DSE e '
No

Time,
size, administrative
limit exceeded?

Add a continuation reference
for access point information L
in specificKnowledge attribute
to SRcontinuationList

Set limitProblem of

- partialOutcomeQualifier
Call Search Procedure(l) with e’ |
If subset = oneLevel, set
entryOnly to TRUE TISO3780-94/d21

Figure 19 — Search procedure (1)

56 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)
19.3.2.2.2 Sear ch procedure (1)

This procedure applies if a search request is processed that originated from a request decomposition at the DSA from
which the request was received. The procedure processes the DSEs below the target DSE e and calls the Search
procedure (1) for each object entry:

1) Process al DSEs e’ that are located immediately subordinate to the target DSE e until all subordinate
DSEs have been processed. When all subordinates have been processed, return to the operation dispatcher
for further processing.

2) If theDSE isnot of type cp and entry, ignoreit. Return to step 1).

3) |If the DSE is of type cp and entry, call Check Suitability. If suitable go to step 4), otherwise ignore it
and return to step 1).

4) Execute the Search Procedure (l)for the DSE e’ as described in 19.3.2.2. If the DSE is of type alias and
the value of the subsetparameter is set to onelLeve| set chainingArguments.entryOnly to True when
calling Search Procedure(l) Return to step 1).

¢ Alle’s

—— Process each DSEs e’ of type cp immediately subordinate to DSE e |_processed.
+ Next e'
B entry
Call Check Suitability Procedure Unsuitabie

[Return J

entry suitable

One level

search? ¢
No + No
entryOnly =
.; TRUE

TISO3790-94/d22

Call SearchProcedure(l) with DSE e’

Figure 20 — Search procedure (I1)

19.3.2.2.3 Search Alias procedure

This procedure is executed if a DSE of type alias has been encountered during the processing of a search request:
1) |If subset isbaseObject or onel evel, go to step 4).

2) If aliasedEntryName is a prefix of targetObject or baseObject, then the adlias is excluded from the
search because this would cause a recursive search with duplicate results.

3) If targetObject or baseObject is a prefix of aliasedEntryName, then no specific processing of the alias
is required because the aliased subtree will be searched anyway.

NOTE - For both of the above caskaseObject may not be prefix ofar getObject, due to alias dereferencing.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 57

Super seded by a morerecent version

4) Build a DSP request with the target object set to the aliasedEntryName. If subset is onel evel, set
entryOnly to True. Call the Operation Dispatcher for the request to be locally continued.

5) If the operation dispatcher returns a referral error, or busy, or unavailable errors then add (or make and
add) the continuation reference to partialOutcomeQualifier of searchResult, and return.

| SO/IEC 9594-4 : 1995 (E)

6) If the operation dispatcher returns other errors, discard it and return.

7) If the operation dispatcher returns a sear chResult, then:

i) If theresultissigned, add it to uncorrelatedSear chinfo in sear chResult.

ii) If theresult isnot signed, add it to sear chinfo in sear chResult.

and return.

=)

aliasedObjectName is
prefix of baseObject or
targetObject?

baseObject or
targetObject is prefix
of aliasedObjectName?

No

Yes

Return

Build a local DSP request

+ Referral /

Call operation Dispatcher

Result

Yes

Yes
|
Add continuationReference L -

to partialOutcomeQualifier

Error
—®=— Discard —
Add to searchinfo B

Add to uncorrelatedSearchinfo

58 ITU-T Rec. X.518 (1993 E)

Figure2l — Search alias procedure

Super seded by a morerecent version

TISO3800-94/d23

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)
20 Continuation Reference procedures

The procedures in this clause are called to process the list of continuation references (NRcontinuationList or
SRcontinuationL ist) created by other procedures.

The Continuation Reference procedures consist of the steps shown in Figures 24, 25, and 26. The first stage is to identify
sets of continuation references from the continuation list that have a common target object component. These have been
created from a set of subordinate or non-specific subordinate references associated with the same entry in the DIT.

These sets (each with a different target object component) may be processed independently, either sequentially or in
parallel by the DSA, since there is no risk that the same results will be returned from any two sets. However, the
processing of each continuation reference within one set, and of each access point information within one continuation
reference, and of each access point within one access point information, has to be controlled, or duplicate results may
occur, as described in 20.1.

The procedure adopted in the APInfo procedure, is to process one by one the set of access points contained in a single
access point information. These al point to (copies of) the same naming context (or possibly a set of naming contexts
held in one DSA in the case of NSSRs). If the first access point produces a result or a hard error, further access points do
not need to be processed. However, if the error is a soft error, i.e. a Service Error (busy, unavailable,
unwillingToPerform, invalidReference or administrativeL imitExceeded), then the DSA may choose, as a local
option, to process another access point from the set.

Processing of the access point information values within one set of continuation references, is handled in a uniform way,
irrespective of which continuation reference they originated from. (This is because two DSEs of type subr below a
single entry would produce two continuation references, each containing one accessPointlnformation value, whereas
one DSE of type nssr to the same two subordinates (assuming that they are held in different DSASs), would produce one
continuation reference containing a set of two accessPointl nfor mation values.)

The accessPointInformation values may be processed either sequentially or in parallel, as described in 20.1. The
parallel strategy is more likely to produce duplicate results. Duplicates shall always be discarded.

20.1 Chaining strategy in the presence of shadowing

In the presence of shadowing, a DSA may choose between different strategies when it has to multi-chain request to more
than one DSA. This choice always occurs if the DSA has to process more than one continuation reference with the same
targetObject. This situation can occur from multi-chaining caused by NSSR decomposition during Name Resolution (as
shown in Figure 22) or from request decomposition during the evaluation of a multiple object operation (see Figure 23).

The goal of these strategies is to dea with the problem of duplicate results and duplicate processing when shadowed
information is used in multi-chaining of requests (caused by either NSSR or request decomposition). For example, in
Figure 22, DSA 1 multi-chains a request to both DSAs 2 and 3 because of the NSSR held in DSE B. If the use of
shadowed information is alowed, both DSAs 2 and 3 may apply the chained operation to both subtrees starting at X
andY.

Similarly, in Figure 23, DSA 1 multi-chains (as a result of request decomposition) to the two subordinate references held
in DSEs X and Y. Again, if the use of shadowed information is alowed, both DSAs 2 and 3 may apply the chained
operation to both subtrees startingat X and Y.

To deal with this problem of duplication, a DSA may choose one of the following strategies when multi-chaining to
multiple DSA requests with the same tar getObj ect.

20.1.1 Master only strategy

A DSA may choose this strategy to prevent the usage of shadowed information when performing a parallel or sequential
multi-chaining caused by nssr decomposition, or request decomposition during a Search or List evauation. For this
strategy, during a Search or List operation evaluation the excludeShadows component of the chainingArgument is set
to TRUE. If NSSRs are encountered during Name Resolution, a DSA may set nameResolveOnMaster to TRUE to
ensure that only a single path is followed. nameResolveOnM aster shall be set to TRUE if NSSR are encountered and
the operation is one of the Directory modification operations. In either case, only the DSA(s) that hold the master entry
(or entries) relevant to the operation shall perform the operation. This master only strategy can be used during both
parallel aswell as sequential multi-chaining.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 59

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

nssr to DSA 2
Chained afdDSA 3 Chained
Request with Request with
targeObject B targeObject B

TISO3810-94/d24

Figure 22 — Multi-chaining caused by NSSR during Name Resolution

20.1.2 Parallel strategy

Using this strategy, a DSA sends out all chained requests by parallel multi-chaining. This strategy may be used during
Search or List evaluation, and name resolution of the NSSRs. This will allow the use of shadowed information for
processing of the chained-requests, but may result in duplicate executions and duplicate results for the operation. If a
DSA selectsthis strategy, it shall remove duplicate results from the operation result that it returns.

Because the removal of duplicate resultsis not possible if a signed result has been requested, a DSA shall not choose this
strategy if signed results are requested during Search evaluation, unless excludeShadows is also set.

20.1.3 Sequential strategy

This strategy avoids duplicate results by using sequential multi-chaining to process the chained (sub-)requests of a
Search decomposition or of a NSSR decomposition. Each chained request is processed one after the other.

In the case of NSSR decomposition, if aresult or a hard error is returned to a request, further requests do not need to be
chained. If asoft error is returned, afurther request may be chained, or the soft error returned to the requester, depending
upon local policy.

In the case of Search evaluation, the exclusions component of the chainingArguments is set to the set of RDNs that
have already been processed. This is done by incorporating the elements in chainingResult.alr eadySear ched to the
exclusions argument of the next chained request. This is the only strategy that completely avoids duplication during
Search evaluation.

A sequentia strategy is not defined for List evaluation (although sequential multi-chaining may be used), since a

superior DSA has no way of excluding specific subordinates from being returned in further List sub-requests (note that
excludeShadows does not exclude specific subordinates, but rather is a coarse way of excluding all shadows).

60 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

Chained Chained
Sub—R_equest Sub-Request
with with
targeObject B targeObject B

Shadow

TISO3820-94/d25

Figur e 23 — Multi-chaining Request Decomposition using Subordinate References

20.2 I ssuing chained sub-requeststo aremote DSA

Prior to issuing a sub-reguest, a DSA has to execute a BIND operation when the DSA has to establish an association to
the remote DSA. Management of associations is outside the scope of the Directory Specifications. An association to
another DSA is considered unavailable if the association cannot be established or the DSA for local reasons decides not
to establish one. In this case the BIND has failed. It is a local decision when to stop trying establishing an association
and declare an association as unavailable.

When aDSA tries BIND to another DSA and receives a BindError, the issuing of the sub-request failed.

20.3 Procedures’ parameters

20.3.1 Arguments

These procedures make use of the following arguments:
— the list of continuation references to processNRcontinuationList (for the Name Resolution
Continuation Reference Procedure), a@continuationList (for the List and Search Continuation

Reference Procedures respectively);

— thecommonArguments of the operation argument;

— thechainingArgument.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 61

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

20.3.2 Reaults

These procedures create the following results:
— alist of received results/errors of issued chained requests if chaining has been selected;

— an updated list of unprocessed continuation referenaagimuationList.

20.3.3 Errors

These procedures can return one of the following errors:

— aserviceError outOfScope in the case that a referral would have been created which is not within
scopeOfReferral;

— aserviceError DITerror in the case that an invalid knowledge reference has been detected;

— anameError noSuchObject in the case that all sub-requests from NSSR decomposition returned
unableT oPr oceed;

— any other error that is returned by a chained sub-request;

— areferralError in the case that chaining was not selectedopedationPr ogr ess.nameResolution is set
to notStarted or proceeding.

204 Definition of the Procedures

If operationProgress.nameResolutionPhase is set tonotStarted or proceeding, the procedure in 20.4.1 (Name
Resolution Continuation Reference procedure) shall be followed. The multiple entry interrogation operations List and
Search respectively call the procedures in 20.4.2 and 20.4.3.

20.4.1 Name Resolution Continuation Reference procedure

The Name Resolution Continuation Reference procedure consists of the steps as shown in Figure 24. The basic principle
of this procedure is to sequentially process the set of continuation references created during Name Resolution.

The following steps shall be executed for each continuation refe@zpoatained irNRcontinuationList in a selected

order until all references have been processed or an error or result has been returned. If all references have beer
processed, return to tl@@peration Dispatcher to continue with thé&Result Merging procedure to process the received

result or referral.

1) Check whethechainingProhibited is set. If it is set, then the DSA is not allowed to chain. According to
local policy, either aServiceError with problemchainingRequired or a Referral is returned to the
Operation Dispatcher.

2) If ChainingProhibited is not set, then check libcal policy allows chaining. If chaining is not allowed,
then return &eferral. If local policy allows chaining, then continue with the next step.

3) Process each of the Continuation References of the list of Continuation References found in
NRcontinuationList. If there are no more unprocessed Continuation References then return with
ServiceError.

4) Process the next Continuation Referenced C fftoontinuationList. If it is aNSSR, then continue at
step 5). If it is not d\NSSR, then call theAPInfo procedure to process it. Distinguish between the
possible returns of th&PInfo procedure:

— If the APInfo procedure returns anull result, continue at step 3) with processing the next
Continuation Reference.

— If the APInfo procedurereturns arerror, Referral or result, then return it.

5) In this case, the Continuation Reference is of type NSSR and the DSA has the choice of doing sequential
or parallel chaining, depending on thacal choice of strategy. If the NSSR is to beprocessed
sequentially, then continue at step 6). If it is to Ipeocessed in parallel, then for each of the
accessPointl nformation (API) in the NSSR théPInfo procedureis called so that they are processed in
parallel. Wait for all the API to be processed, i.e. wait for all the calls t&Bhefo procedure to return.

Check all the results received from the call toAlRénfo procedure in the following order:

— If all the call return &erviceError with problemunableT oProceed, then returrNameError.

— If one or moreesults are received, thediscard possible duplicates and return theesult.

62 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

6)

7)

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)
— Ifanerror is received that is not@erviceError (e.g. aNameError), then return aerror.

— Otherwise return &eferral or ServiceError to the Operation Dispatcher, according to local
choice.

Choose the next unprocessed API from the set of APIs in the NSSR and continue at step 7). If all the
API's have been processed, then check if all the calls to the APInfo procedure ret@engettekrror

with problemunableToProceed. If they did, then the entry cannot be found antlameError is
returned; if they did not, then, according to local choideef@rral or ServiceError is returned.

Call theAPInfo procedure. Distinguish between the possible results from the c@lRimfo procedure:

— IfaServiceError with problemunableToProceed is received, try another Access Point. Continue at
step 6).

— If a ServiceError with problembusy, unavailable, unwillingToPerform or invalidReference is
received, then the indicated problem may of transient nature and it is a local choice to try and chain
the request on to another DSA. If it is chosen to try another DSA, then continue at step 6); otherwise
return aReferral or ServiceError, according to local choice.

— If an error other tharServiceError with problem busy, unavailable, unwillingToPerform,
invalidReference or unableToProceed is received, that error should be returned toQiper ation
Dispatcher. If the ServiceError isinvalidRefer ence, this shall be converted in@l TError before
being returned to the requester.

If aresult or Referral is received, return it to the Operation Dispatcher.

20.4.3 List Continuation Reference procedure

The List Continuation Reference procedure consists of the steps shown in Figure 25. This procedure is invoked when a
List request cannot be satisfied in the local DSA and a set of continuation references have been added to
SRcontinuationList for chaining or referral. All these continuation references (CR) have thetaagetObject. Those

CRs withreferenceType nssr have one or moraccessPointl nformation values (APIs), whereas other type CRs have

only one API in them. Each of these API is extracted and considered for chaining or referral.

The following steps shall be executed:

1

2)

3)

4)

If any of the limit problem has been exceeded thus far, then return ©pération Dispatcher to
continue with théResult Merging procedure

If the chainingProhibited flag in commonArguments.serviceControls is set or the DSA decides not to
do any chaining because of its local operational, then the DSA shall directly return Qpetetion
Dispatcher to continue with th&esult Merging procedure.

Create a set dhccessPointl nformation values from theccessPoints component of every continuation
references in thERcontinuationL ist.

Use either parallel or sequential strategy to process each API as follows:
i) Call theAPInfo procedure with the next API in the set.

i) If aresultis returned then add it tist| nfo if it is not signed, or add it tancorrelatedListl nof if it
is signed.

ii) If the return is an error or null, it means thaPInfo has already tried all access points in the API
without success. Based on local operational and security policy, either ignore and proceed to the next
API, or add a continuation reference based on this API tpahigal OutcomeQualifier.

NOTE - It is not plausible to get a referral back from APInfo. Any “referral” should come in the form of
unexplored in partialOutcomeQualifier.

When al APIs are processed, return to the Operation Dispatcher.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 63

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

— = ServiceError
chainingRequired

Error

Local
policy?

chainingProhibited
set?

Return
Referral

Local DSA
policy allows
chaining?

Return
ServiceError

Process each continuation reference C from NRcontinuationList }—» AllC's
processed

A

null
e -
—® Call APInfo Procedure Error
referral

p| Return
result result

Call APInfo Procedure for
each AccessPointinformation

Next C

Parallel

sequential

’ Process each accessPointinformation API ‘

A + Next API

All APT'S referral ves
processed Call APInfo Procedure |~ = g g(;‘?rrrgl N Re“:Em
Nresult ameError
error
Unable \
to busy, Return
proceed | unavailable, result

All
unable ToProceed
Service Errors?

unwilling,
invalid ref Discard One or
duplicates more
Yes results
Y Ty
another?
No
A
Logal . Bl non-service
choice: Error
error?
= Return
Referral
or Service
No

Error

TISO3830-94/d26

All
| g unable ToProceed Yes » Return
Service Errors? NameError

Figure 24 — Name Resolution Continuation Reference procedure

64 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

Limit
exceeded?

Yes

chainingProhibited

No
V_\
; Do not
Local polic —
chain Return -
Chain

All API's processed

Extract all APIs from the continuation references, and process each using either
parallel or sequential strategy

Next API “
Y error or
null Add a continuation
Call APInfo Procedure ™| reference based on

this API, and add it to
referral result partialOutcomeQuialifier.
unexplored

Y

Implausible
Result
signed

Yes

Add result to listinfo

Add resultto
uncorrelatedListinfo

TISO3840-94/d27

Figure 25 — List Continuation Reference procedure

20.44 Search Continuation Reference procedure

The Search Continuation Reference procedure consists of the steps shown in Figure 26. This procedure is invoked when
a Search request cannot be satisfied in the local DSA and a set of continuation references have been added to
SRcontinuationList for chaining or referral. The procedure is very similar to the List Continuation Reference
procedure. The difference is that in this case the continuation references in SRcontinuationList may have different
targetObject values. Thus the continuation references are sorted into sets of continuation references with the same
targetObject Also, the use of exclusions and alreadySear ched chaining arguments and reply is defined, as thisis an
important strategy for search. The use of exclusions and alreadySearched is applied to processing each set of
continuation references with the same tar getObj ect.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 65

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

Yes

Limit
exceeded?

Yes V

chainingProhibited
set?

Do not chain
Local palicy?

Sort continuation references into
sets that have the same target object

* All sets
processed

Process each target objet set (either sequentially or in parallel)

A * Next set

Compare each element of alreadySearched with target object, and add matched elements to exclusions

Y

Extract all APIs from the set of continuation references

Y

- Add to uncorrelated-
All API's Process each accessPointInformation API o Searchinfo
processed |
Next API
Add to searchinfo [
No
Add to partial result
Outcome 4%- Call APinfo Procedure paraliel Yes
Quialifier.
unexplored Y referral
sequential
Implausible \i
Update exclusions for Merge alreadySearched
next API, using incoming p| Of incoming result into
alreadySearched ChainingResults.already
Searched

TISO3850-94/d28

Figure 26 — Search Continuation Reference procedure

66 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

The following steps shall be executed:

1) If any of the limit problem has been exceeded thus far, then return to the Operation Dispatcher to
continue with the Result M erging procedure.

2) If the chainingProhibited flag in commonArguments.serviceControlsis set or the DSA decides not to
do any chaining because of its local operational, then the DSA shall directly return to the Operation
Dispatcher to continue with the Result M er ging procedure.

3) Sort the continuations references in SRcontinuationList into sets that have the same tar getObject.

4) For each subset of continuation references create a set of AccessPointlnformation values from the
accessPoints component of every continuation references in the subset, and choose either sequentia or
paralld strategy for further processing. If the parallel strategy is chosen, then skip the steps below that are
indicated only applicable to the sequential strategy.

a) If the sequential strategy is chosen, maintain a local variable localExclusionsfor each set of
continuation references that have the same targetObject. Initially localExclusions is set to the
exclusions of the incoming chaining request (if it exists). and all locally searched subtrees directly
under tar getObj ect.

b) If the sequential strategy is used, compare the targetObject to all the elements of localExclusions,
and remove those elements which does not contain tar getObject as a prefix. These are the relevant
exclusions for the current target object.

c) Extract all the APIs from all the continuation references the current target object’s set.
d) Loop through each API. For each API:
i) Call APInfo.

i) If a result is returned, then add the resultstarchinfo if it is not signed, or add it to
uncorrelatedSearchinfo if it is signed. If the sequential strategy is used, update
localExclusions using alreadySearched in the incoming reply, and also merge the
alreadySear ched in the incoming reply to this DSA'shainingResult.alreadySear ched. Then
proceed to the next API.

iii) If an error or null is returned, it means th&PI nfo has already tried all access points in the API
without success. Based on local operational and security policy, either ignore and proceed to the
next API, or add a continuation reference based on this API fgattieal OutcomeQualifier.

NOTE — It is not plausible to get a referral back from APInfo. Any “referral” should come in the
form of unexplored in partialOutcomeQualifier.

€) When al APIs are processed, proceed to the next set of continuation references with the same
targetObject.

5) When al the continuation references are processed, return to the Oper ation Dispatcher.

2045 APInfo procedure

This procedure is called to process an accessPointlnformation, which contains one or more access points. They are
processed one by one until either aresult or error is returned. If the error is a service error such that trying another access
point may succeed, then additional access points are tried as long as local operational policy permits:

1) Performloop detection. If aloop is detected, return ServiceError with problem loopDetected. Otherwise
continue at step 2).

2) Process each of the access points from the access point information. If all have been processed, return a
null result. If thereis any access point to process, continue at step 3).

3) Check whether local policy allows chaining to this access point. This check should take into account the
settings of the service controls and chaining arguments (e.g. chainingProhibited, prefer Chaining,
whether the access point is within the local Scope or not, excludeShadows). If the local policy or the
setting of the respective service controls do not allow to use this particular access point, then ignore the
access point and continue at step 2). If the access point can be used, continue at step 4).

4) If locd policy selected the master only strategy, then set the chaining argument excludeShadows to True.

If nameResolutionPhase is not completed and the strategy is to continue name resolution on master
entries, then set nameResolveOnM aster to True.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 67

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

68

The chaining argument nameResolveOnM aster shall be set to Trueif either of the following istrue:

— in the incoming chaining argumentnameResolutionPhase is proceeding and
nameResolveOnMaster is True; or

— the operation is one of the modification operationsy dherenceType of the chaining request to be
issued is NSSR, and a parallel strategy is used.
NOTE - This method of usingameResolveOnMaster is to prevent modification operations be applied
multiple times due to the presence of NSSR.
5) Build achained request and try to issueiit:

a) Perform loop avoidance by checking if an item with the same tar getObject and oper ationProgress
occurs in tracelnformation of the received chainingArgument. If the resulting request
(asdescribed in step 5), b) would result in aloop, then the DSA shall either return a ServiceError
with problem loopDetected to the requesting DUA/DSA or ignore the access point and try the next
access point by continuing at step 2).

b) After a successful Bind, the DSA shall issue a chained operation of the same operation type as the
operation that is processed with the following parameters:

— the operation argument within the chained operation is set as for the operation argument
received,;

— chainingArguments.originator set as received,;
— chainingArguments.tar getObject set to theargetObject of the continuation reference;

— chainingArguments.operationProgress set to the value ofoperationProgress of the
continuation reference;

— chainingArguments.tracel nformation set to trace information as updated by Bequest
Validation procedure;

— chainingArguments.aliasDereferenced to the updated value of the locally updat@ihs-
Der eferenced;

— chainingArguments.returnCrossRefs to a local choice;

— chainingArgumentsreferenceType to the value ofreferenceType of the continuation
reference;

— chainingArguments.timelLimit to the value of the receiveinel imit;
— chainingArguments.exclusions absent;
— SecurityParameters set to the value of the receivBecurityPar ameters.

6) If the request could not be issued successfully, then continue at step 7), if it could be issued successfully
continue at step 8).

7) ltis a local choice whether or not to continue. If the DSA chooses to continue, then the error is ignored
and the next access point will be tried. Continue at step 2). If the DSA decides to not try another access
point, then it is a choice of local policy whether to return a respeRferral or aServiceError to the
caller of the procedure.

8) If the request could be issued successfully, then the DSA shall wait for the reply and process it:
a) If aresult is received, theesult is returned to the caller of the procedure.

b) If a ServiceError with problembusy, unavailable, unwillingToPerform or invalidReference is
received, continue at step 7).

c) If Referral is received andeturnToDUA is set toT RUE, then the receiving DSA shall not act on
the Referral, but shall return the Referral to the requester.

d) If a Referral is received andeturnToDUA is set to FALSE, then the same local policy
considerations apply as in step 3) (taking into account service controls, chaining arguments, chaining
strategy, etc.). If it is decided to not dereference the Referral, then return the Referral to the caller. If
it is decided to dereference the Referral, then emptiNBeontinuationList, place the Continuation
Reference as received in the Referral NRcontinuationList and call the Name Resolution
Continuation Reference procedure. This may producesalt, Referral, ServiceError or other
error. Whatever is received from the call of the Name Resolution Continuation Reference procedure
shall be given back to the caller.

e) If any othererror occurs, it shall be given back to the caller.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

Return
null

Return
ServiceError
loopDetected

Perform loop
avoidance

Process each access point AP from AccessPointinformation
A All AP’s
processed

Set exclude Shadows or
nameResolveOnMaster
as appropriate

Y

Issue DSP
chained request

Successfully

Yes
No Try No
another?

busy, unavailable,
unwilling, invalid ref

W ait referral
for reply

referral

Yes Do not use
referral
Local Return
policy? referral

Use referral
Empty NRcontinuationList. Replace
with continuation reference from referral

returnToDUA

Return
ServiceError

Return
result

Service
error

referral

Call Name Resolution Continuation Reference Procedure
result TISO3860-94/d29

Figure 27 — APInfo procedure

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 69

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

20.5

Abandon procedure

This procedure isinvoked if an abandon request is received. It consists of the following steps as shown in Figure 28:

21

1

2)

3

4)

When an Abandon request is received, which references an unknown operation, an AbandonError with
anoSuchOperation error value shall be returned to the requester.

If the request to be abandoned already has been replied to, and the DSA has retained information to know
S0, an AbandonError with atool ate error value may be returned to the requester.

If the Abandon request is not valid, i.e. asks to abandon a request that is not an interrogation regquest, an
AbandonError with acannotAbandon error value shall be returned to the requester.

If a DSA has outstanding chained (sub)requests when receiving a valid Abandon request for the original
request, and the DSA decides to attempt abandoning, it may send Abandon requests for none, some, or al
outstanding (sub)requests for the operation in question, and then wait for the replies to Abandon request
and the outstanding (sub)requests. At any time during this operation the DSA may send an Abandon
result and an AbandonError to the requester and then discard replies to the issued Abandon requests and
the outstanding (sub)requests as they arrive.

If the DSA decides not to send replies to the requester until there are no more outstanding (sub)requests, it
may optionally send an AbandonedFailed error to the requester if al the issued Abandon requests were
replied to with AbandonedFailed errors and if no local abandon operation has been performed.

If an AbandonedFailed error is returned to the requester, the original request shall be treated as had the
Abandon request never been received.

Results Merging procedure

The Result Merging procedure in Figure 29 is called following one of the Continuation Reference procedures. This
procedure removes duplicates, if the result is not signed; and if there are additional continuation references in
partialOutcomeQualifier.unexplored, then the relevant Continuation Reference procedure(s) is called if local
operational policy permits:

70

1

2)

3

4)

If the operation is a List operation, continue at step 2); if the operation is a Search operation, then
continue at step 3); otherwise return the result that was supplied as input parameter to the Result Merging
procedure.

The operation is a List operation. Remove al duplicates.

If the operation result was generated locally and it contains Continuation References then these will not
be used for chaining but returned to the user. In this case, continue at step 6).

If the operation result was received as the result of a chained List operation, then the result might contain
Continuation References. In this case, check if the prefer Chaining service control was set. If TRUE, the
Continuation References should be used for chaining by the DSA. Continue at step 4).

The operation is a Search operation. Remove all duplicates. If there is a limit problem then return the
result. Otherwise continue at step 4).

Process each Continuation Referencesthat is in the partialOutcomeQualifier .unexplor ed of the result of
any chained operation. If the local policy decides not to use it for chaining, then ignore it and choose
another Continuation Reference. If the local policy alows to use the Continuation Reference for chaining,
then perform the following:

Check nameResolutionPhase that is supplied in the Continuation Reference. If it is notStarted or
proceeding, then add it to the list of Continuation References that will be supplied to the Name
Resolution Continuation procedure (NRcontinuationList). If nameResolutionPhase is completed then
add the Continuation Reference to the list of Continuation References that is supplied to the sub-request
Continuation procedure (SRcontinuationList).

Proceed until al Continuation References have been processed.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

5) If there are Continuation References to be processed in SRcontinuationList, check the operation type. If
the operation isa List operation, call the List Continuation Reference Procedure and continue at step 2). If
the operation is a Search operation, call the Search Continuation Reference Procedure and continue at
step 3).

If SRcontinuationList is empty, then check if there are Continuation References in NRcontinuationList.
If so, call the Name Resolution Continuation Reference Procedure and continue at step 3).

If both continuation lists are empty, continue at step 6).

6) Check whether the result is empty. If it is not empty then return it. If it is empty, either return a null result
if the access control and local policy allows, or return an appropriate error.

=

Find Request

AbandonError

with invokelD “noSuchOperation”
Reply already AbandonError
sent? “tooLate”
AbandonError
“cannotAbandon”
Send an Abandon)) .
request for each Terminate further processing of | ferwceErro’r’
oustanding sub-request - this reque_st within operation abandoned
Discard any local result dispatcher

TISO3870-94/d30

Figure 28 — Abandon procedure

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 71

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

Search
Operation?

Other operations

Call List

Remove duplicates
Continuation

Remove duplicates
from searchinfo
Reference Procedure

from listinfo

Call Search
Continuation
Reference Procedure

Return result
? ; Return result

Process each continuation reference CR AllCR's

in partialOutcomeQualifier.unexplored processed Operation?
A Next CR

Ignore
Addto Add to Is SRcontinuation-
SRcontinuationList process SRcontinuationList List empty?
A
notStarted Namg completed
resolution

proceeding

phase

Is NRcontinuation-
List empty?

OK
Call Name Resolution

] Continuation

Reference Procedure

{ Return result

TISO3880-94/d31

Figure 29 — Results Merging procedure

22 Proceduresfor distributed authentication

This clause specifies the procedures necessary to support the directory distributed authentication services. These
services, and hence the procedures, are categorized as;

originator authentication, which is supported in either an unprotected (simple identity based) or secure
(based upon digital signatures) form; and

results authentication which is similarly protected (again based upon digital signatures).

72 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)
22.1 Originator authentication

22.1.1 ldentity based authentication

The identity based authentication service enables DSAs to authenticate the original requester of information for the
purpose of effecting local access controls. DSAs wishing to exploit this service shall adopt the following procedure:

— For a DSA requiring to authenticate a DAP request, the DSA acquires the distinguished name of the
requester through the Bind procedures at the time a DUA association (DUA to DSA) is established.
Successful conclusion of these procedures does not in any way prejudice the level of authentication that
may subsequently be required for processing operations using that association.

— The DSA with which the DUA association exists shall insert the requester’s distinguished name in the
initiator field of theChainingArgument for all subsequent chained operations to other DSAs.

— A DSA, on receiving a chained operation, may satisfy that operation, or not, depending upon the
determination of access rights (a locally defined mechanism). If the outcome is not satisfactory a
SecurityError may be returned witBecurityProblem set toinsufficientAccessRights.

22.1.2 Signature-based originator authentication

This signature-based originator authentication service enables a DSA to authenticate (in a secure manner) the originator
of a particular service request. The procedures to be effected by a DSA in realizing this service are described in this
clause.

The signature-based authentication service is invoked by a DUA usirfgf @NED variant of an optionally-signed
service request.

A DSA, on receiving a signed request from another DSA, shall remove that DSA'’s signature prior to processing the
operation. Assuming the result of any signature verification proves to be satisfactory, the DSA will continue to progress
the operation. If, during processing, the DSA needs to perform chaining, the argument set for each associated chained
operation shall be constructed as follows:

— the DSA forms an argument set which may be optionally signed; the argument set comprises the incoming
signed argument set together with a modifd¥iningArguments.

In the event that the DSA is able to contribute information to the response, originator authentication, based upon the
signed service request, may be used for the determination of access rights to that information.

If a DSA receives an unsigned service request for information which will only be released subject to originator
authentication, &ecurityError will be returned withSecurityProblem set toprotectionRequired.

22.2 Results authentication

This service is provided to enable requesters of directory operations (either DUAs or DSASs) to verify (in a secure
manner using digital signature techniques) the source of results. The results authentication service may be requested
irrespective of whether originator authentication is to be used.

The results authentication service is initiated using the signed value of the protectionRequest component as contained
within the argument set of directory operations; a DSA receiving an operation with this option selected may then
optionally sign any subsequent results. The signed option in the protection request serves as an indication, to the DSA, of
the requesters preference; the DSA may, or may not, actually sign any subsequent results.

In the case where a DSA performs chaining, the DSA has a number of options in terms of the form of results sent back
to the requester, namely:

a) return a composite response (signed or unsigned) to the requester;

b) return a set of two or more uncollated partial responses (signed or unsigned) to the requester; within this
set zero or more members may be signed and zero or one unsigned. In the event that an unsigned partial
result is present, this member may in fact be a collation of one or more unsigned partial responses which
have been received from other DSAs, contributed by this DSA, or both.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 73

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

SECTION 6 — KNOWLEDGE ADMINISTRATION

23 Knowledge administration overview

To operate a widely distributed Directory with an acceptable degree of consistency and performance, procedures are
required to create, maintain and extend the knowledge held by each DSA. The following mechanisms together are used

to administer a DSA’s knowledge.

a) Hierarchical and non-specific hierarchical operational bindings — These procedures and protocols are

defined in clauses 24 and 25. They are used to create and maintain subordinate references, non-specific
subordinate references, and immediate superior references, as well as the context prefix information for
naming contexts. These operational bindings are established between master DSAs holding naming
contexts that are hierarchically related to each other as immediate subordinate to immediate superior. The
procedures may be triggered as a side effect of modifying the RDN of, or adding or removing an entry
whose immediate superior is not held in the same DSA that holds the entry.

b) Shadowing operational bindings — These procedures and protocols are defined in ITU-T Rec. X.525 |

ISO/IEC 9594-9. They are used to create and maintain knowledge references in two ways. First, as a side
effect of establishing (or terminating) shadowing agreements, access points are added (or removed) from
the consumer Knowledge and optionally thesecondaryShadow operational attributes. This information

may then be used by the procedures and protocols discussed above to update the subordinate reference in
the superior master DSA and the immediate superior reference in the subordinate master DSA. Second,
the DISP propagates the knowledge references held by master DSAs to shadow consumer DSAs.

c) Cross references — Cross reference distribution is a feature of the DSP. Its use to create and maintain

cross references is summarized in 23.2.

NOTE — Mechanisms for initializing and maintaining the superior referencengAdcessPoint are outside the
scope of this Directory Specification.

23.1 Maintenance of K nowledge References

This subclause describes how the DOP is used to maintain DSA operational attributes that express knowledge. A smple
example of the relationship between knowledge attributes and the protocols employed to maintain them is described in
Annex E.

23.1.1 Maintenance of consumer knowledge by supplier and master DSAs

A consumer reference is expressed through a value of the consumer Knowledge attribute, held by a shadow supplier
DSA and associated with the context prefix for a naming context; a supplier reference, through a value of the
supplier Knowledge attribute, held by a shadow consumer DSA and also associated with the context prefix for a naming
context. Both attributes are held in DSEs of type cp. A value of each one of these attributes is created on establishment
of the Shadow Operational Binding, and updated on modification of the Shadow Operational Binding.

A supplier DSA may obtain the information to construct values of the secondaryShadows attribute if the optional
secondaryShadows component of its ShadowingAgreement with a consumer is TRUE. In this case, whenever the
consumer DSA detects that the set of DSAs holding copies of the commonly usable replicated area (its consumers, or, in
turn, consumers of its consumers, etc., to whatever depth secondary shadowing might be carried) has changed (by
addition, modification or deletion of access points), it communicates this new information (a set of
SuppliersAndConsumers) by means of a modifyOperationalBinding operation, as described in ITU-T Rec. X.525 |
|SO/IEC 9594-9.

A supplier DSA maintains its own secondar yShadows attribute associated with the context prefix as follows:

a) The sat of SuppliersAndConsumers received from a consumer by means of a
modifyOperationalBinding operation may be used to create, or replace values of the attribute. The
supplier component of SuppliersAndConsumer s represents the access point of a consumer DSA (or of
its consumers, etc. depending upon the depth of secondary shadowing); the consumers component, the set

of the consumer’'s consumers (or of their consumers, etc. depending upon the depth of secondary

shadowing).

74 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

b) Every consumer providing its supplier with a modifyOperationalBinding operation containing a set of
SuppliersAndConsumer s, includes the following values: the values of its secondar yShadows attribute,
and a newly constructed value. This value is constructed using its own access point, myAccessPoint, (as
the supplier component), and the values of the consumers’ access points, contained within the
consumer Knowledge attribute, that represent consumers holding commonly usable shadows (as the
consumers component).

Recursive use of this procedure permits a master DSA for a naming context to know about all of its secondary shadow
consumer DSAs holding commonly usable replicated areas derived from the naming context. This information is then
available for the maintenance of subordinate, non-specific subordinate, and immediate superior references.

23.1.2 Maintenance of subordinate and immediate superior knowledge in master DSAs

A subordinate reference is expressed through a value gbéhidicK nowledge attribute, held in a DSE of tysabr by

the DSA holding the immediately superior naming context to that referenced; an immediate superior reference, through a
value of thespecificKnowledge attribute, held in a DSE of typenmSupr by the DSA holding the immediately
subordinate naming context to that referenced. A value of each one of these attributes is created in the superior and
subordinate master DSAs on establishment of the HOB, and updated on modification of the HOB.

A subordinate master DSA provides a superior master DSA the information to construct its subordinate reference via the
accessPoints component of theSubordinateToSuperior parameter it transfers to the superior in the DOP. The
information included iraccessPoints is determined by values of attributes held by the subordinate DSA as follows:

a) The value of thenyAccessPoint attribute (held in the root DSE) is used to form the element in
accessPoints with category having the valuenaster.

b) The values of theonsumer Knowledge and secondaryShadows (both held in the subordinate context
prefix DSE) are used to form additional elementsaicessPoints with category having the value
shadow.

A superior master DSA provides a subordinate master DSA the information to construct its immediate superior reference
via the contextPrefixInfo component of thé&uperior ToSubordinate parameter it transfers to the subordinate in the
DOP. This component is a value of tyBEQUENCE OF Vertex, containing sequence of elements corresponding to

the path from the root of the DIT to the subordinate context prefix. For one of these elements, corresponding to the
context prefix of the immediately superior naming context, the optional compacwssPoints will be present. The
subordinate DSA holds this information aspacificK nowledge attribute in the DSE, of typenmSupr, corresponding

to this element otontextPrefixInfo. The information included iaccessPoints by the superior DSA is determined by
values of attributes held by the superior DSA as follows:

a) The value of thanyAccessPoint attribute (held in the root DSE) is used to form the element in
accessPoints with category having the valuenaster.

b) The values of theonsumer K nowledge andsecondaryShadows (both held in the superior context prefix
DSE) are used to form additional elementadecessPoints with category having the valushadow.
NOTE — Only those access points corresponding to consumer DSAs receiving commonly usable replicated areas
should be selected by the superior and subordinate DSAs frontdhsirmer K nowledge attributes for inclusion in

accessPoints. The procedures for the construction saséondaryShadows guarantee that these access points will
identify shadow DSAs holding commonly usable replicated areas.

23.1.3 Maintenance of subordinate and immediate superior knowledgein consumer DSAs

A shadow consumer DSA contracting with its supplier to receive the immediate superior and subordinate knowledge
associated with a unit of replication, in effect contracts to have its immediate superior and subordinate references
maintained by its shadow supplier DSA viathe DISP.

NOTE — For certain unit of replication specifications, it may be necessary for the consumer DSA to contract to receive
extendedK nowledge in order that subordinate knowledge may be provided to it by its supplier.

232 Requesting cross reference

To improve the performance of the Directory System, the local set of cross references can be expanded using ordinary
Directory operations. If a DSA supports the DSP, it may request another DSA (which must also support the DSP) to
return those knowledge references which contain information about the location of naming contexts related to the target
object name of an ordinary Directory operation.

If the returnCrossRefs component of the ChainedOperationsArgument is set to TRUE, the crossReference
component of the ChainedOper ationsResult may be present, consisting of a sequence of cross reference items.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 75

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

If a DSA is not able to chain a request to the next DSA a referra is returned to the originating DSA. If the
returnCrossRefs component of ChainingArguments was TRUE, the referral may contain additionally the context
prefix of the naming context which the referral refers to. The contextPrefix component is absent if the referral is based
on a non-specific subordinate reference. The cross reference returned by a referral is based on knowledge held by the
DSA which generated the referral.

In both cases (chaining result and referral) an administrative authority through its DSA may elect to ignore the request
for returning cross references.

23.3 Knowledge inconsistencies

The Directory has to support consi stency-checking mechanisms to guarantee a certain degree of knowledge consistency.

NOTE - In certain circumstances a knowledge reference will be accurate (not invalid in the senses described below) but
not valid for use by a DSA because the DMD of the referenced DSA does not wish it to be contacted at all by the referencing DSA
(e.g. a DSA which has somehow acquired a cross reference to the referenced DSA) or does not wish it to be contactedain a partic
role (e.g. as the master DSA for a naming context).

23.31 Detection of knowledge inconsistencies

The kind of inconsistency and its detection varies for the different types of knowledge references:

a) Crossand Subordinate references — This type of reference is invalid if the referenced DSA does not hold
a naming context or a replicated area derived from the naming context with the context prefix contained
in the reference. This inconsistency will be detected during the Name Resolution process by inspection of
theoper ationProgr ess andr efer enceType components o€hainingArgument.

b) Non-specific Subordinate references — This type of reference is invalid if the referenced DSA does not
hold a local naming context with the context prefix contained in the reference minus the last RDN. The
consistency check is applied as above.

c) Superior References— An invalid superior reference is one which does not form part of a reference path to
the root. The maintenance of superior references shall be done by external means and is outside the scope
of this Directory Specification.

NOTE — It is not always possible to detect an invalid superior reference.

d) Immediate Superior References — This type of reference is invalid if the referenced DSA does not hold a
naming context or a replicated area derived from the naming context with context prefix contained in the
reference. Furthermore, usage of this type of reference is only valid wheopehationProgress
component ofChainingArguments has the valuaotStarted or proceeding. This inconsistency will be
detected during the Name Resolution process by inspection gf¢hationPr ogress andr efer enceType
components o€hainingArguments.

e) Supplier References — This type of reference, which identifies the supplier of a replicated area and
optionally the master for the naming context from which the replicated area is derived, is invalid if the
referenced DSA is not the shadow supplier for the DSA using the reference (whefetleeceType
component ofChainingArguments has the valusupplier), or if the referenced DSA is not the master
for the naming context (whareferenceType has the valuenaster). This inconsistency will be detected
during the Name Resolution and operation evaluation phases of operation processing by inspection of the
refer enceType component oChainingArguments.

23.3.2 Reporting of knowledge inconsistencies

If chaining is used in performing a Directory request, all knowledge inconsistencies will be detected by the DSA which
holds the invalid knowledge reference, through receivisg@ceError with problem ofinvalidReference.

If a DSA returns a referral which is based on an invalid knowledge reference, the requester will be returned a
serviceError with problem ofinvalidReference if it uses the referral. How the error condition will be propagated to the
DSA which stores the invalid reference is not within the scope of this Directory Specification.

23.3.3 Treatment of inconsistent knowledge r efer ences

After a DSA has detected an invalid reference it should try to re-establish knowledge consistency. For example, this can
be done by simply deleting an invalid cross reference or by replacing it with a correct one which can be obtained using
thereturnCrossRefs mechanisms.

76 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

The way in which a DSA actually handles invalid references is a local matter, and outside the scope of this Directory
Specification.

24 Hierarchical operational bindings

A hierarchical operational binding is used to represent the relationship between two DSA holding two naming contexts,
one immediately subordinate to the other. In the case of a HOB, the superior DSA holds a subordinate reference to the
naming context held by the subordinate DSA; the subordinate DSA holds an immediate superior reference to the naming
context held by the superior DSA. The operational binding ensures that the appropriate knowledge information is
exchanged and maintained between the two DSAs so that both DSAs are able to behave during the process of name
resolution and operation evaluation as defined in clauses 18 and 19.

24.1 Operational binding type characteristics

2411 Symmetry and roles

The hierarchical operational binding type is an asymmetrical type of operational binding. The two roles in a binding of
thistype are:

a) therole of the master DSA for the superior naming context, the superior DSA (associated with abstract
role “A”; and

b) the role of the master DSA for the subordinate naming contexsuboedinate DSA (associated with
abstract role “B").

2412 Agreement

The agreement information exchanged during the establishment of the hierarchical operational binding is a value of
HierarchicalAgreement. This contains the relative distinguished name of the new context prefixdfih@omponent)

and the distinguished name of the entry immediately superior to the new naming conteminfdaateSuperior
component). This information shall be provided by the DSA that initiates the HOB.

Hierar chical Agreement = SEQUENCE {
rdn [0] RelativeDistinguishedName,
immediateSuperior [1] DistinguishedName }

24.1.3 Initiator

24.1.3.1 Establishment

The establishment of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can
be caused by an Add Entry operation with the subordinate DSA specified tarteeSystem extension, or by
administrative intervention. Initiation by the subordinate DSA (which connects a locally existing entry or subtree to the
global DIT) is caused by administrative intervention.

24.1.3.2 Modification

The modification of a hierarchical operational binding can be initiated by either role. The superior DSA may issue the
modification as a result of a modification of the superior context prefix information. This can be as a result of any of the
modification operations, or by administrator intervention.

Either DSA may modify the agreement as a result of a modification of the RDN of the context prefix entry of the
subordinate naming context. The superior DSA initiates this modification because of a relative distinguished name being
modified higher up the DIT, or because of administrative intervention. The subordinate DSA initiates modification
because of a ModifyDN of a context prefix, or because of administrative intervention.

Either DSA may also modify the HOB if the access point information for its naming context changes.
24.1.3.3 Termination
The termination of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can

be caused by administrative intervention. Initiation by the subordinate DSA can be caused either by a Remove Entry
operation that removes the context prefix entry of the subordinate naming context or by administrative intervention.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 77

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

24.1.4 Establishment parameters

The establishment parameters for the two roles of a HOB, superior DSA and subordinate DSA, differ. The establishment
parameter for the superior DSA role is a value of Superior ToSubordinate, the parameter for the subordinate role, a
value of SubordinateToSuperior.

24.1.4.1 Superior DSA establishment parameter

The establishment parameter issued by the superior DSA, avaue of Superior ToSubordinate, provides the subordinate
DSA with information regarding DIT vertices superior to the context prefix of the new naming context (which includes
the immediate superior reference) and optionally user and operational attributes for the subordinate context prefix entry
and copies of user and operational attributes from the entry immediately superior to the new context prefix.

Superior ToSubordinate = SEQUENCE {
contextPrefixInfo [Q] DI T context,
entrylnfo [1] SET OF Attribute OPTIONAL,

immediateSuperiorinfo [2] SET OF Attribute OPTIONAL }

241411 Context prefix information

The contextPr efixl nfo component of Superior ToSubordinate is a value of type DI Tcontext, this being a sequence of
Vertex values.

DI Tcontext n= SEQUENCE OF Vertex
Vertex = SEQUENCE {
rdn [Q] RelativeDistinguishedName,
admPointInfo [1] SET OF Attribute OPTIONAL,
subentries [2] SET OF Subentrylnfo OPTIONAL,
accessPoints [3] M aster AndShadowA ccessPoints OPTIONAL }

The contextPrefixInfo component is essentially the sequence of RDNs that form the distinguished name of the new
context prefix, each RDN (given by the rdn component) optionally accompanied by additional information.

The optional admPointInfo component of a Vertex signals that the DIT vertex is an administrative point and provides,
at least, itsadministrative-r ole operational attribute.

The subentry information associated with an administrative point is provided by the subentries component of a Vertex,
which is a set of one or more Subentrylnfo values. Each Subentrylnfo value is composed of the RDN of the subentry
(the rdn component) and the attributes of the subentry (the info component).

Subentrylnfo = SEQUENCE {
rdn [Q] RelativeDistinguishedName,
info [1] SET OF Attribute}

The optional accessPoints component of a Vertex signals that the vertex corresponds to the context prefix of the
immediately superior naming context. The superior uses this component to provide the subordinate the information
required for its immediate superior reference.

24.1.4.1.2 Entry information

The optional entrylnfo component of Superior ToSubordinate is a set of attributes establishing the content of the new
context prefix entry.

24.14.1.3 Immediate superior entry information

The optional immediateSuperiorinfo component of Superior ToSubordinate is a copy of a set of attributes, in
particular objectClass and entryACl, from the entry immediately superior to the new context prefix.

NOTE — This component may be used by the subordinate for optimizing the evaluation of a List request which generates
an emptyListResult for a base object which is the immediate superior of the subordinate context prefix [see Note of 19.3.1.2.2,
item 2)].

24.1.4.2 Subordinate DSA establishment parameter

The establishment parameter issued by the subordinate DSA, a value of SubordinateToSuperior, provides the superior
DSA with information regarding the subordinate naming context.

SubordinateToSuperior = SEQUENCE {
accessPoints [Q] M aster AndShadowA ccessPoints OPTIONAL,
alias [1] BOOLEAN DEFAULT FALSE,
entrylnfo [2] SET OF Attribute OPTIONAL }

78 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

The accessPoints component of SubordinateToSuperior is used by the subordinate to provide the superior the
information required for its subordinate reference.

The alias component of SubordinateToSuperior is used to signa to the superior that the subordinate naming context
consists of asingle alias entry.

The entrylnfo component of SubordinateT oSuperior consists of a copy of a set of attributes, in particular objectClass
and entryACl, from the new context prefix entry.

NOTE — The latter two components may be used by the superior for optimizing the evaluation of a List request whose base
object is the entry immediately superior to the subordinate context prefix.

2415 Moadification parameters

For modifications of a HOB, the modification parameter of the superior role, Superior ToSubor dinateM odification, is
Superior ToSubor dinate, with the restriction that the entrylnfo component may not be present; that of the subordinate
roleis SubordinateT oSuperior.

Superior ToSubordinateM odification ::= Superior ToSubordinate (
WITH COMPONENTS({ ..., entrylnfo ABSENT})

These parameters are identical (with the restriction noted above) to the corresponding establishment parameters and are
used to signal changes occurring to information provided in the establishment parameters subsequent to the
establishment of the HOB.

If any component of SuperiorToSubordinate (or subsequently Superior ToSubordinateM odification) or
SubordinateT oSuperior experiences a change(e.g. the contextPr efixl nfo component of Superior ToSubordinate), the
corresponding component of the modification parameter (e.g. the contextPrefixinfo component of
Superior ToSubor dinateM odification) shall be provided in its entirety in the Modify Operational Binding.

24.1.6 Termination parameters

Neither role provides a termination parameter when terminating a HOB.

24.1.7 Typeidentification

The hierarchical operational binding is identified by the object identifier assigned when defining the hier-
archicalOperationalBinding OPERATIONAL -BINDING information object in 24.2.

24.2 Operational binding information object Class definition

This subclause defines the hierarchical operational binding type using the OPERATIONAL-BINDING information object
class template defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

hierarchicalOperationalBinding OPERATIONAL-BINDING = {
AGREEMENT Hierar chical Agreement
APPLICATION CONTEXTS{
{directorySystemAC}}

ASYMMETRIC

ROLE-A { -- superior DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER Superior ToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER Superior ToSubordinateM odification
TERMINATION-INITIATOR TRUE}

ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SubordinateT oSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SubordinateT oSuperior
TERMINATION-INITIATOR TRUE }

1D hierarchicalOperationalBindingI D }

243 DSA proceduresfor hierarchical operational binding management

In the following procedures, a new DSE or a mark (i.e. a state indication associated with some item of information)
created by a DSA shall be stored in stable storage. By doing so, it is possible for the two DSAs following the procedures
below to maintain a consistent understanding of the parameters of the HOB in the presence of communication and end
system failures.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 79

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

In both the establishment and modification procedure described below, the DSA playing the responding role (i.e. not
initiating the establishment or modification) may provide the DSA playing the initiating role with information
(e.0. operational attributes) that are not acceptable for one reason or another. The initiating DSA may terminate the
operationa binding in such cases.

2431 Establishment procedure

24.3.1.1 Establishment initiated by superior DSA

If a DSA evaluates an Add Entry operation with a different DSA specified in the targetSystem extension, it shall
establish a hierarchical operationa binding according to the following procedure. If a DSA, for administrative reasons,
wishes to establish a HOB with a subordinate DSA, and it supports the DOP HOB protocol, then the following
procedure shall be followed:

1) The superior DSA creates a new DSE of type subr, with the name of the new entry, and marks this new
DSE as being added. The superior DSA generates a unique bindingl D and stores it with the new DSE.

2) The superior DSA shall send an Establish Operational Binding operation to the subordinate DSA
containing the following parameters:

a) bindingType set to hierarchicalOperationalBindingl D ;

b) SuperiorToSubordinate establishment parameter with contextPrefixinfo and entrylnfo
components present; all other parameters are optional ;

¢) HierarchicalAgreement with the immediateSuperior component set to the distinguished name of
the immediate superior of the new entry and the rdn component set to the RDN of the new entry ;

d) thebindingl D, myAccessPoint and valid parameters, as appropriate.

3) If the subordinate DSA accepts the operation, it creates the required DSEs of types glue, subentry,
admPoint, rhob and immSupr, as appropriate, to represent the contextPr efixl nfo; a DSE of type cp and
entry or alias to represent the new context prefix object or alias entry; and, as appropriate, a DSE of type
rhob and entry to represent the immediateSuperiorInfo. It stores the bindingl D with the DSE of the
new context prefix entry and returns a Subor dinateT oSuperior parameter to the superior DSA.

If the subordinate DSA refuses the operation it returns an Operational Binding Error with the appropriate
problem value set.

If the naming context already exists and the bindingl D values for the existing and the new context are the
same, the subordinate DSA has already created the requested naming context, in which case the
subordinate DSA returns aresult to the superior. If the values are not equal, an Operational Binding Error
with problem invalidAgreement is sent; this means the superior DSA has a permanent knowledge
inconsistency that requires correction by an administrator.

4) If the superior DSA receives an error, it deletes the marked DSE of type subr and returns an error for the
Add Entry operation.

If the superior DSA receives a result, it removes the mark from the DSE that represents the subr and
returns aresult for the Add Entry operation.

If any failure occurs (e.g. communication or end system), the superior DSA shall repeat the steps starting
at step 2 until a result or error has been received for each pending establishment of a hierarchical
operational binding for which it is the initiator. If the establishment is as a result of an Add Entry
operation, and the requester aborts the operation (e.g. by releasing or aborting the application association)
before the establishment is complete, the superior DSA shall ignore this event and complete the
establishment (which may or may not be successful). In this case the user will not be informed of the
outcome of the Add Entry operation.

NOTES

1 Marking the subordinate aids recovery and concurrency control. Another user cannot add an entry that is
already marked, and the DSA repeats the establish operational binding for all marked subordinates after afailure.

2 With the above procedure, knowledge has only transient inconsistency. It is a local matter how the
superior DSA treats unrelated operations that read the subordinate reference while it is marked.

80 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

24.3.1.2 Establishment initiated by subordinate DSA

The subordinate DSA may initiate a hierarchical operational binding. This might result from the wish of an administrator
to connect a subtree of entries held in the DSA to a certain point in the global DIT. In this case, the subordinate DSA
shall establish a HOB according to the following procedure:

1

2)

3

4)

5)

The subordinate DSA either has a DSE of type cp as a part of an existing naming context or it creates a
new one. It marks the DSE being added, and generates a unique bindingl D and stores it with the context
prefix DSE.

The subordinate DSA sends an Establish Operational Binding operation to the superior DSA containing
the following parameters:

a) bindingType set to hierarchicalOperationalBindingI D;
b) SubordinateToSuperior establishment parameter, as appropriate ;

¢) HierarchicalAgreement with the immediateSuperior component set to the distinguished name of
the immediate superior of the new entry and the rdn component set to the RDN of the new entry ;

d) thebindingl D, myAccessPoint and valid parameters, as appropriate.

If the superior DSA refuses the operation it returns an Operational Binding Error with the
appropriate problem value set.

The superior DSA checks that it is master for the immediate superior of the new context prefix entry or
returns an Operational Binding Error with problem roleAssignment.

The superior DSA checks that the requested RDN for the new context prefix is not aready in use. If no
matching RDN is found using locally held information, but the immediately superior DSE is of type nssr,
the procedure in 15.7 is followed. If no matching RDN is discovered using this procedure, the superior
DSA creates a DSE of type subr, stores the bindingl D with it, and returns a result.

If a subordinate reference is found with this RDN, the two values of bindingl D are compared. If they are
equal, a result is returned. The Superior ToSubordinate parameter returned by the superior DSA shall
not contain the entry component. If the two values of bindingl D are not equal, an Operational Binding
Error with problem invalidAgreement is sent; this means the superior DSA has a permanent knowledge
inconsistency that requires correction by an administrator.

If a matching RDN is found by exploring an NSSR, an Operational Binding Error with problem
invalidAgreement is sent; this also means the superior DSA has a permanent knowledge inconsistency
that requires correction by an administrator.

If the subordinate DSA receives an error, it deletes the new context prefix DSE and its mark. It isalocal
matter to determine the fate of the entry information from which the context prefix DSE was derived.

If the subordinate DSA receives aresult, it adds the necessary DSEs of types glue, subentry, admPoint,
rhob and immSupr, as appropriate, to represent the contextPrefixl nfo; and, as appropriate, a DSE of
type rhob and entry to represent the immediateSuperiorInfo. The mark of the context prefix DSE is
removed.

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2 until aresult or error has been received for each pending establishment of a hierarchical
operational binding for which it isthe initiator.

24.3.2 Moadification procedure

The following procedures are defined for modification of a HOB which has been initiated by the procedure detailed

in24.3.1.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 81

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

24.3.2.1 Madification procedureinitiated by superior

This procedure may be invoked as a result of modification operations, as described in 19.1, or as a result of
administrative intervention (e.g. to convey changes to the myAccessPoint, agreement or valid parameters of the HOB).
Also if a superior DSA detects changes to the contextPrefixInfo or immediateSuperiorinfo components of the
Superior ToSubordinate value that it supplied to the subordinate DSA, it shall propagate the new information to the
subordinate DSA employing the following procedure:

1

2)

3

4)

5)

Mark the DSE of type subr as being modified, and if this modification is as a result of a modification to
the RDN of the subordinate context prefix entry, a new DSE of type subr is added and marked as being
added

The superior DSA produces a new bindingl D value from the existing value by incrementing its version
component. Using this new bindinglD, it sends a Modify Operational Binding operation to the
subordinate DSA with the modification parameter Superior ToSubor dinateM odification.

The subordinate DSA checks the identifier component of the bindingl D. If it has no such agreement with
the superior, or if the version component is less than the version of the HOB, it shall return an
Operational Binding Error with problem invalidAgr eement.

The subordinate DSA may accept the modification to the HOB, modify or rebuild the DSES representing
the context prefix information, update the version component of its bindinglD and return a result.
Alternatively, it may return an error and then terminate the agreement.

If the superior DSA receives a result, the modification is completed. If this modification is as aresult of a
modification to the RDN of the subordinate context prefix entry, the new DSE having type subr and
marked as being added has its mark removed, and the old DSE marked as being modified is deleted. If
not, the mark being modified is simply removed.

If the superior DSA receives an error, the modification has failed. The mark being modified is removed. If
this modification is as a result of a modification to the RDN of the subordinate context prefix entry, the
new DSE having type subr and marked as being added is removed. If not, the measures taken are outside
the scope of this Directory Specification.

If any failure occurs (e.g. communication or end system), the superior DSA shall repeat the steps starting
at step 2 until aresult or error has been received for each pending modify of a hierarchical operational
binding for which it is the initiator. If the modification is as a result of a ModifyDN operation modifying
the RDN of the subordinate context prefix entry, and the requester aborts the operation (e.g. by releasing
or aborting the application association) before the modification is complete, the superior DSA shall ignore
this event and complete the modification (which may or may not be successful). In this case the user will
not be informed of the outcome of the ModifyDN operation.

24.3.2.2 Modification procedureinitiated by subordinate

This procedure may be invoked as a result of administrative intervention (e.g. to convey changes to the myAccessPoint,
agreement or valid parameters of the HOB). Also if a subordinate DSA detects changes to the Subor dinateT oSuperior
value that it supplied to the superior DSA, it shall propagate the new information to the superior DSA employing the
following procedure:

1
2)

3)

4)

5)

Mark the DSE of type cp as being modified.

The subordinate DSA produces a new bindinglD value from the existing value by incrementing its
version component. Using this new bindingl D, it sends an Modify Operational Binding operation to the
superior DSA with the modification parameter Subor dinateT oSuperior.

The superior DSA checks the identifier component of the bindingl D. If it has no such agreement with
the subordinate, or if the version component is less than the version of the HOB, it shall return an
Operationa Binding Error with problem invalidAgreement.

The superior DSA may accept the modification to the HOB, modify the DSE representing the subordinate
reference and return aresult. Alternatively, it may return an error and then terminate the agreement.

In addition, if the superior DSE of the DSE (of type subr) to be renamed is of type nssr, the DSA shall
follow the procedure defined in 19.1.5 (Modify Operations and NSSRs) to ensure that the new name of
the entry is unambiguous, before responding to the HOB modification request.

If the subordinate DSA receives a result, the modification is completed and it removes the mark. If it
receives an error, the measures taken are outside the scope of this Directory Specification.

If any failure occurs (e.g. communication or end system), the subordinate DSA shall repeat the steps
starting at step 2 until a result or error has been received for each pending modify of a hierarchical
operational binding for which it isthe initiator.

82 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

24.3.3 Termination procedure

The following procedures are defined for termination of a HOB which has been initiated by the procedure detailed
in24.3.1.

24.3.3.1 Termination initiated by superior DSA

The termination of a hierarchical operational binding is initiated by the superior DSA only as a result of administrative
intervention. The following procedure shall be followed:

1) The superior DSA marks the DSE representing the subordinate reference being deleted, so that the
subordinate reference is no longer used during Name Resol ution.

2) The superior DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the subordinate DSA. The version component of the bindingl D is omitted by the superior.

3) When the subordinate DSA receives the Terminate Operational Binding, it deletes any information about
the hierarchical operational binding and sends a result, unless the identifier component of the bindingl D
is unknown, in which case an Operational Binding Error with problem invalidl D, is returned. It isalocal
matter to determine the fate of any entry information associated with the subordinate naming context.

4) If the superior DSA receives a result or an Operational Binding Error with problem invalidi D, it shall
delete the DSE marked being deleted that represents the subordinate reference associated with the
hierarchical operational binding and deletes any information about the operational binding.

If any failure occurs (e.g. communication of end system), the superior DSA shall repeat the steps starting
at step 2 until aresult or error has been received for each pending termination of a hierarchical operational
binding for which it is the initiator.

24.3.3.2 Termination initiated by subordinate DSA

Termination initiated by the subordinate DSA can be caused by a Remove Entry operation that removes the last entry
within the subordinate naming context, the context prefix entry, or as a result of administrative intervention. The
following procedure shall be followed:

1) The subordinate DSA marks the context prefix DSE of the naming context being deleted.

2) The subordinate DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the superior DSA. The version component of the bindingl D is omitted by the subordinate.

3) When the superior DSA receives the Terminate Operational Binding, it deletes the DSE that represents
the subordinate reference associated with the hierarchical operational binding, deletes any information
about the operational binding and sends a result., unless the identifier component of the bindingID is
unknown, in which case an Operational Binding Error with problem invalidl D, is returned.

4) If the subordinate DSA receives aresult or an Operational Binding Error with problem invalidI D, it shall
delete any information about the operational binding.

NOTE - The fate of the entry information of naming context is a matter local to the subordinate DSA. Since
renaming (i.e. moving) a naming context is not allowed by the ModifyDN operation, an administrator might, for
example, terminate the HOB, select another context prefix for the naming context and reconnect it to another part of
the DIT (i.e. establish a new HOB).

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2 until a result or error has been received for each pending termination of a hierarchical
operational binding for which it isthe initiator.

24.4 Proceduresfor operations

The operations that can be executed in the cooperative state of a hierarchical operational binding are those defined
within the dir ectorySystemAC application context.

The procedures that the DSA involved in a hierarchical operational binding shall follow are defined in clauses 16 to 22.

24.5 Use of application contexts

To establish, modify or terminate a hierarchical operational binding using the protocol and procedures of this Directory
Standard, a DSA shall use the oper ationalBindingM anagementAC application context.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 83

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

25 Non-specific hierarchical operational binding

A non-specific hierarchical operational binding is used to represent the relationship between two DSA holding two
naming contexts, one immediately subordinate to the other. In the case of a NHOB, the superior DSA holds a
non-specific subordinate reference to the naming context held by the subordinate DSA; the subordinate DSA holds an
immediate superior reference to the naming context held by the superior DSA. The operational binding ensures that the
appropriate knowledge information is exchanged and maintained between the two DSASs so that both DSAs are able to
behave during the process of name resolution and operation evaluation as defined in clauses 18 and 19.

251 Operational binding type characteristics

2511 Symmetry and roles

The hierarchical operational binding type is an asymmetrical type of operational binding. The two roles in a binding of
thistype are:

a) therole of the master DSA for the superior naming context, the superior DSA (associated with abstract
role “A”; and

b) the role of the master DSA for the subordinate naming contexsubmedinate DSA (associated with
abstract role “B”).

25.1.2 Agreement

The agreement information exchanged during the establishment of the non-specific hierarchical operational binding a
value ofNonSpecificHierarchicalAgreement, contains only the distinguished name of the entry immediately superior

to the new naming context (themediateSuperior component). This information shall be provided by the DSA that
initiates the NHOB.

NonSpecificHierar chical Agreement = SEQUENCE {
immediateSuperior [1] DistinguishedName}

NOTE — How the subordinate DSA determines that the name of the new naming context is unambiguous is outside the
scope of this Recommendation | International Standard. The name will be unambiguous if correctly assigned by the relgvant namin
authority and if no other DSA holds the same name as a master entry.

25.1.3 Initiator

25.1.3.1 Establishment

The establishment of a non-specific hierarchical operational binding can be initiated only by the subordinate DSA role.
Initiation by the subordinate DSA (which connects one or more locally existing entries or subtrees to the global DIT) is
caused by administrative intervention.

25.1.3.2 Moadification

The modification of a non-specific hierarchical operational binding can be initiated by either role. The superior DSA
may issue the modification as a result of a modification of the superior context prefix information. This can be as a result
of any of the modification operations, or by administrator intervention.

Either DSA may also modify the NHOB if the access point information for its naming context (or one of itsimmediately
subordinate naming contexts in the case of the subordinate role) changes.

25.1.3.3 Termination

The termination of a hierarchical operational binding can be initiated by either role. Initiation by the superior DSA can
be caused by administrative intervention. Initiation by the subordinate DSA can be caused either by a Remove Entry
operation that removes the final context prefix entry held by the subordinate immediately subordinate to the
immediateSuperior component of the agreement or by administrative intervention.

25.1.4 Establishment parameters

The establishment parameter issued by the superior DSA, a value of NHOBSuperior ToSubordinate,is equivalent to the
corresponding HOB establishment parameter, except that the entrylnfo component is absent.

NHOBSuperior ToSubordinate = Superior ToSubordinate (
WITH COMPONENTS{ ..., entrylnfo ABSENT?})

84 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

The establishment parameter issued by the subordinate DSA, a value of NHOBSubordinateT oSuperior ,is equivaent to
the corresponding HOB establishment parameter, except that the alias and entryl nfo components are absent.

NHOBSubordinateT oSuperior = SubordinateToSuperior (
WITH COMPONENTS({ ..., aliasABSENT, entrylnfo ABSENT})

25.1.5 Moadification parameters

These parameters are identical to the corresponding establishment parameters and are used to signal changes occurring to
information provided in the establishment parameters subsequent to the establishment of the NHOB.

If any component of NHOBSuperior ToSubordinate or NHOBSubordinateToSuperior experiences a change
(e.0. the contextPrefixInfo component of NHOBSuperior ToSubordinate), the corresponding component of the
modification parameter (e.g. the contextPrefixlnfo component of NHOBSuperior ToSubordinate) shall be provided
inits entirety in the Modify Operational Binding.

25.1.6 Termination parameters

Neither role provides a termination parameter when terminating a NHOB.

25.1.7 Typeidentification

The non-specific hierarchical operational binding is identified by the object identifier assigned when defining the
nonSpecificHier ar chicalOperationalBinding OPERATIONAL -BINDING information object in 25.2.

25.2 Operational binding information object class definition

This subclause defines the non-specific hierarchical operational binding type using the OPERATIONAL-BINDING
information object class template defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

nonSpecificHier ar chicalOper ationalBinding OPERATIONAL-BINDING n= {
AGREEMENT NonSpecificHierar chical Agreement
APPLICATION CONTEXTS{
{ directorySystemAC }}

ASYMMETRIC
ROLE-A { -- superior DSA
ESTABLISHMENT-PARAMETER NHOBSuperior ToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSuperior ToSubordinate
TERMINATION-INITIATOR TRUE }
ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER NHOBSubordinateT oSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSubordinateT oSuperior
TERMINATION-INITIATOR TRUE}
ID id-op-binding-non-specific-hierarchical }

25.3 DSA proceduresfor non-specific hierarchical operational binding management

In the following procedures, as in the procedures described in 24.3, a new DSE or a mark created by a DSA shall be
stored in stable storage.

In both the establishment and modification procedure described below, the DSA playing the responding role (i.e. not
initiating the establishment or modification) may provide the DSA playing the initiating role with information
(e.g. operational attributes) that are not acceptable for one reason or another. The initiating DSA may terminate the
operational binding in such cases.

25.3.1 Establishment procedure

Only the subordinate DSA may initiate a hierarchical operational binding. This might result from the wish of an
administrator to connect one or more subtrees of entries held in the DSA to a certain point in the global DIT. In this case,
the subordinate DSA shall establish a NHOB according to the following procedure:

1) The subordinate DSA either has a DSE of type cp as a part of an existing naming context or it creates a
new one. It marks the DSE being added, and generates a unique bindingl D and stores it with the context
prefix DSE.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 85

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

2) The subordinate DSA sends an Establish Operational Binding operation to the superior DSA containing
the following parameters:

a) bindingType set to nonSpecificHierarchicalOperational BindingI D ;
b) NHOBSubordinateToSuperior establishment parameter, as appropriate ;

c¢) NonSpecificHierarchicalAgreement with the immediateSuperior component set to the
distinguished name of the immediate superior of the new entry ;

d) thebindingl D, myAccessPoint and valid parameters, as appropriate.

3) The superior DSA checks that it is master for the immediate superior of the new context prefix entry or
returns an Operational Binding Error with problem roleAssignment.

4) The superior DSA adds the DSE type nssr (and nonSpecificK nowledge attribute information) to the DSE
of the immediate superior of the new entry, stores the bindingl D with it, and returns aresult.

5) If the subordinate DSA receives an error, it deletes the new context prefix DSE and its mark. It is alocal
matter to determine the fate of the entry information from which the context prefix DSE was derived.

If the subordinate DSA receives aresult, it adds the necessary DSEs of types glue, subentry, admPoint,
rhob and immSupr, as appropriate, to represent the contextPrefixI nfo; and, as appropriate, a DSE of
type rhob and entry to represent the immediateSuperiorInfo. The mark of the context prefix DSE is
removed.

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2 until aresult or error has been received for each pending establishment of a hierarchical
operational binding for which it isthe initiator.

25.3.2 Moadification procedure

If the superior DSA detects any changes in the NHOBSuperior ToSubordinate information that it supplied to a
subordinate DSA within a non-specific hierarchical operational binding, it shall propagate the changed information to
the subordinate DSA. If the NHOB was established using the procedures of 25.3.1, then it shall be modified according to
the procedures defined for modifying the hierarchical operational binding in 24321 (with
NHOBSuperior ToSubor dinate substituted for Superior ToSubor dinateM odification).

Similarly, if the subordinate DSA detects any changes in the NHOBSubordinateT oSuperior information that it
supplied to a superior DSA, it shall propagate the changes to the superior DSA. If the NHOB was established using the
procedures of 25.3.1, then if shall be modified according to the procedures defined for modifying the hierarchical
operational binding in 24.3.2.2 (with NHOBSubordinateT oSuperior substituted for Subor dinateT oSuperior).

25.3.3 Termination procedure

The following procedures are defined for termination of a NHOB which was established using the procedures of 25.3.1.

25.3.3.1 Termination initiated by superior DSA

The termination of a hierarchical operational binding is initiated by the superior DSA only as a result of administrative
intervention. The following procedure shall be followed:

1) The superior DSA marks the value corresponding to the subordinate DSA in the nonSpecificK nowledge
attribute held in the DSE of the immediately superior entry, as being deleted.

2) The superior DSA sends a Terminate Operational Binding operation for the NHOB with the subordinate
DSA. The version component of the bindingl D is omitted by the superior.

3) When the subordinate DSA receives the Terminate Operational Binding, it deletes any information about
the NHOB and sends a result, unless the identifier component of the bindingl D is unknown, in which
case an Operational Binding Error with problem invalidI D, is returned. It is a local matter to determine
the fate of any entry information associated with the subordinate naming context.

4) If the superior DSA receives a result or an Operational Binding Error with problem invalidi D, it shall
delete the value of the nonSpecificK nowledge attribute marked being deleted that represents the access
point information associated with the NHOB and deletes any information about the operational binding. If
this was the last value of the nonSpecificK nowledge attribute, it removes the nonSpecificKk nowledge
attribute and the DSE type nssr from the DSE.

If any failure occurs (e.g. communication of end system), the superior DSA shall repeat the steps starting
at step 2 until aresult or error has been received for each pending termination of a NHOB for which it is
the initiator.

86 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

25.3.3.2 Termination initiated by subordinate DSA

Termination initiated by the subordinate DSA can be caused by a Remove Entry operation that removes the last entry
within the subordinate naming context, the context prefix entry, of the last subordinate naming context held by the
subordinate DSA, or as aresult of administrative intervention. The following procedure shall be followed:

1) The subordinate DSA marks the context prefix DSE of the naming context being del eted.

2) The subordinate DSA sends a Terminate Operational Binding operation for the hierarchical operational
binding to the superior DSA. The version component of the bindingl D is omitted by the subordinate.

3) When the superior DSA receives the Terminate Operational Binding, it deletes the value of the
nonSpecificK nowledge attribute that represents the access point information associated with the NHOB,
deletes any information about the operational binding, removes the nonSpecificK nowledge attribute and
the DSE type nssr from the DSE immediately superior to the subordinate naming context (if the deleted
value was the last value of the nonSpecificK nowledge attribute) and sends a result., unless the identifier
component of the bindinglD is unknown, in which case an Operational Binding Error with problem
invalidl D, is returned.

4) If the subordinate DSA receives aresult or an Operational Binding Error with problem invalidl D, it shall
delete any information about the operational binding. It is alocal matter to determine the fate of any entry
information associated with the subordinate naming context.

If any failure occurs (e.g. communication of end system), the subordinate DSA shall repeat the steps
starting at step 2 until a result or error has been received for each pending termination of a NHOB for
which it istheinitiator.

254 Proceduresfor operations

The operations that can be executed in the cooperative state of a non-specific hierarchical operational binding are those
defined within the dir ectorySystemAC application context.

The procedures that the DSA involved in a non-specific hierarchical operational binding shall follow are defined in
clauses 16 through 22.
25.5 Use of application contexts

To establish, modify or terminate a non-specific hierarchical operational binding using the protocol and procedures of
this Directory Standard, a DSA shall use the oper ationalBindingM anagementAC application context.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 87

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)
Annex A

ASN.1for Distributed Operations
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex includes al of the ASN.1 type, value and macro definitions contained in this Directory Specification in the
form of the ASN.1 module DistributedOperations.

DistributedOperations {joint-iso-ccitt ds(5) module(1) distributedOperations(3) 2}
DEFINITIONS::=
BEGIN

-- EXPORTSAII --

-- The types and values defined in this module are exported for usein the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but thiswill not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
informationFramework, directoryAbstractService, distributedOper ations,
selectedAttributeTypes, directoryOperational BindingTypes, basicAccessControl, dap
FROM UsefulDefinitions {j oint-iso-ccitt ds(5) module(1) useful Definitions(0) 2}

DistinguishedName, Name, RDNSequence
FROM InformationFramework infor mationFramewor k

PresentationAddress, Protocoll nfor mation, Uniquel dentifier
FROM SelectedAttributeTypes selectedAttributeTypes

AuthenticationL evel
FROM BasicAccessControl basicAccessControl

OPERATION, ERROR
FROM Remote-Operations-Infor mation-Objects
{joint-iso-ccitt remote-oper ations(4) infor mationObj ects(5) version1(0) }

directoryBind, directoryUnbind, read, compar e, abandon, list, search, addEntry, removeEntry,
modifyEntry, modifyDN, referral, OPTIONALLY-SIGNED {}, SecurityParameters
FROM DirectoryAbstractService directoryAbstractService

id-errcode-dsaReferral
FROM DirectoryAccessProtocol dap

id-op-binding-hierar chical, id-op-binding-non-specific-hierar chical
FROM DirectoryOperationalBindingTypes directoryOperationalBindingTypes

-- parameterized type for deriving chained operations --

chained { OPERATION : operation } OPERATION ::= {
ARGUMENT OPTIONALLY-SIGNED { SET {
chainedArgument ChainingArguments,
argument [Q] operation.& ArgumentType }}
RESULT OPTIONALLY-SIGNED { SET {
chainedResult ChainingResults,
result [Q] operation.& ResultType}}

ERRORS { operation.& ErrorsEXCEPT (referral | dsaReferral) }
CODE operation.& operationCode }

-- bind and unbind operations --

dSABind OPERATION = directoryBind
dSAUnbind OPERATION = directoryUnbind

-- chained operations --

chainedRead OPERATION = chained { read }
chainedCompare OPERATION = chained { compare}

88 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

chainedAbandon OPERATION = abandon

chainedList OPERATION ::= chained { list }

chainedSear ch OPERATION = chained { search }
chainedAddEntry OPERATION = chained { addEntry }
chainedRemoveEntry OPERATION = chained { removeEntry }
chainedM odifyEntry OPERATION = chained { modifyEntry }
chainedM odifyDN OPERATION = chained { modifyDN }

-- errors and parameters --

dsaReferral ERROR
PARAMETER SET {
reference
contextPrefix [1]
CODE

n= {

[Q] ContinuationRefer ence,
DistinguishedName OPTIONAL }

id-errcode-dsaReferral }

-- common arguments and results --

ChainingArguments =
originator
targetObject
oper ationPr ogr ess

tracel nformation
aliasDer eferenced
aliasedRDNs [5]

returnCrossRefs
referenceType

info

timeLimit
securityParameters
entryOnly

uniquel dentifier
authenticationL evel
exclusions
excludeShadows
nameResolveOnM aster

ChainingResults =
info
crossReferences
securityParameters
alreadySear ched

CrossReference =
contextPrefix [Q]
accessPoint

ReferenceType =
superior
subordinate 2),
Cross 3,
nonSpecificSubordinate
supplier
master
immediateSuperior
self

Tracel nformation

Traceltem
dsa
targetObject
oper ationPr ogr ess

SET {
[Q] DistinguishedName OPTIONAL,
[1] DistinguishedName OPTIONAL,
[2] OperationProgress
DEFAULT { nameResolutionPhase notStarted },
[3] Tracel nformation,
[4] BOOLEAN DEFAULT FALSE,

INTEGER OPTIONAL,
-- absent unless aliasDer eferenced is TRUE

[6] BOOLEAN DEFAULT FALSE,,

[7] ReferenceType DEFAULT superior,
[8] Domainlnfo OPTIONAL,

[9] UTCTime OPTIONAL,

[10] SecurityParametersDEFAULT { },
[11] BOOLEAN DEFAULT FALSE,
[12] Uniquel dentifier OPTIONAL,

[13] AuthenticationLevel OPTIONAL,
[14] Exclusions OPTIONAL,

[15] BOOLEAN DEFAULT FALSE,
[16] BOOLEAN DEFAULT FALSE}

SET {

[Q] Domainlnfo OPTIONAL,

[1] SEQUENCE OF CrossReference OPTIONAL,
[2] SecurityParametersDEFAULT { },
[3] Exclusions OPTIONAL }

SET{

DistinguishedName,

[1] AccessPointInformation }
ENUMERATED {

D,

(4,

©F

(6),

(),

®}

n= SEQUENCE OF Traceltem

= SET {

[Q] Name,

[1] Name OPTIONAL,

[2] OperationProgress}

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 89

Super seded by a morerecent version

OperationProgr ess =
nameResolutionPhase
notStarted 2,
proceeding 2),
completed 31,
nextRDNToBeResolved

Domainlnfo

ContinuationRefer ence =
targetObject
aliasedRDNs [1]
oper ationPr ogr ess
rdnsResolved
referenceType
accessPoints [5]
entryOnly
exclusions
returnToDUA [8]
nameResolveOnM aster

AccessPoint =
ae-title
address
protocoll nformation [2]

AccessPointl nfor mation
COMPONENTSOF
additionalPoints

M aster Or ShadowA ccessPoint
COMPONENTSOF
category

master
shadow

M aster AndShadowA ccessPoints
Exclusions

END

| SO/IEC 9594-4 : 1995 (E)

SET {

[0] ENUMERATED {

[1] INTEGER OPTIONAL }

n= ABSTRACT-SYNTAX.& Type
SET {

[Q] Name,

INTEGER OPTIONAL,

[2] OperationProgr ess,

[3] INTEGER OPTIONAL,

[4] ReferenceType,

SET OF AccessPointl nformation,

[6] BOOLEAN DEFAULT FALSE,
[7 Exclusions OPTIONAL,
BOOLEAN DEFAULT FALSE,

[9] BOOLEAN DEFAULT FALSE}
SET {

[O] Name,

[1] PresentationAddr ess,

SET OF Protocoll nformation OPTIONAL }

= SET {
M aster Or ShadowA ccessPoint ,
[4] SET OF Master Or ShadowA ccessPoint OPTIONAL }
= SET {
AccessPoint,
[3] ENUMERATED {

(0),
(1) } DEFAULT master }

= SET OF Master Or ShadowA ccessPoint
= SET OF RDNSequence

90 ITU-T Rec. X.518 (1993 E)

Super seded by a morerecent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)
Annex B

Example of distributed name resolution

(This annex does not form an integral part of this Recommendation | International Standard)

Figure B.1 is an example of how distributed name resolution is used to process different directory requests. The example
is based on the hypothetical DIT and the corresponding DSA configuration (s) described in Annex M (Modeling of
Knowledge) of ITU-T Rec. X.501 | ISO/IEC 9594-2, and reproduced here for convenience.

Context D

Context C

Autonomous
Administrative
Area BB

Context E

TISO3890-94/d32

Autonomous
Administrative
Area AA

DSA 1 DSA 2 DSA 3

FigureB.1 — Hypothetical DIT Mapped onto three DSAs

Assuming a chaining mode of propagating, the following requests addressed to DSA 1 would be processed as follows:
1) A request with distinguished name {C =WW, O=ABC,0OU =G, CN =1}

— Name resolution will successfully match each RDN in the target name with DSEs held by DSA 1,
until the target DSE is located.

2) Arequest with distinguished name {C = WW, O = JPR}
— The Name Resolution procedure in DSA 1 will match the DSE C = WW, and will be unable to match
further. At this point, DSA 1 finds potentially two references to help it proceed: oneiranifgupr

reference in DSE C = WW, and the other issher reference in the root DSE. In this hypothetical
example, both would be pointing to DSA 2. Therefore the request is chained to DSA 2.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 91

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

In DSA 2, the Name Resolution procedure will match the DSE C = WW, and will be unable to match
further. In this case, since the DSE C = WW ¢andentry, and DSA 2 is the master DSA for this
entry, and further there are no nssr at C = WW, DSA 2 is therefore able to determine that there is no
such name in the directory. An name error noSuchObiject is returned.

3) Arequest with distinguished name {C = VV, O = DEF, OU = K}

— The Name Resolution procedure in DSA 1 will match not be able to match any DSE. The only
reference available is tteaipr reference in the root DSE, which points to DSA 2. So the request is
chained to DSA 2.

— In DSA 2, the Name Resolution procedure will match the DSE C = VV, and then DSE O = DEF, and
will be unable to match further. Since DSE O = DEF is found to be of d&ype the specific
knowledge reference, which points to DSA 3, is used, and the request is chained to DSA 3.

— In DSA 3, the Name Resolution procedure will match the entire target object name, and find that the
located DSE is of typalias. Assuming aliases are to be dereferenced in this case, a new name will
be constructed using thaiasedEntryName contained in the matched DSE. DSA 3 will then
re-enter the Name Resolution procedure to continue.

92 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)
Annex C

Distributed use of authentication

(This annex does not form an integral part of this Recommendation | International Standard)

C1l Summary

The security model is defined in clause 10 of ITU-T Rec. X.501 | ISO/IEC 9594-2. The following is a summary of the
main points of the model:

a) Simple Authentication of the operation initiator is not supported in the DSP;
b) Strong Authentication, by the signing of the request and of the result, is supported in the DSP;
¢) Encryption of the request, or of the result, is not supported in the DSP;

d) Authentication of errors, including referrals, is not supported in the DSP.

This annex describes how item b) above is realize in the distributed Directory. It makes use of terminology and notation
defined in ITU-T Rec. X.509 | ISO/IEC 9594-8.

C.2 Simple authentication

The DUA will be authenticated as part of the Bind Operation of the DAP. Thereafter, only the name of the DUA will be
carried in the DSP, in the originator field of the Chaining Argument.

C.3 Distributed authentication model

Figure C.1 illustrates the model to be used to specify the distributed authentication procedures. The model identifies the
sequence of information flows for the general case of a list or search operation. The operation is considered as
originating from DUA ‘a’, citing a target object which resides in DSA ‘c’ in performing the operation, DSAs ‘b’, ‘c’, ‘d’
and ‘e’ are to be involved.

DUA ‘a’ initially contacts any DSA (DSA ‘b’) which does not hold the target object, but which is able to navigate, via
chaining, to the DSA (DSA ‘c’) holding the target object. If all the DSAs were operating in referral mode, then the
model would be significantly simplified, and each DUA/DSA exchange would equate, in authentication terms, to the

interaction between DUA ‘a’ and DSA ‘b’.
(%)
GHONGF
® ©, ®
@
@ @ @ Operation Requests
@ @ @ Operation Results TISO3900-94/d33

Figure C.1 — Distributed Authentication Model

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 93

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

C4 DUA to DSA

Originator authentication is realized as a conseguence of exchange (1) in Figure C.1; the authentication procedure is as
follows:

let

OA = the Operation Argument, i.e. Search, Read, Compare, etc. Argument as defined in ITU-T Rec. X.511 |
ISO/IEC 9594-3.

and

a{OA} = the Operation Argument signed by DUA ‘a’.

Authentication will be determined by verification of the signature.

C5 Transference from the DAP tothe DSP

This procedure is effected by DSA ‘b’ in Figure C.1, and represents the transference of the signed identity of the initiator
from the DAP to the DSP.

DSA ‘b’ formulates the appropriate Chaining Argument as described in 12.3 of this Directory Specification and
combines it with the Operation Argument from the DAP thus forming a Chained Operation, i.e. Chained Read, Search,
List, etc. of the DSP. The Chained Operation so formed will be signed prior to passing it to other DSAs (DSA ‘c’ in
Figure C.1). The data structure can be represented as:

b{ChA,a{OA}} = the Chained Operation signed by DSA ‘b’
where

ChA = Chaining Argument

Authentication information carried in the DSP between two DSAs (labeled exchange j in Figure C.1) therefore
comprises two parts:

a) the Operation argument, signed by the initiator, which allows authentication of the initiator;
b) the Chained Operation, signed by the sending DSA, which allows authentication of the sending DSA.

C.6 Chaining through intermediate DSAs

This procedure would be effected by DSA ‘c’ in the model depicted in Figure C.1. DSA ‘c’ will discard the signature
provided by the sending DSA (DSA ‘b’ in Figure C.1), and will modify the Chaining Argument, as described in 10.3.
DSA ‘¢’ shall then combine the modified Chaining Argument with the signed Operation Argument, and sign the result to
create a modified signed Chained Operation. This can be represented by:

c{ChA’, a{OA}} = the Chained Operation signed by DSA ‘¢’
where

ChA’ = modified Chaining Argument

The modified Chained Operation is represented in Figure C.1 by exchange -. Depending upon the nature of the
operation, and upon the type of knowledge held, DSA ‘c’ may perform request decomposition prior to chaining any
resultant operation(s). This has been represented in Figure C.1 by DSA ‘c’ sending operations to DSA ‘d’ and DSA ‘e’;
in each case the authentication procedure is identical.

C.7 Results authentication

The results authentication service is requested by an initiator of a directory operation usigigetheption within the
protectionRequest Security Parameter. In providing a response to such a request a DSA may optionally decide
whether or not to sign any or all of the result: the results authentication service does not provide for the authentication of
error responses.

Within the context of a particular DSA processing results from an arbitrary number of DSAs (each of which are
associated with a particular service request) the following distinct cases are possible:

a) the DSA provides a complete set of results for an operation without the need to perform any collating
function (represented by DSA ‘d’ and DSA ‘e’ in Figure C.1);

b) the DSA collates local results (sourced by this DSA) with the results from one or more other DSAs
(represented by DSA ‘c’ in Figure C.1);

94 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

c) theDSA chainsaresult from a DSA to either another DSA or aDUA and does not contribute to the result
set as it does so (represented by DSA ‘b’ in Figure C.1);

c71 DSA results — No collation

This subclause addresses the role of a DSA in being the sole source of results to a particular operation request, i.e. the
DSA has no collation function to perform. The subclause considers the case for both the DSP and the DAP.

C.7.1.1 DSP

The DSA can choose to perform one of the following procedures:

a) return the results unsigned, this can be represented by:
ChR,OR = Chained Operation Result (unsigned)
where
ChR = Chaining Results
OR = Operation Results

b) sign only the Operation Result, this can be represented by:
ChR, d{OR} = Operation Results signed by DSA ‘d’

c) sign only the Chained Operation Result, which can be represented as:
d{ChR, OR} = Chained Operation Result signed by DSA ‘d’

d) sign both the Operation Result and the Chained Operation Result, which can be represented by:

d{ChR, d{OR}} = Operation Result and Chained Operation Result signed by DSA ‘d’.

NOTE - For the case where the operation result is signed, the signed result will be carried back by the initiator;
for the case where the Chained operation result has been signed, the receiving DSA will have to discard the signature
in order to modify the chaining results argument prior to forwarding the Chained Operation Result.

C.7.1.2 DAP
Thisisfully described in ITU-T Rec. X.511 | ISO/IEC 9594-3; a summary is reproduced here for completeness.

The DSA can choose to either return the results unsigned, which can be represented by:
OR = Operation Result
or, signed, which can be represented by:
d{OR} = Operation Result signed by DSA ‘d'.

C.7.2 DSA results — Collation included

This subclause addresses the role of a DSA in returning the result of particular service request where collation and
integration of results from other DSAsis a necessary prerequisite. Thisis considered for both the DSP and the DAP.

C.7.21 DSP

Recognizing the zero or more results received from other DSAs may be signed, this procedure enables a DSA to collate
and integrate the results and sign zero or more constituent parts of the composite result and optionally, sign the
composite result as awhole.

C.7.2.1.1 Production of the chaining results argument

This procedure requires that a DSA (represented by DSA ‘¢’ in Figure C.1) remove all of the Chained Operation Result
signatures from the results received from external DSAs (DSA ‘d’ and DSA ‘e’ in Figure C.1). DSA ‘c’ then possesses a
set of unsigned Chaining results, a set of signed Operation Results, and a set of unsigned Operation Results.

All the Chaining Results are manipulated as described in this Directory Specification, to create a single modified
Chaining Result, denoted by:

i) ChR’ = modified Chaining Results.
C.7.2.1.2 Unsigned locally derived result

If the DSA does not wish to sign the locally generated results, the set of unsigned Operation Results are merged with the
local result to form a modified set of Operation Results, denoted by:

OR’ = Merged Operation Result.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 95

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

The complete set of Operation Resultsis then the union of the set of externally signed Operation Results denoted by:
d{OR}, {ORY} ...
and the Merged Operation Result, collectively denoted by:
ii) OR’, d{OR}, e{OR} ... = Operation Result.

C.7.2.1.3 Signed locally derived result

If the DSA does wish to sign the locally generated result, then the externally generated set of unsigned Operation Results
are first merged together. The complete set of Operation Results is then the union of the locally signed set of Operation
Results denoted by, OR”, and the set of externally signed Operation Results denoted by:

d{OR}, e{ORY},, which are collectively denoted as:
iii) c{OR}, OR”, d{OR}, e{ORY}, = Operation Result

C.7.2.1.4 Unsigned chained operation result

If the DSA does not wish to sign the Chained Operation Result, then the latter will comprise the Chaining Results
[identified in i) above] added to the Operation Result identified in either ii) or iii) above, collectively, these are denoted

by:

either:

ChR’, OR’, d{OR}, e{ORY}, = Chained Operation Result (unsigned)

or

ChR’, c{OR}, OR”, d{OR}, e{OR}, ... = Chained Operation Result (unsigned) and Operation Result signed

by DSA ‘c'.
C.7.2.1.5 Signed chained operation result

If the DSA does wish to sign the Chained Operation Result, then the result will comprise the Chaining Results
(identified in (i) above) added to the Operation Result (identified in either (i) or (iii) above), collectively denoted as:

either:
c¢{ChR’, OR’, d{OR}, e{OR}, ...} = Chained Operation Result sighed by DSA ‘c’

or
c¢{ChR’, c{OR}, OR:, d{OR}, e{ORY},} = Chained Operation Result and Operation Result signed by
DSA ‘c.
C.7.22 DAP

The procedure is very similar to that described in C.7.2.1, with the exception that the Chaining Results argument is not
passed in the DAP.

Cc.73 DSA chained results

This subclause addresses the procedures to be effected by a DSA in chaining an operation result back to the requester
DSA or DUA, within the DSP and DAP respectively.

C.731 DSP

The DSA initially removes the signature (if one exists) from the Chained Operation Result. It then manipulates the
Chaining Results argument as described in this Directory Specification, to produce a modified Chaining Results
argument. The latter is then merged back with the Operation Result argument to produce a modified Chained Operation
Result. Finally, the DSA may optionally sign the Chained Operation Result before passing it to the next DSA in the
chain.

C.7.3.2 DAP

A DSA (represented by DSA ‘b’ in Figure C.1) first removes the signature (if one exists) from the Chained Operation
Result. It then analyses and discards the Chaining Results argument and, finally, it optionally signs the remaining
Operation Result argument before passing the result to the DUA.

96 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)
Annex D

Specification of hierarchical and non-specific hierar chical operational binding types
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex includes the definitions of the ASN.1 information object classes introduced in this Directory Specification in
the form of the ASN.1 module Hier ar chical Oper ationalBindings.

Hierar chicalOper ationalBindings

{joint-iso-ccitt ds(5) module(1) hierar chical Operational Bindings(20) 2}
DEFINITIONS::=
BEGIN

-- EXPORTSAII --

-- The types and values defined in this module are exported for usein the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but thiswill not constrain
-- extensions and modifications needed to maintain or improve the Directory service.

IMPORTS
informationFramework, distributedOper ations, directoryOper ational BindingTypes,
opBindingM anagement, dsp
FROM Useful Definitions {j oint-iso-ccitt ds(5) module(1) useful Definitions(0) 2}

Attribute, RelativeDistinguishedName, DistinguishedName
FROM InformationFramework infor mationFramework

M aster AndShadowA ccessPoints
FROM DistributedOperations distributedOper ations

directorySystemAC
FROM DirectorySystemProtocol dsp

OPERATIONAL-BINDING
FROM Oper ational BindingM anagement opBindingM anagement

id-op-binding-hierar chical, id-op-binding-non-specific-hierar chical
FROM DirectoryOper ational BindingTypes director yOper ationalBindingTypes ;

- types -
HierarchicalAgreement = SEQUENCE {
rdn [Q] RelativeDistinguishedName,
immediateSuperior [1] DistinguishedName}
NonSpecificHierar chical Agr eement = SEQUENCE {
immediateSuperior [1] DistinguishedName}
Superior ToSubordinate = SEQUENCE {
contextPrefixinfo [Q] DITcontext,
entrylnfo [1] SET OF Attribute OPTIONAL,
immediateSuperior I nfo [2] SET OF Attribute OPTIONAL }
DITcontext = SEQUENCE OF Vertex
Vertex = SEQUENCE {
rdn [Q] RelativeDistinguishedName,
admPointInfo [1] SET OF Attribute OPTIONAL,
subentries [2] SET OF Subentrylnfo OPTIONAL,
accessPoints [3] M aster AndShadowA ccessPoints OPTIONAL }
Subentrylnfo = SEQUENCE {
rdn [0] RelativeDistinguishedName,
info [1] SET OF Attribute}
SubordinateToSuperior = SEQUENCE {
accessPoints [Q] M aster AndShadowA ccessPoints OPTIONAL,
alias [1] BOOLEAN DEFAULT FALSE,
entrylnfo [2] SET OF Attribute OPTIONAL }

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 97

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

Superior ToSubordinateM odification = Superior ToSubordinate (

WITH COMPONENTS({ ..., entrylnfo ABSENT})

NHOBSuperior ToSubordinate = Superior ToSubordinate (
WITH COMPONENTS{ ..., entrylnfo ABSENT })

NHOBSubor dinateT oSuperior = SubordinateT oSuperior (
WITH COMPONENTS{ ..., aliasABSENT, entrylnfo ABSENT })

-- operational binding information objects--

hier ar chicalOper ationalBinding OPERATIONAL-BINDING =
AGREEMENT Hierarchical Agreement
APPLICATION CONTEXTS{
{ directorySystemAC }}

ASYMMETRIC
ROLE-A { -- superior DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER Superior ToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER Superior ToSubordinateM odification
TERMINATION-INITIATOR TRUE}
ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER SubordinateT oSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER SubordinateT oSuperior
TERMINATION-INITIATOR TRUE}
1D id-op-binding-hierarchical }
nonSpecificHier ar chicalOper ationalBinding OPERATIONAL-BINDING

AGREEMENT NonSpecificHierar chical Agreement
APPLICATION CONTEXTS{
{ directorySystemAC }}

ASYMMETRIC
ROLE-A { -- superior DSA
ESTABLISHMENT-PARAMETER NHOBSuperior ToSubordinate
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSuperior ToSubordinate
TERMINATION-INITIATOR TRUE }
ROLE-B { -- subordinate DSA
ESTABLISHMENT-INITIATOR TRUE
ESTABLISHMENT-PARAMETER NHOBSubordinateT oSuperior
MODIFICATION-INITIATOR TRUE
MODIFICATION-PARAMETER NHOBSubordinateT oSuperior
TERMINATION-INITIATOR TRUE }
1D id-op-binding-non-specific-hierar chical }

END

98 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)
Annex E

K nowledge maintenance example

(This annex does not form an integral part of this Recommendation | International Standard)

This annex illustrates knowledge maintenance, as defined in clause 23, with a simple example. In Figure E.1, the
following symbols are used to depict the DSA information trees of five DSAs.

@) root DSE (O 9glue DSE - context prefix entry
‘ entry v Subr DSE A immSupr DSE

O shadowed entry D shadowed context prefix entry

\/ shadowed subr DSE /\ shadowed immSupr DSE

shadowing

“reverse” shadowing

HOB TISO3910-94/d34

Figure E.1 — Symbols used to depict DSA information trees

In Figure E.2, DSA 1 is the master for naming context { A}, consisting of the two entries { A} and { A, B}. DSA 1 holds
a subordinate reference for naming context { A, B, C} which is maintained via an HOB with DSA 3. DSA 1 is a shadow
supplier to DSA 2, supplying it with copies of the user information of naming context { A} and the subordinate reference
to naming context {A, B, C} which identifies the access points of DSA 3, DSA 4 and DSA 5, the former being the
master for the subordinate naming context.

DSA 3 is the master for naming context { A, B, C}. In addition to holding the single entry {A, B, C} of the naming
context, DSA 3 holds an immediate superior reference for naming context { A}which is maintained via an HOB with
DSA 1. DSA 3 is a shadow supplier to DSA 4, supplying it with copies of the user information of naming context
{A, B, C} and the immediate superior reference to naming context { A} which identifies the access points of DSA 1 and
DSA 2, the former being the master for the superior naming context. DSA 4 is a (secondary) shadow supplier to DSA 5,
providing it with a copy of the information it receives from DSA 3.

Figure E.2 illustrates the DSA operational attributes employed to represent and maintain knowledge.

DSA 1 uses the value of its myAccessPoint attribute (associated with its root DSE) and the commonly usable values of

its consumer Knowledge (associated with context prefix {A}) attribute to form a value of the type Master And-
ShadowAccessPoints for use in its HOB interactions with DSA 3. DSA 3, in turn, uses the value of its myAccessPoint
attribute (associated with its root DSE) and the commonly usable values of its consumer Knowledge attribute and its
secondaryShadows (both associated with context prefix {A, B, C}) attribute to form a value of the type

Master AndShadowA ccessPoints for use in its HOB interactions with DSA 1. Together, the two DSAS, using the DOP,
maintain a subordinate reference held by DSA 1 and an immediate superior reference held by DSA 3. DSA 1's
subordinate reference, expressed lspexificK nowledge attribute associated with a DSE at {A, B, C}, is based on the
Master AndShadowA ccessPoints value it receives from DSA 3; DSA 3’s immediate superior reference, expressed by a
specificK nowledge attribute associated with a DSE at {A}, is similarly based onMfaster AndShadowA ccessPoints

value it receives from DSA 1.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 99

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)

DSA 1 myAccessPoint = DSA 2 DSA 2

myAccessPoint=DSA 1

r_Z/
5o

consumerKnowledge = DSA 2 "?/‘ A

. B

S~ —

specificknowledge = C

specificKnowldege =
DSA 3, DSA 4, DSA 5 N/ ; J

DSA 3,DSA 4,DSA 5

myAccessPoint = DSA 4 DSA 4

specificKnowledge = DSA 1, DSA 2 | 2 ,\ /

specificknowledge = DSA 1, DSA 2 l'?_/ A
7 | A/

consumerKnowledge =DSA 5 C
supplierknowledge = DSA 4 .

consumerKnowledge = DSA 4

secondaryShadows =
DSA 4, {DSA 5}

I supplierknowledge =DSA 4

TISO3920-94/d35

Figure E.2 — Knowledge maintenance example

DSA 1 and DSA 2 use their values of myAccessPoint in Shadowing Operational Binding interactions to maintain a
value of consumerKnowledge in DSA 1 (identifying the access point of DSA 2) and supplier Knowledge in DSA 2
(identifying the access point of DSA 1), both attributes associated with the context prefix { A}. Together, the two DSAS,
using the DOP, maintain the consumer reference held by DSA 1 and the supplier reference held by DSA 2.

DSA 2 receives a copy of the specificKnowledge attribute associated with context prefix {A, B, C} from DSA 1 in
DISP interactions with DSA 1. This interaction serves to maintain DSA 2’s subordinate reference to the context prefix

{A, B, C}.

DSA 3 and DSA 4 (and similarly DSA 4 and DSA 5} maintain consumer and supplier references, respectively, in a
fashion analogous to the interaction between DSA 1 and DSA 2.

100 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

Super seded by a morerecent version | SO/IEC 9594-4 : 1995 (E)

DSA 4 receives a copy of the specificK nowledge attribute associated with context prefix { A4} from DSA 3 in DISP
interactions with DSA 3. This interaction serves to maintain DSA 4's immediate superior reference to the context
prefix {A}.

DSA 4 communicates to DSA 3 any changes in nitgAccessPoint and consumerKnowledge attribute (and

secondar yShadows attribute, which is null in this example) using the modify operational binding operation of the DOP.
DSA 4 supplies DSA 3 with a value oSupplierAndConsumers, containing only those values of the
consumer K nowledge attribute that identify the access points of DSAs that have commonly usable shadows; the values
of the secondaryShadows attribute supplied by DSA 4, had there been any, would all, by design, be commonly usable.
(In this example, DSA 5 is presumed to hold a commonly usable copy of the naming context at {A, B, C}.) DSA 3 uses
this information to maintain a value of gscondaryShadows attribute associated with context prefix {A, B, C}. This
attribute, as described above, is used in DOP interactions with DSA 1 to maintain DSA 1's subordinate reference to the
context prefix {A, B, C}.

DSA 5 maintains its immediate superior reference to context prefix {A} using DISP interactions with DSA 4 in a fashion
analogous to the interactions between DSA 3 and DSA 4.

ITU-T Rec. X.518 (1993 E) Superseded by a more recent version 101

Super seded by a morerecent version I SO/IEC 9594-4 : 1995 (E)
Annex F

Amendmentsand corrigenda
(This annex does not form an integral part of this Recommendation | International Standard)

This edition of this Directory Specification includes the following amendments:
— Amendment 1 for Access Control;
— Amendment 2 for Replication, Schema, and Enhanced Search.

This edition of this Directory Specification includes the following technical corrigenda correcting the defects in the
following defect reports (some parts of some of the following Technical Corrigenda may have been subsumed by the
amendments that formed this edition of this Directory Specification):

— Technical Corrigendum 1 (covering Defect Reports 004, 010-013, 022, 023, 025-027, 029).
— Technical Corrigendum 2 (covering Defect Reports 002, 034, 048, 050, 059).
— Technical Corrigendum 3 (covering Defect Reports 024, 062, 065, 066).

102 ITU-T Rec. X.518 (1993 E) Superseded by a more recent version

