INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.446

TELECOMMUNICATION (08/97)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATION

Message Handling Systems

Common messaging call API

ITU-T Recommendation X.446

(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKSAND OPEN SYSTEM COMMUNICATION

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEM INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions
SECURITY
OSI APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
OPEN DISTRIBUTED PROCESSING

X.1-X.199
X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199
X.200-X.299
X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299
X.300-X.399
X.300-X.349
X.350-X.399
X.400-X.499
X.500-X.599
X.600-X.699
X.600-X.629
X.630-X.649
X.650-X.679
X.680-X.699
X.700-X.799
X.700-X.70¢
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849
X.850-X.899
X.850-X.859
X.860-X.879
X.880-X.899
X.900-X.999

For further details, please refer to ITU-T List of Recommendations.

ITU-T RECOMMENDATION X.446

COMMON MESSAGING CALL API

Summary

This Recommendation specifies a simple call interface through which messaging-reliant applications may invoke the

services of MHS across a standardized programming interface. The Recommendation was generated cooperatively with

the XAPI Association and defines the application programming interface being implemented for MHS by the world’s
major vendors and service providers.

Sour ce

ITU-T Recommendation X.446 was prepared by ITU-T Study Group 7 (1997-2000) and was approved under the WTSC
Resolution No. 1 procedure on the 9th of August 1997.

Recommendation X.446 (08/97) i

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on aworldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had/had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned
that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

0 ITU 1997

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ii Recommendation X.446 (08/97)

CONTENTS

Page
11T (1 o) o PRSP 1
11 U001 = PSPPSR 1
12 OVEIVIBIW ..ttt et sttt et b e stk s etk s e st b e s e e Rt e b e se e Rt s b e ne e bt s be e e bt s b et ebe s be e ebesbe e e 1
13 TEMUNOIOQY . .veeevereeieete sttt ettt ettt e ettt st b e s e st b e se e bt b e s e ebesbeseeb e sb e e eb e st et ebesb et ebeebeseeneebeseenen 2
131 1= T 11 (0] PRSI 2
132 F N o] o] (=Y = Lo OSSOSO Z
14 REFEIBNCES ...ttt b et bbbt et b et ne et bt 3
141 Identical Recommendations — International Standards...........ccccceceeeeeeeeeieiieciccciinn b
1.4.2 Paired Recommendations — International Standards equivalent in technical content..., /..
143 AddItIONAl FEFEIENCES ... e e e e e e nees 3
15 YRR 4
1.6 C NAMING CONVENTIONSeiiiiiiiiiiieee ettt ettt e ettt e e e s bttt e e e s s bt be e e e e e s anbbeeeeeesanneeeeeesaans 4
(41 (O (ol 1 (=1 (1] (= OPPPPPTPPPUPRIRS 5
2.1 [T g Tt ioTg = I 43T Yo 1= SR 5
2.2 Computational MOEL...........coii e e e e te e e e e e e s e e s mmmmmmmmmmnnn s 6
221 Interfaces 6
2.2.2 7T o] o SO 7
2.2.3 Wide CharaCter SUPPOITciii ittt e e e e s e snsbree e e e s s nnssam e e e e e eneeebhs
224 EVENt NOLIFICALION ... e e 7
225 (=] 1T [0] 0 SO PRN 3
2.3 (7] a1 iTo U1 ¢=1uTe] a1 a0 To (=] HA RO PPPUPRPR 8
231 1041V (O 00 F= 1o F= o =T SO PP PRPPPPN 9
2.3.2 Guidelines for platform biNAINGSccuviiiiiiiiie e b
2.3.3 Query for configuration INFOrMAatioN.............oiiiiiiiii e
2.4 (O] [T 0 T Lo [PP 10
24.1 MOAEI COMPONENTSeiiiieiiiiiiiie ettt e s e e e e st e e e e s stbaeeeeeessntbeeeeeeaanneeeend 10
(O41Y/ [@0] [=Tox A F= 11 = OSSO 13
3.1 CMC AP ODJECE ClASSES ...ttt ettt e e e e s ennes 13
3.1.1 AdAreSS DOOKo 14
3.1.2 LO0] 1 (=1 01 1 =1 4 PSPPI 14
3.1.3 DIStHIDULION LISt ... e e e e e e e e e e e e aaa s 14
314 LT EST= (o PP P PP PP PP RPN 14
3.15 MESSAQGE CONTAINETeeiiiiiiiiiee ettt ettt e e e sttt e e e e st e e e e s s bbb e e e e e e s s mmereeeeean 15
3.1.6 Per Recipient INfOrmMationoooi i a e e 15.
3.1.7 Profile CONLAINETuuiiiie e e e e e e e e e st e e 16
3.1.8 = Tod] 01T o | O PR 16
3.1.9] oL0] ¢ PP 16
R 70 I O I = o o] O o g1 = 11T O PP 7
[Fo = TS U o (U] =T 17
4.1 2 Fe Ry (oo = = T Y o< PR 18
4.2 F N g Vo Fo 1 = T A =T PP PSR 18
4.3 F 1= ol] 0T o | PR 20
4.4 21
4.5 21
4.6 Callback Data STIUCIUIESuuuiiiie i e e e e e et s e e e e e e e e e e e eeeesbe s mmmmmmmmmmmaan 21
4.7 L7010 1] 1=To [1 o PR 23
4.8 LOLUT£=To gl =g T |1 24
49 (O £ To] gl = L= ¢ Tox 1o o PSP 24
410 CUISOE SO KBY ..ttt ettt e ettt e e e e e s sm— 26

Recommendation X.446 (08/97) iii

10
10

iv

411 DISPACN TADIE. ... bbb
I 11U 02 = <o SR
G T Y 1P SOPRTOPPPRTNt
S (1= 0 Lo o I TP
LT o = o OSSPSR USRS
1 T €161 5 SR
A [(= o) = SRRSO
T S @ N BT (- o To I]2 =P
419 IMIESSATR ... ettt ettt ettt h R h e h e R R AR R R R e e e R R e AR e R e ARt e e R e n Rt Rt n e e nnenen
O B V=S o [= = oo SR
421 M ESSAPE SUMIMBIYeeueeieeeiteeiteeteeseeeteesbeebesasesaeesbeesbeeasesaeesaeesheease e st easeeseeabeenbeenbeemnesaeesheesbeenneeneennes
N \\ - 11 0= OSSP ROPSPRNt
423 ODJECE HANIE......c.ecuieictiteee bbbttt b et b bbb s
i @ o 1= ox o o (= SR
425 OPAOUE DELA......coueeieeeitiesiieee ettt ettt er e et et R e bt enn e R e e ab e e beesRe e Rt e ne e ens
426 PrOPEITY ..ottt bt r e et e e r e r e b e n e
N (= o o 1T o | S UTSRUTSRPTR
B o 0o S
429 REIUM COUB......octeieectecie ettt ettt et e e s e e be s besbesaeeaeese e e e tessesbestesbeebeessessessensessesteeseeneeneensans
G O S === o I o SO
431 SHEAM HABNAIE ...ttt s b et e et e e ae e e be e beenbeeabeeaeesteesheesbeenresnnennes
G v o SR
1 B 11 1= TS SRRSO
4,34 User INerface IAENTITIENttt et s s s re e re e eaes
L@ o= ol o o0 = I = TSP ST P
51 Address book ODJECE PrOPEITIEScoveieiece et re st e eaenrens
511 Child @HOWE.......cceiciecececcc ettt et r e e sresbesbesaeebe e e ensesnens
512 (O] 1101111 | PR
513 L OCALION ..ttt ettt ettt et e et e et e et e e beeabesaaesheesbeebeenbesaeesaeesaeenbeebeenreens
514 NBIMIE. e e e be e ae e ee e naee e nnreenree s
515 (O o 1= vt o =S
5.1.6 = 0| PSR
5.1.7 RS AL 7= USTSS
5.1.8 S == o SRS
5.1.9 157/ L=
5.2 Content item ODJECt PrOPEITIES.ccve et e et s ae st tesaesresneenaeseaneas
521 (O T T o (= 5=, RS
522 (@010 AT 0012107 1 Lo o RS
523 (001 (= 10817/ 0= S
524 (@7 (1] =TRSO
525 1o o [To R Y/ o=
5.2.6 [E=Y 0 1= (o Y
527 [L 7= 1
528 [C= 0 101 0o
5.2.9 L= 0 Y P
oI5 L - = B 1 11 [= S
250 R © o 1= ox o =\
Y225 7 = (= 110 L= g oo 1] (o] SR
oI5t G T .- SR
oI5 S I | =R
53 Distribution list ObjECt PrOPEITIESc.ecueeeeieierese et e e sttt e e se e e eeennens
531 0 (0 1=
5.3.2 L0 0] 0101 | P
533 (=S g a0 o [o= 1o I 10 1= TS

Recommendation X.446

(08/97)

&I RIRIRIE

45
46

46
56
56
56
57
57
57
58
58
58
58
59
59
59
60
62
62
63

IR

&R

65
65
66
66
66
66

534 N2 1PN

535 (O o T= ot o =SS
5.3.6 = 0 | ST URSSIN
5.3.7 SNAIEA ...ttt r e e re st e ens
M ESSAYE ObJECE PIrOPEITIES.cueeieieiie ittt ettt e et e e sre et sre e e e se e e e e e tesresbeseestesaeeneeseenseneeseens
54.1 WY o] o1 Tor= 1 oo T Ko
542 APPIICatioN MESSAYE STALUScveveueriereeie sttt st
54.3 F B 1o 2 X ot (o] o [T
5.4.4 Deferred deliVENY tIME ..o st st
545 o ST STPRPSRPSN
5.4.6 [N MESSAGE SLBLUS.......cveeeeeere sttt sr s r e sr e r e nneer e ne s
54.7 (A= oLV (o TSP RURR
54.8 (1= 0.0 [0 0] o | PSPPSRI
54.9 [N T AV 0 T=o | 1 o
5,400 INRN FEASOM.....uiiiiiiiiieitee st et eee st e sttt et sae e s bt e be e besstesseesaeesbeeseeeneesaeesbeesbeenseentesseesneesaeas
oY T O o 1= o = OSSR
5412 OUL MESSAGE SLALUS. ...eiuveiiieteiee it esieesteesstessbe e sre s sare s sbessaee e sseesssaeesbbeesbeessbeeansessnbassnseeeses
oIt T = T £ S
5414 RECEPL FEQUESIEMc.eiviieieitesieeete sttt sttt st sttt bbbt b et sb e
o LT S (= o= T o1 1Y o1 PRSP
5416 REPOM FEOUESEccuecuieieieiie sttt et sttt ae e sa e e et e saesaesbesaesresaeeneeneeneas
SN O A = (o TS
B5AL8 SENSILIVITY .ouecviiiiieieieeiete ettt sttt bbb et b bbb
oI S - YOS
oY O B S T < o SRS
5421 TIMEIECEIVEL....c.eiiiiiieierieeete ettt ettt st st st b e sttt be et be et
N N 11 T= X | PSSR
oY A T B Y/ o= T TSP TUPRTUPRUR
Message contaiNer ODJECt PrOPEITIES.cvveiiereriee et e e e be s s be st resre s e e e e e eseenseneens
55.1 Child @llOWE........oeeiiieete et sa s
55.2 (0011010101 | SRS
553 [0 Tox= (o] o [PPSR
554 = 0O PP PR PRTURTURPI
555 (O o= ot o =S
5.5.6 = 0 | SRS
55.7 SEIVET NMAIMIE ...ttt sttt ettt ae e s b e e ke et e satesaeeshe e she s eeeaeesaeesaeaabeenbesanennnanrenas
55.8 SNBIEA ...ttt e et ens
5.5.9 157/ L=
Per recipient information 0bjECt ProOPErtiES.........oiiiirireririeeeee e e
56.1 COMMIBNL. ...ttt bttt e e e e s et b e bt bt e e e s e e e s e b e sreer e s st ene e e e e ennennens
56.2 (B NV Y (] 0= PSSR
5.6.3 T2 001 o
564 (O o 1= ot e = ST USSP
5.6.5 REASON. ...ttt b e et b bt bt e et e e R et bR ae e e ne s
5.6.6 RECIPIENT BOAIESS ...ttt ettt se et bbb saesbesne et es
5.6.7 S w1 011 17
5.6.8 1) 0L P U URTUR PP
Profile container ObJECt PrOPEITIES........cveveriererere s e sttt s e e see e eneennens
571 F B 1o 2 X ot (o] [T
572 CREIBCLEN SEL......iivieeterieeete ettt ettt bt b et b e e b et ens
573 (O00 1011117 10 01 JU PPN
574 DEFAUIT SEIVICE. ...ttt ettt sttt sttt e nesbeneenens
575 DEFAUIT USEN ...ttt b ettt e e bbb b b e aeeae e e e s
5.7.6 LiNE TEIMUINELONveueeviiteietesiecete ettt ettt st sttt st sb et st e e sbeseenesbeseenens
5.7.7 (0 o= o O = SRS
5.7.8 Object EXteNSiONS SUPPOIEA.........cceeeeeerieriese et see e s e st e e se e seeseenes
579 (O o T1= o SRS T o] oo 1= o [PPSR
5710 PropertieS SUPPOIEU.cceveiiiieeiseeeeeeeeestes e ste et sre e seesaeseesseseestesnesneeseeneeseesennes
5711 Property EXENSIONS SUPPOITEA.ccuiiiiieirieriiiteriesie et
I 5 7 = (= o =0 = 55T o O
5.7.13 REQUITEH SEIVICE. ..c.ueiuieuieieeee ettt sttt sttt e et sae bt ae e e e e e b e se e besbesaeebesaeeneeneaneas

Recommendation X.446 (08/97)

FRRIRA

7
8

5.714 Required User

5.7.15 SUPPOIt COUNLEA SEINGS .. .ccveiuireirierieienieie ettt st e e see st b sae b aesae e e e e e seeeas
5716 SUPPOrt NOMark ASREAA.......cccecieiiciee e seete et snenne s

5.7.17 User Interface
5718 Users.............

F NV = o LR

5719 Version of the IMPIemMEntation ... e
5720 Version of the SPECITiCaliON.........ccueeeierrrere s ne s
5.8 ReCIpient ODJECE PrOPEITIESottt e e et sae e e e e nee e
581 AGUIESS ... et e b e e e ettt st ae b
582 Content RELUN REQUESIE ..ottt
583 [N 0 T TP P PP OT PP
5.8.4 (0o = o O = SRS
585 RECEIPt REQUESLEM........ecneeeie ettt se e resneene e eneees
5.8.6 REPOIT REQUESLEA ...ttt bbb e e
5.8.7 (RS oo ST o1 1Y -
5.8.8 0] = PRSP
5.8.9 157/ L=
5.9 REPOIt ODJECE PrOPEITIES...... ettt e e et b e s b b sae e e e e anee e
59.1 WY o] o1 o= 1 o g T Ko
5.9.2 o SRS
593 TEEIM COUNL ...t b et b et se e e b sr bt bt eb e e e e e e n e e ene s
594 MESSAGING SYSEEM 10 ...ttt bbb s e e
595 (O o T= ot O =1
5.9.6 REBA ...ttt et e st b e re et e e Re et et eneebeneeneetenaenens
59.7 S 74 OSSPSR
5.9.8 S o] = TR
599 S 1= o 1Y =55 T o
5910 TIMERECAIVEoouiieiieieieeee ettt bbbt e e e e
oI T T 4= | PSR STS
e I U 14 = o | TS U R URTUPUPRUTR
510 ROOt containNer ObJECt PrOPEITIES.cceiveeieieeeeeeeeeeee e re et re e e ae s e tesresresreeneeseeeeneenes
5.10.1 Child AITOWE.cooiiiieieiieeste sttt st sttt sttt st
5.10.2 COMIMENL.....eieiierteeteste ettt b et b et et sese e b e see e b e sbesheeb e e e e e e e e s e besreebesaeeneeneennes
o300 0 G T I To= (oo OO
5.10.4 INAIMIE..c.eieiiieeeee ettt h bt h e R R R AR Rt R e e e e e R n e e e enes
T O @ o 1= o = OSSR
B5.I0.6 SNAIEH ..ottt ettt e bbb e bbb
FUNCLION@l INEEITACE. ...ttt et ae et e e b e e ke et eb et e sbesbesbeeaeene e e aneanean
6.1 SIMPIE CMC fUNCHIONS ...ttt se e e e e e ae s besnesre s e enaenennes
6.1.1 SENAING MESSAGESveeverieeueeeerieste ettt et et e e seesbe bt sbesae et esee e e saesbesbesbesaesaeeneenseneeseeneas
6.1.2 RECEIVING MESSAOESceveveieseistesieeteseeeeee s e e seeste s e saeste s e ese e e e e e e seesbesaeseesresneesenneensnnes
6.1.3 LOOKING UP NAIMES........eiiiiiie ettt sttt s be e se bt e b ae b st e e e e e e e ee
6.1.4 AMINTSIIALTON 1.t et ettt st be e
6.2 FUIT CIMC TUNCLIONS ...ttt ettt st b et ae e e e e eese e besbe b e s bt eneese e e ensaneens
6.2.1 BiNd fUNCLIONS......couiiitiiiiee bbb sttt e sbeneenens
6.2.2 COMPOSITION FUNCLIONS......ceiiiie ettt e b saesnen
6.2.3 ENUMEration fUNCLIONS.........coiiiiieriete ettt st s seenens
6.2.4 Event notification fUNCLIONS.cooiiiieeee e
6.2.5 MESSAGING FUNCLIONScveieieceestese ettt st sr e s re e e e e eneenes
6.2.6 Name handling fUNCLIONS..........coiiieee e e e
6.2.7 SEEAM FUNCLIONS ...ttt be et e saeesaeesaeebeennesanesbeenreens
RELUIN COUBS. ...ttt et sttt et b e s et be s e e st b e se bt be st e bt s b et e be st et st st et ebe st neee
(©0 4104 1000 TSSOSO SS

Annex A — C declaration summary
C deClaration SUMIMAIYciiiiiiiiiieee ittt e e ettt e e st e e e e s abbr e et e e s sasbee et eessanses s ammmneeeeeanas

Vi

Al

Recommendation X.446

(08/97)

ANNEX B — CMC VENAOr EXIENSIONSuvuiiiiiiiiieeiieeiee e e e e e i e s ss s sttt eeereaeaeeeeeeasessaaasnsassaeerereeeeeeeeeseesann 220
B.1 (01V TORY =T o To o] gt =V a (=1 0 £ (o 1 13 R 220
B.1.1 FUNCLION EXIENSIONS ...iiiiieee e e st r e e e e e e aeeeeeeeeeeannnn] 221
B.1.2 (D= 1= W =) 1= 0 1[0 1 227
B.2 Extension set C declaration SUMMAIYooiiiciiiiiiiiieiir e e e e e e e e s e e ss s eereereeeeeaaeeeeenn 229
B.2.1 DO 0[O =) 4 =T 4 IS0 T =T= PP 230
B.2.2 Additional extensions for simple CMC/X400 MapPiNg.....cccceeeeeeeeeeieriiiiinernrneeereereeeeesoens
B.2.3 Other EXIENSION SISiiiiiiiiiiii e e e e e e e e e e e e e e e e s e 234

B.2.4 Platform-specific information including run-time bindings
B.2.5 Simple CMC usage of X.400 backbone services

Annex C — Programming EXAMPIES e eiiieieeee e e i i et eesstt e e e e e e ee e e e e e et e s s s s s s eeebee s s memmm————— e s 255
C.1 Programming @XaAMPIESoeiiiiiiiii et s— 255
C.l1 Query Configuration, Logon, and Logoff
C.1.2 Send and Send Documents fUNCHONS..........ooo ittt e b
C.13 List, read, and delete the first unread message
C.l4 Look up a specific recipient and get its detailSciiiiiiie b
C.15 USE Of EXEENSIONS ...oeeiiiiiiiie ettt s ettt e e e e sttt e e e e s stb e e e e e e s snbnnne e e s ane 258
C.16 cmc_bind_implementation

C.2 Example of cmc_bind_implementationceeiiiiiiireeio e 261

C3 COMPOSING B MESSAGE .. eetttteeiaeaaaaeeee i e ettt bttt ettt ettt ettaaaaaaaaaasaaaaaa e nnsnbbeebessee e e e s s— 262
C.4 CheCK fOr NEW MESSAQGES .. .uiiiiiiiiieeie e e e et e e et r e e e e e e e e e e e s e e e e s ss e aene e e re e e e e s mmmmmmm———— 265
C.5 FIlING 8 MESSAGE ...ttt ettt e et e e e e e e e e e e e e e e s e mmeeneeeaeeaanreees 267
C.6 D= oY (] g o - W 4 ST Y= Vo [271
C.7 REIMNEVING @ MESSATE ... uuttttttiieiiiieie e e e e ettt e e et e e e e aaaaa e e e e e e e s s e e nnbbss b e mmmmnmnnnes 273

Recommendation X.446 (08/97) Vii

Recommendation X.446

COMMON MESSAGING CALL API

(Geneva, 1997)

1 Introduction

This clause introduces the Common Messaging Call (CMC) Application Program Interface (API) and its specifications.
It indicates the purpose of the interface, provides an overview of it, details abbreviations, provides document references,
explains the level of abstraction of the interface, defines C naming conventions, and specifies conformance
requirements.

This Recommendation is an enhancement of the first version of the CMC API, published in June 1993 by the X.400 API
Association. This Recommendation extends the messaging-aware application support in the original document with
support for messaging-reliant applications.

1.1 Purpose

The purpose of this Recommendation is to specify a high-level messaging application program interface that can be
supported by most messaging services deployed today. The API isintended to enable application programmers to easily
integrate messaging, and thus communications, into their applications, creating a large body of messaging-enabled
applications.

This Recommendation is directed toward messaging service developers who might wish to support such an application
program interface. This Recommendation may also guide application developers in understanding
implementation-independent features of the Common Messaging Call API. The application developers must follow
manuals provided by the system they are using for messaging support.

1.2 Overview

The Common Messaging Call Application Program Interface provides a set of high-level functions for
messaging-enabled applications to send and receive el ectronic messages.

Within the range of messaging-enabled applications, there are messaging-aware applications and messaging-reliant
applications.

Messaging-aware applications are those that can function quite satisfactorily as stand-alone applications, but which
might connect to a messaging service to provide enhanced functionality. An example would be a word processing or
spreadsheet application that has the capability to send the document or file using a FILE-SEND option off of the menu.

Messaging-reliant applications are those which are inherently dependent on the existence of a messaging service to carry
out their functionality. Examples of these are Electronic Data Interchange (EDI), information distribution applications,
conferencing/collaboration applications, and possibly some distributed databases.

This interface is designed to be independent of the actual messaging protocol employed between sender and recipient.
The interface will support the creation and reception of standard message formats such as X.400 and SMTP/MIME
(RFC 822/RFC 1521) as well as proprietary message formats. This is achieved through generic definition of capabilities
common to most messaging protocols, plus a mechanism for defining extensions, which can be used to invoke
protocol -specific services.

Theinterface is aso designed to be independent of the operating system and underlying hardware used by the messaging
service.

Recommendation X.446 (08/97) 1

Another important consideration in the design of this API is to enable simple application actions to be taken with a
minimum number of function calls while allowing more complex actions to be possible as well. To achieve these often
conflicting objectives, the CMC API has two interfaces:. a Simple CMC interface and a Full CMC interface. The Simple
CMC interface provides a minimum number of function calls needed to send or receive a message by messaging-aware
applications. The Full CMC provides a more complete set of function calls in order to provide for more robust
message-reliant applications.

The CMC API is designed to be complementary to existing XAPIA-X/OPEN APIs such asthe XMHS and XMS API.

The CMC interface is designed to allow a common interface over virtually any electronic messaging service. For each
CMC implementation, the view/capabilities presented by CMC must be mapped to the view/capabilities of the
underlying messaging service.

To maximize interoperability between CMC applications which use similar underlying messaging services, it is critical
that a common mapping be defined by the industry segment representing the relevant messaging protocol or interface.

To that end:
» the Recommendation defines the common mapping between Simple CMC and the X.400 message store protocoal;

» standards bodies, vendors, or vendor groups representing a specific messaging protocol or interface are encouraged
to define a common mapping between CM C and the relevant messaging protocol or interface.

To maximize interoperability between CMC applications which use differing underlying messaging services, it is critical
that mapping definitions be designed with such interoperability in mind.

To that end, the following guidelines are offered:
* map message text stringsto international character sets, wherever appropriate or possible;

* map message attachment types to commonly recognized attachment types, wherever appropriate or possible.

Thislist is not comprehensive; additional guidance may be offered in the future once implementations are deployed.

1.3 Terminology

131 Definitions

This Recommendation defines the following terms:

1.3.1.1 full CMC: A messaging-enabled API that provides the functions to support message-reliant applications.
1312 smpleCMC: A messaging-enabled API that provides the functions to support messaging-aware applications.
1.3.1.3 T.611: ITU-T PCI for use with facsimile, telex, and teletex services.

132 Abbreviations

This Recommendation uses the following abbreviations:

API Application Program Interface
CMC Common Messaging Call
XAPIA X.400 Application Program Interface Association

XMHSAPI X/OPEN Application Program Interface to Electronic Mail (X.400)

2 Recommendation X.446 (08/97)

XMSAPI X/OPEN Message Store Application Program Interface
XOM AP X/OPEN OSl-Abstract-Data Manipulation AP

Ul User Interface

14 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and other references are subject to revision; al users of this Recommendation are therefore
encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other
references listed below. A list of the currently valid ITU-T Recommendationsis regularly published.

141 Identical Recommendations — International Standards

— ITU-T Recommendation X.402 (1995) | ISO/IEC 10021-2:198frmation technology — Message Handling
Systems (MHS): Overall architecture

— ITU-T Recommendation X.411 (1995) | ISO/IEC 10021-4:198frmation technology — Message Handling
Systems (MHS): Message transfer system: Abstract service definition and procedures

— UIT-T Recommendation X.413 (1995) | ISO/IEC 10021-5:198frmation technology — Message Handling
Systems (MHS): Message store: Abstract service definition

— UIT-T Recommendation X.419 (1995) | ISO/IEC 10021-6:198&rmation technology — Message Handling
Systems (MHS): Protocol specifications

— UIT-T Recommendation X.420 (1996) | ISO/IEC 10021-7:198%rmation technology — Message Handling
Systems (MHS): Interpersonal messaging system

142 Paired Recommendations — International Standards equivalent in technical content
— CCITT Recommendation X.208 (1988pecification of Abstract Syntax Notation One (ASN.1).

ISO/IEC 8824:1990Information technology — Open Systems Interconnection — Specification of Abstract Syntax
Notation One (ASN.1)

— CCITT Recommendation X.209 (198&pecification of basic encoding rules for Abstract Syntax Notation One
(ASN.1).

ISO/IEC 8825:1990|nformation technology — Open Systems Interconnection — Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1)

— ITU-T Recommendation X.400/F.400 (1998)ssage Handling System and Service Overview.

ISO/IEC 10021-1:1997|nformation technology — Text communication — Message-Oriented Text Interchange
Systems (MOTIS) — Part 1: System and Service Overview

143 Additional references

— 1SO 8601:1988Data elements and interchange formats — Information interchange — Representation of dates and
times

— 1SO 9070:1991Iinformation technology — SGML support facilities — Registration procedures for public text owner
identifiers

— ISO/IEC 10021-3:1990Information technology — Text Communication — Message-oriented Text Interchange
Systems (MOTIS) — Part 3: Abstract Service Definition Conventions

— IMAP —"Internet Message Access Protocol", Version 4, RFC 1730, December 1994.

— MIME —"MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies', RFC 1521, September 1993.

— RFC 822-"Standard for the Format of ARPA Internet Text Messages', STD 11, RFC 822, August 1982.
— SMTP-"Simple Mail Transfer Protocol", RFC 821, August 1982.

— XMHS API — API to Electronic Mail (X.400), CAE Specification, X/Open Company Limited and X.400 API
Association, 1991.

Recommendation X.446 (08/97) 3

— XMS API—Message Store API, Preliminary Specification, X/Open Company Limited and X.400 APl Association,
1991.

— XOM API — OSI-Abstract-Data Manipulation API, CAE Specification, X/Open Company Limited and X.400 API
Association, 1991.

— ANSI C—American National Standard for Information Systems — Programming Language C, X3.159-1989.

1.5 Levels

This Recommendation defines the CMC API at two levels of abstraction. It defines a "generic" interface independent of
any particular programming language, and a C language interface based on the American National Standard for the
C Programming Language. The "generic" interface is included to guide the development of other language-specific
specifications, e.g. PASCAL.

For readability, the specifications of the generic and C interfaces are combined. In clause 4, the CMC data structures are
described generically, but include a C declaration. In clause 6, the CMC functions are specified generically, but include a
synopsis written in C. For clarity, constants and error codes throughout this Recommendation are written in the C syntax
described below. Annex A gives asummary of the C declarations and constants used throughout the Recommendation.

16 C naming conventions

How an identifier for an element of the C interface is derived from the name of the corresponding element of the generic
interface depends on the element’s type, as specified in Table 1 below. The generic name is prefixed with the character
string in the second column of the table, alphabetic characters are converted to the case in the third column.

Table 1/X.446 — Derivation of C naming conventions

Element Type Prefix Case

Datatype CMC_ Lower
Datavalue CMC_ Upper
Function cmc_ Lower
Function argument none Lower
Function result none Lower
Constant CMC_ Upper
Error CMC E_ Upper
Macro CMC_ Upper
Object Class CMC_OC_ Upper
Content Type CMC_CT_ Upper
Property CMC_PT_ Upper
Structure Tag CMC_TAG_ Upper
Reserved for extension sets CMC_XS_ any

Reserved for extensions CMC_X_ any

Reserved for use by implementors CMCP any

Elements with the prefix "CMCP" (any case) are reserved for internal proprietary use by implementors of the CMC
service. They are not intended for direct use by programs written using the CMC interface.

The prefixes"CMC_XS " and "CMC_X_" (in either upper or lower case) are reserved for extensions of the interface by
vendors or groups.

4 Recommendation X.446 (08/97)

For constant data values, there is usually an additional string appended to "CMC_" to indicate the data structure or
function to which the constant data value pertains.

2 CMC architecture

This clause describes the functional architecture underlying the CMC API. It defines the CMC functional model, the
CMC configuration model, the CMC API computational model, and CMC object model. The functional model defines
the messaging functions standardized by this Recommendation. The configuration model defines how multiple CMC
implementations may coexist within a given platform. The computational model defines common characteristics of the
CMC programming interface. The object model describes characteristics of objects defined by this Recommendation.

21 Functional model

The CMC interface is defined between a messaging-enabled application and a messaging service. The messaging service
in turn may support multiple messaging protocol services, each using different messaging formats and protocols,
e.g. X.400, RFC 822 and RFC 1521. All functions in this interface are designed to be independent of the messaging
protocol services. However, the APl does allow protocol-specific functions to be invoked through defining
implementation-specific properties and through the use of extensions (see 2.2.5, Extensions).

The CMC interface is depicted in Figure 1 below.

Message Enabled Application

Common

Messaging Call

Messaging Service
T0726950-96/d01

Figure 1/X.446 — Positioning of the Common Messaging Call API

The functional components underlying the CMC API are shown in Figure 2.

Message Enabled Application

ﬁ @ ﬁ Common
ﬁ u ﬁ Messaging Call

Message Profile Messaging

Address Book Container Service

T0726960-96/d02

Figure 2/X.446 — Model of the Common Messaging Call API

Recommendation X.446 (08/97) 5

There are three functional components in the CMC API: address book, message container and profile. The address book
holds recipient and distribution list information for message addressing. The message container holds messages.
Common message containers are the inbox, outbox, and sent mailbox. The profile contains information related to the
CMC implementation and user information.

The interaction of a messaging-enabled application and these functional components is specified by the CMC
computational model.

2.2 Computational model

The CMC computational model defines the interfaces defined by the specification and common characteristics of these
interfaces. These common characteristics include the concept of a CMC session, character set support, an extension
mechanism, and event notification.

221 Interfaces

The CMC API defines two interfaces. Simple CMC and Full CMC. Simple CMC is intended to offer basic messaging
functionality for messaging-aware applications. Full CMC is designed to offer enhanced messaging functionality for
messaging-enabled applications.

2211 SmpleCMC

The Simple CMC interface is backwards compatible with the CMC 1.0 implementation. Simple CMC adds a new
message type, CMC: REPORT, to CMC 1.0, to alow delivery and non-delivery reports related to an original message to
be consolidated in a single report message, consistent with several X.400 implementations.

The Simple CMC interface supports three principle tasks: sending messages, reading messages, and looking up
addressing information. The functions of this interface are intended to provide messaging-enabled support to
messaging-aware applications. These are applications that do not depend on mail services to accomplish their basic
functions (e.g. word processor, spreadsheet, image, or document management applications). The access to mail services
permits these applications to be better utilized within an enterprise computing environment.

To send a message, the messaging-enabled application must first establish a session with the messaging service through
the cmc_logon() function or interactively by setting the LOGON_UI_ALLOWED flag in the extensions argument of the
cmc_send() function. An application submits a message to the submission messaging service through a cmc_send()
function. The messaging-enabled application is responsible for populating the CMC message structure used in the
cmc_send() function. The messaging-enabled application may also use a more limited cmc_send_documents() function
to send a message. This function is primarily intended for calling from a macro language. The closure of a session is
accomplished through the cmc_logoff() function.

To retrieve a message, the messaging-enabled application establishes a session through the cmc_logon() function. The
application can then retrieve a summary of mailbox information through the cmc_list() function. Individual messages
can be retrieved through the cmc_read() function. The cmc_act_on() function allows the user to act on a message in the
mailbox (e.g. delete it). Memory allocated by the system for structures is released by passing the returned pointer to the
cmc_free() function. The closure of a session is accomplished through the cmc_logoff() function. Simple CMC only
standardizes access to the Inbox message container. Access to other message containers through the Simple CMC
interface may be provided through vendor-specific extensions.

To look up names, the messaging-enabled application establishes a session through the cmc_logon() function or
interactively by setting the LOGON_UI_ALLOWED flag in the extensions argument of the cmc_look_up() function.
The application then uses cmc_look_up() to translate a user-friendly name into a messaging address. Memory allocated
by the system for structures is released by passing the returned pointer to the cmc_free() function. The closure of a
session is accomplished through the cmc_logoff() function. The address books searched viathe cmc_look _up() function
is implementation-dependent. Searches of specific address books through the Simple CMC may be provided through
vendor-specific extensions.

6 Recommendation X.446 (08/97)

2212 FullCMC

The Full CMC interface augments the messaging-aware functions provided by the Simple CMC interface with additional
messaging-enabled functions. The principle tasks provided for include: message composition, access and modification of
message folders, stream access to large content information, address book modification. Message-reliant applications
depend on messaging services to accomplish their basic functions (e.g. mail front end or agent and workflow
management applications). The access to mail services is a prerequisite to the functioning of these applications.

The enhanced functions of the Full CMC interface are facilitated by a number of additional data structures. The
capabilities provided for by these data structures include: an object-based data model, property mode definition for
objects that permits the extensible definition of message service objects, content naming that facilitates the support for
multimedia content within messages and a robust set of message types (e.g. calendaring and scheduling, workflow, EDI,
active messages), and nested container objects to support foldering in message stores and address books.

222 Session

In both the Simple and Full CMC interfaces, CMC function calls occur within the context of a session. A session is
established with the cmc_logon() function and terminated with a cmc_logoff() function. The cmc_logon() function also
authenticates the user to the messaging service and sets session attributes. The context of a session is identified by an
opague session id that is returned by the cmc_logon() function. Session context attributes include character set and
version number. Currently, thereis no support for sharing sessions among applications.

For gateway applications, a single user, representing the gateway, may establish sessions on behalf of multiple individual
users and therefore have permissions beyond those of an individual user.

223 Wide character support

The Full CMC interface supports double-byte character strings (e.g. UNICODE). This is accomplished by defining the
constant CMC_WCHAR within an application development environment, before the xcmce.h file is included (i.e. set
CMC_WCHAR=1). If CMC_WCHAR is not defined, character sizes are single byte. The CMC_WCHAR definition
forces al character string definitions in the Full CMC interface to be two bytes per character. Double-byte character
strings are supported in Full CMC only. The xcme.h file prototypes single- or double-byte counterpart function
definitions for each API call depending on whether CMC_WCHAR is defined.

This ensures backward compatibility to CMC 1.0 and alows for double-byte character string support in Simple and Full
CMC. Implementations export the double-byte functions in a separate DLL. Applications are not allowed to mix the two
paradigms together within the same instance of the application. Double-byte character string support is not required for
minimum conformance.

224 Event notification

The Simple CMC interface does not support the notification of events in the underlying service such as notification of
new messages. Four functions have been provided in the Full CMC interface to support this functionality. Two modes of
notification are supported: polling and callback.

In the polling mode of notification, the application registers an interest in polling for an event with the
cmc_register_event() function. The application then polls the implementation with an optional time-out period to check
whether an event has occurred with the cmc_check _event() function. If the event has occurred, the function returns
successfully. In addition, event-specific data may be returned by the function. If the application is no longer interested in
an event, it callsthe cmc_unregister _event() function.

Recommendation X.446 (08/97) 7

The second mode of interaction uses callbacks to application-defined functions. In this mode, the application registers a

callback function with the implementation with the cmc_register _event() function. The application’s callback function

is then called automatically when the event occurs. The application may also want to force a callback with the
cmc_call_callbacks() function. This function is useful in environments where an implementation can only call callbacks
when the implementation’s code is executing. If the application is no longer interested in an event, it calls the
cmc_unregister_event() function.

This Recommendation: there is only one standard event to signal the arrival of a new message in a container
(CMC_EVENT_NEW_MESSAGES). Data structures associated with this event are specified in 4.6 under the heading
Callback Data Structures. When registering for the new message event, the application indicates the containers to be
checked for new messages. Multiple containers may be checked. If the application does not register a callback for the
event, the application may poll for new messages events on the set of containers specifiechin diveck _event()

function. If the application registers a callback function, the function is called when a new message arrives in a container
specified in themc_register_event() function.

This event notification architecture allows new events to be added in future extensions of CMC and through vendor
extensions.

2.25 Extensions

In both the Simple and Full CMC interfaces, data structures and functions defined in this Recommendation can be
extended methodically through the use of extensions. Extensions are used to add additional fields to data structures and
additional parameters to a function call. A standard generic data structure has been defined for these extensions. It
consists of an item code, identifying the extension; an item data, holding the length of extension data or the data itself;
an item reference, pointing to where the extension value is stored or NULL if there is no related item storage; and flags
for the extension.

Extensions that are additional parameters to a function call may be input or output. That is, the extension may be passed
as input parameters from the application to the CMC service or passed as output parameters from CMC service to the
application. If an extension is an input parameter, the application allocates memory for the extension structure and any
other structures associated with the extension. If an extension is an output parameter, the CMC service allocates the
storage for the extension result, if necessary. In this case, the application must free the allocated storage wittea call to th

cmc_free() function.

Extensions play a dual role in this Recommendation. First, they provide a mechanism whereby features not common
across all messaging services can be accommodated. Second, they provide a mechanism to extend the Recommendatio
in the future, minimizing any backward-compatibility issues.

Use of extensions for the first reason, while very important, should be employed with caution. Reliance on features
specific to particular messaging-services limits application portability across messaging services; also, such features may
not survive a journey through multiple gateways in a mixed messaging network.

To minimize portability issues, implementors are encouraged to specify extensions as generically as possible, and to
contribute these extensions as proposed additions to the CMC-defined extension set. Through this process, the CMC API
set will evolve in a positive direction in a manner which continues to maximize portability.

For more information on extension registration and the extensions defined in this Recommendation, see the annexes.

2.3 Configuration model

The CMC configuration model permits multiple CMC implementations to coexist in a single environment by specifying
a CMC Manager as a broker among CMC implementations. Figure 3 shows the relationship of the CMC Manager and
CMC implementations.

8 Recommendation X.446 (08/97)

CMC

Manager
CcMC CMC CcMC
Implementation 1 Implementation 2 Implementation 3

T0726970-96/d03

Figure 3/X.446 — CMC manager and CMC implementations

231 CM C manager

The CMC Manager brokers dispatch tables back to the application through the use of the cmc_bind_implementation()

function. The dispatch table represents an array of CMC function pointers whose ordinal positions must match the order

specified in the CMC header file. The application calls the appropriate CMC implementation function through the
implementation’s associated dispatch table. This implies that the application must keep copies of pointers to dispatch
tables for each CMC implementation that it wishes to bind to.cife free() function is used for freeing the dispatch

table created on themc_bind_implementation() function call. Theemc_unbind_implementation() function is used to

clean up anything else set up by the CMC Manager or CMC implementation. CMC implementations are named as
globally unique identifiers (GUIDs). Applications obtain implementation names and GUIDs from vendor header files,
vendor supplied documentation, or by convention. The CMC Manager is responsible for mapping the implementation’s
dispatch table to the address space of the application on platforms whose applications may reside in different address
spaces. The CMC Manager may wish to create and manage local copies of any dispatch tables passing through it. They
must create and manage their own copies in the different address space case mentioned above. The flow of execution is
now defined:

1) The application callemc_bind_implementation() to obtain a pointer to a dispatch table for a desired CMC
implementation.

2) The CMC Manager receives the call and calls the appropriate CMC implementation’s
cmc_bind_implementation() function. The CMC Manager must supply a platform-specific means of determining
which CMC implementations exist and where they reside.

3) The CMC implementation receives ttrac_bind_implementation() call and creates and populates a dispatch table
which is sent back to the CMC Manager. The CMC Manager may at that point wish to create a local copy of the
dispatch table.

4) The CMC Manager completes its receivadc_bind_implementation() function and returns the pointer to the
dispatch table to the application unless remapping needs to be done first.

5) The application proceeds to make calls into any bound CMC implementation which now concurrently exist.

6) The application may at any point cathc_free() to free the memory associated with the dispatch tables created by
the CMC Manager and/or the CMC implementation. @itme_unbind_implementation() function is called by the
application to signal the CMC Manager to clean up data associated with the binding of particular CMC
implementation. The CMC Manager must then make a call to the specified CMC implementation to do the same.

7) When all CMC implementations are unbound, the application may exit or do acrathdind_implementation().
Bindings which are not symmetrically unbound withc_unbind_implementation() run the risk of memory leaks
and unpredicted resulting behavior.

If applications are using CMC 1.0, they should call the CMC implementation directly rather than through the CMC
Manager. CMC 1.0 does not support access to multiple implementations.

Recommendation X.446 (08/97) 9

232 Guiddinesfor platform bindings

CMC 2.0 supports a CMC Manager and multiple implementations of CMC on a single platform. The following
guidelines are needed to support the CMC Manager and multiple implementations of CMC:

» Each platform binding must specify a mechanism for implementations of CMC to register and deregister themselves
with aCMC Manager.

e The CMC Manager must support at least the CMC 2.0 functions, cmc_bind implementation() and
cmc_unbind_implementation().

* TheCMC Manager may also support any of the following:
— interworking with CMC implementations in another address space;
— interworking with CMC implementations on another machine;
— browsing for registered CMC implementations.

e Certain platforms may require the CMC implementations to modify the names to the CMC functions to support
multiple implementations. The CMC Manager will need to broker mappings to these modified function names.

233 Query for configuration information

The persistent configuration of the service is available for query by the messaging-enabled application. The application
may query the service to determine its support for different version(s) of the CMC API, extensions, and environmental
parameters that comprise the configuration. No function is defined in this API for the modification of this configuration
information. The form in which this information is stored (e.g. file format) is left undefined by this Recommendation.

Two mechanisms are provided for querying the configuration information. The Simple CMC interface includes a
cmc_query_configuration() function call. The Full CMC interface uses its enumeration functions to retrieve
configuration information from a Profile Container.

24 Object model

The CMC specification is based on a robust, object-oriented data model. In addition, a very general access method is
defined by a group of functions oriented at managing these objects within the message service. These generic functions
provide a very robust but simple method for creating and managing the object and object properties defined by the CMC

specification.

The object model of the CMC specification is rather transparent to the user of the Simple CMC interface. This set of
messaging-enabled functions was designed to simplify the access of message service functions. On the other hand, the
Full CMC interface provides an enhanced set of messaging-enabled functions to access the robust characteristics of a
message service and its object model.

This subclause provides an overview of the CMC objects, object classes and illustrates sample properties for each object.

24.1 M odel components

Within the CMC specification, the object model contains objects, object classes, and properties. Figure 4 illustrates the
CMC object model components. An object is a collection of properties. Objects are classified by their type or object
class. A property is an attribute of the object.

2411 Objects

Objects are identified by their session-specific object handle. The object handle encapsulates the session id. A handle for
a new object is returned by thec_open_object_handle() function. The content information, that defines the particular
messaging service object, can be added witlerthee add_properties() function. An individual property can only exist

once within an object. So, this same function can be used to update or modify the content information associated with a
particular property. Themc_delete properties() function can be used to delete one or more individual properties from

an object. The properties within an object can be listed withcthe list_properties() function. The content
information for one or more properties can be read witleitine read_properties() function.

This Recommendation allows for multi-valued properties; multi-valued properties are used in conjunction with certain
objects in this Recommendation.

10 Recommendation X.446 (08/97)

OBJECT |

‘ Property 1 ‘

‘ Property 2 ‘

‘ Property 3 ‘

T0726980-96/d04

Figure 4/X.446 — Object model

Containers are a special kind of an object. They are a collection of not only properties but also other objects.

Once the object has been defined, it must be added to a particular container and committed to the persistent storage of
that container with the cmc_copy_object() and cmc_commit_object() functions, respectively. An object can be deleted
from a container object by the cmc_delete_object() function.

Enumeration of container objects are facilitated by the container cursor. A cursor is an implementation-specific construct
that is used to sort and filter the elements of a container object. The cursor can also be used to facilitate the display of a
"thumb" on a scroll bar, depicting the relative position within a container. The cmc_open_cursor () function is used to
define a cursor. The cursor context is maintained by referencing the cursor by its opague cursor handle. The cursor
handle, as well as the object and session ids, are alocated by the message service. They need to be freed by the
cmc_free() function when they are no longer needed. The relative position of the cursor can be read by the
cmc_read_cursor () function. The relative position can be updated by the cmc_update cursor_position() function. The
cursor can also be updated to a position reflected by the relative position of an object within a container by the
cmc_update cursor_position_with_seed() function. The number of objects in a container that match the filter
restrictions of a cursor can be listed by the cmc_list_number_matched() function.

A list of objects within the container associated with a cursor can be listed with the cmc _list_objects() function. The
objects are referenced by the object handles returned by this function. The cmc_copy_object_handle() function can be
used to make a copy of the reference to one of these objects.

It is possible that containers may not hold any objects such as an empty message container or an empty address book, for
example.

Support for the nesting of containers is not mandatory in the Full CMC interface. Support for message container and
address book nesting is not required. The appropriate error code for an implementation to return is
CMC_E_UNSUPPORTED_ACTION. When a message with an embedded message is received, the implementation
cannot guarantee that the embedded message will be passed on. Implementations must accept nested messages from the
application. Nesting may not be preserved as such after the handle to the nested object is freed. Message objects created
by the implementation may not use nesting. Implementations have the option to generate nested objects or not.

2412 Object classes

Object classes are the types of objects defined by this Recommendation. Object classes in CMC contain properties and
possibly other objects. Clause 3 describes the object classes and clause 5 describes the properties of each object class.
The objects that another object class may contain are given by a containment hierarchy. This containment hierarchy is
givenin Figure 5. The containment hierarchy does not illustrate the full extent of recursion of CMC objects.

There is no explicit class hierarchy defined by this Recommendation. However, properties are duplicated among some
object classes.

Recommendation X.446 (08/97) 11

Root Message Message Recipient
Container Container(s) Object Object
Content Content Item
Item Object Object
Message
Object
Report Recipient
Object Object
Message
Object
Per Recipient
Information
Object
Content
Item Object
Address Address Recipient
Book Book Object
Recipient
Object
Distribution Recipient
List Object
Profile -
Container R(e)c;)l_rgg? t
Object |
T0726990-96/d05

Figure 5/X.446 — CMC 2.0 Containment hierarchy

24.1.3 Object properties

Properties are attributes of a particular object. Properties define the object. They are represented by a unique name, or
alternatively by an implementation specific identifier, a value type, and the value data or content information. A property
isuniquely identified by an integer and a string name based on the formal public identifier of 1SO 9070.

Some implementations may provide for user-defined properties. This capability allows for customization of the
underlying service. User-defined properties are distinguished by their property name. A unique property identifier for a
user-defined property is generated by a platform-specific mechanism. The cmc identifier_to_name() function is
provided to map between a property identifier and its associated property name. The cmc_name_to_identifier()
function is provided to map between a property name and its associated property identifier. Both property identifiers and
property names are provided by the service to permit access to the numerous properties by the most expedient method.
The property identifier number space is divided into XAPIA-defined, implementation-defined, and user-defined
numbers. User-defined numbers run the risk of possible duplication across implementations or versions.

12 Recommendation X.446 (08/97)

Some object properties consist of large amounts of content information. For example, a multimedia message might have
a megabyte of video or audio content. Stream functions have been added to the Full CMC interface to facilitate the
reading and writing of this large content information. The content information is accessed in a manner similar to normal
C Language file access. A property is opened for read or write stream operations by the cmc_open_stream() function.
This function returns a stream handle that maintains the context of that stream in the session. This handle is allocated by
the service and should be freed by the cmc _free() function when no longer needed. The cmc_read_stream() and
cmc_write stream() functions are used to read and write streamed content information, respectively. The
cmc_seek_stream() function is used to go to a particular byte position within the stream. The stream is closed as a
by-product of calling cmc_freeg().

Different implementations may impart a different performance cost to read different properties. Properties with large
amounts of content information may have a major cost. Properties with a small amount of content information or
information that is readily available to the service may have a minor or no associated cost performance if read. The
relative, implementation-specific cost performance for reading each property can be determined by the
cmc _read property costs() function.

3 CMC object classes

3.2 CMC API object classes

The following subclauses define the CMC API abject classes, provide the names of the classes, detail support
requirements for the object classes, and how objects of each class are created, added, and modified.

Table 2 summarizes the object classes. The first column provides the name of the object class. The second column states
whether the object class is mandatory or optional. The third column specifies whether or not the object class is
read-only. A "no" in this column means that the object class can be added, deleted, or committed by cmc_copy_object(),
cmc_delete object(), or cmc_commit_object(), respectively, unless otherwise indicated by a star "*". The fourth
column specifies how many instances the object is permitted to have. The last column states the creator of the object
class as the implementation (1), the caller (C), or either (E).

The properties of each object class are given in clause 5 of this Recommendation.

Table 2/X.446 — Object Class summary

Object Class M/O Read-Only Instances Creator
Address Book (0] No Any E
Content Item o No Any E
Distribution List (0] No Any E
Message M No Any E
Message Container — Drafts (0] No Any C
Message Container — Filed (0] No Any C
Message Container — Inbox (0] No* Zero or More |
Message Container — Outbox (0] No* One |
Message Container — Sent, Deleted q No One |
Per Recipient Information (0] No One or More E
Profile Container M Yes One I
Recipient M No Any
Report O No Any
Root Container @) No* One I

Recommendation X.446 (08/97) 13

311 Address book
NAME
Address Book

C DECLARATION

#def i ne CMC_OC_ADDRESS_BOOK \
"/ [XAP| A/ CMC/ OBJECT CLASS// NONSGM. Addr ess Book/ / EN'

DESCRIPTION

The address book container class includes containers to hold recipient and distribution list objects. Address book
containers may be nested, although implementations are not required to support the nesting of address book containers.
A CMC implementation is not required to support address book containers. The subtypes of address book containers
include global and personal. Address books hold recipient objects, distribution list objects, and optionally, other address
books.

312 Content item
NAME
Content Item

C DECLARATION

#defi ne CMC_OC_CONTENT_| TEM \
"/ | XAPl A/ CMC/ OBJECT CLASS// NONSGML Content | tem / EN'

DESCRIPTION

This object class identifies objects associated with the content of a message. It is used to represent attachments and
notes, although no distinction is made between the two at the programming interface. Content item objects are typed by
globally unique identifiers. Content items objects may be nested, athough nesting is optional for support in an
implementation.

Implementations may limit the number of content items per message or on the size of a content item. If a content item
exceeds the number of content items permitted, a call to add the item may generate the error
CMC_E TOO_MANY_CONTENT_ITEMS. If the content item exceeds the size limit of the implementation, it may
generatetheerror CMC_E TEXT _TOO _LARGE.

3.1.3 Distribution list
NAME
Distribution List

C DECLARATION

#define CMC_OC_DI STRI BUTI ON_LI ST \
"~/ | XAPl A CMC/ OBJECT CLASS// NONSGM. Di stribution List//EN'

DESCRIPTION

The distribution list object class identifies objects that represent groups of recipient objects. Distribution lists contain
recipient objects and, optionally, other distribution lists. The nesting of distribution lists may not be preserved after the
handle to the distribution list has been freed. Implementations need not support distribution lists or the nesting of
distribution lists. These distribution lists are identified by Recipient objects whose Type property is "group".

The use of the CMC to construct a distribution list does not imply that the messaging system must support the access to
distribution lists whose members are administered by an address book or directory service disjoint from that supported
by the CMC implementation.

314 M essage
NAME

Message
14 Recommendation X.446 (08/97)

C DECLARATION

#def i ne CMC_OC_MESSAGE \
"/ | XAP| A/ CMC/ OBJECT CLASS// NONSGML Message/ / EN'

DESCRIPTION

This object class identifies message objects that are vehicles for passing content information through a messaging
service. These message objects may be mail and receipts. Message objects may be nested by applications and
implementations must accept such messages. Nesting may not be preserved after the handle to the nested object is freed.

Implementations need not support the nesting of messages. Message objects may contain recipient objects, content item
objects, and nested message objects.

315 M essage container
NAME
Message Container

C DECLARATION

#defi ne CMC_OC_MESSAGE_CONTAI NER \
"~/ XAPI A/ CMC/ OBJECT CLASS// NONSGWL. Message Cont ai ner//EN'

DESCRIPTION

Message containers are a collection of message container properties, message objects, and possibly, other message
containers. This container object also provides the enhancements for specialized collections such as an inbox, outbox,
deletion folder, or user-defined message folders.

The message container object class provides a folder capability to hold message objects and possibly report objects and
other message container objects. Message containers may be nested although implementations are not required to

support nesting of message container objects. The subtypes of the message containers defined by CMC include drafts,
deleted, sent, filed, inbox, and outbox.

3.1.5.1 Message container class: Drafts

The drafts message container holds messages that have been created but have not been sent. Support for the draft
message container is optional .

3152 Messagecontainer classes: Deleted, Sent

The deleted message container holds deleted messages. The sent message container contains messages that have been
sent. Support of the sent and deleted message containersis optional .

3.1.5.3 Message container class: Filed

The sent message container contains filed messages. Support of the filed message containersis optional.

3.15.4 Messagecontainer class: Inbox

The message container class subtype inbox stores incoming messages. Support of an inbox is optional; there may be
more than one inbox.

3.1.55 Messagecontainer class: Outbox
The outbox contains messages that are to be sent. Support of an outbox is optional; only one outbox is permitted.
316 Per Recipient Information
NAME
Per Recipient Information

Recommendation X.446 (08/97) 15

C DECLARATION

#defi ne CMC_OC_PER_RECI Pl ENT_I| NFORNMATI ON \
"~/ | XAPI A/ CMC/ OBJECT CLASS// NONSGW. Per Recipient I nformation//EN

DESCRIPTION

This object class identifies objects that report the delivery or non-delivery of a message for a single recipient. Objects of
this class are contained in report objects. At least one of these objects must be present for the Report object. Support of
this class is optional in general, but mandatory for implementations that support Report objects. Per Recipient
Information objects may not be nested.

317 Profile Container
NAME
Profile Container

C DECLARATION

#def i ne CMC_OC_PROFI LE_CONTAI NER \
"~/ | XAPI A CMC/ OBJECT CLASS// NONSGM. Profile Contai ner//EN'

DESCRIPTION

The profile container class includes session context and configuration information. There is only one profile container. It
exists underneath the root container object. The container object is created by the underlying messaging service, is
read-only, and cannot be modified by the user. The contents of the profile container object are also created by the
underlying messaging service, are read-only, and cannot be modified by the user. Support for the profile container object
is mandatory for implementations conforming to this Recommendation.

The profile container contains a recipient object corresponding to the user logged on. If the implementation supports
shared logon, then it may also contain additiona recipient objects corresponding to the other logged-on users. This
provides support for bulletin board or discussion forum capabilities. Additionally, the profile container object contains
profile container attributes properties that correspond to individual session context or configuration attributes. There are
properties defined for both the Simple CMC and Full CMC configuration attributes. The profile container properties are
read-only.

318 Recipient
NAME

Recipient
C DECLARATION

#defi ne CMC_OC_RECI Pl ENT \
"_ /| XAPI A/ CMC/ OBJECT CLASS// NONSGM. Reci pi ent // EN'

DESCRIPTION
The recipient object class identifies users within the messaging service. Recipient objects may include individuals and

groups. The recipient type can be an individual, a group of recipients (e.g. distribution list), or an unknown type. An
individual implementation may provide implementation specific properties for a recipient object.

3.1.9 Report
NAME

Report
C DECLARATION

#def i ne CMC_OC_REPORT \
"~/ | XAPl Al CMC/ OBJECT CLASS/ / NONSGM. Report//EN'

16 Recommendation X.446 (08/97)

DESCRIPTION

The report object class identifies objects that report the delivery status of a message. The objects in this class include
delivery and non-delivery notifications. Certain message transfer systems (e.g. SMTP) may not support the generation of
reports. Report objects may contain recipient objects, per recipient information objects, content item objects, and
message objects.

3.1.10 Root Container
NAME
Root Container

C DECLARATION

#def i ne CMC_OC_ROOT_CONTAI NER \
"/ | XAPl A/ CMC/ OBJECT CLASS// NONSGM. Root Cont ai ner / / EN'

DESCRIPTION

The root container class includes top-level containers for a user's messaging objects. There is only one type of root
container and only one root container per user. It must be supported by CMC implementations. The root container
contains message containers, a profile container, and optionally address book containers.

4 Data structures

This clause defines, and Table 3 lists, the data structures used in the CMC API.

Table 3/X.446 — CMC data structures

Data type name Description
Attachment Message attachment structure
Boolean A value that indicates logical true or false
Buffer Pointer to a dataitem
Callback Data Structures Type definitions for a callback function data values

Counted String

String with an explicit length designation

Cursor Handle

Opaque handle for a container cursor

Cursor Restriction

Restriction for filtering the enumeration of objects within a container

Cursor Sort Key Defines the sort order for elements enumerated by a cursor within a container
Dispatch Table A structure containing pointers to the functions in a CM C implementation
Enumerated Data type containing a value from an enumeration

Events Data type for messaging service events

Extension Extension structure

Flags Container for flag bits

Guid Globally unique identifier

1SO Date And Time

A date and time string value formatted in accordance with SO 8601

Message

Message structure

Recommendation X.446 (08/97)

17

Table 3/X.446 — CMC data structures(concluded)

Data type name Description
Message Reference Message Reference structure
Message Summary Message Summary structure
Object Handle Opaque handle for the CMC object
Object Identifier Object Identifier structure
Opaque Data A counted byte string of application specific data
Property A piece of object content information
Identifier Implementation specific, unique identifier
Name Unique name
Recipient Originator/recipient structure
Report Status message for delivery, non-delivery, receipt, etc., notifications
Return Code Return value indicating either that a function succeeded or why it failed
Session Id Opaque handle for session

Stream Handle

Opaque handle for the property stream

String

Character string pointer

Time

Time structure

User Interface Id

User interface handle

41 Basic data types

Some data types are defined in terms of the following "intermediate data types', whose precise definitions in C are
system-defined:

float32 The floating point number represented in 32 bits.

float64 The floating point number represented in 64 bits.

sint16 The positive and negative integers representable in 16 hits.
sint32 The positive and negative integers representable in 32 bits.
uint8 The non-negative integers representable in 8 bits.

uint16 The non-negative integers representable in 16 bits.

uint32 The non-negative integers representable in 32 bits.

C DECLARATION

typedef systemdefined, e.g. float CMC fl oat 32;
typedef systemdefined, e.g. double CMC f | oat 64;
typedef systemdefined, e.g. int CMC_si nt 16;
typedef systemdefined, e.g. long int CMC_si nt 32;
typedef systemdefined, e.g. unsigned char CMC_ui nt 8;
typedef systemdefined, e.g. unsigned int CMC_ui nt 16;
typedef systemdefined, e.g. unsigned |ong int CMC_ui nt 32;
4.2 Array datatypes

This Recommendation supports multi-valued properties using arrays of basic and non-basic data types. The array data
types are defined as:

array_boolean An array of Booleans.

array_buffer An array of pointers to storage locations in memory.
array_counted _string An array of strings with an explicit length designation.
array_enum An array of enumerated data types.

18 Recommendation X.446 (08/97)

array_extension
array_float32
array_float64
array_guid
array_iso_date time
array_object_handle
array_opaque_data
array_return_code
array_sint16
array_sint32
array_string
array_time
array_uint16
array_uint32

An array of extension data types.

An array of floating point numbers represented in 32 bits.

An array of floating point numbers represented in 64 bits.

An array of globally unique identifiers.

An array of 1SO date and time data structures.

An array of object handles.

An array of counted byte strings of application specific data.

An array of return codes.

An array of positive and negative integers representable in 16 bits.
An array of positive and negative integers representable in 32 bits.
An array of strings.

An array of time structures.

An array of non-negative integers representable in 16 bits.

An array of non-negative integers representable in 32 bits.

C DECLARATION

typedef struct CMC TAG ARRAY_ BOOLEAN ({
CMC_ui nt 32 count ;
CMC _bool ean *bits;

} CMC array_bool ean;

typedef struct CMC_TAG ARRAY_ BUFFER {
CMC _ui nt 32 count;
CMC _buf f er *puf f er;

} CMC_ array_buffer;

typedef struct CMC_TAG ARRAY_

COUNTED_STRI NG {

CMC_ui nt 32 count;
CMC _counted_string *string;

} CMC array_counted_string;

typedef struct CMC TAG ARRAY_ENUM ({
CMC_ui nt 32 count;
CMC_enum *set;

} CMC_ array_enum

typedef struct CMC TAG ARRAY_EXTENSI ON {
CMC_ui nt 32 count;

CMC_ext ensi on
} CMC array_extension;

*ext ensi on;

typedef struct CMC_TAG ARRAY_FLQAT32 {
CMC _ui nt 32 count;
CMC fl oat 32 *nunber ;

} CMC array_fl oat 32;

typedef struct CMC TAG ARRAY _FLOAT64 {
CMC_ui nt 32 count;
CMC fl oat 64 *number ;

} CMC array_fl oat 64;

typedef struct CMC TAG ARRAY_GUI D {
CMC_ui nt 32 count;
CMC guid *gui d;

} CMC_ array_guid;

typedef struct CMC TAG ARRAY_

CMC_ui nt 32
CMC date_tinme
} CMC array_iso_date tineg;

typedef struct CMC_TAG ARRAY_

CMC_ui nt 32
CMC _obj ect _handl e
} CMC _array_obj ect handl e;

typedef struct CMC TAG ARRAY

CMC_ui nt 32
CMC _opaque_dat a
} CMC array_opaque_dat a;

| SO DATE_TI ME {
count ;
*tinme;

OBJECT_HANDLE {
count ;
*ohandl es;

OPAQUE_DATA {
count;
*dat a;

Recommendation X.446

(08/97)

19

typedef struct CMC_TAG ARRAY_RETURN _CODE {
CMC _ui nt 32 count;
CMC return_code *code;

} CMC array_return_code;

typedef struct CMC TAG ARRAY_SI NT16 {
CMC_ui nt 32 count;
CMC sint16 *nunber ;
} CMC_ array_sint 16;

typedef struct CMC TAG ARRAY_SI NT32{
CMC_ui nt 32 count;
CMC_si nt 32 *nunber ;
} CMC array_sint 32;

typedef struct CMC TAG ARRAY_STRI NG {
CMC_ui nt 32 count;
CMC string *string;

} CMC array_string;

typedef struct CMC_TAG ARRAY_TI ME {
CMC _ui nt 32 count;
CMC tinme *time;

} CMC array_time;

typedef struct CMC TAG ARRAY Ul NT16 {
CMC_ui nt 32 count;
CMC _ui nt 16 *nunber ;

} CMC_array_uint 16;

typedef struct CMC TAG ARRAY Ul NT32 {
CMC_ui nt 32 count;
CMC_ui nt 32 *nunber ;
} CMC array_uint 32;

DESCRIPTION
A data value of these typesincludes alength identifier for the size of the array.

Support for multivalued propertiesis optional for implementations.

4.3 Attachment
NAME
Attachment — Type definition for a CMC message attachment structure.

C DECLARATION
typedef struct {

CMC string attach_title;

CMC object _identifier attach_type;

CMC string attach_fil enane;
cMC fl ags attach_fl ags;
CMC_ext ensi on *attach_ext ensi ons;

} CMC_attachnent;
DESCRIPTION

A data value of this type is an attachment. This data structure is included to provide support for CMC 1.0 and Simple
CMC implementations. An attachment has the following components:

1) attach_title: Optional title for attachment, e.g. original filename of attachment.

2) attach type: Object identifier that specifies type of attachment. The format of the CMC_object _identifier is defined
in 4.24. A NULL value designates an undefined attachment type.

Two Object Identifiers have been predefined for use by applications and CMC implementations.

CMC_ATT_OID_BINARY Data in file should be treated as binary data. This is the default.

20 Recommendation X.446 (08/97)

CMC _ATT _OID_TEXT Data in file should be treated as a text string. It should be assumed to be
in the character set for the session on input and mapped to the character
set for the session on output if possible.

3) attach filename: Name of file where attachment content is located. The location of the file is
implementation-dependent, but should ensure access by the calling application.

4) attach flags: Bits for Boolean attributes. Unused bits must be clear.
a) CMC_ATT_APP_OWNS FILE

Set: Indicates on output that the application now owns the file and is responsible for deleting it. This is
ignored on input.

Clear: Indicates on output that the CMC implementation owns the file and the application can only read the
file.

b) CMC_ATT_LAST_ELEMENT
Set: ldentifiesthelast structurein an array of such structures.
Clear: Thisisnot the last array element.

5) attach _extensions. Pointer to first element in array of per-attachment extensions. A value of NULL indicates that no
extensions are present.

4.4 Boolean
NAME
Boolean — Type definition for a Boolean data value.

C DECLARATION

t ypedef CMC uint16 CMC bhool ean;
DESCRIPTION
A data value of this data type is a Boolean, i.e. either false or true.

In the C interface, false is denoted by zero {CMC_FALSE]}, and true is denoted by any other integer, although the
symbolic constant {CMC_TRUE} refers to the integer one specifically.

4.5 Buffer
NAME
Buffer — Type definition for storage space in memory of an undefined type.

C DECLARATION

t ypedef void * CMC buffer;
DESCRIPTION

A data value of this data type is a pointer to a storage location in memory of an undefined type. The size of a void * is
specific to the platform.

4.6 Callback Data Structures
NAME
Callback Data Structures — Type definitions for a callback function data values.

Recommendation X.446 (08/97) 21

C DECLARATION

typedef struct CMC _TAG NEW MESSAGE CB DATA {
CMC_obj ect _handl e *avai |l abl e;
} CMC_new nessage_cal | back_dat a;

typedef struct CMC TAG NEW MESSAGE CHECK DATA {
CMC _ui nt 32 nurber _cont ai ners;
CMC _obj ect _handl e *cont ai ners;

} CMC _new nessage_check _dat a;

typedef CMC new nessage_check_data CMC_new_nessage_regi ster_dat a;
typedef CMC new nessage check data CMC_new _nessage_unregi ster_dat a;

typedef void (*CMC cal |l back) (

CMC session_id sessi on,
CMC_event event,
CMC _buf fer cal | back_dat a,
CMC _buf fer regi ster_dat a,
CMC_ext ensi on *cal | back_ext ensi ons
);
DESCRIPTION

Callback procedures allow the service to inform applications that an event has occurred. All callback procedures are of
type cmc_callback.

Programmers writing callback procedures should consider the platform-specific method that the callback is performed
and of the performance impact of callback functions. Callbacks are invoked in an implementation specific sequence by
the service when either the specified callback activity occurs or the function cmc_call_callbacks() is called. Effectively,
the CMC application running at the time of the callback invocation will be blocked until the callback returns.
Responsiveness of the CMC application will be impacted if the callback function does not return quickly.

The callback function prototype components include the following:
— session — The opaque handle which represents a session with the messaging service.

— event — A bitmask of events. Exactly one bit will be set which indicates the event that occurred and how to interpret
thecallback_data argument. The following flags are defined:

CMC_EVENT_NEW_MESSAGES
See the Event data type for the definition of this flag.
— callback_data — A pointer to the callback data structure specific to the event.

— register_data — A pointer to the data structure passed when registering the callbackcimdtregister () function
specific to the event.

— callback_extensions — A pointer to an array of CMC_extension structures for this callback function.

Each callback function returns a pointer to one of the callback data structures in its callback data argument. The
structure that is returned depends on the context of the callback and is determined by the value of the event
argument, as described below.

The callback data structure is the mechanism that the messaging service uses to provide update operation-specific
information to the application. Application can have additional context passed to their callback functions through
the use of the register data structure. The callback data structure is allocated by the CMC implementation; the
register data structure is allocated by the application.

When a callback is unregistered, it may also specify unregistered data associated emitf) time egister _event()

function to provide a context for the removal of registration (e.g. to await new messages on a smaller set of
containers). The unregister data structure is allocated by the application. The valid types of arguments for each
event are provided here.

22 Recommendation X.446 (08/97)

This Recommendation, the application may also poll for events with the cmc_check_event() function. Events may have
a context through a check data structure within which the cmc_check_event() function call is made. The check data
structure is allocated by the application. The valid types of arguments for each event are provided here.

This Recommendation, the only event specified is CMC_EVENT_NEW_MESSAGES. An application may poll for new
messages using cmc_check_event() or register callbacks to be called when new messages are received. If polling is
used, it may be restricted to specific containers specified in the check data argument in the cmc_check _event() function
with the structure CMC_TAG_new_message check _data. The data elementsin this structure include:

— number_containers — The number of container handles in thatainers argument. If the event is independent of
a container, this argument should be 0.

— containers — An array of handles of the containers to be checked for events. If the event is independent of a
container, this argument should be NULL.

Upon returncmc_check _event() returns the structure CMC_TAG_new_message_callback _data. The data elements in
this data structure include:

— available— The handle of a message container (among the ones specifieccbyttirer s argument) to which the
event corresponds. If no event occurred, the value is set to CMC_NULL_HANDLE.

When a callback is registered, the structure CMC_TAG_new_message_register_data is passed by reference in the
register_data argument to tb@c_register_event() function. The data elements in this data structure are identical to the
data elements in the CMC_TAG_new_message_check_data structure.

If a callback is registered and an event occurs, the structure CMC_TAG_new_message_callback data is passed to the
callback function. In addition, the CMC_TAG_new_message_register_data is passed to the callback function.

When a callback is unregistered, the structure CMC_TAG_new_message_unregister_data is passed by reference in the
register_data argument to the cmc_unregister function. The data elements in this data structure include:

— number_containers — The number of container handles in thatainers argument. If the event is independent of
a container, this argument should be 0.

— containers — An array of handles of the containers for which the application is no longer interested in receiving
notification of new messages. This array should be a subset of the handles specified in the containers argument in
the register_data argument in ttrac_register () function. If the event is independent of a container, this argument
should be NULL.

In all cases, the order in which the callback functions are invoked by the service is implementation specific.

4.7 Counted String
NAME
Counted String — Type definition for a CMC counted string structure.

C DECLARATION

typedef struct {
CMC_ui nt 32 | engt h;
char string[1];
} CMC counted_string;

DESCRIPTION

A data value of this type is a counted string where the length of the string is explicitly specified preceding the character
array. The string is not required to be null-terminated.

Support for a counted string data type is optional. Its purpose is to provide support for character sets in which embedded
nulls are allowed.

See the CMC_string type for information about determining the character set.

Recommendation X.446 (08/97) 23

The components of a counted string are:
1) length: Byte length of string that follows.
2) string: The characters that make up the string.

48 Cursor Handle
NAME
Cursor Handle — Type definition for a CMC cursor handle structure.

C DECLARATION
typedef systemdefined, e.g. uint32 CMC_cur sor _handl e;

DESCRIPTION

A data value of this type is an opaque cursor handle. The CMC cursor handles are defined in an implementation-specific
manner. The handle maintains a session context with a container cursor. The cursor facilitates the enumeration of objects
within a container. It is also used to display a "thumb" on a scroll bar windowing control to illustrate the relative position
within a collection of objects. Cursor handles cannot be copied.

49 Cursor Restriction
NAME
Cursor Restriction — Type definition for a CMC cursor restriction data type.

C DECLARATION

typedef struct CMC_TAG RESTRI CTI ON_AND {

CMC_ui nt 32 count ;

struct CMC_TAG RESTRI CTlI ON_CURSOR *restriction;
} CMC restriction_and,

typedef struct CMC_TAG RESTRI CTI ON_OR {

CMC _ui nt 32 count;

struct CMC_TAG RESTRI CTlI ON_CURSOR *restriction;
} CMC restriction_or;

typedef struct CMC TAG RESTRI CTI ON_NOT {

CMC_ui nt 32 count;

struct CMC_TAG RESTRI CTI ON_CURSOR *restriction;
} CMC restriction_not;

typedef struct CMC_TAG RESTRI CTI ON_STRI NG {

CMC_enum exact ness;
cvCid property;
CMC string string_constant;

} CMC restriction_string;
typedef struct CMC_TAG RESTRI CTI ON_CONTENT {

CMC_enum | ogi cal ;
cMC i d property;
CMC _buf fer property_val ue;

} CMC restriction_content;

typedef struct CMC _TAG RESTRI CTI ON_COMPARI SON {

CMC_enum | ogi cal ;
cMCid propertyl;
cveid property2;

} CMC restriction_conparison;

typedef struct CMC_TAG RESTRI CTI ON_BI TTEST ({

CMC_ui nt 32 conpari son;
cMCid property;
CMC_ui nt 32 bi t mask;

} CMC restriction_bitmask;

24 Recommendation X.446 (08/97)

typedef struct CMC_TAG RESTRI CTI ON_SI ZE {

CMC_enum | ogi cal ;
cvCid property;
CMC _ui nt 32 byte_size;

} CMC restriction_size;

typedef struct CMC _TAG RESTRI CTI ON_EXI ST {
cvCid property;
} CMC restriction_exist;

typedef struct CMC _TAG RESTRI CTI ON_CURSOR {

CMC_enum type;

uni on {
CMC restriction_and restriction_and,
CMC restriction_or restriction_or;
CMC restriction_not restriction_not;
CMC restriction_string restriction_string;
CMC restriction_content restriction_content;
CMC restriction_conparison restriction_conparison;
CMC restriction_bitmask restriction_bittest;
CMC restriction_size restriction_size;
CMC restriction_exist restriction_exist;

} cr;

CMC_ext ensi on *property_extensions;

} CMC cursor_restriction;

DESCRIPTION

A datavalue of thistypeisa CMC cursor restriction. A cursor restriction is the definition of afilter on the enumeration

of the contents of a container object. A cursor restriction has the following components:

1) type: Thetype of cursor restriction. The following valid restriction types are supported:

CMC_RESTRICTION_AND
CMC_RESTRICTION_OR
CMC_RESTRICTION_NOT
CMC_RESTRICTION_STRING
CMC_RESTRICTION_CONTENT
CMC_RESTRICTION_COMPARISON
CMC_RESTRICTION_BITTEST
CMC_RESTRICTION_SIZE
CMC_RESTRICTION_EXIST

CMC_RESTRICTION_AND - Filters for the subrestrictions being all true.
CMC_RESTRICTION_OR - Filters for any one or more of the subrestrictions being true.
CMC_RESTRICTION_NOT - Filters for the subrestriction(s) being all false.
CMC_RESTRICTION_STRING - Filters for exactness in a string match with a property value.

CMC_RESTRICTION_CONTENT - Filters for a logical comparison of a constant and a property value.

CMC_RESTRICTION_COMPARISON - Filters for a logical comparison of two property values.
CMC_RESTRICTION_BITTEST - Filters for a property value matching the specified bitmask test.
CMC_RESTRICTION_EXIST - Filters for a property existing in the object or not.

2) restriction: Specifies the cursor restriction value.
3) property_extensions. Pointer to first element in array of property extensions.
The exactness structure element has the following valid string-exactness enumerated values:

CMC_EXACTNESS_PRECISE
CMC_EXACTNESS_STARTS_WITH
CMC_EXACTNESS_MIXED_CASE

Recommendation X.446 (08/97)

25

CMC_EXACTNESS_PRECISE - Property value matches exactly with the string constant.
CMC_EXACTNESS_STARTS_WITH — Property value starts with the string constant.
CMC_EXACTNESS_MIXED_CASE - Property value matches independent of the case.

The logical structure element has the following valid logical-operator enumerated values:

CMC_LOGICAL_LT
CMC_LOGICAL_LE
CMC_LOGICAL_EQ
CMC_LOGICAL_NE
CMC_LOGICAL_GT
CMC_LOGICAL_GE

CMC_LOGICAL_LT - Less than.
CMC_LOGICAL_LE — Less than or equal to.
CMC_LOGICAL_EQ - Equal to.
CMC_LOGICAL_NE — Not equal to.
CMC_LOGICAL_GT - Greater than.
CMC_LOGICAL_GE — Greater than or equal to.

The comparison structure element has the following valid bitmask-comparison enumerated values:

CMC_COMPARISON_OR
CMC_COMPARISON_AND

CMC_COMPARISON_OR - Property value is equal to the logical OR of the bitmask.
CMC_COMPARISON_AND - Property value is equal to the logical AND of the bitmask.

4.10 Cursor Sort Key
NAME
Cursor Sort Key — Type definition for a CMC cursor sort key data type.

C DECLARATION

typedef struct CMC_TAG CURSOR _SORT_KEY {
cveid property;
CMC_enum order;

} CMC cursor_sort_key;

DESCRIPTION

A data value of this type is a CMC cursor sort key. A cursor sort key defines the order in which elements of a container
are sorted when enumerated by a cursor. An implementation may have an array of cursor sort keys. A cursor sort key has
the following components:

1) property: Specifies the property on which the enumerated elements will be sorted.

2) order: Specifies the order in which the enumerated elements will be sorted. The valid sort orders are one of the
following:

CMC_SORT_DEFAULT
CMC_SORT_ASCEND
CMC_SORT_DESCEND

CMC_SORT_DEFAULT — The elements of the container will not necessarily be sorted, but will be left in their default
order. The result of this order is implementation specific.

CMC_SORT_ASCEND - Sorts the elements of the container object in ascending order. Objects that do not have the
property listed by the sort key are placed last.

CMC_SORT_DESCEND - Sorts the elements of the container object in descending order. Objects that do not have the
property listed by the sort key are placed last.

26 Recommendation X.446 (08/97)

411 Dispatch Table
NAME

Dispatch Table — Type definition for a structure with pointers to the functions of a CMC implementation.

C DECLARATION

typedef struct {
CMC_ext ensi on

/* SEND */
CMC return_code
(*cnt_send) (
CMC session_id
CMC_nessage
CMC fl ags
CMC ui _id
CMC_ext ensi on
);
/* SEND DOCUMENT */
CMC _return_code
(*cnt_send_docunent s) (
CMC string
CMC string
CMC string
CcMC fl ags
CMC string
CMC string
CMC string
CMC ui _id
)
/* ACT ON */
CMC return_code
(*cnct_act _on) (
CMC session_id
CMC _nessage_reference

CMC_enum
CMC fl ags
CMC ui _id
CMC _ext ensi on
)
[* LIST */

CMC return_code
(*crec_list)(
CMC session_id
CMC string
CMC fl ags
CMC _nessage_reference
CMC_ui nt 32
CMC ui _id
CMC_nessage_sunmary
CMC_ext ensi on

)

/* READ */
CMC return_code
(*cnc_read) (
CMC session_id
CMC _nessage_reference
CMC fl ags
CMC_nessage
CMC ui _id
CMC_ext ensi on

*di spat ch_t abl e_ext ensi ons;

sessi on,
*message,

send_f | ags,

ui _id,

*send_ext ensi ons

reci pi ent _addr esses,
subj ect

text _note,
send_doc_f1 ags,

fil e_pat hs,
file_nanmes,
delimter,

ui _id

sessi on,

*message_r ef erence,
operati on,

act _on_fl ags,

ui _id,

*act _on_extensions

sessi on,
message_type,
list flags,
*seed,

*count,

ui _id,

**result,

*|i st _extensions

sessi on,
*message_ref erence,
read_f1l ags,
**message,

ui _id,

*read_ext ensi ons

Recommendation X.446 (08/97)

27

28

[* LOOK UP */

CMC return_code

(*cnt_| ook _up) (
CMC session_id
CMC _reci pi ent
CMC fl ags
CMC ui _id
CMC_ui nt 32
CMC _r eci pi ent
CMC_ext ensi on

)

/* FREE */

CMC return_code

(*cnc_free)(
CMC _buf fer

)

/* LOGOFF */

CMC return_code

(*cnc_| ogoff) (
CMC session_id
CMC ui _id
cMC fl ags
CMC_ext ensi on

)

/* LOGON */

CMC return_code

(*cnc_| ogon) (
CMC string
CMC string
CMC string

CMC object _identifier

CMC ui _id
CMC ui nt 16
CcMC fl ags

CMC session_id
CMC_ext ensi on

)

/* QUERY CONFI GURATI ON */

CMC return_code

(*cnc_query_configuration)(

CMC session_id
CMC_enum
CMC _buf fer
CMC_ext ensi on
)
/* FULL CMC */

/* COPY OBJECT */

CMC return_code

(*cnc_copy_obj ect) (
CMC_obj ect _handl e
CMC_obj ect _handl e
CMC _obj ect _handl e
CMC _ext ensi on

)

/* ADD PROPERTI ES */

CMC return_code

(*cnc_add_properties)(
CMC _obj ect _handl e
CMC_ui nt 32
CMC _property
CMC_ext ensi on

)

/[* COW T OBJECT */

CMC return_code

(*cnc_commit _obj ect) (
CMC _obj ect _handl e
CMC_ext ensi on

)

Recommendation X.446

(08/97)

sessi on,
*recipient_in,

| ook_up_fIl ags,

ui _id,

*count,

**reci pi ent _out,

*| ook_up_ext ensi ons

menory

sessi on,

ui _id,

| ogof f _fl ags,

*| ogof f _ext ensi ons

servi ce,

user,

password,
character_set,

ui _id,
caller_cnt_version,
| ogon_f I ags,

*sessi on,

*| ogon_ext ensi ons

sessi on,

item

reference,

*confi g_extensions

cont ai ner,
sour ce_obj ect,
*new_obj ect,

*copy_obj ect _ext ensi ons

obj ect,
nunber _properties,
*properties,

*add_properti es_extensions

sour ce_obj ect,

*conmit _obj ect _extensions

/* COPY OBJECT HANDLE */
CMC return_code

(*cnc_copy_obj ect _handl e) (

CMC_obj ect _handl e
CMC_obj ect _handl e
CMC_ext ensi on

)

sour ce_obj ect,
*new_obj ect,
*copy_obj ect _handl e_ext ensi ons

| * CREATE DERI VED MESSACGE OBJECT */

CMC return_code

(*cnc_create_derived_nmessage_obj ect) (

CMC_obj ect _handl e
CMC_enum

CMC _bool ean
CMC_obj ect _handl e
CMC _bool ean
CMC_ext ensi on

)

/* DELETE OBJECTS */
CMC return_code
(*cnt_del et e_obj ects) (
CMC_ui nt 32
CMC_obj ect _handl e
CMC_ext ensi on

)

/ * DELETE PROPERTI ES */
CMC return_code
(*cnc_del ete_properties)(
CMC _obj ect _handl e
CMC_ui nt 32
CMC id
CMC_ext ensi on

)

/* CGET ROOT HANDLE */

CMC return_code

(*cnc_get _root _handl e) (
CMC session_id
CMC_obj ect _handl e
CMC _ext ensi on

);

/* | DENTI FI ER TO NAME */

CMC return_code

(*cnc_identifier_to _nane)(

cMC i d
CMC_nane
CMC_ext ensi on

)

/* LI ST CONTAI NED PROPERTI ES */

CMC return_code

(*cnc_list_contai ned_properties)(

CMC _cursor _handl e
CMC_si nt 32

CMC_si nt 32

cMC i d

CMC _property
CMC_ext ensi on

)

/* LI ST NUMBER MATCHED */
CMC return_code

(*cnt_list_nunber mat ched) (

CMC _cursor _handl e
CMC_ui nt 32
CMC_ext ensi on

);

ori gi nal _nessage,

derived_acti on,

i nherit_contents,
*derived_nessage,

nmodi fi ed_nessage,
*create_derived_obj ect _extensions

nunber obj ect s,
*obj ect
*del et e_obj ect s_ext ensi ons

obj ect,

nunber properties,
*property_ids,

*del et e_properti es_extensions

sessi on,
*r oot _obj ect _handl e,
*get _root _handl e_ext ensi ons

identifier,
*nane,
*identifier_to_nanme_extensions

*cursor,

*nunber _obj ect,

*nunber _properties,

*property_ids,

**properties,

*| i st_contained_properties_extensions

*cursor,
*nunber _mat ches,
*|ist_nunber_nat ched_ext ensi ons

Recommendation X.446 (08/97) 29

30

/* LI ST OBJECTS */
CMC return_code
(*cnt_list_objects)(
CMC _cursor _handl e
CMC _si nt 32
CMC_obj ect _handl e
CMC_ext ensi on
)
/* LI ST PROPERTIES */
CMC return_code
(*cnt_list_properties)(
CMC _obj ect _handl e
CMC_ui nt 32
cMC i d
CMC_ext ensi on
)
/* NAVE TO | DENTI FI ER */
CMC return_code
(*cnc_nanme_to_identifier)(
CMC_nane
cMCid
CMC_ext ensi on
)
/* OPEN CURSOR */
CMC return_code
(*cnc_open_cursor) (
CMC _obj ect _handl e
CMC cursor _restriction
CMC_ui nt 32
CMC _cursor_sort_key
CMC _cursor _handl e
CMC_ext ensi on
)
/* OPEN OBJECT HANDLE */
CMC return_code
(*cnt_open_obj ect _handl e) (
CMC _session_id
CMC_obj ect _handl e
cMCid
CMC_ext ensi on
)
/* READ CURSOR */
CMC return_code
(*cnc_read_cursor) (
CMC _cursor _handl e
CMC_ui nt 32
CMC_ui nt 32
CMC_ext ensi on
)
/* READ PROPERTI ES */
CMC _return_code
(*cnc_read_properties)(
CMC_obj ect _handl e
CMC_ui nt 32
CMCid
CMC _property
CMC_ext ensi on
)
/* READ PROPERTY COSTS */
CMC return_code

(*cnc_read _property _costs)(

CMC_obj ect _handl e
CMC_ui nt 32

cMC i d

CMC_enum

CMC_ext ensi on

Recommendation X.446 (08/97)

*cursor,

*nunber _obj ect s,

*obj ect s,

*| i st_obj ects_extensions

*obj ect,

*nunber _properties,
*property ids
*|ist_properties_extensions

namne,
*identifier,
*nanme_to_identifier_extensions

obj ect,

*restrictions,
nunber_sort_orders,
*sort _keys,

*cursor,
*open_cur sor _ext ensi ons

sessi on,

*new_obj ect,

obj ect _cl ass,
*open_obj ect _handl e_ext ensi ons

*cursor,

*posi ti on_numer at or,
*posi tion_denom nator,
*read_cursor_extensions

obj ect,

*nunber _properties,
*property_ids,

**properties,
*read_properties_extensions

obj ect,

*nunber _properties,

*property ids

*costs,

*read_property costs_extensions

/* RESTORE OBJECT */
CMC return_code
(*cnt_restore_object)(
CMC_obj ect _handl e
CMC string
CMC_obj ect _handl e
CcMC fl ags
CMC_ext ensi on

)
/* SAVE OBJECT */
CMC return_code
(*cnc_save_object) (
CMC_obj ect _handl e
CMC string
CMC fl ags
CMC_ext ensi on
);
/* SEND MESSAGE OBJECT */
CMC return_code
(*cnt_send_nmessage_obj ect) (
CMC _obj ect _handl e
CMC_ext ensi on
)

/* UPDATE CURSOR PCSI TI ON */
CMC return_code
(*cnc_updat e_cursor_position)(
CMC _cursor _handl e
CMC_ui nt 32
CMC_ui nt 32
CMC_ext ensi on

)

cont ai ner,
file_specification,

*rest ored_object,
restore_fl ags,

*rest ore_obj ect _extensions

obj ect,
file_specification,
save_fl ags,

*save_obj ect _ext ensi ons

message_to_send,
*send_nessage_obj ect _ext ensi ons

*cursor,

posi ti on_nurmer at or,

posi ti on_denoni nat or,

*updat e_cursor_positi on_extensi ons

/* UPDATE CURSOR PCSI TION W TH SEED */

CMC return_code

(*cnc_updat e_cursor_position_w th_seed)(

CMC _cursor _handl e
CMC _obj ect _handl e
CMC_ext ensi on
);
/* CHECK EVENT */
CMC return_code
(*cnc_check_event) (
CMC session_id
CMC_event
CMC_ui nt 32
CMC_buf f er
CMC_buf f er
CMC_ext ensi on
)
/* REGQ STER EVENT */
CMC return_code
(*cnt_regi ster_event)(
CMC session_id
CMC_event
CMC _cal | back
CMC _buf fer
CMC_ext ensi on
)

/* UNREGQ STER EVENT */
CMC return_code
(*cnt_unregi ster_event) (

CMC session_id

CMC fl ags

CMC _cal | back

CMC _buf fer

CMC_ext ensi on

cursor,
seed,

*updat e_cursor_position_w th_seed_extensions

sessi on,

event _type,

m ni mum_ ti meout ,
check_event dat a,

*cal | back_dat a,

*check _event _ext ensi ons

sessi on,

event _type,

cal | back,

regi ster_dat a,

*regi ster_event _extensi ons

sessi on,

event _type,

cal | back,

unregi st er _dat a,

*unr egi st er _event _ext ensi ons

Recommendation X.446 (08/97)

31

32

/* CALL CALLBACKS */
CMC return_code
(*cnct_cal |l _cal | backs) (
CMC session_id
CMC_event
CMC_ext ensi on
);
/* EXPORT STREAM */
CMC return_code
(*cnt_export _stream (
CMC_stream handl e
CMC string
CMC_ui nt 32
CcMC fl ags
CMC_ext ensi on
)
/

CMC return_code

(*cnc_inport file to_stream(

CMC_stream handl e
CMC string
CMC_ui nt 32
CMC_ext ensi on
);
/* OPEN STREAM */
CMC return_code
(*cnc_open_stream (
CMC_obj ect _handl e
CMC _property
CMC_enum
CMC_stream handl e
CMC_ext ensi on
)
/* READ STREAM */
CMC return_code
(*cnc_read_stream (
CMC_stream handl e
CMC_ui nt 32
CMC _buf fer
CMC_ext ensi on

)

/* SEEK STREAM */
CMC return_code
(*cnc_seek_stream (
CMC_stream handl e
CMC_enum
CMC_ui nt 32
CMC _ext ensi on

)

/* WRI TE STREAM */
CMC return_code
(*cnc_wite_strean)(
CMC_stream handl e
CMC_ui nt 32
CMC buf fer
CMC_ext ensi on

)
/* CGET LAST ERROR */
CMC return_code
(*cnt_get last_error)(
CMC session_id
CMC_obj ect _handl e
CMC string
CMC_ext ensi on
)
} CMC_di spatch_tabl e;

Recommendation X.446

* | MPORT FILE TO STREAM */

(08/97)

sessi on,
event _type,
*cal | _cal | backs_ext ensi ons

stream
file_specification,

count,

export _fl ags,
*export_stream extensions

stream

file_specification,

file offset,

*inmport _file to_stream extensions

obj ect,

*property,

operati on,

**stream

*open_stream ext ensi ons

stream

*count,

content information,
*read_stream ext ensi ons

stream

operati on,

*| ocati on,

*seek stream ext ensi ons

*stream

*count,

*content i nformati on,
*write_stream extensions

sessi on,

obj Ref ,

**error_buffer,

*get | ast_error_extensions

/* BI ND | MPLEMENTATI ON */

CMC return_code

cnc_bi nd_i npl enent ati on (
CMC guid
CMC _di spatch_tabl e
CMC_ext ensi on

i npl enent ati on_nane,
**di spatch_t abl e,
*cnt_bi nd_ext ensi ons

);
/* UNBI ND | MPLEMENTATI ON */
CMC return_code
cnt_unbi nd_i npl emrentati on (
CMC guid
CMC_ext ensi on

i mpl emrent ati on_nane,
*cnc_unbi nd_i npl enent ati on_ext ensi ons

)
DESCRIPTION

A data value of this data type is a dispatch table for a CMC implementation. The dispatch table includes an entry for
each function in a CMC implementation. Refer to the examplesin C.2 (bind.c and cmc_bind.c) on the use of the dispatch
table.

412 Enumerated
NAME
Enumerated — Type definition for an enumerated data value.
C DECLARATION
typedef CMC sint32 CMC enum
DESCRIPTION

A data value of this data type contains a value selected from an enumerated list.

4.13 Events
NAME
Events — Type definition for a CMC event.
C DECLARATION
t ypedef CMC_ui nt 32

DESCRIPTION

CMC_event;

A data value of this type contains 32 event bits. Undocumented events are reserved. Event bits set to zero are referred tc
as "clear". Event bits set non-zero are referred to as "set". Unspecified event bits should always be clear.

Set: New messages have arrived in a message container.
Clear: No new messages have arrived in a message container.
In this Recommendation, the only valid event type is:

CMC_EVENT_NEW_MESSAGES

414 Extension
NAME
Extension — Type definition for a CMC extension structure.

C DECLARATION
typedef struct {

CMC_uint32 item_code;
CMC_uint32 item_data;
CMC_buffer item_reference;
CMC_flags extension_flags;

} CMC_extension;

Recommendation X.446 (08/97) 33

DESCRIPTION

A data value of this type is an extension. The same extension structure is used to specify and receive extension
information related to CMC function calls and CMC data structures.

In general, function calls and data structures may alow input and output extensions, with the direction implied by the
extension item code. Input extensions may refer to storage allocated by the application and output extensions may refer
to storage allocated by the CMC service. For example, some cmc_act_on() implementations might allow saving of
partially completed messages to the inbox for later reading and sending by using the CMC_X_COM_SAVE_MESSAGE
extension to pass in the message structure and receive back the resulting message reference. For the complete list of
common message extensions specified in this Recommendation, see 4.11 and 4.14.

For CMC extension arrays that may contain output extension storage alocated by the CMC service, calers must use
cmc_free() to free the pointer returned in the item_reference field. These structures are identified by the output flag
CMC_EXT_OUTPUT set and a non-NULL item_reference value. Callers explicitly request output function extensions
from function calls by setting the appropriate extension item_code. All substructures contained in the allocated memory
will be freed when the base structure pointer is freed.

Data extensions do not need to be freed explicitly since they are freed with the structure they are contained in. For
example, the message_extensions array resulting from cmc_read() isimplicitly freed when cmc_free() is called for the
enclosing message structure.

An extension has the following components:
1) item_code: A code that uniquely identifies this extension.

2) item data: Depending on the item_code, item_data may hold the length of the item value, the item value itself or
other information about the item. The specification of the extension describes how this field should be interpreted.

3) item reference: Depending on the item_code, item_reference may hold a pointer to where the item value is stored
or NULL if there is no related item storage. The specification of the extension describes how this field should be
interpreted.

4) extension flags: Bits for Boolean attributes. The upper 16 bits are reserved for definition by the CMC specification.
Any unused bits of these must be clear. The lower 16 bits of flags are reserved for definition by the extension.

a CMC_EXT_REQUIRED

Set: Return an error if this extension cannot be supported.

Clear: Allow "best effort" support, including no support, of this extension.
b) CMC_EXT _OUTPUT

Set: Indicates on output extensions that this extension contains a pointer to memory allocated by the CMC
implementation which must be freed with cmc_free().

Clear: The implementation did not allocate memory for the extension that the application needs to free. This
flag is always clear on data extensions as described above.

¢) CMC_EXT_LAST ELEMENT

Set: ldentifies the last structure in an array of such structures. This must be at the end of the extension
array.

Clear: Thisisnot the last array element.

415 Flags
NAME
Flags — Type definition for a CMC flag.

C DECLARATION
t ypedef CMC_ui nt 32 CMC _fl ags;

34 Recommendation X.446 (08/97)

DESCRIPTION

A data value of this type contains 32 flag bits. The meaning of the bits depends on the context in which the flags data
value is used. Undocumented flags are reserved. Flags set to zero are referred to as "clear”. Flags set non-zero are
referred to as "set". Unspecified flags should always be clear.

4.16 GUID
NAME
GUID - Type definition for a CMC globally unique identifier (GUID) structure.
C DECLARATION
typedef CMC string CMC guid
DESCRIPTION

A data value of this type is a globally unique identifier. The string is formatted according to the formal public identifier
text of ISO 9070 to guarantee uniqueness. The CMC GUIDs have the following format:

—I/IXAPIA/ICMC/ name type/INONSGMLname//[EN

where name type is the type of name and name is the name of the object to which the GUID is being assigned. For
example, the object class CONTENT ITEM is:

—IIXAPIA/ICMC/OBJECT CLASS//NONSGML Content ltem//EN

Some of the CMC GUID values may be defined in terms of an 1SO/OSI Object Identifier (OID). The OID can be
encapsulated into an 1SO 9070 formal public identifier. The FPI encapsulation is accomplished as follows:

—IIXAPIA/ICMC/OID//INONSGML <oid>//EN

where <oid> isthe numeric form of the OSI OID as defined by the object identifier datatypein 4.24.

4.17 Identifier
NAME
Identifier — Type definition for an implementation specific, unique identifier.
C DECLARATION
typedef systemdefined, e.g. uint32 CMC i d;
DESCRIPTION

A data value of this type is an implementation-specific, unique identifier. This data type is used for locally unique
identifiers such as property id and object class id.

4.18 SO Date and Time
NAME
ISO Date and Time — Type definition for an 1ISO 8601 formatted date and time data value.
C DECLARATION
typedef CMC string CMC date_ti ne;

Recommendation X.446 (08/97) 35

DESCRIPTION

A data value of this data type is a date and time value consistent with the combined date and time of the day
representation of 1SO 8601. The format of this data type supports the time of the day represented as either local time, or
the clock time in public use locally; Coordinated Universal Time (UTC), or the time scale maintained by the Bureau
Internationa de I'Heure that forms the basis of a coordinate dissemination of standard frequencies and time signals; or
the local time difference between UTC.

The data value is a concatenation of the date and time representations. The character [T] is used as time designator to
indicate the start of the representation of time of day in the combined date and time of day string expression. If the time
isin UTC, the character [Z] is used as time-zone designator for UTC. If the time-zone designator is absent, thetimeisin
local time. For example, ccyymmddThhmmssZ, where [cc] is the century string, [yy] is the year string, [mm] is the
month string, [dd] is the day of the month string, [hh] is the hour string in a 24-hour format, [mm] is the minutes past the
hour string, and [ss] is the seconds past the minute string.

For local time as the difference from UTC, the date and time is represented by the string ccyymmddThhmmss+hhmm,
ccyymmddThhmmss+hh, ccyymmddThhmmss—hhmm, or ccyymmddThhmmss—hh, where [cc] is the century string, [yy]
is the year string, [mm] is the month string, [dd] is the day of the month string, [hh] is the hour string in a 24-hour
format, [mm] is the minutes past the hour string, and [ss] is the seconds past the minute string. The time-zone designator
is absent and the date and time string is concatenated with the hour and minute or hour offset from UTC. The difference
between local time and UTC is expressed in hours and minutes, or hours only independently of the precision of the local
time expression associated with it. It is expressed as positive (i.e. with the leading plus sign [+]) if the local tirde is ahea
of UTC and as negative (i.e. with the leading minus sign [-]) if it is behind UTC. For example, 19850414T152746+0100
would be April 14, 1985 and the time of 27 minutes 46 seconds past 15 hours locally in a location normally one hour
ahead of UTC. The string 19850414T152746—-05 would be April 14, 1985 and the time of 27 minutes 46 seconds past
15 hours locally in a location normally five hours behind UTC.

1) date — The calendar date, expressed as the complete representation, basic format, as defined in ISO 8601,
clause 5.2.1.1. For example, April 14, 1985 would be represented by the string 19850414.

2) time — The time of the day, expressed as either the local time, equivalent Coordinated Universal Time (UTC), or
local time difference from UTC. The time format is the complete representation, basic format, as defined in
ISO 8601, clauses 5.3.3 and 5.3.3.1. For example, UTC time 20 minutes and 30 seconds past 23 hours would
be represented by the string 232030Z. The local time 10 minutes and 15 seconds past 12 hours would be
represented by the string 121510. The same local time as the difference from UTC would be represented by the
string 121510-06 or 121510-0600 if local time was six hours behind UTC.

4.19 M essage
NAME
Message — Type definition for a CMC message structure.

C DECLARATION

typedef struct {
CMC_message reference *message reference;

CMC_string message_type;
CMC_string subject;

CMC_time time_sent;
CMC_string text_note;

CMC_recipient *recipients;
CMC_attachment *attachments,

CMC_flags message flags;
CMC_extension *message_extensions;

} CMC_message;
DESCRIPTION

A data value of this type is a message. This data structure is included to provide support for CMC 1.0 and Simple CMC
implementations. A message has the following components:

1) message reference: Identifies the message. The message reference is unique within a mailbox.

36 Recommendation X.446 (08/97)

2) message type: String that identifies the type of the message. Three different string identifiers may be used:
a) Object Identifiers — Used for types identified by object identifiers as defined in Recommendation X.208.
b) CMC Registered Values — Used for types defined in this Recommendation.
c) Bilaterally Defined Values — Used for types that are unregistered.

NOTE - Bilaterally defined values are not ensured to be unique.

The format of each typeis given below. White space can be any combination of tabs or spaces. "*" indicates one or more
of the denoted token (separated by white space) is valid. Quoted strings are case insensitive.

message _type value ::=oid | cmc_reg | bilat_def

oid :="0ID:" object_identifier

cmc_reg :="CMC:" cmc_registered_value

bilat_def =="BLT:" string

object_identifier = object_id_component*

object_id_component = integer

cmc_registered_value 2="IPM" |"IPRN" |"IPNRN" | "DR" | "NDR" | "REPORT"

These registered values are defined as follows:

"CMC: IPM" Interpersonal message: An interpersonal message is a memo-like message containing a recipient
list, an optional subject, an optional text note, and zero or more attachments. The "Message"
structure is optimized to accommodate a message of type IPM.

"CMC: IPRN" Receipt notification for an interpersonal message: A receipt notification indicates that a message
has been read by the recipient.

"CMC: IPNRN" Non-receipt notification for an interpersonal message: A non-receipt notification indicates that a
message has been removed from the recipient’'s mailbox without being read (for instance, the
message has been discarded by the user or the service or it has been auto-forwarded to another

recipient).

"CMC: DR" Delivery report: A delivery report indicates that the service was able to deliver a message to the
recipient.

"CMC: NDR" Non-delivery report: A non-delivery report indicates that the service was not able to deliver a

message to the recipient.

"CMC: REPORT" Both delivery and non-delivery reports when the original message is destined for multiple
recipients: This is to indicate that the underlying messaging service is able to deliver the
message to some recipients but not to the others.

The format of these message types within the structures defined depend upon the messaging protocols that have beer
employed by the messaging service. Often non-IPM messages take the form of a program-generated message, which
follows a memo-like format (similar to that of an IPM) but whose purpose is to convey information about a previously
sent message.

NOTE — These message types correspond to X.400 message types; however, the types may be used with non-X.400 messaging
services. Thus, these CMC message types are meant to apply generically and not specifically to X.400.

Example valid identifiers are:

OID: 12840 113556 3 2 850
CMC: IPM
BLT: my special message type

A canonical form of these types is also defined to allow an application to easily compare these strings. The CMC
implementation will always return the canonical form. In the canonical form:

1) all white spaceis converted to asingle space, and all tokens will be separated by a white space;

2) thetypeidentifiers(i.e. OID, CMC, BLT) are converted to upper case.

Recommendation X.446 (08/97) 37

Some CMC implementations will only support the interpersonal message type (CMC: IPM). Other types of messages
may be treated as IPM messages or may generate an error on those implementations.

It is undefined what the implementation will do with strings that are not in one of these formats.
3) subject: Message's subject string.
4) time_sent: Date/time message was sent (submitted).

5) text_note Message’s text note string. If the wvalue is NULL, there is no text note. If the
CMC_TEXT_NOTE_AS FILE flag is set, the text note is in the first attachment.

The format of the text note, regardless of whether it is passed in memory or in a file, is a sequence of paragraphs,
with the appropriate line terminator for the platform (CR for Macintosh, LF for Unix, CR/LF for DOS and
Windows, etc.) terminating each paragraph. Long lines (paragraphs) may be word wrapped by the CMC
implementation.

NOTE — There is no guaranteed fidelity (e.g. a long paragraph may be returned by the CMC read functions as a series of shorter
paragraphs).

6) recipients: Pointer to first element in array of recipients of the message.
7) attachments: Pointer to first element in array of attachments for the message.
8) message flags: Bitsfor Boolean attributes. Unused bits must be clear.
a CMC _MSG READ
Set: Message has been read.
Clear: Message has not been read.
b) CMC_MSG TEXT _NOTE_AS FILE

Set: Text-note field is ignored and the text_note text is contained in the file referred to by the first
attachment.

Clear: Text_notetext is contained in the text note string.
c) CMC_MSG _UNSENT

Set: Message has not been sent (i.e. it is a draft). This type of message can be created with the
CMC_X_COM_SAVE_MESSAGE extension.

Clear: Message has been sent.

d) CMC MSG _LAST ELEMENT
Set: ldentifiesthelast structurein an array of such structures.
Clear: Thisisnot the last array element.

9) message_extension: Pointer to first element in array of per-message extensions.

4.20 M essage Reference
NAME
Message Reference — Type definition for a CMC message reference structure.

C DECLARATION

t ypedef CMC counted_string CMC nessage_reference;
DESCRIPTION
A data value of this type is a counted string that is the message handle used by the mailbox. This data structure is
included to provide support for CMC 1.0 and Simple CMC implementations. A Message Reference is only guaranteed to
be valid for the life of the session and has no guaranteed correspondence to any message identifier used by the

underlying messaging system. Within the session lifetime, it may be copied by the application program.

38 Recommendation X.446 (08/97)

421 M essage Summary
NAME
Message Summary — Type definition for a CMC message summary structure.

C DECLARATION

typedef struct {
CMC_message reference *message reference;

CMC_string message_type;

CMC_string subject;

CMC_time time_sent;

CMC_uint32 byte length;

CMC_recipient *originator;

CMC_flags summary_flags;
CMC_extension *message summary_extensions;

} CMC_message_summary;
DESCRIPTION

A data value of this type is a message summary. This data structure is included to provide support for CMC 1.0 and
Simple CMC implementations. A message summary has the following components:

1) message reference: See definition in Message Structure.
2) message type: See definition in Message Structure.

3) subject: See definition in Message Structure.

4) time_sent: See definition in Message Structure.

5) byte length: Message size. The value should include all associated features of the message — attachments, envelope
and heading fields, etc. Implementations may return an approximate value or the constant
CMC_LENGTH_UNKNOWN if the length is unknown or unavailable.

6) originator: Message originator.
7) summary_flags: Bits for Boolean attributes. Unused bits must be clear.
a) CMC_SUM_READ
Set: Message has been read.
Clear: Message has not been read.
b) CMC_SUM_UNSENT
Set: Message has not been sent (i.e. it is a draft).
Clear: Message has been sent.
c) CMC_SUM_LAST_ELEMENT
Set: Identifies the last structure in an array of such structures.
Clear: This is not the last array element.
d) CMC_SUM_HAS_ATTACHMENTS
Set: Message has attachments.
Clear: Message has no attachments.

8) message summary_extensions: Pointer to first element in array of per-message-summary extensions.

4.22 Name
NAME
Name — Type definition for a unigue CMC 2.0 name.
C DECLARATION
typedef CMC string CMC_narne;
Recommendation X.446 (08/97) 39

DESCRIPTION

A data value of this type is a unique name. The string is formatted according to the formal public identifier text of
I SO 9070 to guarantee uniqueness. The CMC names have the following format:

—IIXAPIA/ICMC/ nane typel/INONSGML nanel//EN

where name type is the type of name and name is the name of the object. For example, the object class CONTENT
ITEM is:

—IIXAPIA/ICMC/OBJECT CLASS//NONSGML Content Item//EN

423 Object Handle
NAME
Object Handle — Type definition for a CMC object handle structure.

C DECLARATION

typedef systemdefined, e.g. uint32 CMC_obj ect _handl e;
DESCRIPTION
A data value of this type is an opaque object handle. The CMC object handles are unique to the message service. The
handles are persistent for the duration of the session or until they are destroyed. The handle provides the context to a
CMC object. The handle encapsulates the session id. To copy an object handle,onse ¢bpy_object_handle()
function.
The notion of "no handle" needs to be stored in an object handle. In this case, the constant CMC_NULL_HANDLE is
used and is system-defined.
4.24 Object Identifier
NAME

Obiject Identifier — Type definition for a CMC object identifier structure.

C DECLARATION

t ypedef CMC string CMC obj ect _identifier;
DESCRIPTION
A data value of this type is an object identifier as defined in Recommendation X.208. This data structure is included to
provide support for CMC 1.0 and Simple CMC implementations. It is globally unambiguous. Its syntax as used in this

Recommendation shall match the Number form in Recommendation X.208. This syntax is:

obj ect _identifier .= object_id _conponent*

object_id_component ;:=integer
An example of an object identifier is:

12840113556 3 2 850

NOTE — The format of the object_identifier string is the same as the one used in the OID message type.

4.25 Opaque Data
NAME
Opague Data — Type definition for an opaque data value.

40 Recommendation X.446 (08/97)

C DECLARATION

typedef struct CMC TAG OPAQUE DATA {

CMC _size
CMC_byte
} CMC_opaque _data;

DESCRIPTION

A datavalue of this datatype is an opaque data value. Opague data structure consists of the following components:

Size,
*data;

1) size— Specifies the number of 8-bit, bytes of opaque data pointeddatay

2) data-— A pointer to an array of 8-bit values. There is no explicit semantics to this data.

4.26 Property
NAME

Property — Type definition for a CMC property data type.

C DECLARATION

typedef struct CMC TAG PROPERTY{

CMC_id

CMC_enum

union {
CMC_boolean
CMC_bhyte
CMC_buffer
CMC_counted_string
CMC_enum
CMC_extension
CMC float32
CMC float64
CMC_flags
CMC_guid
CMC_iso_date time
CMC_object_handle
CMC_opaque_data
CMC_return_code
CMC_sint16
CMC_sint32
CMC_string
CMC_time
CMC_uint16
CMC _uint32
CMC_array_boolean
CMC_array_buffer
CMC_array_counted_string
CMC_array_enum
CMC_array_extension
CMC_array_float32
CMC_array_float64
CMC_array_guid
CMC_array_iso_date time
CMC_array_object_handle
CMC_array_opaque _data
CMC_array_return_code
CMC_array_sint16
CMC_array_sint32
CMC_array_string
CMC_array_time
CMC_array_uintl6
CMC_array_uint32

} value

} CMC_property;

property id;
type;

CMC_pv_boolean;
CMC_pv_byte;
CMC_pv_buffer;
CMC_pv_counted_string;
CMC_pv_enum;
CMC_pv_extension;
CMC_pv_float32;
CMC_pv_float64;
CMC_pv_flags;
CMC_pv_guid;
CMC_pv_iso_date time;
CMC_pv_object_handle;
CMC_pv_opaque _data;
CMC_pv_return_code;
CMC_pv_sintl6;
CMC_pv_sint32;
CMC_pv_sgtring;
CMC_pv_time;
CMC_pv_uint16;
CMC_pv_uint32;
CMC_pv_array_boolean;
CMC_pv_array_buffer;
CMC_pv_array_counted_string;
CMC_pv_array_enum,;
CMC_pv_array_extension;
CMC_pv_array_float32;
CMC_pv_array_float64;
CMC_pv_array_guid;
CMC_pv_array_iso_date time;
CMC_pv_array_object_handle;
CMC_pv_array_opaque_data;
CMC_pv_array_return_code;
CMC_pv_array_sint16;
CMC_pv_array_sint32;
CMC_pv_array_string;
CMC_pv_array_time;
CMC_pv_array_uint16;
CMC_pv_array_uint32;

Recommendation X.446 (08/97)

41

DESCRIPTION

A datavalue of thistypeisa CMC_array property. A property is the method for specifying CMC_array specific content
information. A property has the following components:

1) id: Uniquely identifies the property.
2) type: Specifiesthe datatype for the property.
3) value: Defines the value for the property.

4) property_extensions: Pointer to first element in array of property extensions.

4.27 Recipient
NAME

Recipient — Type definition for originator/recipient structure.
C DECLARATION

typedef struct {

CMC_string name;

CMC_enum name_type;
CMC_string address;

CMC_enum role;

CMC_flags recip_flags,
CMC_extension *recip_extensions;

} CMC_recipient;
DESCRIPTION

A data value of this type is an originator or recipient. This data structure is included to provide support for CMC 1.0 and
Simple CMC implementations. This structure has the following components:

1) name Recipient display name. Whether to interpret the name as an individual first, then as a group, if such an
individual is not found, or vice versa, is left up to the implementation when resolving the name to an address.

2) name_type: Recipient type, enumerated:

CMC_TYPE_UNKNOWN (=0) Unknown recipient type.
CMC_TYPE_INDIVIDUAL Recipient is an individual.
CMC_TYPE_GROUP Name is a group of recipients.

NOTE - This is meaningful only if name is present. It is set by the implementation on output. On input it can be usedt@s a hint
optimize resolution of the name.

3) address: Recipient address which is acceptable to the underlying messaging service. The format of the address
string is not defined by this Recommendation. It is intended to accommodate any string notation(s) supported by a
given implementation, as configured at a given installation. End users should consult the manager of their local
service to discover what string notation(s) are supported at their installation.

4) role: Role of recipient, enumerated:

CMC_ROLE_TO TO (primary) recipient.
CMC_ROLE _CC CC recipient.
CMC_ROLE_BCC BCC recipient.
CMC_ROLE_ORIGINATOR Originator of message.
CMC_ROLE_AUTHORIZING_USER Authorizing user of message.
CMC _ROLE REPLY_TO Recipient to receive replies.

A CC recipient may (silently) be converted to a TO recipient if the underlying messaging service cannot support
CC recipients. Services that cannot support BCCs should reject messages containing them. For the same recipient to
be present with more than one role, multiple recipient entries, differing in role, are required.

42 Recommendation X.446 (08/97)

The CMC implementation should return the recipient array in the following order on output. The originator should
be the first element in the array, followed by the REPLY TO, TO, CC, and BCC recipients grouped together in that
order. The authorizing user, if one exists, should be the final recipient in the array. There is no ordering required on
input.

5) recip_flags: Bitsfor Boolean attributes. Unused bits must be clear.
a) CMC_RECIP_IGNORE
Set: Ignore this recipient (useful for re-using an incoming message’s recipient list for a reply).
Clear: Do not ignore this recipient.
b) CMC_RECIP_LIST_TRUNCATED
Set: Indicates that not all recipient structures requested were returned by the system. This is only used on
thecmc_look_up() function when the complete list of recipients matching the search name could not
be returned. This flag will only be set in the last structure in the array.
Clear: The complete recipient array was returned.
c) CMC_RECIP_LAST ELEMENT
Set: Identifies the last structure in an array of such structures.
Clear: This is not the last array element.
6) recip_extensions. Pointer to first element in array of per-recipient extensions.
4.28 Report
NAME

Report — Type definition for combination of report and non-delivery report structure.

C DECLARATION

typedef struct {

CMC_recipient *msg_recipient;
CMC_enum report_type;
CMC_time delivered_time;
CMC_uint32 reason_code;
CMC_flags report_flags;
} CMC _report;
DESCRIPTION

A data value of this type is a report, non-delivery report, or both. This data structure is included to provide support for
CMC 1.0 and Simple CMC implementations. A report has the following components:

1)

2)

3)

report_type: Enumerated value that identifies the type of report. The report type can be:

CMC_X400_DR ((CMC_enum) 0)
CMC_X400_NDR ((CMC_enum) 1)

delivered_time: Date/time the original message was delivered to the recipient. It is NULL for CMC_X400_NDR, or
report delivered time for CMC_X400_DR.

reason_code: The reason for the non-delivery of a message. The value is ZERO for CMC_X400_ DR, or, the
following value for CMC_X400_NDR:

reason_code.<higher order 16 bits> = X.411.NonDeliveryReasonCode.

reason_code.<lower order 16 bits> = X.411.NonDeliveryDiagnosticCode.

Recommendation X.446 (08/97) 43

4) report_flags: Bits for Boolean attributes. Unused bits must be clear.
— CMC_REPORT_LAST_ELEMENT
Set: Identifies the last structure in an array of such structures.

Clear: This is not the last array element.

NOTE — CMC defines specific message types for delivery reports ("CMC:DR") and non-delivery reports ("CMC:NDR") which can

be acted on independently since they are viewed as separate messages. In Recommendation X.400, both the delivery aiyd non-delive
information is conveyed in a generic report information base. It is possible that an X.400 report contains delivery reparnts for
recipients and non-delivery reports for another recipient when a message is destined for multiple recipients of the saifnis MTA. T
does not map well to the CMC:DR or CMC:NDR on output (X.400 to CMC) because Recommendation X.400 does not view them nor
stored them as separate information base and therefore cannot be acted on individually. Thus, a new message type "CMC: REPORT"
is added to handle the X.400 report requirements.

429 Return Code
NAME
Return Code — Type definition for a value returned from all CMC functions.
C DECLARATION
t ypedef CMC_ui nt 32 CMC return_code;
DESCRIPTION

A return code is defined as a 32-bit value. A non-zero value indicates an error with the error code being indicated by the
value returned. A return value of zero indicates success. Values contained within the low order 16 bits are reserved for
error codes defined in this Recommendation. Values contained within the high order 16 bits are reserved for
implementation defined error codes while the low order 16 bits should be set to an appropriate CMC error.

Errors may be resolved within the scope of a CMC call using, for example, dialogues available through the user
interface. If a dialogue is invoked to resolve the error, but the error remains unresolved after the dialogue has ended, the
bit flag defined in CMC_ERROR_UI_DISPLAYED is set in the error to indicate that the error has already been
displayed to the user.

430 Sessionld
NAME
Session Id — Type definition for a CMC session id.
C DECLARATION
t ypedef system defined, e.g. uint32CMC _session_id;
DESCRIPTION

Opagque session id. The context identified by the session id contains per-session information such as the character set in
use and handles for any open session(s) with underlying messaging service(s). The CMC_session_id is created by the
CMC Logon function and destroyed by the CMC Logoff function.

See B.2.4 for the definition for a specific platform.

4.31 Stream Handle
NAME
Stream Handle — Type definition for a CMC stream handle structure.

44 Recommendation X.446 (08/97)

C DECLARATION
typedef systemdefined, e.g. uint32 CMC stream handl e;
DESCRIPTION

A data value of this type is an opague stream handle. The CMC stream handles are unique to the message service. The
handles are persistent for the duration of the session or until they are destroyed. The handle provides the context to a
stream of content information. The stream encapsulates the session id and object handles. Stream handles cannot be
copied.
4.32 String
NAME
String — Type definition for a CMC character string.

C DECLARATION

t ypedef cnc_string* CMC_stri ng;
DESCRIPTION

A data value of this type is a string. The character array pointed to is interpreted as a null-terminated array of character
by default. All implementations must support null terminated strings. The width of a character and the corresponding
null terminating character are determined by the character set chosen.

If an application wishes to use counted strings instead of null-terminated and the CMC implementation supports it, the
application will set the CMC_COUNTED_STRING_TYPE flag when logging into the session. The data pointed to by
CMC_string will then be assumed to be in the data format of CMC_counted_string. If implicit logon is done with a
function, this flag must be set in the flags parameter.

To determine the character set of characters in the string, the CMC implementation looks at the session context. If there
is no session context created before the call, the string will be interpreted using the implementations default character
set. The implementation should always attempt to map all strings passed to the client application to the character set for
the session.

4.33 Time

NAME

Time — Type definition for a CMC time structure.

C DECLARATION

typedef struct {

CMC _sint8 second;
CMC_sint8 minute;
CMC_sint8 hour;
CMC_sint8 day;
CMC _sint8 month;
CMC_sint8 year;
CMC_sint8 isdst;
CMC_sint16 tmzone;
} CMC_time;
DESCRIPTION

A data value of this type is a time value. This data structure is included to provide support for CMC 1.0 and Simple
CMC implementations. A time value has the following components:

1) second: Seconds; range 0..59.

2) minute Minutes; range 0..59.

Recommendation X.446 (08/97) 45

3) hour: Hours since midnight; range 0..23.

4) day: Day of the month; range 1..31.

5) month: Months since January; range 0..11.

6) year: Y ears since 1900.

7) isdst: Daylight savings time flag; non-zero implies daylight savings.

8) tmzone: Time zone, in minutes relative to Greenwich Mean Time. The defined value,

CMC_NO_TIMEZONE, indicates that time zone is not available.

All time values are in the appropriate local time. For example, the time sent field in the CMC_message and
CMC_message_summary structuresisin the local time of the sender.

NOTE - If the tmzone field is set to any value other than CMC_NO_TIMEZONE, then the time value can be converted into the local
time of the caller, although the actual conversion functionality falls outside the scope of CMC.

434 User Interfaceldentifier
NAME
User Interface Identifier — Type definition for a CMC user interface handle.
C DECLARATION
t ypedef system defined, e.g. uint32CMC ui _id;
DESCRIPTION

Value used for passing user interface information to CMC functions. For example, in a windows-based environment this
would be the parent-window handle for the calling application.

A value of NULL is always valid, with the appropriate default behaviour defined by the implementation.

NOTE — CMC implementations are not required to provide Ul, and providing a user interface for one feature does not necessarily
imply that a user interface is available for all features of CMC.

See B.2.4 for the definition for a specific platform.

5 Object properties

This clause defines the object properties for object classes of the Common Messaging Call API. Each object is a
collection of properties. Object properties are defined herein in an effort to standardize their representation within this
Recommendation.

The object property definitions are preceded with tables summarizing the properties for each object class. The following
object property summary tables list the property name and the value type of all defined object propertiesin columns one
and two. The third column provides a description of the property. The fourth column lists possible values for each
property. Starred values are defaults. If no star is present, the property has no default value. The fifth column states
whether the property is mandatory (M) or optional (O). The sixth column states whether the property is read-only. A
"No" in this column means that the property can be modified, updated, or deleted by a call to cmc_update properties(),
cmc_add_properties(), or cmc_delete properties() respectively, unless otherwise stated. The last column specifies the
creator of the property as the implementation (1), the caller (C), or either (E).

Default values can be associated with properties. However, when an implementation creates an object, the
implementation should populate the object with explicit values for all the supported properties that have defaults. This
will simplify enumerations of properties by the application.

46 Recommendation X.446 (08/97)

Table 4/X.446 — CMC address book property summary

Address book
Property name Type Possible values Classification Read-onl Default
perty (CMC pv) y
Child Allowed boolean CMC_TRUE, (0] No CMC_FALSE
CMC _FALSE
Comment string Any Valid String (0] No None
Location enum LOCAL (@] No UNKNOWN?®
SERVER
UNKNOWN?
Name string Any Valid String (0] No Null String
Object Class enum ADDRESS M Yes NA
BOOKD)
Parent object_handle Any Valid Object M, If nested No None
Handle
Server Name string Any Valid String (0] No None
Shared boolean CMC_TRUE, (0] No CMC FALSE
CMC_FALSE
Type enum GLOBAL, 0 No PERSONALP
PERSONAL®

3 "CMC_ADDRESS BOOK_LOCATION_" value prefix.

b) "CMC_OBJECT_TYPE_" value prefix.

9 "CMC_ADDRESS BOOK_TYPE_" value prefix.

Recommendation X.446

(08/97) 47

Table 5/X.446 — CMC content item property summary

Content item
Property name Type Possible values Classification Read-onl Default
perty (CMC pv)) y
Character Set guid GUID For Any (0] No Platform —
Character Set Dependent
Content Informatior opaque_data Any Data (0] No None
Content Type guid GUID For Any (0] No None
Content Type
Create Time iso_date_time Any ISO 8601 Date (0] Yes None
and Time
Encoding Type guid GUID For Any (0] No 7-BIT®
Encoding Type
File Directory string Any Valid File (0] No None
Directory
File Name string Any Valid File (0] No None
Name
Item Number uint32 Up to an M, for more than 1 No None
implementation- content item
defined maximum
Item Type enum NOTE (0] No NOTE
ATTACHMENT
ANNOTATIONP)
Last Modified iso_date_time Any ISO 8601 Ddte (0] Yes None
and Time
Object Class enum CONTENT ITEM M Yes NA
Render Position uint32 Byte position within (0] No None
container
Size uint32 Byte size o No None
Title string Any Valid String (0] No None

d "CMC_ADDRESS_BOOK_TYPE_" value prefix.
b "CMC_IT_" value prefix.

9 "CMC_OBJECT_TYPE_" value prefix.

48 Recommendation X.446

(08/97)

Table 6/X.446 — CMC distribution list property summary

Distribution list
Property name Type Possible values Classification Read-only Default
(CMC_pv)
Address string Any Valid Address (0] Yes None
Comment string Any Valid String (0] No None
Last Modification iso_date time Any 1SO 8601 Date (0] Yes None
Time and Time
Name string Any Valid String M No Null String
Object Class enum DISTRIBUTION M Yes NA
LISTd
Parent object_handle Any Valid Object M, If Nested No None
Handle
Shared boolean CMC_TRUE, @) No CMC_FALSE
CMC_FALSE

3 "CMC_OBJECT TYPE_" value prefix.

Table 7/X.446 — CMC message property summary

M essage
Property name Type Possible values Classification Read-onl Default
perty (CMC pv) y
Application ID string Any Valid String (0] No None
Application Message flags Draft (0] No None
Status
Auto-Action flags CMC_AA_ (0] No None
DELETE
Deferred Déelivery iso_date time Any 1SO 8601 Date (0] No None
Time and Time
In Message Status flags NEW, READ, (@] Yes None
CHANGED?®
ID string Any Valid String M Yes None
In Reply To string Any Valid String (0] No None
Item Count uint32 Uptoan M Yes None
implementation
defined maximum
NRN Diagnostic string Any Valid String (0] No None

Recommendation X.446 (08/97) 49

Table 7/X.446 — CMC message property summargend)

M essage
Property name Type Possible values Classification Read-only Default
(CMC_pv)
NRN Reason string Any Vaid String | M, If Message Type No None
Receipt
Object Class object_class MESSAGED M Yes NA
Out Message Status flags DELETED, (0] Yes None
SUBMITTED,
SENT
Priority enum URGENT (0] No Normal
NORMAL LOW®
Receipt Requested boolean CMC_TRUE (0] No CMC_FALSE
CMC_FALSE
Receipt Type enum RN, NRNY No None
Report Requested enum DR, NDR, (0] No None
BOTH, NONE®
Role enum ORIGINAL (0] No None
RETURNED
FORWARDED
REPLIED
OBSOLETED
RESENT"
Sensitivity enum PERSONAL (0] No None
PRIVATE
CONFIDENTIAL
NONE9
Size uint32 Any Valid Byte (0] No None
Vaue
Subject string Any Valid String (0] No None
Time Received iso_date time Any 1SO 8601 Date Yes None
and Time
Time Sent iso_date time Any 1SO 8601 Date M Yes None
and Time
Type enum IPM, REPORT" M No IPM

3 "CMC_MESSAGE_STATUS " value prefix.

b) "CMC_OBJECT_TYPE " vaue prefix.

9 "CMC_PRIORITY_ " value prefix.
d "CMC_RECEIPT " value prefix.
® "CMC_REPORT " value prefix.

) "CMC_MESSAGE_ROLE_" value prefix.

9 "CMC_MESSAGE_SENSITIVITY_ " value prefix.
M "CMC_MT_" value prefix.

50 Recommendation X.446

(08/97)

Table 8/X.446 — CMC message container property summary

M essage container
Property name Type Possible values Classification Read-only Default
(CMC_pv)
Auto-Action flags CMC-AA_Delete (0] Yes Clear
Child Allowed boolean CMC_TRUE O No CMC_FALSE
CMC_FALSE
Comment string Any Valid String (0] No None
Location enum LOCAL, SERVER, (0] No None
UNKNOWN®
Name string Any Valid String (0] No None
Object Class enum MESSAGE M Yes NA
CONTAINER?
Parent object_handle Any Valid Object M, if nested No None
Handle
Server Name string Any Valid String (0] No None
Shared boolean CMC_TRUE O No CMC_FALSE
CMC_FALSE
Type enum DELETED (0] Yes None

DRAFTSINBOX
OUTBOX SENTO

3 "CMC_MESSAGE_CONTAINER " value prefix.

b) "CMC_OBJECT_TYPE " vaue prefix.

9 "CMC_MCT_" value prefix.

Recommendation X.446

(08/97) 51

Table 9/X.446 — CMC per recipient information property summary

Per recipient information

Property name Type Possible values Classification Read-onl Default
perty (CMC pv)) y
Comment string Any Valid String (0] No None
Delivery Time iso_date time Any 1SO 8601 Date (0] No None
and Time
Diagnostic string Any Valid String (0] No None
Object Class enum PER RECIPIENT M Yes NA
INFORMATION?
Reason string Any Valid String (0] No None
Recipient Address string Any Valid String M Yes NA
Recipient Name string Any Valid String M No NA
Type enum DR, NDR, M Yes NA
UNKNOWND)

d "CMC_OBJECT TYPE_" value prefix.
b) "CMC_PRI_" value prefix.

Table 10/X.446 — CMC profile container property summary

Profile container

Property name (CJ%/:FEV_) Possible values Classification Read-only Default
Auto-Action flags CMC-AA_Delete (0] Yes Clear
Character Set array_of_guid 1 or More GUID for M Yes NA

Any Character Set
Comment string Any Valid String (0] No None
Conformance enum SIMPLE_CMC, M Yes NA
FULL_CMC?

Default Service string Any Valid String M Yes NA
Default User string Any Valid String M Yes NA

Line Terminator enum CRLF, LF, CR? M Yes NA
Object Class enum Profile Container® M Yes NA

52 Recommendation X.446 (08/97)

Table 10/X.446 — CMC profile container property summary(end)

Profile container

Property name Type Possible values Classification Read-only Default
(CMC_pv)
Object Extensions array_of_guid 1 or More GUID for M Yes NA
Supported CMC Objects
Objects Supported array_of_guid 1 or More GUID for M Yes NA
CMC Objects
Properties Supported array_of_guid 1 or More GUID for M Yes NA
CMC Properties
Property Extensions array_of_guid 1 or More GUID for M Yes NA
Supported CMC Properties
Required Password enum NO, OPT, YESY M Yes NA
Required Service enum NO, OPT, YESY M Yes NA
Required User enum NO, OPT, YESY M Yes NA
Support Counted boolean CMC_TRUE M Yes NA
Strings CMC_FALSE
Support No Mark As boolean CMC _TRUE M Yes NA
Read CMC_FALSE
User Interface boolean CMC_TRUE M Yes NA
Available CMC_FALSE
Users array_string Recipient Names (0] Yes NA
Version of the uint16 100 or 200 M Yes NA
Implementation
Version of the uintl6 100 or 200 M Yes NA

Specification

@ "CMC_CONF_" value prefix.

b) "CMC_LINE_TERM_ " value prefix.
9 "CMC_OBJECT TYPE " value prefix.
d "CMC_REQUIRED " value prefix.

Recommendation X.446

(08/97)

53

Table 11/X.446 — CMC recipient property summary

Recipient
Property name Type Possible values Classification Read-onl Default
perty (CMC pv) y
Address string Any Valid String M No None
Content Return boolean CMC_TRUE @) No None
Requested CMC_FALSE
Name string Any Valid String (0] No None
Object Class enum RECIPIENT? M Yes NA
Receipt Requested enum RN, NRN, BOTH, (@] No None
NONED
Report Requested enum DR, NDR, BOTH, (0] No None
NONE®
Responsibility Flag boolean CMC_TRUE M No CMC_TRUE
CMC_FALSE
Role enum TO, CC, BCC, O No None
ORIGINATOR,
AUTHORIZING
USER, REPLY_TO,
FORWARDED,
ACTUAL,
INTENDEDY
Type enum UNKNOWN, M No INDIVIDUAL
INDIVIDUAL,
GROUP®)

8 "CMC_OBJECT _TYPE_" value prefix.

b) "CMC_RECEIPT " value prefix.
© "CMC_REPORT " value prefix.
d "CMC_RECIPIENT_ROLE_" value prefix.
® "CMC_RCT_" value prefix.

54 Recommendation X.446

(08/97)

Table 12/X.446 — CMC report property summary

Report
Property name Type Possible values Classification Read-onl Default
perty (CMC pv) y
Application ID string Any Valid String (0] No None
ID guid Any Valid 1SO 9070 M Yes NA
String
Item Count uint32 Any Valid Integer M Yes NA
Messaging System string Any Valid String (0] No None
ID
Object Class enum REPORT® M Yes NA
Read boolean CMC_TRUE @) No None
CMC_FALSE
Size uint32 Byte Size Of Report (0] No None
Subject string Any Valid String M No None
Subject Message ID string Any Valid String (0] No None
Time Received iso_date time Any 1SO 8601 Date M Yes None
and Time
Time Sent iso_date time Any 1SO 8601 Date M Yes None
and Time
Unsent boolean CMC_TRUE @) No None
CMC_FALSE

d "CMC_OBJECT TYPE_" value prefix.

Recommendation X.446

(08/97)

55

Table 13/X.446 — CMC root container property summary

Root container

Property name Type Possible values Classification Read-only Default
(CMC_pv)
Child Allowed boolean CMC_TRUE O No CMC_FALSE
CMC_FALSE
Comment string Any Valid String (0] No None
Location enum LOCAL SERVER o No None
UNKNOWN®
Name string Any Valid String (0] No None
Object Class enum ROOT M Yes NA
CONTAINERD
Shared boolean CMC_TRUE @) No CMC_FALSE
CMC_FALSE

8 "CMC_ROOT_CONTAINER_LOCATION_" value prefix.
b) "CMC_OBJECT_TYPE_" value prefix.

The manual pages for these properties are given in subsequent pages.

51 Address book object properties

An address book is a container object composed of addresses of entities and may contain other address books. Support
for address books is not mandatory. The following subclauses define, declare, and describe address book properties.

5.1.1 Child allowed
NAME
Address Book Child Allowed

C DECLARATION

#defi ne CMC_PT_ADDRESS_BOOK_CHI LD_ALLOWED \
"—/[XAPIA/CMC/PROPERTY//NONSGML Address Book Child Allowed//EN"

DESCRIPTION
The property which permits or denies the existence of a child of the address book.
The default value of this property isCMC_FALSE.

ThisisaCMC_pv_boolean type of property.

512 Comment
NAME
Address Book Comment

C DECLARATION

#defi ne CMC_PT_ADDRESS BOOK_COMVENT \
"—//XAPIA/CMC/PROPERTY//NONSGML Address Book Comment//EN"

56 Recommendation X.446 (08/97)

DESCRIPTION
A descriptive comment about the address book.
ThisisaCMC_pv_string type of property.
513 L ocation
NAME

Address Book Location

C DECLARATION

#defi ne CMC_PT_ADDRESS BOOK LOCATI ON \
"—/IXAPIA/CMC/PROPERTY//NONSGML Address Book Location//EN"

DESCRIPTION
This property specifies the location of the address book.
The valid values for this property include:

CMC_ADDRESS_BOOK_LOCATION_LOCAL
CMC_ADDRESS BOOK_LOCATION_SERVER
CMC_ADDRESS_BOOK_LOCATION_UNKNOWN

CMC_ADDRESS BOOK_LOCATION_LOCAL - Specifies that the location of the address book is local and not on
the messaging server.

CMC_ADDRESS_BOOK_LOCATION_SERVER - Specifies that the location of the address book is on the messaging
server.

CMC_ADDRESS BOOK_LOCATION_UNKNOWN - Specifies that the location of the address book is unknown.
This is the default value.

This is aCMC_pv_enum type of property.

514 Name
NAME
Address Book Name

C DECLARATION

#defi ne CMC_PT_ADDRESS_BOOK_NAME \
"—/IXAPIA/CMC/PROPERTY//NONSGML Address Book Name//EN"

DESCRIPTION
This property specifies the name of the address book.
ThisisaCMC_pv_string type of property.
515 Object class
NAME
Address Book Object Class

C DECLARATION

#defi ne CMC_PT_OBJECT_CLASS \
"—/[XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION
This property defines the class of the object as address book.
This property is created by cmc_open_object_handle().

Recommendation X.446 (08/97) 57

The only valid value for this property is CMC_PT_OBJECT_CLASS ADDRESS BOOK which specifies that the
object’s class is an address book.

This is aCMC_pv_enum type of property.

5.1.6 Parent
NAME
Address Book Parent

C DECLARATION

#defi ne CMC_PT_ADDRESS BOOK PARENT \
"—/IXAPIA/CMC/PROPERTY//NONSGML Address Book Parent//EN"

DESCRIPTION

This property specifies the parent of the address book. If the implementation supports the nesting of address books, this
property specifies the parent address book. If the address book is the top level, this property is not present. Otherwise, it
is mandatory.

ThisisaCMC_pv_object_handle type of property.
51.7 Server name
NAME

Address Book Server Name

C DECLARATION

#defi ne CMC_PT_ADDRESS BOOK SERVER NANME \
"—//XAPIA/CMC/PROPERTY//NONSGML Address Book Server Name//EN"

DESCRIPTION
This property specifies the name of the server on which the address book is located.
ThisisaCMC_pv_string type of property.
518 Shared
NAME
Address Book Shared

C DECLARATION

#def i ne CMC_PT_ADDRESS_BOOK_SHARED \
"—/[XAPIA/ICMC/PROPERTY//NONSGML Address Book Shared//EN"

DESCRIPTION
This property indicates whether more than one user has access to this address book.
The default value for this property is CMC_FAL SE if supported.

ThisisaCMC_pv_boolean type of property.

5.1.9 Type
NAME

Address Book Type
C DECLARATION

#defi ne CMC_PT_ADDRESS_BOOK_TYPE \
"—/IXAPIA/CMC/PROPERTY//NONSGML Address Book Type//EN"

58 Recommendation X.446 (08/97)

DESCRIPTION
This property specifies the type of the address book.
The valid values for this property include:

CMC_ADDRESS BOOK_TYPE_GLOBAL
CMC_ADDRESS_BOOK_TYPE_PERSONAL

CMC_ADDRESS BOOK_TYPE_GLOBAL - Specifies that the address book is of a global, or enterprise-wide,
subtype. A global address book is not necessarily a shared address book.

CMC_ADDRESS BOOK_TYPE_PERSONAL - Specifies that the address book is of a personal, locally originated and
maintained, type.

The default value for this property is CMC_ADDRESS_BOOK_TYPE_PERSONAL.

This is aCMC_pv_enum type of property.

52 Content item object properties

A content item in this Recommendation is an object associated with the content of a message. It is used to represent
attachments and notes, although no distinction is made between the two at the programming interface. The following
subclauses define, declare, and describe attachment object properties.

521 Character set
NAME

Content Item Character Set
C DECLARATION

#defi ne CMC_PT_CONTENT | TEM CHARACTER SET \
"—//XAPIA/CMC/PROPERTY//NONSGML Content Item Character Set//EN"

DESCRIPTION

This property specifies the character set of embedded content information within the content item. In the absence of this
property, the default character set for embedded content information within the content item is the same as that of the
session context.

The property value is a string representing the formal public identifier for the character set. The formal public identifier
can be one of the following:

#defi ne CMC_CHARSET 437 " —/IXAPIA/CHARSET//NONSGML IBM 437//EN"
#define CMC_CHARSET_850 "—I/XAPIA/CHARSET//NONSGML IBM 850//EN"

#define CMC_CHARSET_1252 "—IIXAPIA/ICHARSET//NONSGML Microsoft 1252//EN"
#define CMC_CHARSET_ISTRING "—I/IXAPIA/ICHARSET//NONSGML Apple ISTRING//EN"
#define CMC_CHARSET_UNICODE "—I/IXAPIA/CHARSET//NONSGML UNICODE//EN"

#define CMC_CHARSET_T61 "—IIXAPIA/CHARSET//NONSGML TSS T61//EN"

#define CMC_CHARSET_IA5 "—I/IXAPIA/CHARSET//NONSGML TSS IA5//EN"

#define CMC_CHARSET_ISO_10646 "—//XAPIA/CHARSET//NONSGML ISO 10646//EN"

#define CMC_CHARSET_ISO_646 "—/[XAPIA/CHARSET//NONSGML ISO 646//EN"

#define CMC_CHARSET_ISO_8859 1 "—I/XAPIA/ICHARSET//NONSGML ISO 8859-1//EN"

Implementations may provide for other character sets.
ThisisaCMC_pv_guid type of property.
522 Content information
NAME
Content Item Content Information

Recommendation X.446 (08/97) 59

C DECLARATION

#defi ne CMC_PT_CONTENT | TEM CONTENT | NFORMATI ON '\
"—/[XAPIA/ICMC/PROPERTY//NONSGML Content Item Content Information//EN"

DESCRIPTION
This property holds the content of a content item.
ThisisaCMC_pv_opaque_data type of property.
523 Content type
NAME

Content Item Content Type

C DECLARATION

#defi ne CMC_PT_CONTENT | TEM CONTENT TYPE \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Content ltem Content Type//EN"

DESCRIPTION
This property specifies the content type of the content item. A NULL value designates an undefined content item type.

The following GUID values are valid for the Type property of the Content Item objects.

#define CMC_CT_PLAIN_TEXT \
"_JIXAPIA/ICMC/CONTENT TYPE//NONSGML Plain Text/EN"
#define CMC_CT_GIF_IMAGE \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML GIF Image//EN"
#define CMC_CT_JPEG_IMAGE \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML JPEG Image//EN"
#define CMC_CT_BASIC_AUDIO \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML Basic Audio//EN"
#define CMC_CT_MPEG_VIDEO \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML MPEG Video//EN"
#define CMC_CT_MESSAGE \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML Message//EN"
#define CMC_CT_PARTIAL_MESSAGE \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML Partial Message//EN"
#define CMC_CT_EXTERNAL_MESSAGE \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML External Message//EN"
#define CMC_CT_APPLICATION_OCTET_STREAM \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML Application Octet Stream//EN"
#define CMC_CT_APPLICATION_POSTSCRIPT \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML Application PostScript/EN"
#define CMC_CT_ALTERNATIVE_MULTIPART \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML Alternative Multipart//EN"
#define CMC_CT_DIGEST_MULTIPART \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML Digest Multipart/EN"
#define CMC_CT_MIXED_MULTIPART \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML Mixed Multipart//EN"
#define CMC_CT_OLE \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML OLE//EN"
#define CMC_CT_MIXED_MULTIPART \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML Mixed Multipart//EN"
#define CMC_CT_X400_G3_FAX \
"_//XAPIA/ICMC/CONTENT TYPE/NONSGML X400 G3 Fax//EN"
#define CMC_CT_X400_G4_FAX \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML X400 G4 Fax//EN"
#define CMC_CT_X400_ENCRYPTED \
"_//XAPIA/ICMC/CONTENT TYPE/NONSGML X400 Encrypted//EN"
#define CMC_CT_X400_NATIONALLY_DEFINED \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML X400 Nationally Defined//EN"
#define CMC_CT_X400_FILE_TRANSFER \
"_JIXAPIAICMC/CONTENT TYPE//NONSGML X400 File Transfer//EN"
#define CMC_CT_X400_VOICE \

"—/IXAPIA/CMC/CONTENT TYPE//NONSGML X400 Voice//EN"

60 Recommendation X.446 (08/97)

#define CMC_CT_X400 VIDEOTEX \
"_JIXAPIA/ICMC/CONTENT TYPE//NONSGML X400 Videotex//EN"

#define CMC_CT_X400_MIXED_MODE \
"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML X400 Mixed Mode//EN"

#define CMC_CT_X400_PRIVATELY_DEFINED_6937 \
"_//XAPIA/ICMC/CONTENT TYPE/NONSGML X400 Privately Defined 6937//EN"

#define CMC_CT_X400_EXTERNAL_TRACE \
"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML X400 External Trace//EN"

#define CMC_CT_X400_INTERNAL_TRACE \
"_//XAPIA/ICMC/CONTENT TYPE//NONSGML X400 Internal Trace/EN"

#define CMC_CT_SMTP_SESSION_TRANSCRIPT \

"—/IXAPIA/CMC/CONTENT TYPE//NONSGML SMTP Session Transcript//EN"

CMC_CT_PLAIN_TEXT — Specifies plain or unformatted text content.

CMC_CT_GIF_IMAGE - Specifies image data content in the form of the Graphics Image Format used by MIME and
the World Wide Web.

CMC_CT_JPEG_IMAGE — Specifies image data content in the form of the ISO Joint Picture Encoding Group standard
used by MIME and the World Wide Web.

CMC_CT_BASIC_AUDIO - Specifies audio data content in the form of audio encoded using 8-bit ISDN mu-law or
PCM defined by Recommendation G.711 with a sample rate of 8000 Hz and with a single channel.

CMC_CT_MPEG_VIDEO - Specifies video content in the form of the ISO Motion Picture Encoding Group, 1ISO 11172
standard used by MIME and the World Wide Web.

CMC_CT_MESSAGE - Specifies that the content is an encapsulated message.

CMC_CT_PARTIAL_MESSAGE - Specifies that the content is a portion of another message. This content type allows
a large message to be delivered as several separate pieces to facilitate receipt.

CMC_CT_EXTERNAL_MESSAGE - Specifies that the content is external to the message. The content information
property contains a textual reference to the external content information.

CMC_CT_APPLICATION_OCTET_STREAM - Specifies that the content is an application-dependent stream of octets.
CMC_CT_APPLICATION_POSTSCRIPT - Specifies that the content is an Adobe Systems, Inc. PostScript program.

CMC_CT_ALTERNATIVE_MULTIPART - Specifies that the content is one of an alternative form of content to
another note or content item within the message object.

CMC_CT_DIGEST_MULTIPART — Specifies that the content is one of a group of related messages within the message
object. The messages may serve as a sequence of discussions captured in a thread of messages as is found on bullet
board systems.

CMC_CT_MIXED_MULTIPART - Specifies that the content is one of an ordered sequence of messages within the
message object.

CMC_CT_PARALLEL_MULTIPART — Specifies that the content is one of a group of arbitrary ordered sequence of
messages within the message object.

CMC_CT_OLE - Specifies that the content item type is OLE (Object Linking and Embedding) object content item.

CMC_CT_X400_G3_FAX — Specifies that the content represents Group 3 facsimile images, a sequence of bit strings.
Each G3 data component encodes a single page of data as dictated by Recommendations T.4 and T.30.

CMC_CT_X400_G4_FAX — Specifies that the content represents a final-form document of the sort that is processable
by Group 4 class 1 facsimile terminals.

CMC_CT_X400_ENCRYPTED - Specifies that the content is bit strings and encoded in accordance with the basic
encoding rules of Recommendation X.209.

Recommendation X.446 (08/97) 61

CMC_CT_X400_ NATIONALLY_DEFINED - Specifies the content is an information object whose semantics and
abstract syntax are nationally defined by a country whose identity is bilaterally agreed by the message’s originator and
all of its potential recipients.

CMC_CT_X400_FILE_TRANSFER - Specifies that the content information consists of relatively large amounts of
data. The content information property contains the textual reference to its semantics and abstract syntax, which are
denoted by an object identifier.

CMC_CT_X400_VOICE - Specifies that the content is the digitized speech, a bit string. Its encoding are currently not
defined in the 1988 version of Recommendation X.420.

CMC_CT_X400_VIDEOTEX - Specifies that the content represents videotex data. Its syntax is defined in
Recommendations T.100 and T.101.

CMC_CT_X400_MIXED_MODE - Specifies that the content represents a final-form document of the sort that is
processable by mixed-mode Teletex terminals and Group 4 class 2 and 3 facsimile terminals.

CMC_CT_X400_PRIVATELY_DEFINED_6937 — Specifies that the content is privately defined. The content is
encoded in accordance to ISO 6937 specified character sets and encoding rules.

CMC_CT_X400_EXTERNAL_TRACE - Specifies that the content contains X.400 external trace information for
diagnostic purpose.

CMC_CT_X400_INTERNAL_TRACE - Specifies that the content contains X.400 internal trace information for
diagnostic purpose.

CMC_CT_SMTP_SESSION_TRANSCRIPT — Specifies that the content contains SMTP session transcript information
for diagnostic purpose.

This is aCMC_pv_guid type of property.
524 Createtime
NAME

Content Item Create Time

C DECLARATION

#defi ne CMC_PT_CONTENT_| TEM CREATE_TI ME \
"—//XAPIA/CMC/PROPERTY//NONSGML Content Item Create Time//EN"

DESCRIPTION
This property specifies the date and time that the content item was created.
ThisisaCMC_pv_iso_date _time type of property.
525 Encoding type
NAME
Content Item Encoding Type

C DECLARATION

#defi ne CMC_PT_CONTENT | TEM ENCODI NG TYPE \
"—/[XAPIA/ICMC/PROPERTY//NONSGML Content ltem Encoding Type//EN"

DESCRIPTION
This property specifies the encoding type of the content of the content item.
The default value for this property isCMC_ET_7_BIT.
The following values are valid for the Encoding Type property of content item object:
#define CMC_ ET_7_BIT \
" —/[XAPIA/CMC/ENCODING TYPE//NONSGML 7 Bit//EN"
#define CMC_ET_BASE64
"—/IXAPIA/JCMC/ENCODING TYPE/NONSGML Base64//EN"

62 Recommendation X.446 (08/97)

#defi ne CMC_ET_BI NARY \
" —//XAPIA/CMC/ENCODING TYPE//NONSGML Binary//EN"

#define CMC_ET 8 BIT \
"—/[XAPIA/CMC/ENCODING TYPE//NONSGML 8 Bit//EN"

#define CMC_ET_QUOTED_PRINTABLE \
"—//XAPIA/CMC/ENCODING TYPE//NONSGML Quoted Printable//EN"

CMC_ET_7_BIT — Specifies that no encoding has been performed on the content information. Additionally, it means
that the content information consists of octets of 7-bit data.

CMC_ET_BASEG64 — Specifies that the content information has been encoded in the Base 64 form of RFC 1521/MIME
for arbitrary sequence of octets.

CMC_ET_BINARY - Specifies that no encoding has been performed on the content information. Additionally, it means
that the content information consists of relatively large amounts of data and that the octets may have the high-order bit
set.

CMC_ET_8 BIT — Specifies that no encoding has been performed on the content information. Additionally, it means
that the content information consists of relatively short lines of octets with the high-order bit set.

CMC_ET_QUOTED_PRINTABLE - Specifies that the content information has been encoded in the form of
RFC 1521/MIME for largely printable characters in the ASCII character set such that the resulting octets are unlikely to
be modified by mail transports.
This is aCMC_pv_guid type of property.
5.2.6 Filedirectory
NAME
Content Item File Directory
C DECLARATION

#defi ne CMC_PT_CONTENT_I| TEM FI LE_DI RECTORY \
"—/[XAPIA/CMC/PROPERTY//NONSGML Content Iltem File Directory//EN"

DESCRIPTION
This property specifies the file directory of the content item when it was added to the message. Where the Content Type
property isCMC_CT_EXTERNAL_MESSAGE, this property denotes the server name as well as the directory name on
aremote server. The format of this string is implementation-defined.
ThisisaCMC_pv_string type of property.
527 Filename
NAME
Content Item File Name
C DECLARATION

#defi ne CMC_PT_CONTENT_| TEM FI LE_NAVE \
"—/IXAPIA/ICMC/PROPERTY//INONSGML Content Item File Name//EN"

DESCRIPTION

This property specifies the file name of the content item when it was added to the message. Where the Content Type
property is CMC_CT_EXTERNAL_ MESSAGE, this property denotes the file name on a remote server. The format of
this string is implementation-defined.

ThisisaCMC_pv_string type of property.

Recommendation X.446 (08/97) 63

5.2.8 Item number
NAME
Content Item Item Number

C DECLARATION

#defi ne CMC_PT_CONTENT | TEM | TEM NUMBER \
"—/IXAPIA/CMC/PROPERTY//NONSGML Content Item Item Number/EN"

DESCRIPTION

This property specifies the sequence number of the item within its parent container, a message object or another content
item. Thisisamandatory property.

No two items within a given parent container can have the same value for Item Number.
ThisisaCMC_pv_uint32 type of property.
529 Item type
NAME
Content Item Item Type

C DECLARATION

#defi ne CMC_PT_CONTENT | TEM | TEM TYPE \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Content Iltem Item Type//EN"

DESCRIPTION
This property specifies the type of the content item. Valid values for this property include:

CMC_IT_NOTE
CMC_IT_ATTACHMENT
CMC_IT_ANNOTATION

CMC_IT_NOTE - Specifies a note type.
CMC_IT_ATTACHMENT - Specifies an attachment type.
CMC_IT_ANNOTATION — Specifies an annotation on another content item object.
This is aCMC_pv_enum type of property.
5210 Last modified
NAME

Content Item Last Modified

C DECLARATION

#defi ne CMC_PT_CONTENT_| TEM LAST_MODI FI ED \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Content Iltem Last Modified//EN"

DESCRIPTION
This property specifies the date and time that the file from which the content item was derived was last modified.
ThisisaCMC_pv_iso_date_time type of property.
5211 Object class
NAME
Content Item Object Class

64 Recommendation X.446 (08/97)

C DECLARATION

#defi ne CMC_PT_OBJECT_CLASS \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Object Class //EN"

DESCRIPTION
This property defines the class of the object as a content item. This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS CONTENT_ITEM which specifies that the
object’s class is a content item.

This is aCM C_pv_enum type of property.
5.212 Render position
NAME

Content Item Render Position

C DECLARATION

#defi ne CMC_PT_CONTENT | TEM RENDER PGCSI TI ON \
"—/[XAPIA/ICMC/PROPERTY//NONSGML Content Item Render Position//EN"

DESCRIPTION
This property specifies the position of the content item within its container.
ThisisaCMC_pv_uint32 type of property.
5213 Size
NAME
Content Item Size

C DECLARATION

#defi ne CMC_PT_CONTENT_| TEM S| ZE \
"—//XAPIA/CMC/PROPERTY//NONSGML Content Item Size//EN"

DESCRIPTION
This property specifies the size of the content item.
ThisisaCMC_pv_uint32 type of property.
5214 Title
NAME

Content Item Title

C DECLARATION

#defi ne CMC_PT_CONTENT_| TEM TI TLE \
"—/[XAPIA/ICMC/PROPERTY//NONSGML Content Item Title//EN"

DESCRIPTION

This property specifies the full description of the content item. For example, "Quarterly Financial Report” could be a
content item title.

ThisisaCMC_pv_string type of property.

Recommendation X.446 (08/97) 65

5.3 Distribution list object properties

Distribution lists identify groups of users. A distribution list contains recipient objects. The following subclauses define,
declare, and describe distribution list properties.

5.3.1 Address

NAME
Distribution List Address

C DECLARATION

#defi ne CMC_PT_DI STRI BUTI ON_LI ST_ADDRESS \
"—/IXAPIA/ICMC/PROPERTY//INONSGML Distribution List Address//EN"

DESCRIPTION

This property provides the address for a distribution list to be used in mailing to the list. This address is often the same
value as the name of the distribution list. It is an optional property of a distribution list.

This property is generated by the messaging system.
ThisisaCMC_pv_string type of property.
53.2 Comment

NAME
Distribution List Comment

C DECLARATION

#defi ne CMC_PT_DI STRI BUTI ON_LI ST_COMVENT \
"—/IXAPIA/CMC/PROPERTY//INONSGML Distribution List Comment//EN"

DESCRIPTION

A descriptive comment about the distribution list.
ThisisaCMC_pv_string type of property.

533 L ast modification time

NAME
Distribution List Last Modification Time

C DECLARATION

#defi ne CMC_PT_DI STRI BUTI ON_LI ST_LAST_MODI FI CATI ON_TI ME \
"—/IXAPIA/CMC/PROPERTY//INONSGML Distribution List Last Modification Time//EN"

DESCRIPTION

This property specifies the date and time of the last update to the distribution list.
ThisisaCMC_pv_iso_date time type of property.

534 Name

NAME
Distribution List Name

C DECLARATION

#define CMC_PT_DI STRI BUTI ON_LI ST_NAME \
"—I/IXAPIA/CMC/PROPERTY//NONSGML Distribution List Name//EN"

66 Recommendation X.446 (08/97)

DESCRIPTION

This property specifies the name of the distribution list. It isamandatory property for distribution list objects.
The string may be generated by the messaging system from adirectory or by the user.
ThisisaCMC_pv_string type of property.

535 Object class

NAME
Distribution List Object Class

C DECLARATION

#defi ne CMC_PT_OBJECT_CLASS \
"—/IXAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION

This property defines the class of the object as a distribution list. This property is created by
cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS DISTRIBUTION_LIST which specifies that the
object’s class is a distribution list.

This is aCMC_pv_enum type of property.

5.3.6 Parent

NAME
Distribution List Parent

C DECLARATION

#define CMC_PT_DI STRI BUTI ON_LI ST_PARENT \
"—/IXAPIA/ICMC/PROPERTY//INONSGML Distribution List Parent//EN"

DESCRIPTION

This property specifies the parent of the distribution list. If the implementation supports the nesting of distribution lists,
this property specifies the parent distribution list. If the distribution list is the top level, this property is not present.
Otherwise, it is mandatory. This property isnull for the parent.

ThisisaCMC_pv_object_handle type of property.
537 Shared

NAME
Distribution List Shared

C DECLARATION

#define CMC_PT_DI STRI BUTI ON_LI ST_SHARED \
"—/IXAPIA/ICMC/PROPERTY//INONSGML Distribution List Shared//EN"

DESCRIPTION
This property indicates whether more than one user has access to this distribution list.
The default value for this property is CMC_FALSE if supported.

ThisisaCMC_pv_boolean type of property.

54 M essage object properties

The message object is a collection of message specific object properties. The following subclauses define, declare, and
describe message object properties.

Recommendation X.446 (08/97) 67

54.1 Application Id

NAME
Message Application Id

C DECLARATION

#defi ne CMC_PT_MESSAGE APPLI| CATI ON I D \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Application Id//EN"

DESCRIPTION

This property specifies aglobally unique identifier for the message. This property is set by the application.
ThisisaCMC_pv_string type of property.

54.2 Application message status

NAME
Message Application Message Status

C DECLARATION

#def i ne CMC_PT_MESSAGE_APPLI CATI ON_MSG_STATUS \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Application Msg Status//EN"

DESCRIPTION

This property specifies the caller specified status for the message. This property can be used by the caller to mark
whether a message is a draft or completed message. There are no implied semantics to the messaging service; however,
the value of the property is persistent across sessions.

The valid values for this property include:
CMC_MESSAGE_STATUS DRAFT
CMC_MESSAGE_STATUS_ DRAFT — Specifies that the message is in draft mode.
This is aCMC_pv_flags type of property.
54.3 Auto-Action

NAME
Message Auto-Action

C DECLARATION

#defi ne CMC_PT_MESSAGE_AUTO ACTI ON \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Auto Action//EN"

DESCRIPTION

This property specifies the automatic action or disposition of the message after it is sent. Support for this property is
optional for implementations conforming to this Recommendation. In the case of newly created messages, the property is
created by acall to cmc_add_properties(). In the case of newly created messages, the property can also be modified by
acall to cmc_add_properties() or deleted by a call to cmc_delete properties(). This property at the message object
will override the preference set in the profile container object.

The valid value for this property is:
CMC_AA DELETE

Set: The specified message is to be deleted by the underlying messaging system after it has been
successfully submitted for transfer.

Clear: The specified message is placed in the sent folder if it exists. If not, the message is del eted.
ThisisaCMC_pv_flagstype of property.

68 Recommendation X.446 (08/97)

5.4.4 Deferred délivery time

NAME
Message Deferred Delivery Time

C DECLARATION

#defi ne CMC_PT_MESSAGE_DEFERRED_DELI VERY_TI ME \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Deferred Delivery Time//EN"

DESCRIPTION

This property specifies the UTC (Coordinate Universal Time) date and time before which the message should not be
delivered to recipients.

ThisisaCMC_pv_iso_date _time type of property.
545 Id

NAME
Message Id

C DECLARATION

#defi ne CMC_PT_MESSAGE | D \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Id//EN"

DESCRIPTION

This property specifies a globally unique identifier for the message. This property is set by
cmc_send_message _object(), is defined by the messaging service (established at submission), and is unique within
the domain.

In gateway applications, the Message Id may be added or updated by the caller.
ThisisaCMC_pv_string type of property.
5.4.6 In message status

NAME
Message In Message Status

C DECLARATION

#defi ne CMC_PT_MESSAGE | N MSG_STATUS \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message In Msg Status//EN"

DESCRIPTION

This property specifies the messaging service specified, input or receipt status for the message. This property is used by
the underlying messaging service to record modal status information about the receipt and processing of the message.
For example, the fact that a message has just been received in an inbox, has been read, or has been changed from its
original receipt can be specified by the messaging service.

Support for this property is optional for implementations conforming to this Recommendation. The property is
read-only; it is created and modified by the underlying messaging service. The property cannot be deleted by the user.

The valid values for this property include:

CMC_MESSAGE_STATUS _NEW
CMC_MESSAGE_STATUS_READ
CMC_MESSAGE_STATUS CHANGED

CMC_MESSAGE_STATUS _NEW - Specifies that the message has just been received by the underlying messaging
service. The flag will be reset when the session is closed, the message object is accessed, or the message container
closed.

CMC_MESSAGE_STATUS_ READ - Specifies that the message has been read. This status flag is set when a property
of one of the subordinate content item objects for the message has been read bycencalletnl_properties().

Recommendation X.446 (08/97) 69

CMC_MESSAGE_STATUS_CHANGED - Specifies whether the contents of a message has changed from the form it
was in when it was originally received. This status flag is set when any property contained within the message object is
added to or modified by a call to themc add_properties() function or deleted by a call to the
cmc_delete properties() function.

This is aCMC_pv_flags type of property.
54.7 Inreply to

NAME
Message In Reply To

C DECLARATION

#defi ne CMC_PT_MESSAGE_I N_REPLY_TO \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Message In Reply To//EN"

DESCRIPTION
This property specifies the previous correspondence which this message answers.

The property value may be a textual reference or may be a textual approximation of the message identifier of the
previous correspondence.

ThisisaCMC_pv_string type of property.
548 Item count

NAME
Message Item Count

C DECLARATION

#defi ne CMC_PT_MESSAGE | TEM COUNT \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Item Count//EN"

DESCRIPTION

This property specifies the number of top-level content items contained in a message. This count does not include
content items nested in other content items, messages, or reports. This property is set by the implementation.

ThisisaCMC_pv_uint32 type of property.
5.4.9 NRN diagnostic

NAME
Message NRN Diagnostic

C DECLARATION

#def i ne CMC_PROP_TYPE_MESSAGE_NRN_DI AGNOSTI C \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message NRN Diagnostic//EN"

DESCRIPTION

The property specifies the diagnostic details of the reason for the non-receipt notification. These are additional details for
the non-receipt reason. This property only pertains to messages of type CMC_MT_RECEIPT.

ThisisaCMC_pv_string type of property.
5410 NRN reason

NAME
Message NRN Reason

C DECLARATION

#defi ne CMC_PROP_TYPE_MESSAGE NRN_ REASON \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Message NRN Reason//EN"

70 Recommendation X.446 (08/97)

DESCRIPTION

This property explains why the message was not received. This property only pertains to messages of type
CMC_MT_RECEIPT with the receipt type property of CMC_RECEIPT_NRN.

ThisisaCMC_pv_string type of property.
54.11 Object class

NAME
Message Object Class

C DECLARATION

#defi ne CMC_PT_OBJECT_CLASS \
"_JIXAPIAICMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION
This property defines the class of the object as a message.
This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS_ MESSAGE which specifies that the object’s class
is a message.

This is aCMC_pv_enum type of property.

5412 Out message status

NAME
Message Out Message Status

C DECLARATION

#define OMC_PT_MESSAGE_OUT_MSG_STATUS \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Out Msg Status//EN"

DESCRIPTION

This property specifies the messaging service specified, output or disposition status for the message. This property is
used by the underlying messaging service to record modal status information about the disposition of the message. For
example, the fact that a message has been marked for delete, has been submitted for transfer, or isin the process of being
sent can be specified by the messaging service.

Support for this property is optional for implementations conforming to this Recommendation. The property is
read-only; it is created and modified by the underlying messaging service. The property cannot be deleted by the user.

The vaid values for this property include:

CMC_MESSAGE_STATUS DELETED
CMC_MESSAGE_STATUS _SUBMITTED
CMC_MESSAGE_STATUS SENT

CMC_MESSAGE_STATUS_DELETED - Specifies that the message is in transition to being deleted. In some
implementation environments (e.g. disconnected user), a deletion operation on a message may not be able to be acted ol
immediately. This flag indicates that even though the message appears in a message container, it has been marked fo
delete.

CMC_MESSAGE_STATUS _SUBMITTED - Specifies that the message has been submitted for transfer by the
underlying messaging service by either a call to ¢nec_send_message object() function or a call to the
cmc_commit_object() function for committing a message object to an outbox type of message container. In some
implementation environments (e.g. disconnected user), a send operation on a message may not be able to be acted o
immediately. This flag indicates that even though the message appears in a message container, it has been marked fo
submission to the underlying messaging service.

Recommendation X.446 (08/97) 71

CMC_MESSAGE_STATUS_SENT - Specifies that the message is in transition to being sent by the underlying
messaging service. In some implementation environments, the transfer of a message by the underlying messaging service
may not be immediate. In such cases, the message may appear in a message container even though it has been sent by t
application. This flag indicates such a state.

This is aCMC_pv_flags type of property.
5.4.13 Priority

NAME
Message Priority

C DECLARATION

#defi ne CMC_PT_MESSAGE_PRI ORI TY \
"—IIXAPIA/CMC/PROPERTY//NONSGML Message Priority//EN"

DESCRIPTION
This property specifies the priority of the message. The property is defaultable. It can be set when the message is created.
The valid values for this property include:

CMC_PRIORITY_URGENT
CMC_PRIORITY_NORMAL
CMC_PRIORITY_LOW

CMC_PRIORITY_URGENT - Specifies that the message is of an urgent priority.
CMC_PRIORITY_NORMAL - Specifies that the message is of a nominal priority. This is the default value.
CMC_PRIORITY_LOW - Specifies that the message is of a low priority.

This is aCMC_pv_enum type of property.

5.4.14 Receipt requested

NAME
Message Receipt Requested

C DECLARATION

#defi ne CMC_PT_MESSAGE_RECElI PT_REQUESTED \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Receipt Requested//EN"

DESCRIPTION
This property indicates whether areceipt for the message sent was requested.
The valid values for this property are:

CMC_RECEIPT RN
CMC_RECEIPT_NRN

CMC_RECEIPT_BOTH
CMC_RECEIPT_NONE

CMC_RECEIPT_RN — Requests that a receipt notification is returned only when the recipient has received the subject
message.

CMC_RECEIPT_NRN - Requests that a non-receipt notification is returned only when the recipient has failed to
receive the subject message.

CMC_RECEIPT_BOTH - Requests that either a receipt notification or a non-receipt notification is returned depending
on whether the recipient has received or failed to receive the subject message.

CMC_RECEIPT_NONE - Requests that no receipt should be returned regardless of whether the recipient has received
or failed to receive the subject message.

This is aCMC_pv_enum type of property.

72 Recommendation X.446 (08/97)

5.4.15 Receipt type

NAME
Message Receipt Type

C DECLARATION

#defi ne CMC_PT_MESSAGE RECEI PT_TYPE \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Receipt Type//[EN"

DESCRIPTION

The type of the receipt returned for the subject message. This is used to indicate whether the subject message has been
received or not received by the intended recipient.

The valid values for this property include:

CMC_RECEIPT_RN
CMC_RECEIPT_NRN

CMC_RECEIPT_RN — Specifies that this is a receipt notification.

CMC_RECEIPT_NRN - Specifies that this is a non-receipt notification.

This property pertains only if the message type property has the value of CMC_MESSAGE_TYPE_RECEIPT.
This is aCMC_pv_enum type of property.

5.4.16 Report requested

NAME
Message Report Requested

C DECLARATION

#def i ne CMC_PT_MESSAGE REPORT REQUESTED \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Report Requested//EN"

DESCRIPTION

The type of the report to be returned for the subject message. This is used to indicate whether the subject message has
been delivered or not delivered by the underlying messaging transport systems.

The valid values for this property include:

CMC_REPORT DR
CMC_REPORT_NDR

CMC_REPORT_BOTH
CMC_REPORT_NONE

CMC_REPORT_DR — Specifies that a delivery report is requested.

CMC_REPORT_NDR - Specifies that a non-delivery report is requested.

CMC_REPORT_BOTH - Specifies that either delivery report, or non-delivery report is requested, whichever applicable.
CMC_REPORT_NONE - Specifies that neither delivery report nor non-delivery report is requested.

This is aCMC_pv_enum type of property.

54.17 Role

NAME
Message Role

C DECLARATION

#defi ne CMC_PT_MESSAGE_ROLE \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Message Role//EN"

Recommendation X.446 (08/97) 73

DESCRIPTION
Therole of this message.
The valid values for this property include:

CMC_MESSAGE_ROLE_ORIGINAL
CMC_MESSAGE_ROLE_RETURNED
CMC_MESSAGE_ROLE_FORWARDED
CMC_MESSAGE_ROLE_REPLIED
CMC_MESSAGE_ROLE_OBSOLETED
CMC_MESSAGE_ROLE_RESENT

CMC_MESSAGE_ROLE_ORIGINAL — Specifies that this is the original message.
CMC_MESSAGE_ROLE_RETURNED - Specifies that this is a returned message, content of another message.
CMC_MESSAGE_ROLE_FORWARDED - Specifies that this is a forwarded message, content of another message.
CMC_MESSAGE_ROLE_REPLIED - Specifies that this is a reply message to another message.
CMC_MESSAGE_ROLE_OBSOLETED - Specifies that this is an obsolete message.
CMC_MESSAGE_ROLE_RESENT - Specifies that this is a resent copy of another message, the original.

This is aCMC_pv_enum type of property.

54.18 Sensitivity

NAME
Message Sensitivity

C DECLARATION

#defi ne CMC_PT_MESSAGE_SENSI TI VI TY \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Sensitivity//EN"

DESCRIPTION
This property specifies the sensitivity of the message.
The valid values for this property include:

CMC_MESSAGE_SENSITIVITY_PERSONAL
CMC_MESSAGE_SENSITIVITY_PRIVATE
CMC_MESSAGE_SENSITIVITY_CONFIDENTIAL
CMC_MESSAGE_SENSITIVITY_NONE

CMC_MESSAGE_SENSITIVITY_PERSONAL — Specifies that the message is personal.
CMC_MESSAGE_SENSITIVITY_PRIVATE — Specifies that the message is private.
CMC_MESSAGE_SENSITIVITY_CONFIDENTIAL — Specifies that the message is confidential.
CMC_MESSAGE_SENSITIVITY_NONE - Specifies that the message is non-sensitive.

This is aCMC_pv_enum type of property.

5419 Size

NAME
Message Size

C DECLARATION

#defi ne CMC_PT_MESSAGE_S| ZE \
"—/[XAPIA/CMC/PROPERTY//NONSGML Message Size//[EN"
DESCRIPTION

This property specifies the size of the message.
ThisisaCMC_pv_uint32 type of property.
74 Recommendation X.446 (08/97)

54.20 Subject

NAME
Message Subject

C DECLARATION

#defi ne CMC_PT_MESSAGE_SUBJECT \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Subject//EN"

DESCRIPTION

This property states the subject of the message. This property is defaultable to anull string.
ThisisaCMC_pv_string type of property.

5421 Timereceived

NAME
Message Time Received

C DECLARATION

#def i ne CMC_PT_MESSAGE Tl ME_RECEI VED \
"—IIXAPIA/CMC/PROPERTY//INONSGML Message Time Received//EN"

DESCRIPTION

This property specifies the date and time that the message was received.
ThisisaCMC_pv_iso_date time type of property.

5422 Timesent

NAME
Message Time Sent

C DECLARATION

#defi ne CMC_PT_MESSAGE_TI ME_SENT \
"—/[XAPIA/CMC/PROPERTY//NONSGML Message Time Sent//EN"

DESCRIPTION

This property specifies the date and time that the message was sent.
This property is set by the servicein cmc_send_message _obj ect().
ThisisaCMC_pv_iso_date time type of property.

5423 Type

NAME
Message Type
C DECLARATION

#defi ne CMC_PT_MESSAGE_TYPE \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Type//[EN"

DESCRIPTION

This property specifies the type of the message. Support for this property is optional for implementations conforming to
this Recommendation. In the case of received or existing messages, the property can be created by the messaging
system. In the case of newly created messages, the property is created by a call to cmc_add_properties(). In the case of
newly created messages, the property can also be modified by a call to cmc_add_properties() or deleted by a cal to
cmc_delete properties().

The valid values for this property are:

CMC_MT_IPM
CMC_MT_RECEIPT
CMC_MT_EDI

Recommendation X.446 (08/97) 75

CMC_MT_DIRECTORY
CMC_MT_DOCMGMT
CMC_MT_WORKFLOW
CMC_MT_CALSCHED

CMC_MT_IPM — Electronic mail or interpersonal message, in the parlance of Recommendation X.400.

CMC_MT_RECEIPT — A messaging receipt. This message type is used for Receipt Notification and Non-Receipt
Notification. The message type may also be useful for other message receipts also.

The following message types are reserved for the purposes specified. The values represent work-in-progress by the
XAPIA and other industry groups. These message types may be modified in future versions of this Recommendation to
reflect completion of this work.

CMC_MT_EDI - Electronic data interchange type message. The form and format of the EDI messages are not specified
by this Recommendation.

CMC_MT_DIRECTORY - Directory services type message. This message type provides for the use of the messaging
services as a transport for directory inquiry functions. The form and format of the directory messages are not specified
by this Recommendation.

CMC_MT_DOCMGMT - Document management type message. This message type provides for the access and search
of library services using the messaging service as a transport for the document management inquiry functions. The form
and format of the document management messages are not specified by this Recommendation.

CMC_MT_WORKFLOW - Workflow management type message. This message type facilitates the automated handling
of business processes by using the messaging service as a transport for the workflow functions. The form and format of
the workflow management messages are not specified by this Recommendation.

CMC_MT_CALSCHED - Calendaring and Scheduling type message. This message type provides the use of the

messaging service as a transport for calendaring and scheduling functions. The form and format of the calendaring and
scheduling messages are not specified by this Recommendation. There are other XAPIA specifications that provide for
the definition of calendaring and scheduling interoperability specification.

This is aCMC_pv_enum type of property.

55 M essage container object properties

A message container object is a collection of container properties, message objects, and, quite possibly, other message
containers. The following subclauses define, declare, and describe message container object properties.

551 Child allowed

NAME
Message Container Child Allowed

C DECLARATION

#def i ne CMC_PT_MESSAGE CONTAI NER CHI LD ALLOWED \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Message Container Child Allowed//EN"

DESCRIPTION
This property permits or denies the existence of a child of the message container.

ThisisaCMC_pv_boolean type of property.

55.2 Comment

NAME
Message Container Comment

C DECLARATION

#def i ne CMC_PT_MESSAGE CONTAI NER_COMVENT \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Container Comment//EN"

76 Recommendation X.446 (08/97)

DESCRIPTION

A descriptive comment about the message container.
ThisisaCMC_pv_string type of property.

55.3 L ocation

NAME
Message Container Location

C DECLARATION

#def i ne CMC_PT_MESSAGE CONTAI NER_LOCATI ON \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Container Location//EN"

DESCRIPTION
The location of the message container.
The valid values for this property include:

CMC_MESSAGE_CONTAINER_LOCATION_LOCAL
CMC_MESSAGE_CONTAINER_LOCATION_SERVER
CMC_MESSAGE_CONTAINER_LOCATION_UNKNOWN

CMC_MESSAGE_CONTAINER_LOCATION_LOCAL - Specifies that the location of the message container is local
and not on the messaging server.

CMC_MESSAGE_CONTAINER_LOCATION_SERVER - Specifies that the location of the message container is on
the messaging server.

CMC_MESSAGE_CONTAINER_LOCATION_UNKNOWN - Specifies that the location of the message container is
unknown.

This is aCMC_pv_enum type of property.

554 Name

NAME
Message Container Name

C DECLARATION

#def i ne CMC_PT_MESSAGE_CONTAI NER_NAME \
"—/[XAPIA/CMC/PROPERTY//NONSGML Message Container Name//EN"

DESCRIPTION

The name of the message container.
ThisisaCMC_pv_string type of property.
555 Object class

NAME
Message Container Object Class

C DECLARATION

#defi ne CMC_PT_OBJECT_CLASS \
"—/IXAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION
This property defines the class of the object as a message container.
This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS MESSAGE_CONTAINER which specifies that
the object’s class is a message container.

This is aCMC_pv_enum type of property.
Recommendation X.446 (08/97) 77

55.6 Parent

NAME
Message Container Parent

C DECLARATION

#defi ne CMC_PT_MESSAGE_CONTAI NER_PARENT \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Message Container Parent//EN"

DESCRIPTION

The parent of the message container. If the implementation supports the nesting of message containers, this property
specifies the parent message container. |f the message container is the top level, this property is not present. Otherwise, it
is mandatory.

ThisisaCMC_pv_object_handle type of property.
55.7 Server name

NAME
Message Container Server Name

C DECLARATION

#def i ne CMC_PT_MESSAGE _CONTAI NER_SERVER_NANME \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Container Server Name//EN"

DESCRIPTION

This property specifies the name of the server on which the message container is located.
ThisisaCMC_pv_string type of property.

55.8 Shared

NAME
Message Container Shared

C DECLARATION

#defi ne CMC_PT_MESSAGE CONTAI NER_SHARED \
"—IIXAPIA/ICMC/PROPERTY//NONSGML Message Container Shared//EN"

DESCRIPTION
This property specifies whether more than one user has access to this message container.

ThisisaCMC_pv_boolean type of property.

55.9 Type

NAME
Message Container Type

C DECLARATION

#def i ne CMC_PT_MESSAGE CONTAI NER TYPE \
"—/[XAPIA/CMC/PROPERTY//NONSGML Message Container Type//EN"

DESCRIPTION
This property specifies the type of the container of the message.
The valid values for this property include:

CMC_MCT_DELETED
CMC_MCT_DRAFTS
CMC_MCT_FILED
CMC_MCT_INBOX
CMC_MCT_OUTBOX
CMC_MCT_SENT

78 Recommendation X.446 (08/97)

CMC_MCT_DELETED - Specifies that the message container is for deleted messages.
CMC_MCT_DRAFTS - Specifies that the message container is for draft messages.
CMC_MCT_FILED - Specifies that the message container is for filed messages.

CMC_MCT_INBOX - Specifies that the message container is the inbox. An implementation may have more than one
inbox.

CMC_MCT_OUTBOX — Specifies that the message container is for outgoing messages. An implementation must have
at least one outbox and it is mandatory. Objects committed to the outbox are not modifiable. Committed objects can only
be deleted or copied.

CMC_MCT_SENT - Specifies that the message container is for messages that have been sent. The sent box is optional.
An implementation will have, at the most, one sent box (0-1 sent box).

This is aCMC_pv_enum type of property.

5.6 Per recipient information object properties

Per Recipient Information objects are components of a report that is generated to reflect the delivery or non-delivery
status of a message. The following subclauses define, declare, and describe the Per Recipient Information object
properties.

56.1 Comment

NAME
Per Recipient Information Comment

C DECLARATION

#define CMC_PT_PRI _COMVENT \
"—/IXAPIA/ICMC/PROPERTY//INONSGML PRI Comment//EN"

DESCRIPTION

This property provides supplementary information about the status of the message.
ThisisaCMC_pv_string type of property.

5.6.2 Delivery time

NAME
Per Recipient Information Delivery Time

C DECLARATION

#define CMC_PT_PRI _DELI VERY_TI ME \
"—/[XAPIA/CMC/PROPERTY//NONSGML PRI Delivery Time//EN"

DESCRIPTION

This property specifies the date and time that the subject message was delivered.
This property is set by the servicein cmc_send_message _obj ect().

This property is mandatory if the per recipient information typeis CMC_PRI_DR.
ThisisaCMC_pv_iso_date time type of property.

5.6.3 Diagnostic

NAME
Per Recipient Information Diagnostic

C DECLARATION

#define CMC_PT_PRI DI AGNCSTI C \
"—/IXAPIA/CMC/PROPERTY//NONSGML PRI Diagnostic//EN"

Recommendation X.446 (08/97) 79

DESCRIPTION

This property specifies the detailed diagnostic information indicating why the subject message was not delivered.
ThisisaCMC_pv_string type of property.

5.6.4 Object class

NAME
Per Recipient Information Object Class

C DECLARATION

#defi ne CMC_PT_OBJECT_CLASS \
"—/[XAPIA/ICMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION
This property defines the class of the object as a Per Recipient | nformation.
This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OC_PER_RECIPIENT_INFORMATION which specifies that the
object’s class is a Per Recipient Information.

This is aCMC_pv_enum type of property.

5.6.5 Reason

NAME
Per Recipient Information Reason

C DECLARATION

#defi ne CMC_PT_PRI _REASON \
"—/[XAPIA/ICMC/PROPERTY//NONSGML PRI Reason//EN"

DESCRIPTION

This property specifies the reason indicating why the per recipient information was generated.
This property is mandatory if the per recipient information typeis CMC_PRI_NDR.
ThisisaCMC_pv_string type of property.

5.6.6 Recipient address

NAME
Per Recipient Information Recipient Address

C DECLARATION

#define CMC_PT_PRI _RECI P| ENT_ADDRESS \
"—/[XAPIA/ICMC/PROPERTY//NONSGML PRI Recipient Address//EN"

DESCRIPTION

This property specifies the address of the recipient intended for the subject message, who either received or was not able
to receive the message, as indicated by the per recipient information type. This is not the originator of the subject
message who would usually be the recipient of this report. The report recipient cannot reply to the report.

ThisisaCMC_pv_string type of property.
5.6.7 Recipient name

NAME
Per Recipient Information Recipient Name

80 Recommendation X.446 (08/97)

C DECLARATION

#define CMC_PT_PRI _RECI Pl ENT_NANME \
"—/[XAPIA/CMC/PROPERTY//NONSGML PRI Recipient Name//EN"

DESCRIPTION

This property specifies the name of the recipient intended for the subject message, who either received or was not able to
receive the message, as indicated by the per recipient information type. Thisis not the originator of the subject message
who would usually be the recipient of this report. The report recipient cannot reply to the report.
ThisisaCMC_pv_string type of property.

5.6.8 Type

NAME
Per Recipient Information Type

C DECLARATION

#define CMC_PT_PRI_TYPE \
"—/IXAPIA/CMC/PROPERTY//NONSGML PRI Type//EN"

DESCRIPTION
This property specifies the type of the per recipient information.
The valid values for this property include:
CMC_PRI_DR
CMC_PRI_NDR
CMC_PRI_UNKNOWN
CMC_PRI_DR - Specifies a delivery notice type of per recipient information.
CMC_PRI_NDR - Specifies a non-delivery notice type of per recipient information.

CMC_PRI_UNKNOWN - Specifies that the per recipient information type was not specified or not applicable.

This is aCMC_pv_enum type of property.

5.7 Profile container object properties

The profile container object identifies session context and configuration specific information. The following subclauses
define, declare, and describe profile container properties.

57.1 Auto-Action

NAME
Profile Container Auto-Action

C DECLARATION

#defi ne CMC_PT_PROFI LE_CONTAI NER_AUTO ACTI ON \
"—/INONSGML Profile Container Auto Action//EN"

DESCRIPTION

This property specifies the automatic action or disposition of the message after it is sent. Support for this property is
optional for implementations conforming to this Recommendation. In the case of newly created messages, the property is
created by acall to cmc_add_properties(). In the case of newly created messages, the property can also be modified by
a call to cmc_add_properties() or deleted by a call to cmc_delete properties(). This value can be overridden by the
CMC_PT_MESSAGE_AUTO_ACTION property at the message object on a per message basis.

Recommendation X.446 (08/97) 81

The valid value for this property is:
CMC_AA_DELETE

Set: The specified message is to be deleted by the underlying messaging system after it has been
successfully submitted for transfer.

Clear: The specified message is placed in the sent folder if it exists. If not, the message is del eted.
ThisisaCMC_pv_flags type of property.
5.7.2 Character Set

NAME
Profile Container Character Set

C DECLARATION

#defi ne CMC_PT_PROFI LE_CHARACTER SET \
"—/IXAPIA/ICMC/PROPERTY//INONSGML Profile Character Set//[EN"

DESCRIPTION

The character set to be used for conveying string data between the user and CMC. The property value is an array of
character set object identifiers associated with the implementation. The array is a counted array. The first character set
identifier in the array is the default character set used if the caller does not specify one explicitly in the cmc_logon()
function. Refer to the platform specific clause in B.2.4 for object identifiers for common character sets.

ThisisaCMC_pv_array_of guid type of property.
573 Conformance

NAME
Profile Container Conformance

C DECLARATION

#defi ne CMC_PT_PROFI LE_CONF \
"—/IXAPIA/ICMC/PROPERTY//INONSGML Profile Conf//EN"

DESCRIPTION

The conformance level of the implementation. The property value will be either CMC_CONF_SIMPLE_CMC if the
implementation supports only the Simple CMC, and CMC_CONF _FULL_CMC if the implementation supports a
stand-alone version of the Full CMC. A value of CMC_CONF_FULL_CMC implies that the implementation also
supports the Simple CMC interface as required by the conformance clause.

ThisisaCMC_pv_enum type of property.
574 Default Service

NAME
Profile Container Default Service

C DECLARATION

#defi ne CMC_PT_PROFI LE_DEFAULT_SERVI CE \
"—/IXAPIA/ICMC/PROPERTY//INONSGML Profile Default Service//[EN"

DESCRIPTION

The default service name. A pointer value of NULL will be written if no default service nameis available. This property,
along with the CMC_PT_PROFILE_DEFAULT_USER, can be used as defaults for the service name and user name for
cmc_logon(). Thiswill be returned in the implementation default character set.

ThisisaCMC_pv_string type of property.

82 Recommendation X.446 (08/97)

5.7.5 Default User

NAME
Profile Container Default User

C DECLARATION

#defi ne CMC_PT_PROFI LE_DEFAULT_USER \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Profile Default User//EN"

DESCRIPTION

The default CMC user name. A pointer value of NULL will be written if no default user name is available. This
property, aong with the CMC_PROFILE_DEFAULT_SERVICE, can be used as defaults for the provider name and
user name for cmc_logon(). Thiswill be returned in the implementation default character set.

ThisisaCMC_pv_string type of property.
5.7.6 Line Terminator

NAME
Profile Container Line Term

C DECLARATION

#define CMC_PT_PROFILE_LINE_TERM \
"—//XAPIA/ICMC/PROPERTY//NONSGML Profile Line Term//EN"

DESCRIPTION

The line terminator characters to be used to terminate lines of strings. The values for the property are
CMC_LINE TERM_CRLEF if the line delimiter is a carriage return followed by aline feed, CMC_LINE TERM _LF if
theline delimiter isaline feed, or CMC_LINE_TERM_CR if the line delimiter is a carriage return.

ThisisaCMC_pv_enum type of property.
5.7.7 Object Class

NAME
Profile Container Object Class

C DECLARATION

#defi ne CMC_PT_OBJECT_CLASS \
"—/IXAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION
This property defines the class of the object as address book.

The only valid value for this property is CMC_PT_OBJECT_CLASS_PROFILE, which specifies that the object’s class
is a profile container object.

This is aCMC_pv_enum type of property.

5.7.8 Object Extensions Supported

NAME
Profile Container Object Extensions Supported

C DECLARATION

#defi ne CMC_PT_PROFI LE_OBJECT_EXT \
"—I/XAPIA/CMC/PROPERTY//NONSGML Profile Object Ext//EN"

DESCRIPTION

The object class extensions supported by the implementation. The property values are an array of the object class global
identifiers for the object class extensions supported by the implementation. There is not an implicit order to the object
GUIDsin the array.

ThisisaCMC_pv_array_guid type of property.
Recommendation X.446 (08/97) 83

5.7.9 Objects Supported

NAME
Profile Container Objects Supported

C DECLARATION

#define CMC_PT_PROFI LE_OBJECT_SUP \
"—/IXAPIA/CMC/PROPERTY//NONSGML Profile Object Sup//EN"

DESCRIPTION

The object classes supported by the implementation. The property values are an array of the object class global
identifiers for the object classes supported by the implementation. There is not an implicit order to the object GUIDs in
the array.

ThisisaCMC_pv_array_guid type of property.
5.7.10 Properties Supported

NAME
Profile Container Properties Supported

C DECLARATION

#defi ne CMC_PT_PROFI LE_PROP_SUP \
"—/IXAPIA/CMC/PROPERTY//NONSGML Profile Prop Sup//EN"

DESCRIPTION

The properties supported by the implementation. The property values are an array of the property global identifiers for
the object properties supported by the implementation. There is not an implicit order to the property GUIDs in the array.

ThisisaCMC_pv_array_guid type of property.
5711 Property Extensions Supported

NAME
Profile Container Properties Supported

C DECLARATION

#defi ne CMC_PT_PROFI LE_PROP_EXT \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Profile Prop Ext/EN"

DESCRIPTION

The property extensions supported by the implementation. The property values are an array of the property global
identifiers for the object property extensions supported by the implementation. There is not an implicit order to the
property GUIDs in the array.

ThisisaCMC_pv_array_guid type of property.
5.712 Required Password

NAME
Profile Container Required Password

C DECLARATION

#defi ne CMC_PT_PRCFI LE_REQ PASSWORD \
"—/IXAPIA/CMC/PROPERTY//NONSGML Profile Req Password//EN"

DESCRIPTION

Whether a password is required for log on to the service. The values of the property are CMC_REQUIRED_NO if the
password is not required to log on, CMC REQUIRED OPT if the password is optiona to log on, or
CMC_REQUIRED_YESif the password is required to log on.

ThisisaCMC_pv_enum type of property.
84 Recommendation X.446 (08/97)

5.713 Required Service

NAME
Profile Container Required Service

C DECLARATION

#defi ne CMC_PT_PROFI LE_REQ SERVI CE \
"—IIXAPIA/CMC/PROPERTY//NONSGML Profile Req Service//[EN"

DESCRIPTION

Whether a service name is required to log on to the service. The values of the property CMC_REQUIRED_NO if the
service name is not required to log on, CMC_REQUIRED_OPT if the service name is optional to log on, or
CMC_REQUIRED_YESif the service nameis required to log on.

ThisisaCMC_pv_enum type of property.
57.14 Required User

NAME
Profile Container Required User

C DECLARATION

#defi ne CMC_PT_PROFI LE_REQ USER \
"—/[XAPIA/CMC/PROPERTY//NONSGML Profile Req User//EN"

DESCRIPTION

Whether a user name is required to log on to the service. The values of the property CMC_REQUIRED_NO if the user
name is not required to log on, CMC REQUIRED OPT if the user name is optiona to log on, or
CMC_REQUIRED_YESif the user name isrequired to log on.

ThisisaCMC_pv_enum type of property.
5.7.15 Support Counted Strings

NAME
Profile Container Support Counted Strings

C DECLARATION

#defi ne CMC_PT_PROFI LE_SUP_COUNTED_ STR \
"—/IXAPIA/CMC/PROPERTY//NONSGML Profile Sup Counted Str//EN"

DESCRIPTION

Whether the service supports counted strings. The property value will be set to a true value if the
CMC_COUNTED_STRING_TYPE flag is supported during log on.

ThisisaCMC_pv_boolean type of property.

5.7.16 Support NoMark AsRead

NAME
Profile Container Support No Mark As Read

C DECLARATION

#def i ne CMC_PT_PROFI LE_SUP_NOVKMBGREAD \
"—/IXAPIA/CMC/PROPERTY//NONSGML Profile Sup NoMkMsgRead//EN"

DESCRIPTION

Whether the service supports the cmc_read() CMC_DO_NOT_MARK_AS READ operation. The property value will
be set to atrue value if the CMC_DO_NOT_MARK_AS READ flagis supported by cmc_read().

ThisisaCMC_pv_boolean type of property.

Recommendation X.446 (08/97) 85

5.7.17 User Interface Available

NAME
Profile Container User Interface Available

C DECLARATION

#define CMC_PT_PROFI LE_Ul _AVAI L \
"—/IXAPIA/CMC/PROPERTY//INONSGML Profile Ul Avail//EN"

DESCRIPTION

Whether a user interface is available for parameter entry and resolution. The property value will be set to atrue value if
thereis Ul provided by the CM C implementation.

ThisisaCMC_pv_boolean type of property.

5718 Users

NAME
Profile Container Users

C DECLARATION

#defi ne CMC_PT_PROFI LE_USERS \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Profile Users//[EN"

DESCRIPTION

The users currently logged on to the root container. The property values are the recipient names of the users logged on to
the root container. Support for the property is optional for implementations conforming to this Recommendation.

Thereisno implicit order to the subsequent recipient namesin the array.
ThisisaCMC_pv_array_string type of property.
5.719 Version of the Implementation

NAME
Profile Container Version of the Implementation

C DECLARATION

#define CMC_PT_PROFI LE_VER | MPLEM \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Profile Ver Implem//EN"

DESCRIPTION

The version of the implementation. The property value will be set to the version number of the implementation,
multiplied by 100. For example, version 1.01 will return 101.

ThisisaCMC_pv_uint16 type of property.
5.7.20 Version of the Specification

NAME
Profile Container Version of the Specification

C DECLARATION

#defi ne CMC_PT_PROFI LE_VER_SPEC \
"—/[XAPIA/CMC/PROPERTY//NONSGML Profile Ver Spec//EN"

DESCRIPTION

The version of the CMC specification supported by the implementation. The property value will be set to the version of
the CMC specification supported by the implementation, multiplied by 100. For example, version 1.00 will return 100.

ThisisaCMC_pv_uint16 type of property.

86 Recommendation X.446 (08/97)

5.8 Recipient object properties

Recipient objects identify individual users within a messaging service. A recipient object is not a container object. The
following subclauses define, declare, and describe recipient object properties.

5.8.1 Address

NAME
Recipient Address

C DECLARATION

#defi ne CMC_PT_RECI Pl ENT_ADDRESS \
"—/IXAPIA/CMC/PROPERTY//NONSGML Recipient Address//[EN"

DESCRIPTION

This property specifies the address of the recipient. The format of the string is implementati on-dependent.

In gateway applications, the Address of the Recipient Object whose roleis Originator may be added by the gateway.
ThisisaCMC_pv_string type of property.

58.2 Content Return Requested

NAME
Recipient Content Return Requested

C DECLARATION

#def i ne CMC_PT_RECI Pl ENT_CONTENT _RETURN REQUESTED \
"—/[XAPIA/CMC/PROPERTY//NONSGML Recipient Content Return Requested//EN"

DESCRIPTION

This property specifies whether the subject message should be returned with the non-delivery report in case of
unsuccessful delivery. If the report is not requested, the message will not be returned regardless of the indication of this

property.
ThisisaCMC_pv_boolean type of property.
583 Name

NAME
Recipient Name

C DECLARATION

#defi ne CMC_PT_RECI PI ENT_NAME \
"—/IXAPIA/CMC/PROPERTY//NONSGML Recipient Name//EN"

DESCRIPTION

This property specifies the display name of the recipient. The format of the string is implementation-dependent.
ThisisaCMC_pv_string type of property.

584 Object Class

NAME
Recipient Object Class

C DECLARATION

#defi ne CMC_PT_OBJECT_CLASS \
"—/IXAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

Recommendation X.446 (08/97) 87

DESCRIPTION
This property defines the class of the object asarecipient.
This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS RECIPIENT, which specifies that the object’s
class is a recipient.

This is aCMC_pv_enum type of property.

585 Receipt Requested

NAME
Recipient Receipt Requested

C DECLARATION

#defi ne CMC_PT_RECI PI ENT_RECEI PT_REQUESTED \
"—/IXAPIA/CMC/PROPERTY//NONSGML Recipient Receipt Requested//EN"

DESCRIPTION
The type of the receipt to be returned for the message.

If both the message object and the recipient object specify the receipt requested property, the value specified at the
recipient object will override the value specified at the message object. The implementation is not required to support
this property at the recipient object level.

The vaid values for this property include:

CMC_RECEIPT_RN
CMC_RECEIPT_NRN
CMC_RECEIPT_BOTH
CMC_RECEIPT_NONE

CMC_RECEIPT_RN — Requests that a receipt notification is returned only when the recipient has received the subject
message.

CMC_RECEIPT_NRN - Requests that a non-receipt natification is returned only when the recipient has failed to
receive the subject message.

CMC_RECEIPT_BOTH — Requests that either a receipt notification or a non-receipt notification is returned when the
recipient has received or fails to receive the subject message.

CMC_RECEIPT_NONE - Requests that no receipt should be returned regardless of whether the recipient has received
or fails to receive the subject message.

This is aCMC_pv_enum type of property.

5.8.6 Report Requested

NAME
Recipient Report Requested

C DECLARATION

#defi ne CMC_PT_RECI Pl ENT_REPORT_REQUESTED \
"—/[XAPIA/CMC/PROPERTY//NONSGML Recipient Report Requested//EN"

DESCRIPTION

The type of the report to be returned for the subject message. This is used to indicate whether the subject message has
been delivered or not-delivered by the underlying messaging transport systems.

The valid values for this property include:

CMC_REPORT DR
CMC_REPORT_NDR
CMC_REPORT_BOTH
CMC_REPORT_NONE

88 Recommendation X.446 (08/97)

CMC_REPORT_DR — Specifies that a delivery report is requested.

CMC_REPORT_NDR - Specifies that a non-delivery report is requested.

CMC_REPORT_BOTH - Specifies that either delivery report, or non-delivery report is requested, whichever applicable.
CMC_REPORT_NONE - Specifies that neither delivery report nor non-delivery report is requested.

This is aCMC_pv_enum type of property.

5.8.7 Responsibility Flag

NAME
Recipient Responsibility Flag

C DECLARATION

#defi ne CMC_PT_RECI Pl ENT_RESPONSI Bl LI TY_FLAG \
"—/[XAPIA/CMC/PROPERTY//NONSGML Recipient Responsibility Flag//EN"

DESCRIPTION

This property specifies an indicator of whether this recipient should receive a copy of the message. It is useful in
gateways and situations where multiple versions of CMC may be accessed by an application.

The default for this property isCMC_TRUE.

ThisisaCMC_pv_boolean type of property.

5.8.8 Role

NAME
Recipient Role

C DECLARATION

#defi ne CMC_PT_RECI Pl ENT_ROLE \
"—/IXAPIA/CMC/PROPERTY//NONSGML Recipient Role//EN"

DESCRIPTION
This property specifies the role of the recipient.
The valid values for this property include:
CMC_RECIPIENT_ROLE_TO
CMC_RECIPIENT_ROLE_CC
CMC_RECIPIENT_ROLE BCC
CMC_RECIPIENT_ROLE_ORIGINATOR
CMC_RECIPIENT_ROLE_AUTHORIZING_USER
CMC_RECIPIENT_ROLE_REPLY_TO
CMC_RECIPIENT_ROLE_FORWARDED
CMC_RECIPIENT_ROLE_ACTUAL
CMC_RECIPIENT_ROLE_INTENDED
CMC_RECIPIENT_ROLE_TO - Specifies the primary recipient.
CMC_RECIPIENT_ROLE_CC - Specifies the carbon copy recipient.
CMC_RECIPIENT_ROLE_BCC - Specifies the blind carbon copy recipient.
CMC_RECIPIENT_ROLE_ORIGINATOR - Specifies the originator.

Recommendation X.446 (08/97) 89

CMC_RECIPIENT_ROLE_AUTHORIZING_USER - Specifies the authorizing user.
CMC_RECIPIENT_ROLE_REPLY_TO - Specifies recipient to which the reply should be directed.
CMC_RECIPIENT_ROLE_FORWARDED - Specifies the forwarded recipient.
CMC_RECIPIENT_ROLE_ACTUAL — Specifies the actual recipient.
CMC_RECIPIENT_ROLE_INTENDED - Specifies the intended recipient.

This is aCMC_pv_enum type of property.

5.8.9 Type

NAME
Recipient Type

C DECLARATION

#defi ne CMC_PT_RECI Pl ENT_TYPE \
"—/IXAPIA/CMC/PROPERTY//NONSGML Recipient Type//EN"

DESCRIPTION
This property specifies the type of the recipient.
The valid values for this property include:

CMC_RCT_UNKNOWN (=0)
CMC_RCT_INDIVIDUAL
CMC_RCT_GROUP
CMC_RCT_REPORT_RECIPIENT

CMC_RCT_UNKNOWN - Specifies an unknown recipient type.

CMC_RCT_INDIVIDUAL — Specifies the recipient as an individual.

CMC_RCT_GROUP - Specifies that the recipient is a distribution list.
CMC_RCT_REPORT_RECIPIENT - Specifies that the recipient is the recipient of a report message.

This is aCMC_pv_enum type of property.

5.9 Report object properties

The report object is a collection of report specific object properties. The following subclauses define, declare, and
describe report object properties.

591 Application Id

NAME
Report Application Id

C DECLARATION

#defi ne CMC_PT_REPORT_APPLI CATI ON_I D \
"—/[XAPIA/CMC/PROPERTY//NONSGML Report Application Id//EN"

DESCRIPTION

This property specifies aglobally unique identifier for the report. This property is set by the application.
ThisisaCMC_pv_string type of property.

5.9.2 Id

NAME
Report Id

C DECLARATION

#define CMC_PT_REPORT_I D \
"—/[XAPIA/CMC/PROPERTY//NONSGML Report Id//EN"

90 Recommendation X.446 (08/97)

DESCRIPTION

This property specifies a globally unique identifier for the report. This property is set by cmc_send_message object(),
is defined by the messaging service (established at submission), and is unique within the domain.

In gateway applications, the Message |d may be added or updated by the caller.
ThisisaCMC_pv_guid type of property.
593 Item Count

NAME
Report Item Count

C DECLARATION

#defi ne CMC_PT_REPORT_| TEM_COUNT \
"—/[XAPIA/CMC/PROPERTY//NONSGML Report Iltem Count//EN"

DESCRIPTION

This property specifies the number of top-level content items contained in a report. This count does not include content
items nested in other content items, or messages. This property is set by the implementation.

ThisisaCMC_pv_uint32 type of property.
594 Messaging System Id

NAME
Report Messaging System Id

C DECLARATION

#defi ne CMC_PT_REPORT_MESSAG NG_SYSTEM | D \
"—/[XAPIA/CMC/PROPERTY//NONSGML Report Messaging System Id//EN"

DESCRIPTION

This property specifies the underlying message transport system identifier or the gateway identifier that created this
report.

ThisisaCMC_pv_enum type of property.
5.95 Object Class

NAME
Report Object Class

C DECLARATION

#defi ne CMC_PT_OBJECT_CLASS \
"—/IXAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION
This property defines the class of the object as areport.
This property is created by cmc_open_object_handle().

The only valid value for this property is CMC_PT_OBJECT_CLASS_REPORT which specifies that the object’s class is
a report.

This is aCMC_pv_enum type of property.
5.9.6 Read

NAME
Report Read

Recommendation X.446 (08/97) 91

C DECLARATION

#defi ne CMC_PT_REPORT_READ \
"—/IXAPIA/CMC/PROPERTY//INONSGML Report Read//EN"

DESCRIPTION
This property specifies whether the report has been read.
ThisisaCMC_pv_boolean type of property.

5.9.7 Size

NAME
Report Size

C DECLARATION

#defi ne CMC_PT_REPORT_S| ZE \
"—/IXAPIA/ICMC/PROPERTY//NONSGML Report Size//EN"

DESCRIPTION

This property specifies the size of the report.
ThisisaCMC_pv_uint32 type of property.
59.8 Subject

NAME
Report Subject

C DECLARATION

#define OMC_PT_REPORT SUBJECT \
"—/IXAPIA/CMC/PROPERTY//NONSGML Report Subject//EN"

DESCRIPTION

This property states the subject of the report. This property is defaultable to a NULL string.
ThisisaCMC_pv_string type of property.

5.9.9 Subject Message | d

NAME
Report Subject Message Id

C DECLARATION

#defi ne CMC_PT_REPORT_SUBJECT_MESSACGE | D \
"—/IXAPIA/CMC/PROPERTY//NONSGML Report Subject Message Id//EN"

DESCRIPTION
This property identifies the user message that caused this report to be generated.

The property value may be a textual reference or may be a textual approximation of the message identifier of the
previous correspondence.

ThisisaCMC_pv_string type of property.
5910 TimeReceived

NAME
Report Time Received

C DECLARATION

#def i ne CMC_PT_REPORT_TI ME_RECEI VED \
"—/[XAPIA/CMC/PROPERTY//NONSGML Report Time Received//EN"

92 Recommendation X.446 (08/97)

DESCRIPTION

This property specifies the date and time that the report was received.
ThisisaCMC_pv_iso_date _time type of property.

5911 Time Sent

NAME
Report Time Sent

C DECLARATION

#define CMC_PT_REPORT_TI ME_SENT \
"—/IXAPIA/CMC/PROPERTY//NONSGML Report Time Sent//EN"

DESCRIPTION

This property specifies the date and time that the report was sent.
This property is set by the servicein cmc_send_message object.
ThisisaCMC_pv_iso_date time type of property.

59.12 Unsent

NAME
Report Unsent

C DECLARATION

#defi ne CMC_PT_REPORT_UNSENT \
"—/[XAPIA/CMC/PROPERTY//INONSGML Report Unsent//EN"

DESCRIPTION
This property specifies that the report has not been sent.

ThisisaCMC_pv_boolean type of property.

5.10 Root container abject properties

The root is the essential core container object composed of various properties and other container objects. The root
container is composed of address books (containing recipients and other address books), a profile container, and

message containers. The recipient object within the root container cannot be modified.

The following subclauses define, declare, and describe root container object properties.

510.1 Child Allowed

NAME
Root Container Child Allowed

C DECLARATION

#defi ne CMC_PT_ROOT_CONTAI NER CHI LD ALLOWED \
"—/IXAPIA/CMC/PROPERTY//NONSGML Root Container Child Allowed//EN"

DESCRIPTION
This property permits or denies the existence of a child of the root container.

ThisisaCMC_pv_boolean type of property.

5.10.2 Comment

NAME
Root Container Comment

Recommendation X.446 (08/97)

93

C DECLARATION

#def i ne CMC_PT_ROOT_CONTAI NER_COMVENT \
"—/[XAPIA/CMC/PROPERTY//NONSGML Root Container Comment//EN"

DESCRIPTION

This property provides a descriptive comment about the root container.
ThisisaCMC_pv_string type of property.

5.10.3 Location

NAME
Root Container Location

C DECLARATION

#defi ne CMC_PT_ROOT_CONTAI NER_LOCATI ON \
"—/[XAPIA/CMC/PROPERTY//NONSGML Root Container Location//EN"

DESCRIPTION
This property specifies the location of the root container.
The valid values for this property include:

CMC_ROOT_CONTAINER_LOCATION_LOCAL
CMC_ROOT_CONTAINER_LOCATION_SERVER
CMC_ROOT_CONTAINER_LOCATION_UNKNOWN

CMC_ROOT_CONTAINER_LOCATION_LOCAL - Specifies that the location of the root container is local and not
on the messaging server.

CMC_ROOT_CONTAINER_LOCATION_SERVER - Specifies that the location of the root container is on the
messaging server.

CMC_ROOT_CONTAINER_LOCATION_UNKNOWN - Specifies that the location of the root container is unknown.
This is aCMC_pv_enum type of property.
5104 Name

NAME
Root Container Name

C DECLARATION

#def i ne CMC_PT_ROOT_CONTAI NER_NANE \
"—/IXAPIA/CMC/PROPERTY//NONSGML Root Container Name//EN"

DESCRIPTION

This property specifies the name of the root container.
ThisisaCMC_pv_string type of property.

5105 Object Class

NAME
Root Container Object Class

C DECLARATION

#defi ne CMC_PT_OBJECT_CLASS \
"—/[XAPIA/CMC/PROPERTY//NONSGML Object Class//EN"

DESCRIPTION

This property defines the class of the object as the root.
This property is created by cmc_open_object_handle().
94 Recommendation X.446 (08/97)

The only valid value for this property is CMC_PT_OBJECT_CLASS ROOT, which specifies that the object’s class is
the root.

ThisisaCMC_pv_enum type of property.
5106 Shared

NAME
Root Container Shared

C DECLARATION

#def i ne CMC_PT_ROOT_CONTAI NER_SHARED \
" _JIXAPIA/ICMC/PROPERTY//NONSGML Root Container Shared//EN"

DESCRIPTION
This property specifies whether the root container is shared with another entity.

ThisisaCMC_pv_boolean type of property.

6 Functional interface

This clause defines the functions of the Common Messaging Call interface. The functions of both the generic and
C interfaces are specified. Those of the C interface are repeated in Annex A, "C declaration summary".

6.1 Simple CM C functions
Simple CMC offers a basic set of functions that are intended to provide messaging-aware capabilities for messaging-

enabled applications. These functions were previously published as CMC Version 1.0. Table 14 lists the functions of the
Simple CMC interface.

Table 14/X.446 — Simple CMC Interface Functions

Function Description

Sending messages

Send Send amail message

Send documents String-based function to send mail

Receiving messages

Acton Perform an action on a specified message
List List summary information about messages meeting specified criteria
Read Read and return a specified message

L ooking up names

Look up Looks up addressing information
Administration

Free Free memory allocated by the messaging service

Log off Terminate a session with the messaging service

Logon Establish a session with the messaging service

Query configuration

Determine information about the installed CMC service

The manua pages for these functions are given in subseguent pages.

Recommendation X.446 (08/97)

95

6.1.1 Sending messages
6.1.1.1 Send
NAME
Send — Send a mail message.
SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code

cnt_send(
CMC session_id sessi on,
CMC_nessage *message,
cMC fl ags send_fl ags,
CMC ui _id ui _id,
CMC_ext ensi on *send_ext ensi ons

)

DESCRIPTION

This function sends a mail message.

The caller can optionally provide a list of recipients, subject text, attachments and/or note text. If one or more recipients
are provided, the function can send the message.

The successful return of this function does not necessarily imply the validation of recipients.

ARGUMENTS

96

Session (Session 1 d)
Opague session id which represents a session with the messaging service.
Session ids are created by a logon function call and invalidated with a logoff function call.

If the session id is invalid, and a valid session is not created through Ul, then the error
CMC_E_INVALID_SESSION_ID is returned.

M essage (M essage)

Message structure containing the contents of the message to be sent. If the extension argument flag
CMC_X_SEND_UI_REQUESTED is not set or supported, there must be at least one recipient of type TO,
CC, or BCC.

All other fields are optional. The time_sent and message_reference fields are ignored.

The following conditions on the message structure fields apply:

Recipients— The number of recipients per message may be limited in some services. If the limit is
exceeded, the error CMC_E_TOO_MANY _RECIPIENTS is returned. If zero recipients are specified, a
pointer value of NULL should be assigned to recipients.

The recipient descriptor can include either the recipient’'s name, an address, or name/address pair. If just a
name is specified, the name is resolved to an address using implementation-defined name resolution rules.
If just an address is specified, then this address is used for delivery and for the recipient display name. If
both an address and a name are specified, a resolution of the name should not be performed. If an
implementation cannot support both names and addresses, then the name is ignored. The address is in an
implementation-defined format and is assumed to have been obtained from the implementation using
some other means. A recipient of type originator is not required for send; if present, its action is defined
by the CMC implementation.

Attachments — The number of attachments per message may be limited in some services. If the limit is
exceeded, the CMC_E TOO _MANY_FILES is returned. A pointer value of NULL indicates no
attachments. The attachment files are read before the cmc_send() function returns, so that the files may
be freely changed or deleted without affecting the message.

Recommendation X.446 (08/97)

Subject — A pointer value of NULL indicates no subject text. Some implementations may truncate subject
lines which are too long or contain carriage returng/line feeds/form feeds.

Note Text -A pointer value of NULL indicates no text. Implementations may place limits on the size of
the text. If the note text exceeds the limit of the service, it may demote the body text to an attachment or
generate theerror CMC_E_TEXT_TOO LARGE.

Message Type Pointer to a string which is the message type. The type specifies the type of message
being sent (see description of Message data structure for details). To specify an interpersonal message, the
string "CMC: IPM" is used. If a pointer value of NULL or a pointer to an empty string is given, the
value"CMC: IPM" is assumed.

Flags— The following flag may be used when sending a message:
CMC_MSG_TEXT_NOTE_AS_FILE.

All other flags will be ignored. For more information on these flags, see the description of the message
structure.

Send Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_LOGON_UI_ALLOWED
CMC_SEND_UI_REQUESTED
CMC_ERROR_UI_ALLOWED
CMC_COUNTED_STRING_TYPE
CMC_LOGON_UI_ALLOWED - Set if the function should display a dialogue box to prompt for logon if

required. If not set, the function will not display a dialogue box and will return the error
CMC_E_INVALID_SESSION_ID if the user is not logged on.

CMC_SEND_UI_REQUESTED - Set if the function should display a dialogue box to prompt for recipients,
the message fields, and other sending options. If not set, the function will not display a dialogue box, but at
least one recipient must be specified.

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_COUNTED_STRING_TYPE - Set if the string type used in the message is counted string. If not set,
the strings are assumed to be null terminated. If the session parameter is valid, this flag is ignored.

Ul Identifier (Ul 1d)

User Interface handle (e.g. dialogue window) for use in resolving any questions which arise when the service
performs the function, in prompting the user for additional information, or in verifying or acknowledging
information which has been provided.

Ignored if Ul is not supported by the CMC implementation.

Send Extensions (Extensions)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 97

RESULTS

Send Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Indicates whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_ATTACHMENT _NOT_FOUND
CMC_E_ATTACHMENT_OPEN_FAILURE
CMC_E ATTACHMENT READ_FAILURE
CMC_E_ATTACHMENT WRITE_FAILURE
CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_FLAG
CMC_E_INVALID_MESSAGE_PARAMETER
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_INVALID_UI_ID
CMC_E_LOGON_FAILURE
CMC_E_RECIPIENT_NOT_FOUND
CMC_E_TEXT_TOO _LARGE
CMC_E_TOO_MANY_FILES
CMC_E_TOO_MANY_RECIPIENTS
CMC_E_UNSUPPORTED_DATA_EXT
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_USER_CANCEL
CMC_E_USER_NOT_LOGGED_ON

6.1.1.2 Send Documents
NAME
Send Documents — String-based function to send mail.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnc_send_docunent s(

CMC string reci pi ent _addresses,
CMC string subj ect
CMC string text _not e,
CMC fl ags send_doc_f1 ags,
CMC string file_paths,
CMC string attach titles,
CMC string delimter,
CMC ui _id ui _id
)
DESCRIPTION

This function sends a mail message. This function is primarily intended for calling from a "scripting" language
(e.g. spreadsheet macro) that cannot handle data structures.

This function will try to establish a session without logon Ul. If this is not possible, it will prompt for logon information
to establish a session. The session is always closed on completion.

98 Recommendation X.446 (08/97)

ARGUMENTS
Recipient Addresses (String)
Pointer to a string containing the recipient addresses for the message. When multiple recipients are specified,
they should be separated by the Delimiter character. Recipients are assumed to be primary recipients unless

prefixed by "cc:" or "bec:" for copy recipients and blind copy recipients. The prefix "to:" may also be used for
consistency. A pointer value of NULL indicates that recipients should be prompted for in adialogue.

Subject (String)
Pointer to a string containing the subject of a message. A pointer value of NULL indicates no subject text.

Text Note (String)

Pointer to a string containing the note text to be carried with the message. A pointer value of NULL indicates
no note text.

Send Doc Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_COUNTED_STRING_TYPE
CMC_FIRST_ATTACH_AS TEXT_NOTE

CMC_COUNTED_STRING_TYPE — Set if the string type used in the message is counted string. If not set,
the strings are assumed to be null terminated.

CMC_FIRST_ATTACH_AS_TEXT_NOTE - Set if the first attachment should be sent as the message text
note. If not set, the text note is contained in the text note field.

File Paths (String)

Pointer to a string containing the actual path names for the attachment files. When multiple path names are
specified, they should be separated by the Delimiter character.

Attach Titles (String)

Pointer to a string containing the attachment titles to be seen by the recipient. When multiple names are
specified, they should be separated by the Delimiter character.

Delimiter (String)
Pointer to a character that is used to delimit the names in the File Paths, File Names, and Recipient Addresses

strings. This character should be chosen to be one not used in operating system file names or recipient names.
This parameter cannot be NULL.

Ul Identifier (Ul 1d)

Pointer to an identifier for a User Interface (e.g. dialogue window) for use in resolving any questions which
might otherwise result in an error and queries the user for additional information as required.

Ignored if Ul is not supported by the CMC implementation.
RESULTS

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

Recommendation X.446 (08/97) 99

ERRORS

CMC_E_ATTACHMENT _NOT_FOUND
CMC_E_ATTACHMENT OPEN_FAILURE
CMC_E_ATTACHMENT_READ_FAILURE
CMC_E_ATTACHMENT WRITE_FAILURE
CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_FLAG
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_UI_ID
CMC_E_LOGON_FAILURE
CMC_E_RECIPIENT_NOT_FOUND
CMC_E_TEXT_TOO LARGE
CMC_E_TOO_MANY_FILES
CMC_E_TOO_MANY_RECIPIENTS
CMC_E_UNSUPPORTED_FLAG
CMC_E_USER_CANCEL

CMC_E_USER NOT_LOGGED_ON

6.1.2 Receiving messages
6.1.2.1 ActOn
NAME
Act On — Perform an action on a specified message.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnc_act _on(

CMC session_id sessi on,
CMC_message_r ef erence *message_r ef erence,
CMC_enum operation,
CMC fl ags act _on_fl ags,
CMC ui _id ui _id,
CMC_ext ensi on *act _on_ext ensi ons
)
DESCRIPTION

This function performs the action specified on the message indicated by the message_reference.
ARGUMENTS

Session (Session 1 d)

Opaque session id which represents a session with the messaging service.

Session ids are created by a logon function call and invalidated with a logoff function call.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

M essage Refer ence (M essage Reference)
Specifies the message reference of the message to be acted upon.

If the message reference is invalid (or no longer valid, such as after it has been deleted), then the
error CMC_E_INVALID_MESSAGE_REFERENCE is returned. NULL message reference pointers and
message references of length zero are considered invalid for operations that require this parameter.

100 Recommendation X.446 (08/97)

Operation (Enum)
The operation to perform on the message. Valid operationsinclude:

CMC_ACT_ON_EXTENDED (=0)
CMC_ACT_ON_DELETE

CMC_ACT_ON_EXTENDED - Look in the list of extensions for the action to carry out.

CMC_ACT_ON_DELETE - Action requested is to delete the specified message from mailbox. This operation
requires a valid message reference parameter.

Act On Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved. Flag
settings include:

CMC_ERROR_UI_ALLOWED

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

Ul Id (Ul Id)

User Interface handle (e.g. dialogue window) for use in resolving any questions which might otherwise result
in an error.

Ignored if Ul is not supported by the CMC implementation.

Act On Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Act On Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_ENUM
CMC_E_INVALID_FLAG
CMC_E_INVALID_MESSAGE_REFERENCE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_INVALID_UI_ID
CMC_E_MESSAGE_IN_USE
CMC_E_UNSUPPORTED_ACTION
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT

Recommendation X.446 (08/97) 101

6.1.22 List
NAME

List — List summary information about messages which meet a specified criteria.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code

cnec_|ist(
CMC session_id sessi on,
CMC string nmessage_t ype,
CMC fl ags list_flags,
CMC _nessage_reference *seed,
CMC _ui nt 32 *count,
CMC ui _id ui _id,
CMC_nessage_sunmmary **result,
CMC _ext ensi on *| i st_extensions

);

DESCRIPTION

This function lists summary information, including a message reference, about messages which meet the specified
criteria. Using the returned message reference(s), the message(s) may be further processadcusady)
andcmc_act_on().

Optional criteria include:
— the message is of a specified message type; and

— the message is as yet unread.

The search begins after a specified "seed" message reference, or at the beginning of the mailbox. A maximum number of
messages to list can be specified. The function returns the actual number of messages returned.

Optionally, each message summary returned in "result" can include only the message reference.
ARGUMENTS
Session (Session 1d)
Opaque session id which represents a session with the messaging service.
Session ids are created by a logon function call and invalidated with a logoff function call.
If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.
M essage Type (String)

Information is returned only for messages of the specified type. If the type is not recognized, the
error CMC_E_UNRECOGNIZED_MESSAGE_TYPE will be returned. The format of the Message Type
string is given in 5.4.23.

A NULL indicates that information should be returned for all available messages.

List Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved. Flag
settings include:

CMC_ERROR_UI_ALLOWED

CMC_LIST_UNREAD_ONLY

CMC_LIST_MSG_REFS_ONLY

CMC_LIST_COUNT_ONLY

102 Recommendation X.446 (08/97)

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_LIST_UNREAD_ONLY - If set, list should include only unread messages. If not set, list may include
both read and unread messages.

CMC_LIST_MSG_REFS_ONLY - If set, only Message Reference is populated in the result structure. Values
of other fields are undefined, and should be ignored. If not set, all information in the result structure is
returned.

CMC_LIST_COUNT_ONLY - If set, the function should not return any summary structures, only the count
of messages meeting the specified criteria. If not set, summary structures will be returned.

Seed (M essage Reference)

Specifies the message reference of the message after which the search should begin. If the message reference i
invalid (or no longer valid, such as after it has been deleted), then the error
CMC_E_INVALID_MESSAGE_REFERENCE is returned.

A NULL message reference seed pointer indicates that the search should start with the first message in the
mailbox.

Count (Uint32)

Specifies the maximum number of messages to return. A value of zero specifies no maximum.

Ul Id (UI 1d)

User Interface handle (e.g. dialogue window) for use in resolving any questions which might otherwise result
in an error.

Ignored if Ul is not supported by the CMC implementation.

List Extensions (Extension)
A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information

from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Count (Uint32)

Specifies the number of messages actually returned. If no messages match the criteria, or if the mailbox is
empty, a value of zero is returned.

Result (M essage Summary)

The "result" field is the address at which an array of CMC_message_summary structures is to be returned. This
array of structures is allocated by the service, and the entire array should be freed with a single call
to cmc_freg().

The message reference field contained in each CMC_message _summary may be used to identify messages in
subsequent calls wnc_read() andcmc_act_on().

NOTE — The message reference field may need to be copied prior to invokiné ee() on this structure.

If the CMC_LIST_MSG_REFS ONLY flag has been set, the CMC_message_summary structures will return
only message references. Values of other fields are undefined, and should be ignored.

Recommendation X.446 (08/97) 103

List Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

6.1.2.3

NAME

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_FLAG
CMC_E_INVALID_MESSAGE_REFERENCE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_INVALID_UI_ID
CMC_E_UNRECOGNIZED MESSAGE_TYPE
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT

Read

Read — Read and return a specified message.

SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code

cnt_read(
CMC session_id sessi on,
CMC_message_r ef erence *message_ref erence,
CMC fl ags read_f1l ags,
CMC_nessage **nmessage,
CMC ui _id ui _id,
CMC_ext ensi on *read_ext ensi ons

);

DESCRIPTION

This function returns a message structure containing the data from the message indicated by the specified message
reference. Optionally, the message structure returned can include only the message and attachment headers.

If the flag CMC_MSG_TEXT_NOTE_AS_FILE is set in the returned message structure, then the text note field is
contained in the file referred to by the first attachment.

For systems that can mark messages as read, a message will have the state "READ" after this function successfully
executes, unless the flag CMC_DO_NOT_MARK_AS_READ is set.

ARGUMENTS

104

Session (Session 1d)
Opaque session id which represents a session with the messaging service.
Session ids are created by a logon function call and invalidated with a logoff function call.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

M essage Refer ence (M essage Reference)

Specifies the message reference of the message to be read and returned. If the message reference is
invalid (or no longer wvalid, such as after it has been deleted), then the error
CMC_E_INVALID_MESSAGE_REFERENCE is returned.

Recommendation X.446 (08/97)

A NULL message reference pointer indicates that the first message in the mailbox should be read and returned.

Read Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved. Flag
settings include:

CMC_ERROR_UI_ALLOWED
CMC_MSG_AND_ATT_HDRS ONLY
CMC_DO_NOT_MARK_AS READ
CMC_READ_FIRST UNREAD_MESSAGE

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_MSG_AND_ATT_HDRS_ONLY - If set, the attachments[n].attach_filename fields will be undefined
whencmc_read() returns, and should be ignored. This may be useful to reduce the amount of data transferred.
If clear, the attachment_filename fields will be returned normally.

NOTE - If CMC_MSG_TEXT_NOTE_AS_FILE is set in the message to indicate that the text note is stored in the first
attachment, the attachment_filename field will be returned for that attachment regardless of the setting of this flag.

CMC DO NOT_MARK_AS READ - If set, the state of the message is not changed to read when the
function is returned. This will also suppress sending of a Receipt Report. The implementation can be queried
to see if it supports this feature with the CMC_CONFIG_SUP_NOMKMSGREAMm query_config().
CMC_READ_FIRST_UNREAD_MESSAGE — This is only available when passing a NULL message

reference to receive the first message in the mailbox. If set, the first message not marked as read should be
returned. If not set, the first message in the mailbox should be returned, whether it is marked as read or not.

Ul Id (Ul Id)

User Interface handle (e.g. dialogue window) for use in resolving any questions which arise when the service
performs the function.

Ignored if Ul is not supported by the CMC implementation.

Read Extensions (Extension)
A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information

from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS
M essage (M essage)

The "message" field is the address at which a pointer to a CMC_message structure is to be returned. This
structure is allocated by the service, and should be freedcmithfr ee().

Attachment data will be returned in files, and the CMC_message structure will indicate the names of those
files.

If the CMC_MSG_AND_ATT_HDRS_ONLY flag has been set (see "flags"), the CMC_message structure
will not return the attachment files as described above.

Read Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Recommendation X.446 (08/97) 105

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

6.1.3
6.1.3.1

NAME

CMC_E_ATTACHMENT_OPEN_FAILURE
CMC_E_ATTACHMENT READ_FAILURE
CMC_E_ATTACHMENT WRITE_FAILURE
CMC_E DISK_FULL

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_FLAG
CMC_E_INVALID_MESSAGE_REFERENCE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_INVALID_UI_ID
CMC_E_TOO_MANY_FILES
CMC_E_UNABLE_TO_NOT_MARK_READ
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT

L ooking up names

Look Up

Look Up — Look up addressing information in the directory.

SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cnt_| ook _up(

CMC session_id sessi on,
CMC_r eci pi ent *recipient_in,
cMC fl ags | ook_up_fl ags,
CMC ui _id ui _id,
CMC_ui nt 32 *count ,
CMC_r eci pi ent **reci pi ent _out,
CMC_ext ensi on *| ook_up_ext ensi ons
)
DESCRIPTION

This function looks up addressing information in the directory provided by the CMC messaging service. It primarily is
used to resolve a friendly name to an address.

Multiple addresses may be returned. An array of recipient descriptors is allocated and returned containing fully resolved
information about each entry.

ARGUMENTS

106

Session (Session Id)
Opagque session id which represents a session with the messaging service.
Session ids are created by a logon function call and invalidated with a logoff function call.

If the session id is invalid and a valid session is not created through Ul, then the error
CMC_E_INVALID_SESSION_ID is returned.

Recipient In (Recipient)

For name resolution, the name field in the structure contains the name to be resolved. The name type can be set
to provide information on desired resolution of the name. See the recipient structure documentation for
possible types.

Recommendation X.446 (08/97)

For displaying recipient details, the recipient structure must contain an entry that resolves to only one recipient.
If not, the error CMC_E_AMBIGUOUS RECIPIENT will be returned.

For displaying Ul to create addressing lists, this will point to an array of recipients that is terminated with the
CMC_RECIP_LAST_ELEMENT flag. The list of recipients will be used as the defaults for displaying in the
addresslist Ul.

For both name resolution and displaying recipient details, all recipient structures except the first will be
ignored.

Look Up Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved. Flag
settings include:

CMC_LOGON_UI_ALLOWED
CMC_ERROR_UI_ALLOWED
CMC_COUNTED_STRING_TYPE
CMC_LOOKUP_RESOLVE_PREFIX_SEARCH
CMC_LOOKUP_RESOLVE_IDENTITY
CMC_LOOKUP_RESOLVE_UI
CMC_LOOKUP_DETAILS Ul
CMC_LOOKUP_ADDRESSING_Ul

CMC_LOGON_UI_ALLOWED - Set if the function should display a dialogue box to prompt for logon if
required. If not set, the function will not display a dialogue box and will return the error
CMC_E_INVALID_SESSION_ID if the user is not logged on.

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_COUNTED_STRING_TYPE - Set if the string type used in the call parameters is counted. If this is not
set, the strings are assumed to be null terminated. If the session parameter is valid, this flag is ignored.

CMC_LOOKUP_RESOLVE_PREFIX_SEARCH - If set, the search method should be prefix. Prefix search
means that all names matching the prefix string, beginning at the first character of the name, will be matched.
If not set, the search method should be exact match. CMC implementations are required to support simple
prefix searching. The availability of wild-card or substring searches is optional.

CMC_LOOKUP_RESOLVE_IDENTITY - If set, the function will return a recipient record for the identity of
the user in the mail system. If this cannot be uniquely determined, ambiguous name resolution will be carried
out. This allows the application to find out the address of the current user.

CMC_LOOKUP_RESOLVE_UI - Set if the CMC implementation should attempt to disambiguate names by
presenting a name resolution dialogue to the user. If this flag is not set, resolutions which do not result in a
single name will return the error CMC_E_AMBIGUOUS_RECIPIENT on services that must resolve to a
single name. Services that can return multiple names will return a list as indicated by other function
parameters. This flag is optional for implementations to support.

CMC_LOOKUP_DETAILS_UI - If set, the function will display details Ul for the recipient pointed to in
recipient_in. This will only act on the first recipient in the list. If the name resolves to more than one address,
this will not be carried out and the error CMC_E_AMBIGUOUS_RECIPIENT will be returned.

CMC_LOOKUP_ADDRESSING_UI - If set, the function will display Ul to allow creation of a recipient list

for addressing a message and general directory browsing. The recipient list passed to the function will be the
original recipient list for the Ul. The function will return the list of recipients selected by the user. This flag is
optional for implementations to support.

Recommendation X.446 (08/97) 107

Ul Id (U1 Id)

User Interface handle (e.g. dialogue window) for use in resolving any questions which arise when the service
performs the function.

Ignored if Ul is not supported by the CM C implementation.

Count (Uint32)

Specifies the maximum number of names to return. A value of O specifies no maximum. The value will be
returned in the location pointed to by this parameter. A valid pointer to a location for the returned count
information is required.

Look Up Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Recipient Out (Recipient)

Pointer to an array of one or more recipient structures allocated by cmc_look_up(). The structure may then be
used in callsto cmc_send(). The returned pointer is passed to cmc_free() to free all the recipient structures.

Count (Uint32)

Specifies the number of names actually returned. If no names match the criteria, a value of O is returned, and
the error CMC_E_RECIPIENT_NOT_FOUND is returned.

If fewer names are returned than are known to be available, the CMC_RECIP_LIST_TRUNCATED flag will
be set in the last recipient structure of the array along with the CMC_RECIP_LAST_ELEMENT flag.

Look Up Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

108

CMC_E_AMBIGUOUS RECIPIENT
CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_FLAG
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_INVALID_UI_ID
CMC_E_LOGON_FAILURE
CMC_E_NOT_SUPPORTED
CMC_E_RECIPIENT_NOT_FOUND
CMC_E_UNSUPPORTED_DATA_EXT
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_USER_CANCEL
CMC_E_USER_NOT_LOGGED_ON

Recommendation X.446 (08/97)

6.1.4 Administration

Administrative functions defined within this Recommendation include free, logoff, logon, and query configuration.
6.1.41 Free

NAME

Free — Free memory allocated by the messaging service.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnc_free(

CMC _buf fer nmenory
);

DESCRIPTION

This function frees memory allocated by the messaging service. After the call, the pembey will be invalid and
should not be referenced again. When any CMC function allocates and returns a buffer to the application, the application
will free that memory with this call when it is finished with the memory.

When a CMC function returns a base pointer to a complex structure containing several levels of pointers, all the
application will do to free the entire structure or array of structures is call this routine with the base pointer returned by
the CMC function. The CMC functions which return structures of this form are:

cmc_copy_object()
cmc_commit_object()
cmc_copy_object_handle()
cmc_identifier_to_name()
cmc_list()
cmc_list_objects()
cmc_list_properties()
cmc_look_up()

cmc_name _to_identifier()
cmc_open_cursor ()
cmc_open_stream()
cmc_query_configuration()
cmc_read()
cmc_read_stream()
cmc_read_property costs()
cmc_read_properties()
cmc_read_cursor()

cmc_freg()’'s behavior is undefined when called with a pointer to a memory block not allocated by the messaging
service, a pointer to a memory block that has already been freed, or a pointer contained in a structure returned by the
CMC implementation.

In some situations, the extensions specified for a function may be a combination of input and output extensions. In this
case, the output extensions must be freed one at a timeamsinfree(). An example of this is shown in Annex C,
" Programming examples".

ARGUMENTS

Memory (Buffer)

A pointer to memory allocated by the messaging service. A value of NULL will be ignored.
RESULTS

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

Recommendation X.446 (08/97) 109

ERRORS

CMC_E_FAILURE
CMC_E_INVALID_MEMORY

6.1.4.2 Logoff
NAME
Logoff — Log off the CMC service.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_| ogof f (

CMC session_id sessi on,
CMC ui _id ui _id,
CMC fl ags | ogof f _fl ags,
CMC_ext ensi on *| ogof f _ext ensi ons
);
DESCRIPTION

This function allows the calling application to log off the CMC service. The users of the CMC service should call
cmc_freg() for all memory pointers allocated by the service during this session prior to caflimdpgoff(). Failure to

do so may result in memory leaking or undefined behavior of further access to these pointers once the session is
terminated.

NOTE — Some implementations of the CMC service may choose to free all the pointers that it created for this session when
cmc_logoff() is called. However, the support of end-of-session cleanup is optional for the CMC service.

ARGUMENTS
Session (Session 1d)

Opaque session id which represents a session with the messaging service. It becomes invalid as a result of this
cal.

If the sessionidisinvalid, then the error CMC_E INVALID_SESSION_ID isreturned.

Ul Id (UI Id)

An identifier for a User Interface (e.g. the parent-window handle for the caling application) for use in
resolving any questions which might otherwise result in an error.

Ignored if Ul is not supported by the CM C implementation.
L ogoff Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_ERROR_UI_ALLOWED
CMC_LOGOFF_UI_ALLOWED

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_LOGOFF_Ul_ALLOWED - Set if the function may display Ul other than for errors while logging the
user off from the session.

L ogoff Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

110 Recommendation X.446 (08/97)

RESULTS

L ogoff Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_FLAG
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_INVALID_UI_ID
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_USER NOT_LOGGED_ON

6.1.4.3 Logon
NAME
Logon — Log on to the CMC service.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code

cnt_| ogon(
CMC string servi ce,
CMC string user,
CMC string passwor d,
CMC object identifier character_set,
CMC ui _id ui _id,
CMC ui nt 16 cal l er_cnt_versi on,
CMC fl ags | ogon_f1 ags,
CMC session_id *sessi on,
CMC_ext ensi on *| ogon_ext ensi ons
)
DESCRIPTION

This function allows the calling application to log on to the CMC service.

The function returns a session id which the application may use in subsequent CMC calls.
ARGUMENTS
Service (String)

A string indicating the location of the underlying messaging service, e.g. the path to a message store or a
remote server node name. This value may be NULL if the underlying messaging service does not require a
service name. This may be necessary on some implementations and ignored on others.

The messaging service underlying a CMC implementation, or installation of an implementation, may
optionally support multiple messaging protocols simultaneously. If multiple protocols are supported by an
implementation, the particular protocol is chosen by the service, based on criteria such as:

— configuration of protocol support;
— dynamic availability of protocol support;

Recommendation X.446 (08/97) 111

112

— capabilities of recipient (if known);
— analysis of address format/notation used;

— other system-specific criteria.

These criteria may be applied on a per-message or a per-recipient granularity.
User (String)

A string that identifies the CMC user, e.g. a messaging service user name. This value may be NULL if the
underlying messaging service does not require a user name or if Ul is allowed.

Password (String)

A string containing the password required for access to the CMC service. This value may be NULL if the
underlying messaging service does not require a password or if Ul is allowed.

Character Set (Object Identifier)

An object identifier identifying the character set of strings used by the CMC caller. The possible values
available to the client are returned by the CMC implementation érom query_configuration(). The client
may pass NULL in which case the character set used is determined by the CMC service.

Ul Id (U1 Id)

An identifier for a User Interface (e.g. the parent-window handle for the calling application) for use in
resolving any questions which might otherwise result in an error, or for use in prompting for logon if allowed
and required.

Ignored if Ul is not supported by the CMC implementation.

Caller CMC Version (Uint16)

The calling application’s CMC version number, multiplied by 100. For example, version 1.01 is specified as
the integer 101. The version of this Recommendation is 2.00 and is represented as the value 200.

L ogon Flags (Flags)

Bit mask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_LOGON_UI_ALLOWED
CMC_ERROR_UI_ALLOWED
CMC_COUNTED_STRING_TYPE
CMC_FULL_CMC
CMC_LOGON_UI_ALLOWED - Set if the function should display a dialogue box to prompt for logon if

required. If not set, the function will not display a dialogue box and will return an error if not enough
information has been supplied.

CMC_ERROR_UI_ALLOWED - Set if the function may display a dialogue box on encountering recoverable
errors. If not set, the function may not display a dialogue box and will simply return an error code.

CMC_COUNTED_STRING_TYPE — The CMC caller sets this if the string type that the caller uses for
CMC interactions is length first. If not set, null-terminated strings will be assumed.

CMC_FULL_CMC - Set if the application is requesting Full CMC functionality. If this flag is not set, then the
application is accessing Simple CMC. Full CMC is only available if the caller specifies a caller_cmc_version
of greater than or equal to 200.

Recommendation X.446 (08/97)

L ogon Extensions (Extensions)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Through extensions, the application can find out which extensions are available and set which data extensions
will be active for the session. The extension to do this is CMC _X_COM_SUPPORT_EXT. Any
CMC implementation that supports extensions must support this extension. For more information on this
extension, see the common extensionsin B.2.

RESULTS

Session (Session 1 d)
Opaque session id that represents a session with the CMC service.
L ogon Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

6.1.4.4

NAME

CMC_E_COUNTED_STRING_UNSUPPORTED
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_CONFIGURATION
CMC_E_INVALID_ENUM
CMC_E_INVALID_FLAG
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_UI_ID
CMC_E_LOGON_FAILURE
CMC_E_PASSWORD_REQUIRED
CMC_E_SERVICE_UNAVAILABLE
CMC_E_UNSUPPORTED_CHARACTER_SET
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_UNSUPPORTED_VERSION

Query Configuration

Query Configuration — Determine information about the installed CMC configuration.

SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cnt_query_configuration(

CMC session_id sessi on,

CMC_enum item

CMC _buf fer ref erence,

CMC_ext ensi on *confi g_ext ensi ons

Recommendation X.446 (08/97) 113

DESCRIPTION

This function queries the underlying implementation’s configuration, and returns the information requested about it,
allocating memory when necessary.

NOTE — The configuration may not be changed through CMC, and that any underlying configuration file format is
implementation-dependent.

ARGUMENTS

114

Session (Session 1 d)
Opaque session id which represents a session with the messaging service.
Session ids are created by alogon function call and invalidated with alogoff function call.

Session may be NULL to indicate that there is no session and that session-independent information should be
returned. Thiswill provide default logon information.

If thisvalue is set to avalid Session Id, session-dependent configuration information will be returned.

If the sessionidisinvalid, then the error CMC_E _INVALID_SESSION_ID isreturned.

Item (Enum)

This argument indicates which configuration information should be returned. The possible valuesinclude:

CMC_CONFIG_CHARACTER_SET
CMC_CONFIG_LINE_TERM
CMC_CONFIG_DEFAULT_SERVICE
CMC_CONFIG_DEFAULT_USER
CMC_CONFIG_REQ_PASSWORD
CMC_CONFIG_REQ SERVICE
CMC_CONFIG_REQ USER
CMC_CONFIG_UI_AVAIL
CMC_CONFIG_SUP_NOMKMSGREAD
CMC_CONFIG_SUP_COUNTED_STR
CMC_CONFIG_VER_IMPLEM
CMC_CONFIG_VER_SPEC

CMC_CONFIG_CHARACTER_SET —The reference argument should be a pointer to a
CMC _object_identifier array. A pointer to the array of character set object identifier strings for the
implementation will be returned here. The array will be terminated with a NULL CMC_Obiject_ldentifier. The
first character set Object ID in the array is the default character set used if the caller does not specify one
explicitly. The platform specific clause B.2.4 contains the Object ID values defined for common character sets.
This pointer to the array should be freed usinge free(). This Object ID is used by the caller at logon to
specify to the implementation to use a different character set than the default.

CMC_CONFIG_LINE_TERM — The reference argument should be a pointer to a CMC_enum variable, which
will be set to a value of CMC_LINE_TERM_CRLEF if the line delimiter is a carriage return followed by a line
feed, CMC_LINE_TERM_LF if the line delimiter is a line feed, or CMC_LINE_TERM_CR if the line
delimiter is a carriage return.

CMC_CONFIG_DEFAULT_SERVICE — The reference argument should be a pointer to a CMC_String, into
which a pointer to the default service name will be written, if available, followed by a null character. A pointer
value of NULL will be written if no default service name is available. This pointer should be freed using
cmc_free(). This string, along with the one returned by CMC_CONFIG_DEFAULT_USER, can be used as
defaults when asking the user for the service name, user name, and password. This will be returned in the
implementation default character set.

Recommendation X.446 (08/97)

CMC_CONFIG_DEFAULT_USER — The reference argument should be a pointer to a CMC_String, into
which a pointer to the default user name will be written, if available, followed by a null character. A pointer
value of NULL will be written if no default user name is available. This pointer should be freed using
cmc_free(). This string, along with the one returned by CMC_CONFIG_DEFAULT_SERVICE, can be used

as defaults when asking the user for the provider name, user name, and password. This will be returned in the
implementation default character set.

CMC_CONFIG_REQ_PASSWORD - The reference argument should be a pointer to a CMC_enum variable,
which will be set to a value of CMC_REQUIRED_NO if the password is not required to log on,
CMC_REQUIRED_OPT if the password is optional to log on, or CMC_REQUIRED_YES if the password is
required to log on.

CMC_CONFIG_REQ_SERVICE — The reference argument should be a pointer to a CMC_enum variable,
which will be set to a value of CMC_REQUIRED_NO if the service name is not required to log on,
CMC_REQUIRED_OPT if the service hame is optional to log on, or CMC_REQUIRED_YES if the service
name is required to log on.

CMC_CONFIG_REQ_USER — The reference argument should be a pointer to a CMC_enum variable, which
will be set to a value of CMC_REQUIRED NO if the user name is not required to log on,
CMC_REQUIRED_OPT if the user name is optional to log on, or CMC_REQUIRED_YES if the user name is
required to log on.

CMC_CONFIG_UI_AVAIL — The reference argument should be a pointer to a CMC_boolean variable, which
will be set to a true value if there is Ul provided by the CMC implementation.

CMC_CONFIG_SUP_NOMKMSGREAD - The reference argument should be a pointer to a CMC_boolean
variable, which will be set to a true value if the CMC_DO_NOT_MARK_AS READ flag is supported
by cmc_read().

CMC_CONFIG_SUP_COUNTED_STR - The reference argument should be a pointer to a CMC_boolean
variable, which will be set to a true value if the CMC_COUNTED_STRING_TYPE flag is supported during
logon.

CMC_CONFIG_VER_IMPLEM — The reference argument should be a pointer to a CMC_uint16 variable,
which will be set to the version number for the implementation, multiplied by 100. For example, version 1.01
will return 101.

CMC_CONFIG_VER_SPEC - The reference argument should be a pointer to a CMC_uint16 variable, which
will be set to the CMC specification version number for the implementation, multiplied by 100. For example,
version 1.00 will return 100.

Config Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Through extensions, the application can find out which extensions are available. The extension to do this is
CMC_X_COM_SUPPORT_EXT. Any CMC implementation that supports extensions must support this
extension. For more information on this extension, see the common extensions in B.2.

RESULTS

Reference (Buffer)

This argument points to the buffer in which to receive the configuration information. The number of bytes
implied by the item parameter value must be owned by the caller and modifiable. The type of the variable or
buffer depends on the item argument.

Recommendation X.446 (08/97) 115

Config Extensions (Extension)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

6.2

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_ENUM
CMC_E_INVALID_PARAMETER
CMC_E_NOT_SUPPORTED
CMC_E_UNSUPPORTED_FUNCTION_EXT

Full CMC functions

The Full CMC is an enhanced set of functions that are intended to provide message-reliant capabilities for
messaging-enabled applications. Table 15 lists the functions of the Full CMC interface.

Table 15/X.446 — Full CMC interface functions

Function Description

Administrative functions

Refer to Simple CMC for description

L ogoff Refer to Simple CMC for description

Logon Refer to Simple CMC for description

Bind functions

Bind Implementation Create and return a dispatch table

Unbind Implementation Frees any data associated with acall to cmc_bind_implementation() on a

specific CMC implementation

Composition functions

Copy Object Copies a source object to a container object

Add Properties Add or modify a set of propertiesin an object

Commit Object Commits an object to the persistent store within a container object
Copy Object Handle Copies an object handle

Delete Objects Deletes the specified objects from a container

Delete Properties Deletes the specified properties within an object

Open Object Handle Open an object handle

Restore Object Restores object data from afile

Save Object Saves object datato afile

Enumeration functions

Get Last Error Returns alocalized text error message for the last error that occurred on the
object
Get Root Handle Returns a handle to the container that is the root of the object model
hierarchy for the session
List Contained Properties Lists the properties within a container object
116 Recommendation X.446 (08/97)

Table 15/X.446 — Full CMC interface functions(concluded)

Function

Description

Enumeration functions (cont.)

List Number Matched

Lists the number of objects within a container that match a criteria

List Objects Lists the objects within a container object

List Properties Lists the properties within an object

Open Cursor Open acursor for a container object

Read Cursor Read the current fractional position of a cursor
Read Properties Read the content information of a set of properties

Read Property Costs

Read the relative cost associated with reading a set of properties

Update Cursor Position

Updates the current fractional position of a cursor

Update Cursor Position with Seed

Updates the current position of a cursor relative to an object in the

container
Event notification functions
Check Event Checks for a messaging service event
Register Event Registers eventsin which the caller isinterested in checking
Unregister Event Unregisters events in which the caller is no longer interested
Call Callbacks Call the callback function(s) which are registered if the event has occurred

M essaging functions

Create Derived Message Object
Send Message Object

Creates a message for forwarding or replying to a given message

Submits a message object to the MTA for sending

Name handling functions

Identifier to Name Converts a property identifier to a property name

Name To Identifier Converts a property name to a property identifier

Stream functions

Export Stream Exports stream datato afile

Import File to Stream Imports datafrom afileto a stream

Open Stream Open a property for stream read or write operations
Read Stream Read a stream of content information

Seek Stream Go to alocation in a stream of content information
Write Stream Write a stream of content information

The manual pages for these functions are given in subseguent pages.

6.2.1 Bind functions

Bind functions enable an implementation to create and return a dispatch table and to subsequently free any data
associated with the bind implementation function.

6.2.1.1 Bind Implementation

NAME

Bind Implementation — Creates and returns a dispatch table.

Recommendation X.446 (08/97) 117

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_bi nd_i npl enent ati on(

CMC guid i mpl enent ati on_nane,
CMC _di spatch_tabl e **di spat ch_t abl e,
CMC_ext ensi on *cnec_bi nd_i npl emrent ati on_ext ensi ons
);
DESCRIPTION

This function creates and populates a dispatch table of CMC function addresses for the caller. The function must be
supported by the CMC Manager and the CMC implementation. Local administrative tasks may be done with the
CMC Manager and/or CMC implementation at thistime.

ARGUMENTS

Implementation Name (GUID)

A globally unique identifier which represents a specific CMC implementation. Different versions of the same
CMC implementation should be distinguished within this GUID so that the different versions may coexist.

Bind Implementation Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Dispatch Table (Dispatch Table)

The address of the CMC implementation’s dispatch table. This table is allocated by the CMC implementation
and should be freed with a callamc_free().

Bind I mplementation Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNRECOGNIZED_IDENTIFIER
CMC_E_BIND_FAILURE
CMC_E_ID_NOT_FOUND

6.2.1.2 Unbind Implementation

NAME

Unbind Implementation — Frees any data associated with a aaliddbind_implementation() on a specific
CMC implementation.

118 Recommendation X.446 (08/97)

SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cnt_unbi nd_i npl ement at i on(

CMC guid i mpl enent ati on_nane,
CMC_ext ensi on *cnec_unbi nd_i npl ement ati on_ext ensi ons
)
DESCRIPTION

This function frees and disassociates any data associated with a binding to a specific CMC implementation. Local
administrative tasks may be done with the CMC Manager and/or CMC implementation at thistime.

ARGUMENTS

Implementation Name (GUI D)

A globally unique identifier which represents a specific CMC implementation being unbound from the
application or CMC Manager.

Unbind Implementation Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Unbind Implementation Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

6.2.2

CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNRECOGNIZED_IDENTIFIER
CMC_E_UNBIND_FAILURE
CMC_E_ID_NOT_FOUND

Composition functions

The composition functions provide the ability to create and manipulate the CM C objects and object properties.

6.221

NAME

Add Properties

Add Properties — Adds a set of properties to an object.

Recommendation X.446 (08/97) 119

SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cnc_add_properties(

CMC _obj ect _handl e obj ect,
CMC_ui nt 32 nunber properties,
CMC _property *properties,
CMC _ext ensi on *add_properti es_extensions
)
DESCRIPTION

This function will add a set of properties to an object.

If the property already exists in the object, then the property will be replaced. If it does not exist, the property will be
added. There is no CMC-defined order of properties within an object. It is implementation-specific in what order a new
property will be added to an object (e.g. it may not be appended to the end of the object).

Properties added to an object may not be committed until after a call to cmc_commit_object().

ARGUMENTS

Object (Object Handle)
An opaque handle to an object.

If the object handle isinvalid, then the error CMC_E INVALID_OBJECT HANDLE isreturned.

Number Properties (Uint32)

The number of propertiesin the properties argument.

Properties (Property)

A pointer to an array of property structures that are to be added to the object.

Add Properties Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information

from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Add Properties Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

120

CMC_E_INVALID_OBJECT _HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

Recommendation X.446 (08/97)

6.2.2.2 Commit Object

NAME
Commit Object — Commits an object to the persistent store within a container object.
SYNOPSIS

#i ncl ude <xcnt. h>

CMC _return_code
cnt_comit _obj ect (

CMC _obj ect _handl e sour ce_obj ect,
CMC_ext ensi on *conm t _obj ect _ext ensi ons
)
DESCRIPTION

This function will commit an object to the persistent store within a container object.

If the object is being committed to the outbox message container, the action makes the object non-modifiable. The object
can only be deleted or copied.

When a message is committed to the outbox, it becomes a candidate for submission at any time. The implementation can
send the message at the implementation’s convenienoe.send_message object() can be used to expedite the
immediate sending of a message.

All of the current properties for the source object will be committed to the persistent store within a container object The
object must have been added to a container with a previous caltt@opy_object().

Any cursor for the container remains valid after the object is committed to the container. Any objects committed to the
container, after the cursor was opened, may not be listed in a caltttist_objects() for the container. If the container

associated with the object does not support commitment of objects, then the error code
CMC_E_UNSUPPORTED_ACTION is returned.

ARGUMENTS

Sour ce Object (Object Handle)
An opaque handle for the source object to be committed to the persistent store of the container.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Commit Object Extensions (Extension)
A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information

from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Commit Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

Recommendation X.446 (08/97) 121

ERRORS

CMC_E_UNSUPPORTED_ACTION
CMC_E_INVALID_OBJECT HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E DISK_FULL

CMC_E_ACCESS DENIED
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.2.3 Copy Object
NAME
Copy Object — Copies a source object to a container object.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_copy_obj ect (

CMC _obj ect _handl e cont ai ner,
CMC_obj ect _handl e sour ce_obj ect,
CMC_obj ect _handl e *new_obj ect,
CMC_ext ensi on *copy_obj ect _ext ensi ons
);
DESCRIPTION

This function will copy a source object to the specified container object. If the source object is a container object, copy
object performs a deep copy function in which all the properties and the contained object are copied recursively.

All of the current properties for the object will be saved with the object in the specified container object. The function
adds a new object to the specified container object that contains all of the properties of the source object. A handle to the
new object within the container is returned. The source object and its contents are left unchanged. The new object must
be committed to the container object with a callctoc_commit_object() before it becomes persistent within the
container object.

The container cursors remain valid after objects are added to the container associated with the cursor. Any objects added
to the container, after the cursor was opened, may not be listed in a alt tiost_object() for the container. If the

specified container is accessible only in a read-only fashion, then the error code CMC_E_UNSUPPORTED_ACTION is
returned.

ARGUMENTS

Container (Object Handle)
An opaque handle to a container object.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Sour ce Object (Object Handle)
An opaque handle for the source object.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Copy Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

122 Recommendation X.446 (08/97)

RESULTS

New Object (Object Handle)

An opaque handle for the new object.

Copy Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_UNSUPPORTED_ACTION
CMC_E_INVALID_SOURCE_OBJECT
CMC_E_INVALID_CONTAINER_OBJECT
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER

6.2.2.4 Copy Object Handle
NAME
Copy Object Handle — Copies an object handle.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_copy_obj ect _handl e(

CMC _obj ect _handl e source_handl e,
CMC _obj ect _handl e *new_handl e,
CMC_ext ensi on *copy_obj ect _handl e_ext ensi ons
)
DESCRIPTION

This function will copy an object handle. A copy of the object is not created. Instead, the new object handle effectively
refers to the original content information that the source object handle referred to. Cursor handles cannot be copied.

This function provides a straightforward method of copying an object handle from an array of object handles returned
from another CMC call. A call tamc_free() with the source object handle will not free up the content information
referred to by the new object handle. The implementation will only free the related memory when the last reference to it
is removed by a call temc_free() with the last object handle referencing the content information.

ARGUMENTS

Sour ce Handle (Object Handle)
An opaque handle to the source object that is to be copied.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Copy Object Handle Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 123

RESULTS

New Handle (Object Handle)

A new opaque handle for the object.

Copy Object Handle Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.25 Delete Objects
NAME
Delete Objects — Deletes the specified objects.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC _return_code
cnt_del et e_obj ect s(

CMC_ui nt 32 nunber _obj ect s,
CMC _obj ect _handl e *obj ect,
CMC_ext ensi on *del et e_obj ect s_ext ensi ons
)
DESCRIPTION

This function deletes the specified objects. Delete Objects performs a deep delete function in which all specified objects
and any contained objects are deleted. The object handles are invalid upon return from the call.

ARGUMENTS

Number Objects (Object Handle)

The number of objects in thabjects parameter.

Objects (Object Handle)
A pointer to an array of opaque handles to objects to be deleted.

If any of the object handles is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Delete Objects Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

124 Recommendation X.446 (08/97)

RESULTS

Delete Objects Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

6.2.2.6

NAME

CMC_E_INVALID_OBJECT HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_ACCESS DENIED
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

Delete Properties

Delete Properties — Deletes the specified set of properties from the object.

SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cnc_del ete_properties(

CMC _obj ect _handl e obj ect,
CMC_ui nt 32 nunber _properties,
cveid *property_ids,
CMC _ext ensi on *del et e_properti es_extensi ons
)
DESCRIPTION

This function deletes the specified properties from the object.

ARGUMENTS

Object (Object Handle)
The opaque handle of the object.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.
Number Properties (Uint32)

The number of properties in tipeoperties argument.

Property Ids (Property I d)

A pointer to an array of the unique ids for the properties to be deleted from the object.

Delete Properties Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 125

RESULTS

Delete Properties Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.2.7 Open Object Handle
NAME
Open Object Handle — Creates a new object handle.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_open_obj ect _handl e(

CMC session_id sessi on,
cvCid obj ect _cl ass,
CMC _obj ect _handl e *new_obj ect,
CMC_ext ensi on *open_obj ect _handl e_ext ensi ons
)
DESCRIPTION

This function will create a new object handle. The service allocates the necessary resources for a new object and returns
the handle associated with this object. This object does not exist within any container object until it is added with a call
to cmc_copy_object(). The content information for this object does not exist until properties are added to the object with

a call tocmc_add_properties().

ARGUMENTS
Session (Session id)
The opaque handle which represents a session with the messaging service.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Object Class (Identifier)

Identifier of the class of the object.

Open Object Handle Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

126 Recommendation X.446 (08/97)

RESULTS

New Object (Object Handle)

An opaque handle for the new object. The session id is encapsulated in the object handle. The object handle is
sufficient to reference the proper object within an individual session.

Open Object Handle Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed under
ERRORS below.

ERRORS

CMC_E_INVALID_SESSION_ID
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_UNRECOGNIZED_IDENTIFIER

6.2.2.8 RestoreObject

NAME

Restore Object — Restores object data from the file system.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnc_restore_object (
CMC _obj ect _handl e contai ner,

CMC string file_specification,
cMC fl ags restore_fl ags,
CMC obj ect _handle *restored_object,
CMC_ext ensi on *rest ore_obj ect _extensions
);
DESCRIPTION

This function restores an object from a file. For instance, this function provides a simple method for attaching a file to a
message. In this cagestored object represents a newly created content item object which will later be associated with a
message object under composition. Alternatively, this function provides a method for retrieving a message stored in the
file system by an earlier call toinc_save object(). The on-disk representation for objects stored in the file system is not
defined since it may vary from one messaging system to another. As such, applications should not, in general, rely on the
ability to import objects which have been exported using other messaging systems. However, this restriction does not
apply in the case of a message attachment object.

For a message content item object, this function has the side effect of initializing values for the following properties:
. Filename;
* Creation Date;

. Last Modification Date.

Other properties must be set by callemgc_add_properties().

NOTE — The file content item must still be associated with a message under composition in order to complete the content item
process.

Recommendation X.446 (08/97) 127

ARGUMENTS

Container (Object Handle)

A handle to the container object which will contain the restored object.

File Specification (String)

A complete file system specification for the file which contains the object data.

Restor e Flags (Flags)

Bitmask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.
CMC_RESTORE_OBJECT_OVERWRITE

CMC_RESTORE_OBJECT_OVERWRITE — Set if the function should overwrite an existing object.

Restor e Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Restored Object (Object Handle)

A handle to the restored object.

Restor e Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_UNSUPPORTED_ACTION
CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INVALID_CONTAINER_OBJECT
CMC_E_ACCESS_DENIED
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_FLAG
CMC_E_INVALID_FILE_SPECIFICATION
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.2.9

NAME

128

Save Object

Save Object — Saves object data to the file system.

Recommendation X.446 (08/97)

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_save_obj ect (
CMC _obj ect _handl e obj ect,
CMC string file_specification,
cMC fl ags save_fl ags,
CMC_ext ensi on*save_obj ect _ext ensi ons

)
DESCRIPTION

This function saves object datato afile. For instance, this function provides a simple method for detaching the data from
an attachment to the file system. In this case, object represents an attachment object which will later be associated with a
message. Alternatively, this function provides a method for storing a message to the file system. The message data can
be restored from the file by a subsequent call to cmc_restore_object(). The on-disk representation for objects stored in
the file system is not defined since it may vary from one messaging system to another. As such, applications should not,
in general, rely on the ability to import objects which have been exported using other messaging systems.

ARGUMENTS

Object (Object Handle)

A handle to the object (e.g. message or attachment object) for which datais to be exported.
File Specification (String)

A complete file system specification for the file which will contain the object data.

Save Flags (Flags)
Bitmask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_SAVE_OBJECT_OVERWRITE
CMC_SAVE_OBJECT NOCREATE

CMC_SAVE_OBJECT_OVERWRITE - Set if the function should overwrite an existing file matching
file_specification.

CMC_SAVE_OBJECT_NOCREATE - Set if the function should not create a file matching file_specification
if the file does not already exist.

Save Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Save Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

Recommendation X.446 (08/97) 129

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_ACCESS DENIED
CMC_E_INSUFFICIENT_MEMORY

CMC_E FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_FLAG
CMC_E_INVALID_FILE_SPECIFICATION
CMC_E DISK_FULL
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3 Enumeration functions

The enumeration functions provide the ability to list, read, and update the CM C objects and object properties.
6.23.1 GetLastError

NAME

Get Last Error — Returns a localized text error message for the last error that occurred on the object.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnc_get last_error(
CMC session_id session,
CMC _obj ect _handl e obj ect,
CMC string *error_buffer,
CMC _extensi on*get | ast_error_extensi ons

);
DESCRIPTION
The cmc_get last_error function is used by client applications to retrieve a localized string to display to the user which
corresponds to the last error returned from a function call made on this object. The implementation allocates storage for
the returned buffer and the client is responsible for freeing it. If the function returns an error (non-zero), the calling
application should not call cmc_get_last_error again for additional diagnostics. Even if the function returns zero, it is
still possible that no string is available. The return code must be (zero) for the application to make use of the descriptive
string. Implementations of cmc_get_last_error should localize error messages to the language of the system, which
requires the user to set the appropriate character set in the cmc_logon call.
If both the session and object parameters are NULL, this indicates a get last error request from cmc_logon, where the
returned error string would be in the default code page for the system. If the session id is valid and the object value is

invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned. If the session id parameter is invalid and the
object parameter is valid, then the error CMC_E_INVALID_SESSION_ID is returned.

ARGUMENTS
Session (Session | d)
Session id which represents the session with the CMC service during which the error occurred.
Object (Object Handle)
A handle to the object (e.g. message or attachment object) for which data is to be returned from.

130 Recommendation X.446 (08/97)

Get Last Error Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Error Buffer (String)

The address of the buffer where the implementation stores the descriptive error string. This buffer is allocated
by the service and should be freed with a call to cmc_free().

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INVALID_SESSION_ID
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_PARAMETER
CMC_E_FAILURE
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.2 Get Root Handle

NAME

Get Root Handle — Returns a handle to the container that is the root of the object model hierarchy.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cntc_get _root _handl e(
CMC _session session,
CMC _obj ect _handle *root_object handl e,
CMC extensions *get_root_handl e_ext ensi ons

)
DESCRIPTION

This function returns a handle to the container that is the root of the object model hierarchy for the session. Multiple
calls to this function will return the same object handle during the lifetime of the session.

ARGUMENTS
Session (Session I1D)
Opague session handle which represents a session with the messaging service.

If the session handle is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Get Root Handle Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 131

RESULTS

Root Object Handle (Object Handle)

A handle to the container that is the root of the object model hierarchy.

Get Root Handle Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_SESSION_ID
CMC_E_ACCESS DENIED
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.3 List Contained Properties

NAME

List Contained Properties — Lists the properties of objects within a container object.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnc_|ist_contained _properties(
CMC _cursor _handl e cursor,
CMC_si nt 32 *nunber _obj ect s,
CMC_ui nt 32 *nunber _properties,
cvCid *property_ids,
CMC property ***properties,
CMC _extension*list_contai ned_properties_extensions

)
DESCRIPTION

This function lists the properties of objects within a container object. One of the purposes of this function is to retrieve
summary information about the objects in the container (e.g. compose an inbox message summary).

ARGUMENTS

Cursor (Cursor Handle)

The opaque handle for the cursor to the specified container object.

Number Objects (Sint32)

A pointer to the maximum number of object handles to return. A value of zero specifies no maximum. A
negative value specifies that the handles of the specified number of objects that precede the current position of
the cursor should be returned in the same sort of order as specified by cursor. For example, if the current
position of the cursor is on the eighth object in the container, then a value of —3 will list the handles of the
fifth, sixth, and seventh objects and the cursor is updated to the fifth object. A value of 4 will list the handles
of the eighth, ninth, tenth, eleventh objects and the cursor will be updated to the twelfth object.

Number Properties (Uint32)
A pointer to the number of properties in theoperty Ids argument.

132 Recommendation X.446 (08/97)

Property Ids (Property I d)
A pointer to an array of property identifiers corresponding to the properties that are to be listed.

List Contained Properties Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Number Objects (Sint32)

The actual number of objects for which properties are returned.

Number Properties (Uint32)

The actual number of properties returned for each object.
Properties (Property)

The address of an array of arrays of property structures within the container object that are listed. Each array is
the set of properties associated with a single object. The number of elements in the array are given in the
Number Propertiesresult. The number of arrays are given in the Number Objectsresult. Thisarray of arrays
is allocated by the service and should be freed with acall to cmc_freg().

List Contained Properties Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_CURSOR_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_PROPERTY_ID
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.4 List Number Matched

NAME

List Number Matched — Lists the number of elements within a container object that match the restrictions
specified by a cursor.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_|ist_nunber mat ched(
CMC _cursor _handle cursor,
CMC_ui nt 32 *nunber _mat ches,
CMC extension*|ist _nunber matched_ext ensi ons

)
Recommendation X.446 (08/97) 133

DESCRIPTION

This function returns the number of elements within a container that match the restrictions specified by a cursor. This
value can be used with the current fractional position of the cursor to display a"thumb" on a scroll bar.

ARGUMENTS

Cursor (Cursor Handle)
The opague handle to a cursor.

If the cursor handleisinvalid, then the error CMC_E_INVALID_CURSOR_HANDLE isreturned.

List Number Matched Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Number Matches (Uint32)

The number of elements within the container that match the restrictions specified by the cursor. If zero, no
elements match the restrictions specified by the cursor.

List Number Matched Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_CURSOR_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.235 List Objects

NAME

List Objects — Lists the elements within a container object.

SYNOPSIS

134

#i ncl ude <xcnt. h>

CMC return_code
cnt_|ist_objects(

CMC _cursor _handl e cursor,

CMC_si nt 32 *nunber _obj ect s,

CMC _obj ect _handle **objects,

CMC _extension*list_objects_extensions

Recommendation X.446 (08/97)

DESCRIPTION
This function returns a pointer to an array of object handles that correspond to the elements within a container object.
The container object is referenced by a cursor that has been opened by a call to the cmc_open_cursor () function. The

cursor is updated by the service so that subsequent calls to this function will return object handles to additional elements
of the container based on the updated position of the cursor.

ARGUMENTS

Cursor (Cursor Handle)
The opague handle to a cursor.

If the cursor handleisinvalid, then the error CMC_E_INVALID_CURSOR_HANDLE is returned.

Number Objects (Sint32)

A pointer to the maximum number of object handles to return. A value of zero specifies no maximum. A

negative value specifies that the handles of the specified number of objects that precede the current position of

the cursor should be returned in the same sort of order as specified by cursor. For example, if the current

position of the cursor is on the eighth element in the container, then a value of -3 will list the handles of the
fifth, sixth, and seventh elements and the cursor is updated to the eighth element. A value of 4 will list the
handles of the eighth, ninth, tenth, eleventh elements and the cursor will be updated to the twelfth element.

List Objects Extensions (Extension)
A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information

from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Cursor (Cursor Handle)

The opaque handle for the cursor to the specified container object. This handle may have been updated by the
service.

Number Objects (Sint32)

The actual number of object handles returned. If no elements matched the cursor restrictions, or if the
container object was empty, a value of zero is returned.

Objects (Object Handle)

The address of an array of object handles corresponding to the elements in the container object. This array is
allocated by the service and should be freed with a caihto free().

NOTE — The individual object handles within this array become invalid when the array is freed. The application can retain
handles to the objects prior to invokirgnc free() on the array. Using a freed handle will result in an undefined
behaviour.

List Objects Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

Recommendation X.446 (08/97) 135

ERRORS

CMC_E_INVALID_CURSOR_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.6 List Properties

NAME

List Properties — Lists the properties in an object.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnc_|ist_properties(
CMC _obj ect _handl e object,
CMC_ui nt 32 *nunber _properties,
cveid **property_ids,
CMC _extension*list_properties_extensions

)
DESCRIPTION

This function returns the unique ids of the properties within an object. A subsequentoal tead_properties() will
return the property content information for the object.

ARGUMENTS

Object (Object Handle)
The opaque handle of the object to be listed.

If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Number Properties (Uint32)

A pointer to the maximum number of property ids to return. A value of zero specifies all of the properties
should be listed.

List Properties Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS
Number Properties (Uint32)
The actual number of property ids returned.
Property Ids (Identifier)

The address of an array of unique property ids corresponding to the properties in the object. This array is
allocated by the service and should be freed with a cathto free().

List Properties Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

136 Recommendation X.446 (08/97)

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_PROPERTY_NAME
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.7 Open Cursor

NAME

Open Cursor — Opens a cursor for a container object.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_open_cursor (
CMC obj ect _handl e obj ect,
CMC cursor _restriction *restriction,
CMC_ui nt 32 nunber _sort _keys,
CMC _cursor_sort_key *sort_keys,
CMC cursor_handle *cursor,
CMC_ext ensi on*open_cur sor _ext ensi ons

)
DESCRIPTION

This function returns an opaque handle of a cursor to the specified container object. The cursor can be defined to operate
on the container with specified sort-rules.

ARGUMENTS
Object (Object Handle)
The opaque handle to a container object.
If the object handle is invalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Restriction (Cursor Restriction)

A pointer to a cursor restriction structure to be used in the enumeration of the elements in the container.
Implementations may not support all types of restrictions.

Number Sort Keys (Uint32)

The number of elements in the sort_keys argument. If zero, the sort rules for the container are undefined.

Sort Keys (Cursor Sort Key)

A pointer to an array of cursor sort keys for sorting the container. The first element is the first sort key, the
second element is the second sort key, etc. Allowing more than one sort key may not be supported by all
implementations. Objects that do not have the property listed by the sort key are placed last.

Recommendation X.446 (08/97) 137

Open Cursor Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Cursor (Cursor Handle)

An opague handle for the cursor to the specified container object. This handle is allocated by the service and
should be freed with acall to cmc_free().

Open Cursor Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_RESTRICTION
CMC_E_UNSUPPORTED_KEYS
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.8 Read Cursor

NAME

Read Cursor — Read, the current fractional position of the specified cursor within a container object.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code

cnc_read_cursor (
CMC _cursor _handl e cursor,
CMC_ui nt 32 *posi tion_numerator,
CMC_ui nt 32 *posi tion_denoni nat or,
CMC_ext ensi on*read_cur sor _ext ensi ons

)
DESCRIPTION

This function returns the current fractional position of the specified cursor. The values returned in position_numerator
and position_denominator are suitable for determining and drawing a "thumb" on a scroll bar. The scroll bar maximum
could be determined by a specific container object property.

ARGUMENTS
Cursor (Cursor Handle)
An opaque handle to a cursor.
If the cursor handle is invalid, then the error CMC_E_INVALID_CURSOR_HANDLE is returned.

138 Recommendation X.446 (08/97)

Read Cursor Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Position Numerator (Uint32)

The numerator component of the current cursor position fraction. The ratio of the
position_numerator/position_denominator provides an approximate fractional position of the cursor through
the elements of the container object. This storage is alocated by the caller.

Position Denominator (Uint32)

The denominator component of the current position of the cursor. The ratio of the
position_numerator/position_denominator provides an approximate fractional position of the cursor through
the elements of the container object. This storage is alocated by the caller.

Read Cursor Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_CURSOR_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_PROPERTY_NAME
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.9 Read Properties

NAME

Read Properties — Reads the content information associated with a set of properties in an object.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_read_properties(
CMC obj ect _handl e object,
CMC_ui nt 32 *nunber _properties,
cvCid *property_ids,
CMC property **properti es,
CMC _ext ensi on*read_properti es_extensi ons

);
DESCRIPTION
This function returns the content information of the specified properties within an object.

If a specified property is not in the object, then the property type CMC_pv_return_code will be returned in the position
of that property in the properties argument with the property value of the return code
CMC_E_PROPERTY_ID_NOT_FOUND. The property identifier for this property is undefined by this
Recommendation.

Recommendation X.446 (08/97) 139

ARGUMENTS

Object (Object Handle)
The opague handle of the object to be listed.

If the object handle isinvalid, then the error CMC_E INVALID_OBJECT HANDLE isreturned.

Number Properties (Uint32)

A pointer to the number of property ids in the property _ids argument.

Property Ids (Identifier)

A pointer to an array of unique property ids corresponding to the properties that are to be read.

Read Properties Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information

from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Number Properties (Uint32)

The actual number of properties returned. If none of the specified properties were in the object, a value of zero
is returned.

Properties (Property)

A pointer to an array of property structures that contain the content information for the properties that were
read. This array is alocated by the service and should be freed with acall to cmc_freg().

Read Properties Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_PROPERTY_NAME
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.10 Read Property Costs

NAME
Read Property Costs — Reads the relative cost associated with reading individual properties in an object.

140 Recommendation X.446 (08/97)

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code

cnc_read_property costs(
CMC _obj ect _handl e obj ect,
CMC_ui nt 32 *nunber _properties,

cveid *property_ids,
CMC_enum *costs,
CMC _ext ensi on*read_property_costs_extensi ons
)
DESCRIPTION

This function returns the relative cost associated with reading individual properties within an object.

Support for this function is not mandatory for conformance to this Recommendation. |mplementations that do not
support this function shall return the error CMC_E_NOT_SUPPORTED.

The basis for determining the cost of reading the property isimplementation-specific.
ARGUMENTS

Object (Object Handle)
The opague handle of the object to be listed.
If the object handle isinvalid, then the error CMC_E_INVALID_OBJECT_HANDLE is returned.

Number Properties (Uint32)

A pointer to the number of property idsin the property_ids argument.

Property I ds (I dentifier)
A pointer to an array of unique property ids corresponding to the properties that are to be read.

Read Property Costs Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Number Properties (Uint32)

The actual number of property costs returned. If none of the specified property costs were read, a value of zero
is returned.

Costs (Enum)

A pointer to an array of relative property costs. The individua costs correspond one-for-one to the specified
property names. The valid relative cost values include the following:

CMC_COST_UNDETERMINED
CMC_COST_NONE
CMC_COST_MINOR
CMC_COST_MAJOR

CMC_COST_UNDETERMINED — The cost of reading the property cannot be determined.
CMC_COST_NONE - There is no relative cost associated with reading the property.
CMC_COST_MINOR — There is only a relatively low cost associated with reading the property.
CMC_COST_MAJOR - There is a relatively high cost associated with reading the property.

This array is allocated by the service and should be freed with a caittdr eg().
Recommendation X.446 (08/97) 141

Read Property Costs Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_PROPERTY_NAME
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_NOT_SUPPORTED

6.2.3.11 Update Cursor Position

NAME

Update Cursor Position — Updates the current fractional position of the specified cursor within a container
object.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC _return_code
cnt_update_cursor_position(
CMC _cursor _handle cursor,
CMC _ui nt 32 posi tion_nunerator,
CMC_ui nt 32 posi ti on_denomi nat or,
CMC_ext ensi on*updat e_cursor _posi ti on_extensi ons

)
DESCRIPTION

This function updates the cursor to a specified position within the elements of a container object. The position is
determined by the ratio of the position_numerator to the position_denominator.

ARGUMENTS

Cursor (Cursor Handle)

The opaque handle to a cursor. If the cursor handle is invalid, then the error
CMC_E_INVALID_CURSOR_HANDLE is returned.

Position Numerator (Uint32)

The numerator of the desired cursor position fraction. The ratio of the position_numerator to
position_denominator provides the fractional position of the cursor through the elements of the container
object.

Position Denominator (Uint32)

The denominator of the current position of the cursor. The ratio of the position_numerator to
position_denominator provides the fractional position of the cursor through the elements of the container
object.

Update Cursor Position Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

142 Recommendation X.446 (08/97)

RESULTS

Update Cursor Position Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_CURSOR_HANDLE
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.3.12 Update Cursor Position With Seed

NAME
Update Cursor Position With Seed — Updates the current position of the specified cursor relative to a specific
seed object within the container object.

SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cnt_update_cursor_position_ w th _seed(

)

CMC _cursor _handl e cursor,
CMC obj ect _handle seed,
CMC_ext ensi on*updat e_cursor _position_w t h_seed_ext ensi ons

DESCRIPTION

This function updates the cursor to a specified position within the elements of a container object. The position is
determined by the relative position of the seed object within the container.

ARGUMENTS

Cursor (Cursor Handle)

The opaque handle to a cursor. If the cursor handle is invalid, then the error
CMC_E_INVALID_CURSOR_HANDLE is returned.

Seed (Object Handle)

The opaque handle of the object within the container relative to which cursor position should be updated.

Update Cursor Position with Seed Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

Recommendation X.446 (08/97) 143

RESULTS

Update Cursor Position with Seed Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_CURSOR_HANDLE
CMC_E_INVALID_CURSOR_HANDLE
CMC_E_INVALID_OBJECT _HANDLE
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.4 Event notification functions

Event natification functions enable an implementation to check for events, register and unregister events, and call
callbacks.

6.24.1 Check Event

NAME

Check Event — Checks for a messaging service event.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_check_event (
CMC session_id session,
CMC_event event _type,
CMC_ui nt 32 m ni num_ti meout,
CMC _buf fer check_event dat a,
CMC _buf fer *cal | back_dat a,
CMC_ext ensi on*check_event _ext ensi ons

)
DESCRIPTION

This function checks for an event associated with the messaging system. It provides an alternative to registering
callbacks with the CMC implementation for those applications which prefer to poll synchronously for events or to
provide event notification from implementations which do not support callbacks.

For each event, there is a flag associated with the event. There may also be input and output parameters associated witt
an event. These event data structures are given in the Callback data type.

If an event has not occurred and the minimum time-out is non-zero, the implementation waits for the event the specified
time-out before returning to the calling program. If the event occurs before that time-out is reached, the function returns
immediately. If the error does not occur before the time-out is reached, the function returns CMC_E_NO_EVENT.

Under implementation-defined circumstances, which are not considered as actual errors, this function may terminate
prematurely, before any event was detected and before the specified time-out is reached. In this case, the function returns
the code CMC_E_FUNCTION_INTERRUPTED.

NOTE - Other errors can also arise that cause this function to return prematurely. In this case,
CMC_E_FUNCTION_INTERRUPTED is not used. Instead, the appropriate CMC error code is returned.

144 Recommendation X.446 (08/97)

ARGUMENTS
Session (Session id)
The opague handle which represents a on with the messaging service.

If the sessionidisinvalid, thenthe error CMC_E INVALID_SESSION_ID isreturned.

Event Type (Event)

A bitmask of events for which the caller is interested in checking. Unspecified events should always be passed
as 0. Undocumented events are reserved. The definition of CMC events is given in the Event data type
description.

Minimum Time-out (Uint32)

The time, in seconds, after which the function returns even if the event has not occurred.

A value of zero causes the function to simply check for the event and return immediately thereafter.
Thevalue CMC_NO_TIMEOUT indicates that the function should wait for the event without any time limit.

If a value other than CMC_NO_TIMEOUT is used, the actual minimum time spent in this function is
implementati on-dependent.

Check Event Data (Buffer)

A pointer to a check data structure associated with this event. See the Callback data type for the specific
structure of check data. Whether the implementation or application allocates the buffer is event-specific and
detailed in the data type description.

Check Event Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Callback Data (Buffer)

The address of the callback data structure associated with this event. For this call, the structure is returned
directly to the application rather than being directed at a callback function. See the Callback data type for the
event description and specific structure of the callback data. Whether the implementation or application
allocates the buffer is event-specific and detailed in the data type description.

Check Event Extensions (Extensions)

If output extensions were passed to the function in the extension list, the results from the service will be
available in the extension. See the extension structure for more information.

Return Code (Return Code)

Whether the function succeeded or not and, if not, why. It may be success or one of the values listed
under ERRORS below.

Recommendation X.446 (08/97) 145

ERRORS

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_EVENT
CMC_E_INVALID_FUNCTION_EXT
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_FUNCTION_INTERRUPTED
CMC_E_INVALID_SESSION_ID
CMC_E_NO_EVENT

6.24.2

NAME

Register Event

Register Event — Registers events in which the caller is interested.

SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cnc_regi ster_event (

)

CMC session_id session,

CMC_event event _type,

CMC cal | back call back,

CMC _buf fer regi st er_dat a,

CMC _ext ensi on*regi st er _event _ext ensi ons

DESCRIPTION

This function specifies the events within the messaging system of which the caller is interested in being alerted.

The caller can be notified by an event either through a callback function or by using the Check Event function call to
synchronously poll for events for which it has registered. CMC implementations are not required to support callbacks.

There may also be input and output parameters associated with an event. These parameters are contained in the Clien
Data. The structure of client data for events is given in the Callback data type.

ARGUMENTS

146

Session (Session id)
The opaque handle which represents a session with the messaging service.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Event Type (Event)

A bitmask of events for which the caller is interested in checking. Unspecified events should always be passed
as 0. Undocumented events are reserved. The definition of CMC events is given in the Event data type
description.

Callback (Callback)

The client procedure that should be called by the service to handle the callback activity. A NULL value
indicates that no callback function is given and that the event should be signalled through the Check Event
function. If callbacks are not supported by an implementation, the error code
CMC_E_CALLBACK_NOT_SUPPORTED is returned.

Register Data (Buffer)

A pointer to a register data structure associated with this event. See the Callback data type for the specific
structure of register data. Whether the implementation or application allocates the buffer is event-specific and
detailed in the event description.

Recommendation X.446 (08/97)

Register Event Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Register Event Extensions (Extensions)

If output extensions were passed to the function in the extension list, the results from the service will be
available in the extension. See the extension structure for more information.

Return Code (Return Code)

Whether the function succeeded or not and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_EVENT
CMC_E_INVALID_FUNCTION_EXT
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_CALLBACK_NOT_SUPPORTED
CMC_E_INVALID_SESSION_ID

6.2.4.3 Unregister Event

NAME

Unregister Event — Unregisters events for which the caller is no longer interested.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_unregi ster_event (
CMC session_id session,
CcMC fl ags event type,
CMC cal | back cal | back,
CMC _buf fer unregi st er _dat a,
CMC_ext ensi on*unr egi st er _event _ext ensi ons

)
DESCRIPTION

This function specifies events within the messaging system for which the caller is interested in discontinuing
notification.

ARGUMENTS
Session (Session id)
The opaque handle which represents a session with the messaging service.

If the session id is invalid, then the error CMC_E_INVALID_SESSION_ID is returned.

Event Type (Flags)

A bitmask of events for which the caller is no longer interested in checking. Unspecified events should always
be passed as 0. Undocumented events are reserved. The definition of CMC events is given in the Event data
type description.

Recommendation X.446 (08/97) 147

Callback (Callback)

The client procedure that was registered to handle the callback activity. A NULL value indicates that no
callback function was designated. If callbacks are not supported by an implementation, the error code
CMC_E CALLBACK_NOT_SUPPORTED is returned.

Unregister Data (Buffer)

A pointer to an unregister data structure that can be used to pass event data that will be needed by the callback
function to provide a context for discontinuing registration. The structure of Unregister Data is given in the
Callback data type description.

Unregister Event Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Unregister Event Extensions (Extensions)

If output extensions were passed to the function in the extension list, the results from the service will be
available in the extension. See the extension structure for more information.

Return Code (Return Code)

Whether the function succeeded or not and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_EVENT
CMC_E_INVALID_FUNCTION_EXT
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_NOT_SUPPORTED
CMC_E_INVALID_SESSION_ID

6.2.4.4 Call Callbacks

NAME

Call Callbacks — Calls the callback function(s) which are registered if the event has occurred.

SYNOPSIS

148

#i ncl ude <xcnt. h>

CMC return_code
cnt_cal |l _cal | backs(

)

CMC session_id session,
CMC_event event _type,
CMC_extensi on*cal | _cal | backs_ext ensi ons

Recommendation X.446 (08/97)

DESCRIPTION

This function causes the messaging service to call the registered callback functions associated with the specified callback
event(s). The messaging service will process each specified callback event and call the registered callback functions if
there have been changes that would trigger the callbacks of that event. The order in which calbacks are invoked is
implementation specific.

This function is useful in environments where an implementation can only call callbacks when the implementation’s code
is executing. That is, this function is useful for implementations where callbacks can only be called as a side effect of
calling any CMC function in that implementation.

Support for this function is optiona for conformance to the CMC interface specification. The error
CMC_E NOT_SUPPORTED isreturned if the function is not supported.

ARGUMENTS
Session (Session 1d)

Opague session handle which represents a session with the messaging service. If a valid session handle is
specified, the callback functions registered with that session are invoked. If the session handle is invalid, then
theerror CMC_E_INVALID_SESSION_ID isreturned.

Event Type (Event)

A bitmask of events. Unspecified events should always be passed as 0. Undocumented events are reserved.
The definition of CMC eventsis given in the Event data type description.

Call Callbacks Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Call Callbacks Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_EVENT
CMC_E_INVALID_FUNCTION_EXT
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_SESSION_ID
CMC_E_NOT_SUPPORTED
CMC_E_SERVICE_UNAVAILABLE
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.5 M essaging functions
The messaging functions provide the ability to create derived messages, send messages, and wait for new messages.

Recommendation X.446 (08/97) 149

6.25.1 CreateDerived Message Object

NAME

Create Derived Message Object — Creates a message object that is suitable for forwarding or replying.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_create_derived _nessage_obj ect (
CMC obj ect _handl e origi nal _nessage,
CMC_enum derived_action,
CMC bool ean inherit_contents,
CMC _bool ean nodi fi ed_nessage,
CMC obj ect _handl e *derived_nessage,
CMC extensions *create_derived_nessage_obj ect_extensions

)
DESCRIPTION

This function is used to create a message suitable for forwarding or replying to a given message. The "object" parameter
must be a message object with at least one recipient.

The derived_message may contain additional properties in addition to those in original_message. Likewise, the
properties in derived_message may not have the same values as corresponding properties in original_message. Fol
example, some implementations will alter the subject of a replied message from, say, "Quarterly Financial Results", to
say, "Re: Quarterly Financial Results". The implementation must define the rules to apply to this function including
which attributes get modified and what extra attributes get generated in the derived message.

An originator recipient object is needed to reply to the message.
ARGUMENTS

Original Message (Object Handle)

A handle to the message object that is to be forwarded or replied to.

Derived Action (Enum)

Indicates whether the derived message is intended to be forwarded or replied to. It can be one of the following
values:

CMC_DERIVED_ACTION_FORWARD
CMC_DERIVED_ACTION_REPLY_ORIGINATOR
CMC_DERIVED_ACTION_REPLY_ALL

CMC_DERIVED_ACTION_FORWARD — The message is intended to be forwarded.

CMC_DERIVED_ACTION_REPLY_ORIGINATOR — The message is intended to be replied to the
originator.

CMC_DERIVED_ACTION_REPLY_ALL — The message is intended to be replied to all the recipients of the
original message.

Inherit Contents (Boolean)

All the contents of the original message are either copied and included in the derived message or are ignored.
If true, the new object inherits all the contents.

M odified M essage (Boolean)

Specifies whether the original message should be changed.

Create Derived M essage Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

150 Recommendation X.446 (08/97)

RESULTS
Derived M essage (Object Handle)

A new handle to a message object that can be forwarded or replied to.

Create Derived Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_UNSUPPORTED_ACTION
CMC_E_REQUIRED_PROPS MISSING

6.25.2 Send Message Object

NAME

Send Message Object — Sends a message object from the outbox.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_send_nessage_obj ect (
CMC _obj ect _handl e obj ect,
CMC _extensions *send_nessage_obj ect _extensi ons

)
DESCRIPTION

This function is used to send a message from the outbox, if the outbox container is supported. The function will also
attempt to transfer all other committed messages in the outbox. The "object" parameter must be a message object with at

least one recipient.
ARGUMENTS

Object (Object Handle)

A handle to the message object that is to be submitted to the messaging service.

Send M essage Object Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions

structure for more information.
RESULTS

Send M essage Object Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be

available in the extension. See the extensions structure for more information.

Recommendation X.446 (08/97) 151

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_REQUIRED_PROPS MISSING

6.2.6 Name handling functions

The name handling functions provide the ability to convert a property identifier to a property name and convert a
property name to a property identifier.

6.2.6.1 Identifier To Name
NAME
Identifier To Name — Converts an identifier into its associated unique name.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnc_identifier_to _nanmg(

cvCid identifier,
CMC_nane *nanme,
CMC_extension*identifier_to_name_extensions
);
DESCRIPTION

This function converts an identifier into its corresponding unique name. It may be used for object class identifiers and
property identifiers.

The name is a formal public identifier, as defined by ISO 9070. The identifier is an implementation-specific, unique
identifier. The identifier is used to uniquely identify the property or object class within the CMC property structure.

ARGUMENTS
Identifier (Identifier)
The identifier to be converted into a name.

Identifier To Name Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS
Name (Name)
The name of the identifier string. This string is allocated by the service and should be fregdaonitiee().

Identifier To Name Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

152 Recommendation X.446 (08/97)

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_PROPERTY_ID
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_PROPERTY_NAME_NOT_FOUND
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.6.2 NameTo ldentifier

NAME

Name To Identifier — Converts a unique name into its corresponding identifier.

SYNOPSIS

#i ncl ude <xcnt. h>
CMC return_code
cnc_nane_to_identifier(
CMC_nane name,
cvCid *jdentifier,
CMC _extensi on*nane_to_i dentifier_extensions

)
DESCRIPTION

This function converts a unique name into its corresponding identifier. It may be used for object class identifiers and
property identifiers.

The name is a formal public identifier, as defined by 1SO 9070. The identifier is an implementation specific, unique
identifier. The identifier is used to uniquely identify a property or an object class.

ARGUMENTS

Name (Name)

The name to be converted into an identifier.

Name To | dentifier Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS
Identifier (Identifier)
The identifier corresponding to the name.

Name To I dentifier Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

Recommendation X.446 (08/97) 153

ERRORS

CMC_E_INVALID_PROPERTY_NAME
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_PROPERTY_ID_NOT_FOUND
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7

Stream functions

Some CMC properties may be defined in terms of large amounts of content information. These properties necessitate a
group of functionsto permit the access to the content information in the form of streamed input or output.

6.2.7.1

NAME

Export Stream

Export Stream — Export stream data to the file system.

SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cnt_export _stream

)

CMC stream handle stream

CMC string file_specification,

CMC _ui nt 32 count,

CMC fl ags export_fl ags,

CMC_ext ensi on*export _stream ext ensi ons

DESCRIPTION

This function exports stream data to a file.

ARGUMENTS

Stream (Stream Handle)

A handle to the stream from which data is to be exported.

File Specification (String)

A complete file system specification for the file which will contain the stream data.
Count (Uint32)

Specifies the number of bytes to export.

Export Flags (Flags)

Bitmask of flags. Unspecified flags should always be passed as 0. Undocumented flags are reserved.

CMC_EXPORT_STREAM_OVERWRITE
CMC_EXPORT_STREAM_NOCREATE
CMC_EXPORT_STREAM_APPEND

154

CMC_EXPORT_STREAM_OVERWRITE - Set if the function should overwrite an existing file matching
file_specification.

CMC_EXPORT_STREAM_NOCREATE - Set if the function should not create a file matching
file_specification if the file does not already exist.

CMC_EXPORT_STREAM_APPEND - Set if the function should append the stream data to an existing file
matching file_specification.

Recommendation X.446 (08/97)

Export Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions

structure for more information.

RESULTS

Export Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be

available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed

under ERRORS below.

ERRORS

CMC_E_INVALID_STREAM_HANDLE
CMC_E_ACCESS DENIED
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_FLAG
CMC_E_INVALID_FILE_SPECIFICATION
CMC_E DISK_FULL
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7.2 Import FileTo Stream
NAME

Import File To Stream — Import data from the file system to a stream.
SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cnc_inport _file to _strean

'

CMC stream handl e stream

CMC string file_specification,

CMC_ui nt 32 file offset,

CMC extension*inport file to_stream extensions

DESCRIPTION

This function imports data from a file to a stream.

ARGUMENTS

Stream (Stream Handle)

A handle to the stream to which data are to be imported.

File Specification (String)

A complete file system specification for the file from which to import data.

File Offset (Uint32)

Specifies the offset in bytes from the beginning of the file from which to begin reading data.

Recommendation X.446 (08/97)

155

Import Fileto Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extensions for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Import Fileto Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_STREAM_HANDLE
CMC_E_ACCESS DENIED
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_FLAG
CMC_E_INVALID_FILE_SPECIFICATION
CMC_E_INVALID_FILE_OFFSET
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7.3 Open Stream

NAME
Open Stream — Open a property for stream-based read or write operations.
SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cnt_open_strean(
CMC _obj ect _handl e obj ect,
CMC property id property id,
CMC_enum operation,
CMC stream handle *stream
CMC_ext ensi on*open_stream ext ensi ons

);
DESCRIPTION
This function will open a stream for reading or writing large content information in a property.
ARGUMENTS
Object (Object Handle)
Opaque object handle. This handle encapsulates the session id.
Property Id (Property 1d)
Property to read or write through the stream.

156 Recommendation X.446 (08/97)

Operation (Enum)

The operation the stream is to be used for. Valid operationsinclude:

CMC_OPEN_READ
CMC_OPEN_WRITE

CMC_OPEN_READ - Open the stream for read operations.
CMC_OPEN_WRITE - Open the stream for write operations.

Open Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extension for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Stream (Stream Handle)

The stream handle allocated for accessing the specified property. The returned value is passéres)) to
free the handle and any service specific information about the stream when it is no longer used.

Open Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_OBJECT_HANDLE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PROPERTY_ID
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7.4

NAME

Read Stream

Read Stream — Read a stream of content information from the specified property.

SYNOPSIS

#i ncl ude <xcnt. h>

CMC return_code
cntc_read_strean(

)

CMC stream handl e stream

CMC_ui nt 32 *count,

CMC _buf f er content information,
CMC_ext ensi on*read_stream ext ensi ons

DESCRIPTION

This function will read content information from the specified property into a user-managed buffer.

ARGUMENTS

Stream (Stream Handle)
Opaque stream handle. This handle encapsulates the session and object handles.

Recommendation X.446 (08/97) 157

Count (Uint32)

Specifies the maximum number of bytesto be read. A value of zero specifies no maximum.

Read Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extension for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Count (Uint32)

Specifies the number of bytes of content information actually read. If nothing was read, a value of zero is
returned.

Content Information (Buffer)

A buffer which contains the content information that was read. This buffer is alocated by the service and the
entire buffer should be freed with a single call to cmc_free(). This buffer is managed by the user of the AP,
not by the service.

Read Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
availablein the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_STREAM_HANDLE
CMC_E_ACCESS DENIED
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.75 Seek Stream

NAME

Seek Stream — Move to the specified location with the content information of the specified property stream.

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cnt_seek_strean(
CMC stream handle stream
CMC_enum operation,
CMC_ui nt 32 *| ocati on,
CMC _ext ensi on*seek_stream ext ensi ons

)
DESCRIPTION

This function will move to the specified location within a property stream. The location is specified as a byte offset from
either the beginning, the end, or the current position within the content information.

158 Recommendation X.446 (08/97)

ARGUMENTS

Stream (Stream Handle)

Opaque stream handle. This handle encapsulates the session and object handles.

Operation (Enum)

The seek direction. It will specify either to seek from the beginning, the end of the content information, or
from the current position in the stream. Valid operations include:

CMC_SEEK_BEGINNING
CMC_SEEK_END
CMC_SEEK_CURRENT_POSITION

CMC_SEEK_BEGINNING - Seek the specified offset from the beginning of the content information.

CMC_SEEK_END - Seek the specified offset from the end of the content information.

CMC_SEEK_CURRENT_POSITION — Seek the specified offset from the current position with the content
information.

L ocation (Uint32)

Pointer to the byte offset or location within the stream.

Seek Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extension for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

L ocation (Uint32)

The actual byte offset moved to.

Seek Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_STREAM_HANDLE
CMC_E_ACCESS_DENIED
CMC_E_INSUFFICIENT_MEMORY
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

6.2.7.6

NAME

Write Stream

Write Stream — Write a stream of content information to the specified property.

Recommendation X.446 (08/97) 159

SYNOPSIS
#i ncl ude <xcnt. h>

CMC return_code
cntc_wite_streamn
CMC stream handl e stream
CMC _ui nt 32 count,
CMC_buf f er content _i nformati on,
CMC _extensi on*write_stream extensions

)
DESCRIPTION

This function will write content information to the specified property.
ARGUMENTS

Stream (Stream Handle)

Opaque stream handle. This handle encapsulates the session and object handles.

Count (Uint32)

Specifies the number of bytes to be written to the property.

Content Information (Buffer)

Pointer to a buffer which contains the content information to be written.

Write Stream Extensions (Extension)

A pointer to an array of CMC_extension structures for this function. The array may contain both input
extension for providing additional information to the function and output extensions for receiving information
from the function. A value of NULL indicates that the caller is not using any extensions. See the extensions
structure for more information.

RESULTS

Write Stream Extensions (Extensions)

If output extensions were passed to the function in the extensions list, the results from the service will be
available in the extension. See the extensions structure for more information.

Return Code (Return Code)

Whether the function succeeded or not, and, if not, why. It may be success or one of the values listed
under ERRORS below.

ERRORS

CMC_E_INVALID_STREAM_HANDLE
CMC_E_ACCESS DENIED
CMC_E_INSUFFICIENT_MEMORY
CMC_E_NO_MORE_BYTES TO WRITE
CMC_E_FAILURE
CMC_E_INVALID_PARAMETER
CMC_E_UNSUPPORTED_FUNCTION_EXT

7 Return codes

This clause defines the return codes of the CMC interface. The return codes of the generic interface are specified here;
the return codes of the C interface are specified in Annex A, " C declaration summary". Tables 16 to 21 list the generic
return codes and the functions to which the return codes pertain. Following the tables, each return code is defined.

The CMC implementation should only return the values that pertain to a specific function if possible. If necessary, the
implementation may return other errors in the error list that are not specifically assigned to a function. It is not
recommended that errors not in the list below be returned.

160 Recommendation X.446 (08/97)

TABLE 16/X.446 — SIMPLE CMC INTERFACE RETURN CODES

Return code

Act

Free

List

L ogoff |Logon|Query| Read

Look | Send |SndDoc

CMC_E_ACCESS DENIED

CMC_E_AMBIGUOUS_RECIPIENT

CMC_E_ATTACHMENT_NOT_FOUND

CMC_E_ATTACHMENT_OPEN_FAILURE

CMC_E_ATTACHMENT_READ_FAILURE

CMC_E_ATTACHMENT_WRITE_FAILURE

CMC_E_BIND_FAILURE

CMC_E_CALLBACK_NOT_SUPPORTED

CMC_E_COUNTED_STRING_UNSUPPORTED

CMC_E_DISK_FULL

CMC_E_FAILURE

CMC_E_FUNCTION_INTERRUPTED

CMC_E_ID_NOT_FOUND

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_CONFIGURATION

CMC_E_INVALID_CONTAINER_OBJECT

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_INVALID_ENUM

CMC_E_INVALID_EVENT

CMC_E_INVALID_FILE_OFFSET

CMC_E_INVALID_FILE_SPECIFICATION

CMC_E_INVALID_FLAG

CMC_E_INVALID_FUNCTION_EXT

CMC_E_INVALID_MEMORY

CMC_E_INVALID_MESSAGE_PARAMETER

CMC_E_INVALID_MESSAGE_REFERENCE

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_PROPERTY_ID

CMC_E_INVALID_PROPERTY_NAME

CMC_E_INVALID_RESTRICTION

CMC_E_INVALID_SESSION_ID

CMC_E_INVALID_SOURCE_OBJECT

CMC_E_INVALID_STREAM_HANDLE

CMC_E_INVALID_UI_ID

Recommendation X.446

(08/97) 161

TABLE 16/X.446 — SIMPLE CMC INTERFACE RETURN CODES (CONCLUDED)

Return code

Act

Free

List

L ogoff

Logon

Query

Read

L ook

Send

SndDoc

CMC_E_INVALID_VALUE

CMC_E_LOGON_FAILURE

CMC_E_MESSAGE_IN_USE

CMC_E_NAME_NOT_FOUND

CMC_E_NO_EVENT

CMC_E_NO_MORE_BYTES_TO_WRITE

CMC_E_NOT_SUPPORTED

CMC_E_PASSWORD_REQUIRED

CMC_E_PROPERTY_DATA_TYPE_NOT_SUPPORTE

D

CMC_E_PROPERTY_ID_NOT_FOUND

CMC_E_PROPERTY_NAME_NOT_FOUND

CMC_E_PROPERTY_PROBLEMS

CMC_E_RECIPIENT_NOT_FOUND

CMC_E_REQUIRED_PROPS_MISSING

CMC_E_RESTRICTION_NOT_SUPPORTED

CMC_E_SERVICE_UNAVAILABLE

CMC_E_TEXT_TOO_LARGE

CMC_E_TOO_MANY_CONTENT_ITEMS

CMC_E_TOO_MANY_FILES

CMC_E_TOO_MANY_RECIPIENTS

CMC_E_UNABLE_TO_NOT_MARK_READ

CMC_E_UNBIND_FAILURE

CMC_E_UNRECOGNIZED_IDENTIFIER

CMC_E_UNRECOGNIZED_MESSAGE_TYPE

CMC_E_UNSUPPORTED_ACTION

CMC_E_UNSUPPORTED_CHARACTER_SET

CMC_E_UNSUPPORTED_DATA_EXT

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_UNSUPPORTED_KEYS

CMC_E_UNSUPPORTED_VALUE

CMC_E_UNSUPPORTED_VERSION

CMC_E_USER_CANCEL

CMC_E_USER_NOT_LOGGED_ON

162 Recommendation X.446 (08/97)

TABLE 17/X.446 — FULL CMC ADMINISTRATIVE AND BIND FUNCTION INTERFACE

RETURN CODES

Return code

Free

L ogoff L ogon

Bind

Unbind

CMC_E_ACCESS DENIED

CMC_E_AMBIGUOUS_RECIPIENT

CMC_E_ATTACHMENT_NOT_FOUND

CMC_E_ATTACHMENT_OPEN_FAILURE

CMC_E_ATTACHMENT_READ_FAILURE

CMC_E_ATTACHMENT_WRITE_FAILURE

CMC_E_BIND_FAILURE

CMC_E_CALLBACK_NOT_SUPPORTED

CMC_E_COUNTED_STRING_UNSUPPORTED

CMC_E_DISK_FULL

CMC_E_FAILURE

CMC_E_FUNCTION_INTERRUPTED

CMC_E_ID_NOT_FOUND

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_CONFIGURATION

CMC_E_INVALID_CONTAINER_OBJECT

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_INVALID_ENUM

CMC_E_INVALID_EVENT

CMC_E_INVALID_FILE_OFFSET

CMC_E_INVALID_FILE_SPECIFICATION

CMC_E_INVALID_FLAG

CMC_E_INVALID_FUNCTION_EXT

CMC_E_INVALID_MEMORY

CMC_E_INVALID_MESSAGE_PARAMETER

CMC_E_INVALID_MESSAGE_REFERENCE

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_PROPERTY_ID

CMC_E_INVALID_PROPERTY_NAME

CMC_E_INVALID_RESTRICTION

CMC_E_INVALID_SESSION_ID

CMC_E_INVALID_SOURCE_OBJECT

CMC_E_INVALID_STREAM_HANDLE

CMC_E_INVALID_UI_ID

Recommendation X.446

(08/97)

163

TABLE 17/X.446 — FULL CMC ADMINISTRATIVE AND BIND FUNCTION INTERFACE
RETURN CODES (CONCLUDED)

Return code

Free

L ogoff

Logon

Bind

Unbind

CMC_E_INVALID_VALUE

CMC_E_LOGON_FAILURE

CMC_E_MESSAGE_IN_USE

CMC_E_NAME_NOT_FOUND

CMC_E_NO_EVENT

CMC_E_NO_MORE_BYTES_TO_WRITE

CMC_E_NOT_SUPPORTED

CMC_E_PASSWORD_REQUIRED

CMC_E_PROPERTY_DATA_TYPE_NOT_SUPPORTED

CMC_E_PROPERTY_ID_NOT_FOUND

CMC_E_PROPERTY_NAME_NOT_FOUND

CMC_E_PROPERTY_PROBLEMS

CMC_E_RECIPIENT_NOT_FOUND

CMC_E_REQUIRED_PROPS_MISSING

CMC_E_RESTRICTION_NOT_SUPPORTED

CMC_E_SERVICE_UNAVAILABLE

CMC_E_TEXT_TOO_LARGE

CMC_E_TOO_MANY_CONTENT_ITEMS

CMC_E_TOO_MANY_FILES

CMC_E_TOO_MANY_RECIPIENTS

CMC_E_UNABLE_TO_NOT_MARK_READ

CMC_E_UNBIND_FAILURE

CMC_E_UNRECOGNIZED_IDENTIFIER

CMC_E_UNRECOGNIZED_MESSAGE_TYPE

CMC_E_UNSUPPORTED_ACTION

CMC_E_UNSUPPORTED_CHARACTER_SET

CMC_E_UNSUPPORTED_DATA_EXT

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_UNSUPPORTED_KEYS

CMC_E_UNSUPPORTED_VALUE

CMC_E_UNSUPPORTED_VERSION

CMC_E_USER_CANCEL

CMC_E_USER_NOT_LOGGED_ON

164 Recommendation X.446 (08/97)

TABLE 18/X.446 — FULL CMC COMPOSITION FUNCTION INTERFACE RETURN

CODES

Return code

Add
Props

Comt
Obj

Copy | Copy | Del Del | Open | Restore

Obj | Obj | Objs |Props
Hdl

Obj | Obj
Hdl

Save
Obj

CMC_E_ACCESS DENIED

X

- X

X

CMC_E_AMBIGUOUS_RECIPIENT

CMC_E_ATTACHMENT_NOT_FOUND

CMC_E_ATTACHMENT_OPEN_FAILURE

CMC_E_ATTACHMENT_READ_FAILURE

CMC_E_ATTACHMENT_WRITE_FAILURE

CMC_E_BIND_FAILURE

CMC_E_CALLBACK_NOT_SUPPORTED

CMC_E_COUNTED_STRING_UNSUPPORTED

CMC_E_DISK_FULL

CMC_E_FAILURE

CMC_E_FUNCTION_INTERRUPTED

CMC_E_ID_NOT_FOUND

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_CONFIGURATION

CMC_E_INVALID_CONTAINER_OBJECT

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_INVALID_ENUM

CMC_E_INVALID_EVENT

CMC_E_INVALID_FILE_OFFSET

CMC_E_INVALID_FILE_SPECIFICATION

CMC_E_INVALID_FLAG

CMC_E_INVALID_FUNCTION_EXT

CMC_E_INVALID_MEMORY

CMC_E_INVALID_MESSAGE_PARAMETER

CMC_E_INVALID_MESSAGE_REFERENCE

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_PROPERTY_ID

CMC_E_INVALID_PROPERTY_NAME

CMC_E_INVALID_RESTRICTION

CMC_E_INVALID_SESSION_ID

CMC_E_INVALID_SOURCE_OBJECT

CMC_E_INVALID_STREAM_HANDLE

CMC_E_INVALID_UI_ID

Recommendation X.446

(08/97)

165

TABLE 18/X.446 — FULL CMC COMPOSITION FUNCTION INTERFACE RETURN
CODES (CONCLUDED)

Add | Comt | Copy | Copy | De Del | Open |Restore| Save
Return code Props| Obj | Obj | Obj | Objs |Props| Obj Obj Obj
Hdl Hdl

CMC_E_INVALID_VALUE - - - - - - - — -

CMC_E_LOGON_FAILURE - - - - - - - - -

CMC_E_MESSAGE_IN_USE - - - — - - - - —

CMC_E_NAME_NOT_FOUND - - - - - - - - -

CMC_E_NO_EVENT - - - _ _ _ _ _ _

CMC_E_NO_MORE_BYTES_TO_WRITE - - - - - - — - .

CMC_E_NOT_SUPPORTED - - - - - - — - .

CMC_E_PASSWORD_REQUIRED - - - - - — — - -

CMC_E_PROPERTY_DATA_TYPE_NOT_SUPPORTED — s + + + L L -

CMC_E_PROPERTY_ID_NOT_FOUND - - - - - — — - -

CMC_E_PROPERTY_NAME_NOT_FOUND - - - - - — — - -

CMC_E_PROPERTY_PROBLEMS - - - - — — - - i

CMC_E_RECIPIENT_NOT_FOUND - - - - - - - - —

CMC_E_REQUIRED_PROPS_MISSING - — — - - . 4 - _

CMC_E_RESTRICTION_NOT_SUPPORTED — — — . . 4 1 -

CMC_E_SERVICE_UNAVAILABLE - - - - - - - - -

CMC_E_TEXT_TOO_LARGE - - - - - - - — -

CMC_E_TOO_MANY_CONTENT_ITEMS - - - - - - - — -

CMC_E_TOO_MANY_FILES - - - - - - - - -

CMC_E_TOO_MANY_RECIPIENTS - - - - - - - - -

CMC_E_UNABLE_TO_NOT_MARK_READ - - - - - - - — -

CMC_E_UNBIND_FAILURE - - - - - - - - -

CMC_E_UNRECOGNIZED_IDENTIFIER - - - - - - X — -

CMC_E_UNRECOGNIZED_MESSAGE_TYPE - - - — — - - - 4

CMC_E_UNSUPPORTED_ACTION - X X - - - - X -

CMC_E_UNSUPPORTED_CHARACTER_SET — — — . . 4 1 -

CMC_E_UNSUPPORTED_DATA_EXT - - - - - - - - —

CMC_E_UNSUPPORTED_FLAG - - — - - - - - —

CMC_E_UNSUPPORTED_FUNCTION_EXT X X - X X X X X X

CMC_E_UNSUPPORTED_KEYS - - - - - - - - .

CMC_E_UNSUPPORTED_VALUE - - - - - - - - -

CMC_E_UNSUPPORTED_VERSION - - - - — — - - i

CMC_E_USER_CANCEL - - - - - - - — -

CMC_E_USER_NOT_LOGGED_ON - - - - - — — - -

166 Recommendation X.446 (08/97)

TABLE 19/X.446 — FULL CMC ENUMERATION FUNCTION INTERFACE RETURN
CODES

Get | Get | List | List No | List | List |Open|Read|Read |Read|Upd| Upd
Last [Root | Cont [Matched|Objs|Props| Cur | Cur (Props|Prop|Cur| Cur
Err |Hdle|Props| Costs| Pos| Pos
w/ Sd

Return code

CMC_E_ACCESS DENIED - X - - - - - - - - — —

CMC_E_AMBIGUOUS_RECIPIENT - - - - — -

CMC_E_ATTACHMENT_NOT_FOUND - - - - - - - - - - 4 _

CMC_E_ATTACHMENT_OPEN_FAILURE - -l - - 0 s ! L

CMC_E_ATTACHMENT_READ_FAILURE - - - - - - - - - -] -

CMC_E_ATTACHMENT WRITE_FAILURE - -] = - - - - - -] - 4 _

CMC_E_BIND_FAILURE - = = - o Z1 | 2| | 4 _

CMC_E_CALLBACK_NOT_SUPPORTED -l 4 - - 4 4 4 4 41 1 L 1

CMC_E_COUNTED_STRING_ - - - - - - - - — - - -
UNSUPPORTED

CMC_E_DISK_FULL -l - - _ | - -1 -l - - 4 =
CMC_E_FAILURE X| x| X X X | X | x | x | x |x [x |X

CMC_E_FUNCTION_INTERRUPTED B _ 4 0 4 4 4 1 L

CMC_E_ID_NOT_FOUND - -] - - -1 - - | 0 4 1 4

CMC_E_INSUFFICIENT_MEMORY Xl X X X X X X X X X | - -

CMC_E_INVALID_CONFIGURATION S R - I R N

CMC_E_INVALID_CONTAINER_OBJECT - -] - - -t -t - - - 4 1 _Z

CMC_E_INVALID_CURSOR_HANDLE - - X X X - - - - - X| X

CMC_E_INVALID_ENUM - - - - - - - -

CMC_E_INVALID_EVENT N B _ 0o 2 2 2 2 o -

CMC_E_INVALID_FILE_OFFSET - -] = - | - - - - 4 4 "

CMC_E_INVALID_FILE_SPECIFICATION - - - - - - - - 4 4 _

CMC_E_INVALID_FLAG - -] = _ - - - | | | -

CMC_E_INVALID_FUNCTION_EXT -l -] - - - - - - | 4 -

CMC_E_INVALID_MEMORY - - - - - - - - - - - -

CMC_E_INVALID_MESSAGE_PARAMETER | —| -| - _ - 4 4 4 4 1

CMC_E_INVALID_ MESSAGE_REFERENCE | -| - - _ 4 4 4 41 1 1 L 1

CMC_E_INVALID_OBJECT_HANDLE X - - - - X X X X X | - X

CMC_E_INVALID_PARAMETER X X X X X X X X X X | X | X

CMC_E_INVALID_PROPERTY_ID - - X - - - - - - - - -

CMC_E_INVALID_PROPERTY_NAME - - - - - X - X X X| - -

CMC_E_INVALID_RESTRICTION - - - - - - X - - - - -

CMC_E_INVALID_SESSION_ID X| X - - - - - - - - - -

CMC_E_INVALID_SOURCE_OBJECT B - 4 4 4 4 4 1 L

CMC_E_INVALID_STREAM_HANDLE - - - - -0 1 - | | 4 =

CMC_E_INVALID_UI_ID | - | - - o2 2 2 2 2 <] -

Recommendation X.446 (08/97) 167

TABLE 19/X.446 — FULL CMC ENUMERATION FUNCTION INTERFACE RETURN
CODES (CONCLUDED)

Return code

Get

Err

Get
Root
Hdle

List
Cont
Props

List No
Matched

List
Objs

List
Props|

Open
Cur

Read
Cur

Read
Props|

Read
Prop
Costs

Upd
Cur
Pos

Upd
Cur
Pos
w/ &

CMC_E_INVALID_VALUE

CMC_E_LOGON_FAILURE

CMC_E_MESSAGE_IN_USE

CMC_E_NAME_NOT_FOUND

CMC_E_NO_EVENT

CMC_E_NO_MORE_BYTES_TO_WRITE

CMC_E_NOT_SUPPORTED

CMC_E_PASSWORD_REQUIRED

CMC_E_PROPERTY_DATA_TYPE_NOT_
SUPPORTED

CMC_E_PROPERTY_ID_NOT_FOUND

CMC_E_PROPERTY_NAME_NOT_FOUND

CMC_E_PROPERTY_PROBLEMS

CMC_E_RECIPIENT_NOT_FOUND

CMC_E_REQUIRED_PROPS_MISSING

CMC_E_RESTRICTION_NOT_SUPPORTED

CMC_E_SERVICE_UNAVAILABLE

CMC_E_TEXT_TOO_LARGE

CMC_E_TOO_MANY_CONTENT_ITEMS

CMC_E_TOO_MANY_FILES

CMC_E_TOO_MANY_RECIPIENTS

CMC_E_UNABLE_TO_NOT_MARK_READ

CMC_E_UNBIND_FAILURE

CMC_E_UNRECOGNIZED_IDENTIFIER

CMC_E_UNRECOGNIZED_MESSAGE_TYPE

CMC_E_UNSUPPORTED_ACTION

CMC_E_UNSUPPORTED_CHARACTER_SET

CMC_E_UNSUPPORTED_DATA_EXT

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_UNSUPPORTED_KEYS

CMC_E_UNSUPPORTED_VALUE

CMC_E_UNSUPPORTED_VERSION

CMC_E_USER_CANCEL

CMC_E_USER_NOT_LOGGED_ON

168 Recommendation X.446 (08/97)

TABLE 20/X.446 — FULL CMC EVENT NOTIFICATION AND MESSAGING FUNCTION
INTERFACE RETURN CODES

Return code

Ck
Event

Reg Unreg Call
Event | Event | Clbks

Cr Der
Msg

Snd Mg
Obj

CMC_E_ACCESS DENIED

CMC_E_AMBIGUOUS_RECIPIENT

CMC_E_ATTACHMENT_NOT_FOUND

CMC_E_ATTACHMENT_OPEN_FAILURE

CMC_E_ATTACHMENT_READ_FAILURE

CMC_E_ATTACHMENT_WRITE_FAILURE

CMC_E_BIND_FAILURE

CMC_E_CALLBACK_NOT_SUPPORTED

CMC_E_COUNTED_STRING_UNSUPPORTED

CMC_E_DISK_FULL

CMC_E_FAILURE

CMC_E_FUNCTION_INTERRUPTED

CMC_E_ID_NOT_FOUND

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_CONFIGURATION

CMC_E_INVALID_CONTAINER_OBJECT

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_INVALID_ENUM

CMC_E_INVALID_EVENT

CMC_E_INVALID_FILE_OFFSET

CMC_E_INVALID_FILE_SPECIFICATION

CMC_E_INVALID_FLAG

CMC_E_INVALID_FUNCTION_EXT

CMC_E_INVALID_MEMORY

CMC_E_INVALID_MESSAGE_PARAMETER

CMC_E_INVALID_MESSAGE_REFERENCE

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_PROPERTY_ID

CMC_E_INVALID_PROPERTY_NAME

CMC_E_INVALID_RESTRICTION

CMC_E_INVALID_SESSION_ID

CMC_E_INVALID_SOURCE_OBJECT

CMC_E_INVALID_STREAM_HANDLE

CMC_E_INVALID_UI_ID

Recommendation X.446

(08/97)

169

TABLE 20/X.446 — FULL CMC EVENT NOTIFICATION AND MESSAGING FUNCTION
INTERFACE RETURN CODES (CONCLUDED)

Return code

Ck
Event

Reg
Event

Unreg
Event

Call
Clbks

Cr De
Msg

Snd Mgg
Obj

CMC_E_INVALID_VALUE

CMC_E_LOGON_FAILURE

CMC_E_MESSAGE_IN_USE

CMC_E_NAME_NOT_FOUND

CMC_E_NO_EVENT

CMC_E_NO_MORE_BYTES_TO_WRITE

CMC_E_NOT_SUPPORTED

CMC_E_PASSWORD_REQUIRED

CMC_E_PROPERTY_DATA_TYPE_NOT_ SUPPORTED

CMC_E_PROPERTY_ID_NOT_FOUND

CMC_E_PROPERTY_NAME_NOT_FOUND

CMC_E_PROPERTY_PROBLEMS

CMC_E_RECIPIENT_NOT_FOUND

CMC_E_REQUIRED_PROPS_MISSING

CMC_E_RESTRICTION_NOT_SUPPORTED

CMC_E_SERVICE_UNAVAILABLE

CMC_E_TEXT _TOO_LARGE

CMC_E_TOO_MANY_CONTENT_ITEMS

CMC_E_TOO_MANY_FILES

CMC_E_TOO_MANY_RECIPIENTS

CMC_E_UNABLE_TO_NOT_MARK_READ

CMC_E_UNBIND_FAILURE

CMC_E_UNRECOGNIZED_IDENTIFIER

CMC_E_UNRECOGNIZED_MESSAGE_TYPE

CMC_E_UNSUPPORTED_ACTION

CMC_E_UNSUPPORTED_CHARACTER_SET

CMC_E_UNSUPPORTED_DATA EXT

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_UNSUPPORTED_KEYS

CMC_E_UNSUPPORTED_VALUE

CMC_E_UNSUPPORTED_VERSION

CMC_E_USER_CANCEL

CMC_E_USER_NOT_LOGGED_ON

170 Recommendation X.446 (08/97)

TABLE 21/X.446 — FULL CMC NAME HANDLING AND STREAM FUNCTION
INTERFACE CODES

Return code

Idto
Name

Name
told

Exp
Str

Imp
Str

Open
Str

Read
Str

Str

Wrt
Str

CMC_E_ACCESS DENIED

CMC_E_AMBIGUOUS_RECIPIENT

CMC_E_ATTACHMENT_NOT_FOUND

CMC_E_ATTACHMENT_OPEN_FAILURE

CMC_E_ATTACHMENT_READ_FAILURE

CMC_E_ATTACHMENT_WRITE_FAILURE

CMC_E_BIND_FAILURE

CMC_E_CALLBACK_NOT_SUPPORTED

CMC_E_COUNTED_STRING_UNSUPPORTED -

CMC_E_DISK_FULL

CMC_E_FAILURE

CMC_E_FUNCTION_INTERRUPTED

CMC_E_ID_NOT_FOUND

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_CONFIGURATION

CMC_E_INVALID_CONTAINER_OBJECT

CMC_E_INVALID_CURSOR_HANDLE

CMC_E_INVALID_ENUM

CMC_E_INVALID_EVENT

CMC_E_INVALID_FILE_OFFSET

CMC_E_INVALID_FILE_SPECIFICATION

CMC_E_INVALID_FLAG

CMC_E_INVALID_FUNCTION_EXT

CMC_E_INVALID_MEMORY

CMC_E_INVALID_MESSAGE_PARAMETER

CMC_E_INVALID_MESSAGE_REFERENCE

CMC_E_INVALID_OBJECT_HANDLE

CMC_E_INVALID_PARAMETER

CMC_E_INVALID_PROPERTY_ID

CMC_E_INVALID_PROPERTY_NAME

CMC_E_INVALID_RESTRICTION

CMC_E_INVALID_SESSION_ID

CMC_E_INVALID_SOURCE_OBJECT

CMC_E_INVALID_STREAM_HANDLE

CMC_E_INVALID_UI_ID

Recommendation X.446

(08/97)

171

TABLE 21/X.446 — FULL CMC NAME HANDLING AND STREAM FUNCTION

INTERFACE CODES (CONCLUDED)

Return code

Id to
Name

Name
told

Exp
Str

Imp
Str

Open
Str

CMC_E_INVALID_VALUE

CMC_E_LOGON_FAILURE

CMC_E_MESSAGE_IN_USE

CMC_E_NAME_NOT_FOUND

CMC_E_NO_EVENT

CMC_E_NO_MORE_BYTES_TO_WRITE

CMC_E_NOT_SUPPORTED

CMC_E_PASSWORD_REQUIRED

CMC_E_PROPERTY_DATA_TYPE_NOT_ SUPPORTE

CMC_E_PROPERTY_ID_NOT_FOUND

CMC_E_PROPERTY_NAME_NOT_FOUND

CMC_E_PROPERTY_PROBLEMS

CMC_E_RECIPIENT_NOT_FOUND

CMC_E_REQUIRED_PROPS_MISSING

CMC_E_RESTRICTION_NOT_SUPPORTED

CMC_E_SERVICE_UNAVAILABLE

CMC_E_TEXT _TOO_LARGE

CMC_E_TOO_MANY_CONTENT_ITEMS

CMC_E_TOO_MANY_FILES

CMC_E_TOO_MANY_RECIPIENTS

CMC_E_UNABLE_TO_NOT_MARK_READ

CMC_E_UNBIND_FAILURE

CMC_E_UNRECOGNIZED_IDENTIFIER

CMC_E_UNRECOGNIZED_MESSAGE_TYPE

CMC_E_UNSUPPORTED_ACTION

CMC_E_UNSUPPORTED_CHARACTER_SET

CMC_E_UNSUPPORTED_DATA EXT

CMC_E_UNSUPPORTED_FLAG

CMC_E_UNSUPPORTED_FUNCTION_EXT

CMC_E_UNSUPPORTED_KEYS

CMC_E_UNSUPPORTED_VALUE

CMC_E_UNSUPPORTED_VERSION

CMC_E_USER_CANCEL

CMC_E_USER_NOT_LOGGED_ON

172 Recommendation X.446 (08/97)

The return codes are defined as follows:
CMC_E_ACCESS DENIED

CMC_E_AMBIGUOUS RECIPIENT

CMC_E_ATTACHMENT_NOT_FOUND

CMC_E_ATTACHMENT_OPEN_FAILURE

CMC_E_ATTACHMENT _READ_FAILURE

CMC_E_ATTACHMENT_WRITE_FAILURE

CMC_E BIND_FAILURE
CMC_E_CALLBACK_NOT_SUPPORTED

CMC_E_COUNTED_STRING_UNSUPPORTED

CMC_E DISK_FULL

CMC_E_FAILURE

CMC_E_FUNCTION_INTERRUPTED
CMC_E_ID_NOT_FOUND

CMC_E_INSUFFICIENT_MEMORY

CMC_E_INVALID_CONFIGURATION

CMC_E_INVALID_CONTAINER_OBJECT
CMC_E_INVALID_CURSOR_HANDLE
CMC_E_INVALID_ENUM
CMC_E_INVALID_EVENT
CMC_E_INVALID_FILE_OFFSET
CMC_E_INVALID_FILE_SPECIFICATION
CMC_E_INVALID_FLAG
CMC_E_INVALID_FUNCTION_EXT
CMC_E_INVALID_MEMORY

CMC_E_INVALID_MESSAGE_PARAMETER

Access has been denied.

The recipient name is ambiguous; multiple matches have

been found.

The specified attachment was not found as specified.

The specified attachment was found but could not be

opened, or the attachment file could not be created.

The specified attachment was found and opened, but there

was an error reading it.

The attachment file was created successfully, but there was

an error writing it.
Unable to bind application to implementation.

Specified callback not supported by implementation.

This implementation does not support the counted string

type.

Insufficient disk space was available to complete the
requested operation (this may refer to local or shared disk

space).

There was a general failure which does not fit the

description of any other error code.
The function has been interrupted.

The specified id was not found.

Insufficient memory was available to complete the

reguested operation.

The underlying messaging service's configuration

invalid, so logging on cannot be completed.
An invalid container object was specified.

An invalid cursor handle was specified.
A CMC_enum value is invalid.

Invalid event specified.

An invalid file offset was specified.

An invalid file was specified.
A flag value in the flags parameter was invalid.
The function extension is invalid.

Memory pointer passed is invalid.

One of the parameters in the message was invalid.

Recommendation X.446 (08/97)

173

is

CMC_E_INVALID_MESSAGE_REFERENCE

CMC_E_INVALID_OBJECT HANDLE
CMC_E_INVALID_PARAMETER
CMC_E_INVALID_PROPERTY_ID
CMC_E_INVALID_PROPERTY_NAME
CMC_E_INVALID_RESTRICTION

CMC_E_INVALID_SESSION_ID

CMC_E_INVALID_SOURCE_OBJECT
CMC_E_INVALID_STREAM_HANDLE
CMC_E_INVALID_UI_ID
CMC_E_INVALID_VALUE

CMC_E_LOGON_FAILURE

CMC_E_MESSAGE_IN_USE

CMC_E_NAME_NOT_FOUND
CMC_E_NO_EVENT
CMC_E_NO_MORE_BYTES TO WRITE

CMC_E_NOT_SUPPORTED

CMC_E_PASSWORD_REQUIRED

CMC_E_PROPERTY_DATA_TYPE_NOT_ SUPPORTED

CMC_E_PROPERTY_ID_NOT_FOUND
CMC_E_PROPERTY_NAME_NOT_FOUND
CMC_E_PROPERTY_PROBLEMS
CMC_E_RECIPIENT_NOT_FOUND
CMC_E_REQUIRED_PROPS MISSING

CMC_E_RESTRICTION_NOT_SUPPORTED

174 Recommendation X.446 (08/97)

The specified message reference is invalid or no longer
vaid (e.g. it has been deleted).

Aninvalid object handle was specified.

A function parameter was invalid.

An invalid property identifier was specified.
The specified property nameisinvalid.

An invalid restriction was specified.

The specified session id is invalid or no longer valid
(e.g. after logging off).

Aninvalid source object was specified.

An invalid stream handle was specified.

The specified user interfaceid isinvalid or no longer valid.
Thevaueisnot valid.

The service, user name, and/or password specified were
invalid, so logging on cannot be completed.

The requested action cannot be completed at this time
because the messageisin use.

The specified name was not found.
The specified event does not exist.
There are no more bytes to write to the stream.

The operation
implementation.

requested is not supported by this

A password is required on this messaging service.

The property data type is not supported by this
implementation.

The specified property identifier was not found.

The specified property name was not found.

Problems exist with the properties.

One or more of the specified recipients were not found.
One or more of the specified properties are missing.

The specified restriction is too complex and is not
supported by the implementation.

CMC_E_SERVICE_UNAVAILABLE

CMC_E_TEXT_TOO_LARGE

CMC_E_TOO_MANY_CONTENT_ITEMS

CMC_E_TOO_MANY_FILES

CMC_E_TOO_MANY_RECIPIENTS

CMC_E_UNABLE_TO_NOT_MARK_READ

CMC_E_UNBIND_FAILURE

CMC_E_UNRECOGNIZED_IDENTIFIER

CMC_E_UNRECOGNIZED_MESSAGE_TY PE

CMC_E_UNSUPPORTED_ACTION

CMC_E_UNSUPPORTED_CHARACTER_SET
CMC_E_UNSUPPORTED_DATA_EXT
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTION_EXT
CMC_E_UNSUPPORTED_KEYS
CMC_E_UNSUPPORTED_VALUE

CMC_E_UNSUPPORTED_VERSION

CMC_E_USER_CANCEL

CMC_E_USER NOT_LOGGED ON

8 Conformance

The service requested is unavailable.

The size of the text string passed to the implementation is
too large.

Maximum number of acceptable content items exceeded.

The implementation cannot support the number of files
specified.

The implementation cannot support the number of
recipients specified.

CMC_E_UNABLE_TO_NOT_MARK_READ flag can-
not be supported.

Failure encountered while attempting to unbind application
from implementation.

The specified identifier was unrecognized.

The specified message type is not supported by this
implementation.

The requested action is not supported by this
implementation.

The character set requested is not supported.

The data extension requested is not supported.
The flag requested is not supported.

The function extension requested is not supported.
The specified sort keys are not supported.

The valueis not supported.

The version specified in the call cannot be supported by
this CMC implementation.

The operation was cancelled by the user.

The user is not logged on and the
CMC_E _USER_NOT_LOGGED_ON flagis not set.

In order for an implementation of the Common Messaging Call API to conform to this Recommendation it must meet the

following criteria

e All functions and data structures must be implemented as defined. Statements elsewhere in the Recommendation
which describe features as optional or with exceptions take precedence over this criterion.

e Theimplementation must be able to transport at least the CMC IPM message type.

* Support for XAPIA’s CMC 1.0 applications is recommended for Simple CMC and Full CM C implementations.

» Support for Full CMC and Simple CMC is mandatory for Full CMC implementations.

Recommendation X.446 (08/97) 175

176

All object classes in clause 3 must be implemented as defined. Statements elsewhere in the Recommendation which
describe features as optional or with exceptions take precedence over this criterion.

Object properties designated as mandatory in the property characteristic tables shall be supported.

Character set support is up to the underlying implementation. Support for an implementation-defined default
character set isrequired. Optionally, other character sets may be supported. Counted string support is not required.

All extensions are optional. Vendors are encouraged to support the CMC-defined standard extension set specified
in this Recommendation. It is further encouraged that standard extension sets are developed for any proprietary or
non-proprietary messaging services for which a CMC interface is provided, to accommodate features specific to
that messaging service, and that the extension set can be registered externaly.

Minimum conformance for an extension set will be defined by the creator of the extension set.

The CMC Manager and CMC Implementation must provide an implementation of the CMC Bind Implementation()
and CMC Unbind Implementation() calls, and must return a pointer to the dispatch table on the CMC Bind
Implementation() call. The CMC Manager, if multiple implementations are supported, could provide a means of
enumerating the known CMC implementations on a given platform (optional browsing capability), and a means of
registering the CMC implementations.

CMC implementations must be able to support calls directly to its function as well as indirectly through the dispatch
table.

Recommendation X.446 (08/97)

Annex A

C declaration summary

A.l C declaration summary

This subclause lists the declarations that define the CMC interface for the C programming language. All of the
declarations, except those for symbolic constants, also appear in clause 4, Data Structures or clause 6, Functional
interface.

The declarations assembled here congtitute the contents of a header file to be made accessible to application
programmers. The header file is <xcmc.h>. The symbols the declarations define are the only symbols the service makes
visible to the application.

/*BEA N CMC 2.0 | NTERFACE*/

#i f ndef _XCMC H
#defi ne_XCMC_H

#i f def _cpl uspl us
extern "C" {
#endi f

/ *BASI C DATA TYPES*/
#i f ndef DI FFERENT_PLATFORM

t ypedef char CMC _si nt 8;

t ypedef short CMC_si nt 16;
typedef long int CMC_si nt 32;
t ypedef unsi gned short int CMC_ui nt 16;
t ypedef unsigned long int CMC_ui nt 32;
typedef void * CMC buf fer;
t ypedef unsi gned char CMC byt e;
typedef |ong int CMC si ze;

t ypedef fl oat CMC f | oat 32;
t ypedef doubl e CMC f | oat 64;

/ * CHARACTER S| ZE DEFI NI Tl ON*/
#i f ndef CMC_WCHAR

#defi ne CMC_CHAR char

#el se

#defi ne CMC_CHAR CMC_sint 16

#endi f

typedef CMC CHAR * CMC string;

#el se

t ypedef CMC_CHAR char

typedef CMC CHAR * CMC string;
#endi f

t ypedef CMC uint 16 CMC _bool ean;

t ypedef CMC sint32 CMC_enum

t ypedef CMC uint 32 CMC return_code;
typedef CMC_uint 32 CMC f 1 ags;
typedef CMC string CMC obj ect _identifier;
typedef CMC string CMC _gui d;

typedef CMC string CMC date_ti ne;
#defi ne CMC_FALSE ((CMC_bool ean) 0)
#defi ne CMC_TRUE ((CMC_bool ean) 1)

/ * DATA STRUCTURES*/

[/ * COUNTED STRI NG*/
typedef struct {
CMC_ui nt 32 | engt h;
CMC_CHAR string[1];
} CMC counted_string;

/ *SESSI ON | D*/
t ypedef CMC _uint 32 CMC _session_id;

Recommendation X.446 (08/97) 177

#i f ndef DI FFERENT_PLATFORM
/ * CURSOR HANDLE*/
typedef CMC_uint 32

/ * OBJECT HANDLE*/
t ypedef CMC uint 32

/ * STREAM HANDLE*/
t ypedef CMC uint 32

/ * NULLHANDLE* /

CMC cursor _handl e;

CMC_obj ect _handl e;

CMC_stream handl e;

#define CMC _NULL OBJECT_HANDLE ((CMC object handl e) 0)

#endi f
/ * OPAQUE DATA*/

typedef struct CMC_TAG OPAQUE DATA {

CMC si ze
CMC byte
} CMC_opaque_dat a;

[*TI ME*/

si ze;
*dat a;

/* unusedX fields needed to align struct on 4-byte boundary */

typedef struct {
CMC sint8
CMC sint8
CMC sint8
CMC sint8
CMC sint8
CMC sint8
CMC sint8
CMC sint8
CMC sint 16
CMC sint 16

} CMCtine, CMC iso_date_ tine;

#defi ne CMC_NO_TI MEZONE

/*U 1D~/
t ypedef CMC uint 32

[* EXTENSI ON*/

typedef struct {
CMC_ui nt 32
CMC_ui nt 32
CMC _buf f er
cMC fl ags

} CMC_extensi on;

/ * PROPERTY | D*/
t ypedef CMC uint 32

/ * PROPERTY NAME*/
typedef CMC string

second;
m nut e;
hour ;
day;

nont h;
year;

i sdst;
unusedl;
t nzone;
unused?;

((CMC_si nt 16) 0x8000)

CMC_ui i d;

i tem code;

i tem dat a;
itemreference;
ext ensi on_f| ags;

CMC i d;

CMC_narne;

/ * MULTI VALUED PROPERTY DEFI NI TI ONS*/
typedef struct CMC_TAG ARRAY BOOLEAN {

CMC_ui nt 32
CMC _bool ean
} CMC array_bool ean;

count ;
*bits;

typedef struct CMC_TAG ARRAY_BUFFER {

CMC_ui nt 32
CMC _buf fer
} CMC array_bhuffer;

count ;
*puf fer;

typedef struct CMC_TAG ARRAY_COUNTED STRI NG {

CMC_ui nt 32
CMC _counted_string
} CMC array_counted_string;

count ;
*string;

typedef struct CMC _TAG ARRAY_ENUM ({

CMC_ui nt 32
CMC_enum
} CMC array_enum

178 Recommendation X.446

(08/97)

count ;
*set;

typedef struct CMC_TAG ARRAY_

CMC_ui nt 32
CMC_ext ensi on
} CMC array_extension;

typedef struct CMC_TAG ARRAY_

CMC_ui nt 32
CMC f | oat 32
} CMC array_fl oat 32;

typedef struct CMC TAG ARRAY

CMC_ui nt 32
CMC fl oat 64
} CMC array_fl oat 64;

typedef struct CMC TAG ARRAY

CMC_ui nt 32
CMC guid
} CMC array_guid;

typedef struct CMC_TAG ARRAY_

CMC_ui nt 32
CMC date_tine
} CMC array_iso _date_ tine;

typedef struct CMC_TAG ARRAY_

CMC_ui nt 32
CMC _obj ect _handl e
} CMC array_object handl e;

typedef struct CMC TAG ARRAY

CMC_ui nt 32
CMC_opaque_dat a
} CMC array_opaque_dat a;

typedef struct CMC TAG ARRAY

CMC_ui nt 32
CMC return_code
} CMC array_return_code;

typedef struct CMC_TAG ARRAY_

CMC_ui nt 32
CMC sint16
} CMC array_sint 16;

typedef struct CMC_TAG ARRAY_

CMC_ui nt 32
CMC_si nt 32
} CMC array_sint32;

typedef struct CMC TAG ARRAY

CMC_ui nt 32
CMC string
} CMC array_string;

t ypedef struct CMC TAG ARRAY

CMC_ui nt 32
CMC tine
} CMC array_time;

typedef struct CMC_TAG ARRAY_

CMC_ui nt 32
CMC _ui nt 16
} CMC array_uint 16;

typedef struct CMC_TAG ARRAY_

CMC_ui nt 32
CMC_ui nt 32
} CMC array_uint 32;

EXTENSI ON {
count ;
*ext ensi on;

FLOAT32 {
count ;
*nunber ;

FLOAT64 {
count ;
*nunber ;

QU D {
count ;
*gui d;

| SO DATE_TI ME {
count ;
*tinme;

OBJECT_HANDLE ({
count ;
*ohandl es;

OPAQUE_DATA {
count;
*dat a;

RETURN_CODE {
count ;
*code;

SI NT16 {
count ;
*nunber ;

SI NT32 {
count ;
*nunber ;

STRI NG {
count ;
*string;

TI ME {
count ;
*tinme;

U NT16 {
count ;
*nunber ;

Ul NT32 {
count ;
*nunber ;

Recommendation X.446

(08/97)

179

[* PROPERTY*/

typedef struct CMC _TAG PROPERTY {

CMCid
CMC_enum
uni on {

} val ue;
} CMC property;

| * EVENT*/
t ypedef CMC uint 32

/* EVENT TYPES */

#def i ne CMC_EVENT_NEW MESSAGES

[* CALLBACK*/

property_id;
type;

CMC _bool ean

CMC byte

CMC buf fer

CMC _counted_string
CMC_enum

CMC_ext ensi on

CMC fl oat 32

CMC fl oat 64

CMC fl ags

CMC guid

CMC iso_date tine
CMC_obj ect _handl e

CMC _opaque_dat a

CMC return_code

CMC sint16

CMC si nt 32

CMC string

CMC tinme

CMC uint 16

CMC _ui nt 32

CMC _array_bool ean

CMC _array_buffer

CMC array_counted_string
CMC_array_enum

CMC _array_ext ensi on
CMC array_fl oat 32

CMC array_fl oat 64

CMC array_gui d

CMC array_iso_date tinme
CMC _array_object handl e
CMC _array_opaque_dat a
CMC array_return_code
CMC array_sint16

CMC array_sint 32

CMC array_string

CMC array_tine

CMC array_uint 16

CMC _array_uint 32

CMC _event;

typedef struct OMC_TAG NEW MESSAGE_CB DATA {

CMC_obj ect _handl e

} CMC_new _nessage_cal | back_dat a;

typedef struct CMC_TAG NEW MESSAGE CHECK DATA {

CMC_ui nt 32

CMC _obj ect _handl e

*avai | abl e;

CMC _pv_bool ean;

CMC _pv_byte;

CMC _pv_buffer;

CMC _pv_counted_string;
CMC_pv_enuner at ed,;
CMC_pv_ext ensi on;

CMC pv_fl oat 32;

CMC _pv_fl oat 64;

CMC pv_fl ags;

CMC _pv_gui d;

CMC pv_iso_date_tine;

CMC _pv_obj ect _handl e;
CMC_pv_opaque_dat a;
CMC_pv_return_code;
CMC_pv_si nt 16;

CMC _pv_si nt 32;

CMC pv_string;

CMC pv_tine;

CMC_pv_ui nt 16;

CMC_pv_ui nt 32;

CMC pv_array_bool ean;

CMC _pv_array_buffer;

CMC pv_array_counted_string;
CMC _pv_array_enum

CMC pv_array_extension;
CMC pv_array_f I oat 32;

CMC _pv_array_f I oat 64;

CMC _pv_array_gui d;

CMC pv_array_iso _date tine;
CMC pv_array_obj ect handl e;
CMC pv_array_opaque_dat a;
CMC pv_array_return_code;
CMC pv_array_sint 16;
CMC_pv_array_sint 32;

CMC pv_array_string;

CMC pv_array_ti me;

CMC _pv_array_ui nt 16;
CMC_pv_array_ui nt 32;

((cMC_enum) 0)

number _cont ai ner s;

} CMC new nessage_check_dat a;

typedef CMC new nessage_check_dat a

typedef CMC new nessage check _data

typedef void (*CMC cal |l back) (

CMC session_id

CMC_event

CMC _buf fer
CMC _buf fer
CMC _ext ensi on

)
/

180

Recommendation X.446

sessi on,
event,

cal | back_dat a,
regi ster_dat a,

*cont ai ners;

CMC_new_nessage_regi ster_dat a;

CMC_new_nessage_unr egi st er _dat a;

*cal | back_ext ensi ons

* CURSOR RESTRI CTI ON*/

(08/97)

typedef struct CMC_TAG RESTRI CTI ON_AND {

CMC_ui nt 32

struct CMC_TAG _RESTRI CTI ON_CURSOR .
} CMC restriction_and;

typedef struct CMC_TAG RESTRI CTI ON_OR {

CMC_ui nt 32

struct CMC_TAG RESTRI CTI ON_CURSCR .
} CMC restriction_or;

typedef struct CMC _TAG RESTRI CTI ON_NOT {

CMC_ui nt 32

struct CMC_TAG RESTRI CTI ON_CURSOR .
} CMC restriction_not;

typedef struct CMC_TAG RESTRI CTI ON_STRI NG {

CMC_enum
CMCid
CMC string

} CMC restriction_st

typedef struct CMC _TAG RESTRI CTI ON_CONTENT {

CMC_enum
cMC i d
CMC _buf fer

ring;

} CMC restriction_content;

typedef struct OMC_TAG RESTRI CTI ON_COVPARI SON {

CMC_enum
cMCid
cMCid

} CMC_ restriction_conparison;

typedef struct CMC _TAG RESTRI CTI ON _BI TTEST {

CMC_ui nt 32
CMC id
CMC_ui nt 32

} CMC restriction_bi

ttest;

typedef struct OMC_TAG RESTRI CTI ON_SI ZE {

CMC_enum
CMCid
CMC_ui nt 32

} CMC restriction_si

ze,

typedef struct CMC_TAG RESTRI CTI ON_EXI ST {

cMcid

} CMC restriction_exist;

typedef struct CMC _TAG RESTRI CTI ON_CURSOR ({

CMC_enum
uni on {

}oer;
CMC_ext ensi on

CMC restri
CMC restri
CMC restri
CMC restri
CMC restri
CMC restri
CMC restri
CMC restri
CMC restri

} CMC cursor _restriction;
/* RESTRI CTI ON TYPES AND CONSTANTS */

cti
cti
cti
cti
cti
cti
cti
cti
cti

on_and
on_or
on_not
on_string
on_cont ent

on_conpari son

on_bhittest
on_si ze
on_exi st

count ;
*restriction;

count ;
*restriction;

count ;
*restriction;

exact ness;

property;
string_constant;

| ogi cal ;
property;
property_val ue;

| ogi cal ;
propertyl;
property2;

conpari son;
property;
bittest;

| ogi cal ;

property;
byte size;

property;

type;

restriction_and,
restriction_or;
restriction_not;
restriction_string;

restriction_content;
restriction_conparison;
restriction_bittest;

restriction_size;
restriction_exist;

*property_extensions;

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne

CMC_RESTRI CTI ON_AND
CMC_RESTRI CTI ON_OR
CMC_RESTRI CTI ON_NOT
CMC_RESTRI CTI ON_STRI NG
CMC_RESTRI CTI ON_CONTENT
CMC_RESTRI CTI ON_COVPARI SON
CMC_RESTRI CTI ON_BI TTEST
CMC_RESTRI CTI ON_SI ZE
CMC_RESTRI CTI ON_EXI ST

Recommendation X.446

(08/97)

181

#defi ne OMC_EXACTNESS_PRECI SE
#defi ne CMC_EXACTNESS_STARTS W TH
#defi ne COMC_EXACTNESS M XED_CASE

(
(
(
#define CMC_LOG CAL_LT (
#define CMC LOG CAL_LE (.
#define CMC LOG CAL_EQ ((cMC_enum 2)
#defi ne CMC_LOG CAL_NE (
#define CMC_LOGQ CAL_GT (
#define CMC_LOG CAL_GE (
(
(

#def i ne CMC_COMPARI SON_OR
#def i ne CMC_COVPARI SON_AND

/* CURSOR SORT KEY*/

typedef struct TAG CURSOR _SORT_KEY{
cMC i d
CMC_enum

} CMC cursor_sort_key;

/* CURSCOR SORT KEY CONSTANTS */
#defi ne CMC_SORT_DEFAULT
#defi ne CMC_SORT_ASCEND
#def i ne CMC_SORT_DESCEND

property;
order;

((cMC_enum) 0)
((cMC_enum 1)
((CMC_enum 2)

[* ATTACHVENT* /

typedef struct {
CMC string attach_ title;
CMC object __identifier attach_type;
CMC string attach_fil enane;
CcMC fl ags attach_fl ags;

CMC_ext ensi on
} CMC attachnent;

/* ATTACHMENT FLAGS */

*attach_ext ensi ons;

#defi ne CMC_ATT_APP_OWNS_FI LE ((CMC_flags) 1)

#define OMC_ATT_LAST ELENMENT ((CMC_fl ags) 0x80000000)
#defi ne CMC_ATT_O D_BI NARY "1 2 840 113658 1 1"
#define CMC_ATT Ol D_TEXT "1 2 840 113658 1 1 0"

/ * MESSACE REFERENCE*/
typedef CMC counted_string

/ * RECI Pl ENT*/
typedef struct {

CMC _nessage_ref erence;

CMC string nane;
CMC_enum name_t ype;
CMC string addr ess;
CMC_enum role;

CMC fl ags reci p_fl ags;

CMC_ext ensi on
} CMC reci pient;

/* NAME TYPES */

*reci p_ext ensi ons;

#defi ne CMC_TYPE_UNKNOM ((CMC_enum) 0)
#define CMC_TYPE_| NDI VI DUAL ((CMC_enum) 1)
#defi ne CMC_TYPE_GROUP ((cMC_enum 2)

/* ROLES */

#define CMC_ROLE_TO ((

#define CMC_ROLE_CC ((

#defi ne CMC_ROLE_BCC ((>

#defi ne CMC_ROLE ORI G NATOR ((cMC_enum 3)
#defi ne CMC_ROLE_AUTHORI ZI NG_USER ((

#define CMC_ROLE_REPLY_TO ((

/* RECI Pl ENT FLAGS */

#defi ne CMC_RECI P_| GNORE (
#define CMC_RECI P_LI ST_TRUNCATED (
#define CMC_RECI P_LAST_ELEMENT (

(08/97)

cvC flags) 1)
CMC fl ags) 2)
CMC fl ags) 0x80000000)

—~ N

182 Recommendation X.446

| * MESSAGE* /

t ypedef struct {
CMC _nessage_reference
CMC string
CMC string
CMC tine
CMC string
CMC _reci pi ent
CMC_at t achment
cMC fl ags
CMC_ext ensi on

} CMC_nessage;

/* MESSACGE FLAGS */

#defi ne CMC_MSG_READ

#defi ne CMC_MSG _TEXT_NOTE_AS FI LE
#defi ne CMC_MSG_UNSENT

#defi ne CMC_MSG _DELETE_AFTER_SEND
#defi ne CMC_MSG_LAST_ELEMENT

/* MESSAGE TYPES */

#def i ne CMC_MESSAGE_TYPE_| PM
#defi ne CMC_MESSAGE_TYPE_I P_RN
#def i ne CMC_MESSAGE_TYPE_| P_NRN
#defi ne CMC_MESSAGE_TYPE_DR
#def i ne CMC_MESSAGE_TYPE_NDR
#def i ne CMC_MESSAGE_TYPE_REPORT

[* MESSAGE SUMVARY* /
typedef struct {
CMC _nessage_reference
CMC string
CMC string
CMC tine
CMC_ui nt 32
CMC reci pi ent
cMC fl ags
CMC_ext ensi on
} CMC _nessage_sunmary;

/* MESSAGE SUMVARY FLAGS */
#defi ne CMC_SUM READ

#defi ne CMC_SUM _UNSENT

#defi ne CMC_SUM HAS ATTACHVENTS
#defi ne CMC_SUM LAST ELEMENT

/ * REPORT*/

typedef struct {
CMC _r eci pi ent
CMC_enum
CMC tine
CMC _ui nt 32
cMC fl ags

} CMC report;

/* REPORT FLAGS */
#def i ne CMC_REPORT_LAST_ELEMENT

/* REPORT TYPES */
#defi ne CMC_X400_DR
#defi ne CMC_X400_NDR

/ * CMC FUNCTI ONS*/

/ * CROSS FUNCTI ON FLAGS*/

#defi ne CMC_ERROR Ul _ALLOWED
#def i ne CMC_LOGON_Ul _ALLOWED
#def i ne CMC_COUNTED_STRI NG TYPE

/ * OBJECT CLASSES*/

#def i ne CMC_TYPE_OC_ADDRESS_BOOK
#def i ne CMC_TYPE_OC_CONTENT_| TEM
#defi ne CMC_TYPE_OC_MESSAGE

#defi ne CMC_TYPE_OC_MESSAGE_CONTAI NER

*message_r ef er ence;
nmessage_t ype;

subj ect ;

ti me_sent;

t ext _not e;

*recipi ents;
*attachments;
message_fl ags;
*message_ext ensi ons;

((cMC flags) 1)
((eMC_flags) 2)
((cMC flags) 4)
((cMC flags) 8)
((CcMC_fl ags) 0x80000000)

*message_r ef erence;
nmessage_t ype;

subj ect ;

ti me_sent;

byt e | engt h;

*origi nator;

summary_fl ags;
*message_summrary_ext ensi ons;

> flags) 1)
> flags) 2)
, flags) 4)
> flags) 0x80000000)

*meg_recipient;
report_type;
delivered_ tine;
reason_code;
report_fl ags;

((cMC flags) 0x00000001)

((CMC_enum) 0)
((cMC_enum 1)

((flags) 0x01000000)
((CMC_flags) 0x02000000)
((flags) 0x04000000)

((cMC_enum 1)

((CMC_enum 2)

((CMC_enum) 3)

((eMC_enum 4)
Recommendation X.446 (08/97)

183

#defi ne CMC_TYPE_OC DI STRI BUTI ON_LI ST ((

#def i ne CMC_TYPE_OC_RECI Pl ENT ((CovC_

#def i ne CMC_TYPE_OC_REPORT ((CMC_enum) 7)
#def i ne CMC_TYPE_OC_ROOT_CONTAI NER ((

#defi ne CMC_TYPE_OC_PER_REC! Pl ENT_| NFORMATI ON ((

#def i ne CMC_TYPE_OC_PROFI LE_CONTAI NER ((

#define CMC_OC_MESSAGE \
" _/IXAPIAICMC/OBJECT CLASS//NONSGML Message//EN"

#define CMC_OC_CONTENT_ITEM \
"_/IXAPIA/CMC/OBJECT CLASS//NONSGML Content Item//EN"

#define CMC_OC_RECIPIENT \
"—//XAPIA/CMC/OBJECT CLASS//NONSGML Recipient//EN"

#define CMC_OC_REPORT \
"—/IXAPIA/CMC/OBJECT CLASS//NONSGML Report//EN"

#define CMC_OC_MESSAGE_CONTAINER \
"—/[XAPIA/CMC/OBJECT CLASS//NONSGML Message Container//EN"

#define CMC_OC_ADDRESS_BOOK \
"—/IXAPIA/CMC/OBJECT CLASS//NONSGML Address Book//EN"

#define CMC_OC_DISTRIBUTION_LIST \
"—//XAPIA/CMC/OBJECT CLASS//NONSGML Distribution List/EN"

#define CMC_OC_ROOT_CONTAINER \
"_|IXAPIA/ICMC/OBJECT CLASS//NONSGML Root Container//EN"

#define CMC_OC_PER_RECIPIENT_INFORMATION \
"—/[XAPIA/CMC/OBJECT CLASS//NONSGML Per Recipient Information//EN"

#define CMC_OC_PROFILE_CONTAINER \
"_/IXAPIA/CMC/OBJECT CLASS//NONSGML Profile Container//EN"

/*OBJECT PROPERTIES*/
/* Object Class. Applies to all objects. */

#define CMC_PT_OBJECT_CLASS\
"_/IXAPIA/ICMC/PROPERTY//NONSGML Object Class//EN"

/* Address Book */

#define CMC_PT_ADDRESS_BOOK_CHILD_ALLOWED \
"_J/XAPIA/CMC/PROPERTY//NONSGML Address Book Child Allowed//EN"

#define CMC_PT_ADDRESS_BOOK_COMMENT \
"_/IXAPIA/CMC/PROPERTY//NONSGML Address Book Comment/EN"

#define CMC_PT_ADDRESS_BOOK_LOCATION \
"_/IXAPIA/CMC/PROPERTY//NONSGML Address Book Location/EN"

#define CMC_PT_ADDRESS_BOOK_NAME \
"_|IXAPIA/ICMC/PROPERTY//NONSGML Address Book Name//EN"

#define CMC_PT_ADDRESS_BOOK_PARENT \
"_J/XAPIA/CMC/PROPERTY//NONSGML Address Book Parent//EN"

#define CMC_PT_ADDRESS_BOOK_SERVER_NAME \
"_/IXAPIA/CMC/PROPERTY//NONSGML Address Book Server Name//EN"

#define CMC_PT_ADDRESS_BOOK_SHARED \
"_/IXAPIA/CMC/PROPERTY//NONSGML Address Book Shared//EN"

#define CMC_PT_ADDRESS_BOOK_TYPE \
"_|IXAPIA/ICMC/PROPERTY//NONSGML Address Book Type//EN"

/* Content Type */

#define CMC_PT_CONTENT_ITEM_CHARACTER_SET\
"—/[IXAPIA/CMC/PROPERTY//INONSGML Content Item Character Set//EN"

#define CMC_PT_CONTENT_ITEM_CONTENT_INFORMATION \
"—/[IXAPIA/CMC/PROPERTY//INONSGML Content Item Content Information//EN"

#define CMC_PT_CONTENT_ITEM_CREATE_TIME \
"_|IXAPIA/CMC/PROPERTY//NONSGML Content ltem Create Time/EN"

184 Recommendation X.446 (08/97)

#defi ne CMC_PT_CONTENT_| TEM ENCODI NG _TYPE \
" —/[XAPIA/CMC/PROPERTY//NONSGML Content Iltem Encoding Type//EN"

#define CMC_PT_CONTENT _ITEM_FILE_DIRECTORY \
"—/IXAPIA/CMC/PROPERTY//NONSGML Content Item File Directory//EN"

#define CMC_PT_CONTENT_ITEM_FILE_NAME \
"_/IXAPIA/ICMC/PROPERTY//NONSGML Content Item File Name/EN"

#define CMC_PT_CONTENT_ITEM_LAST_MODIFIED \
"_IIXAPIA/CMC/PROPERTY//NONSGML Content ltem Last Modified//EN"

#define CMC_PT_CONTENT _ITEM_RENDER_POSITION\
"—/IXAPIA/CMC/PROPERTY//NONSGML Content Item Render Position//EN"

#define CMC_PT_CONTENT_ITEM_SIZE\
"—//XAPIA/CMC/PROPERTY//NONSGML Content Item Size//EN"

#define CMC_PT_CONTENT_ITEM_TITLE \
"_J/XAPIA/CMC/PROPERTY//NONSGML Content Item Title//EN"

#define CMC_PT_CONTENT_ITEM_CONTENT_TYPE \
"_JIXAPIA/CMC/PROPERTY//NONSGML Content ltem Content Type//EN"

#define CMC_PT_CONTENT_ITEM_ITEM_NUMBER \
"_|IXAPIA/JCMC/PROPERTY//NONSGML Content ltem Number/EN"

#define CMC_PT_CONTENT_ITEM_ITEM_TYPE\
"—/[IXAPIA/CMC/PROPERTY//NONSGML Content Item Item Type//EN"

/* Distribution List */

#define CMC_PT_DISTRIBUTION_LIST_NAME \
"_|IXAPIA/CMC/PROPERTY//NONSGML Distribution List Name//EN"

#define CMC_PT_DISTRIBUTION_LIST_ADDRESS \
"—//XAPIA/ICMC/PROPERTY//NONSGML Distribution List Address//EN"

#define CMC_PT_DISTRIBUTION_LIST_COMMENT \
"—//XAPIA/CMC/PROPERTY//NONSGML Distribution List Comment//EN"

#define CMC_PT_DISTRIBUTION_LIST _LAST_MODIFICATION_TIME\
"—//IXAPIA/CMC/PROPERTY//NONSGML Distribution List Last Modification
Time//EN"

#define CMC_PT_DISTRIBUTION_LIST_PARENT \
"—//XAPIA/CMC/PROPERTY//NONSGML Distribution List Parent//EN"

#define CMC_PT_DISTRIBUTION_LIST_SHARED \
"—/[XAPIA/CMC/PROPERTY//NONSGML Distribution List Shared//EN"

/* Message */

#define CMC_PT_MESSAGE_TYPE \
"—//XAPIA/CMC/PROPERTY//NONSGML Message Type//EN"

#define CMC_PT_MESSAGE_PRIORITY \
"—/[XAPIA/CMC/PROPERTY//NONSGML Message Priority//EN"

#define CMC_PT_MESSAGE_SIZE \
"_/IXAPIA/JCMC/PROPERTY//NONSGML Message Size//EN"

#define CMC_PT_MESSAGE_SUBJECT \
"—//XAPIA/ICMC/PROPERTY//NONSGML Message Subject//EN"

#define CMC_PT_MESSAGE_APPLICATION_ID \
"—/[XAPIA/CMC/PROPERTY//NONSGML Message Application Id//EN"

#define CMC_PT_MESSAGE_TIME_RECEIVED \
"—/[IXAPIA/CMC/PROPERTY//NONSGML Message Time Received//EN"

#define CMC_PT_MESSAGE_TIME_SENT \
"_JIXAPIA/CMC/PROPERTY//NONSGML Message Time Sent//EN"

#define CMC_PT_MESSAGE_DEFERRED_DELIVERY_TIME\
"—/[IXAPIA/CMC/PROPERTY//NONSGML Message Deferred Delivery Time//EN"

#define CMC_PT_MESSAGE_IN_REPLY_TO\
"_J/XAPIA/CMC/PROPERTY//NONSGML Message In Reply To//EN"

Recommendation X.446 (08/97)

185

#define CMC_PT_MESSAGE_ID \
" _IIXAPIAICMC/PROPERTY//NONSGML Message Id/EN"

#define CMC_PT_MESSAGE_RECEIPT_REQUESTED \
"—/[XAPIA/CMC/PROPERTY//NONSGML Message Receipt Requested//EN"

#define CMC_PT_MESSAGE_SENSITIVITY \
"—/[XAPIA/ICMC/PROPERTY//NONSGML Message Sensitivity/EN"

#define CMC_PT_MESSAGE_ITEM_COUNT \
"_/IXAPIA/CMC/PROPERTY//NONSGML Message Item Count//EN"

#define CMC_PT_MESSAGE_NRN_DIAGNOSTIC \
"—/[IXAPIA/CMC/PROPERTY//NONSGML Message NRN Diagnostic//EN"

#define CMC_PT_MESSAGE_NRN_REASON \
"_//XAPIA/CMC/PROPERTY//NONSGML Message NRN Reason//EN"

#define CMC_PT_MESSAGE_RECEIPT_TYPE \
"_/IXAPIA/CMC/PROPERTY//NONSGML Message Receipt Type//EN"

#define CMC_PT_MESSAGE_REPORT_REQUESTED \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Report Requested//EN"

#define CMC_PT_MESSAGE_ROLE \
"_/IXAPIA/CMC/PROPERTY//NONSGML Message Role//EN"

#define CMC_PT_MESSAGE_AUTO_ACTION \
"—//XAPIA/CMC/PROPERTY//NONSGML Message Auto Action//EN"

#define CMC_PT_CLIENT_MSG_STATUS \
"_/IXAPIA/CMC/PROPERTY//NONSGML Client Msg Status/EN"

#define CMC_PT_OUT_MSG_STATUS \
"_|IXAPIA/ICMC/PROPERTY//NONSGML Out Msg Status//EN"

#define CMC_PT_APPLICATION_MSG_STATUS \
"—/[IXAPIA/CMC/PROPERTY//NONSGML Application Msg Status//EN"

/* Message Container */

#define CMC_PT_MESSAGE_CONTAINER_CHILD_ALLOWED \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Container Child Allowed//EN"

#define CMC_PT_MESSAGE_CONTAINER_COMMENT \
"—/[IXAPIA/CMC/PROPERTY//NONSGML Message Container Comment//EN"

#define CMC_PT_MESSAGE_CONTAINER_LOCATION \
"—//XAPIA/CMC/PROPERTY//NONSGML Message Container Location//EN"

#define CMC_PT_MESSAGE_CONTAINER_NAME \
"—/[XAPIA/ICMC/PROPERTY//NONSGML Message Container Name//[EN"

#define CMC_PT_MESSAGE_CONTAINER_PARENT \
"—/IXAPIA/CMC/PROPERTY//NONSGML Message Container Parent//EN"

#define CMC_PT_MESSAGE_CONTAINER_SERVER_NAME\
"—/[IXAPIA/CMC/PROPERTY//NONSGML Message Container Server Name//EN"

#define CMC_PT_MESSAGE_CONTAINER_SHARED \
"—/[XAPIA/CMC/PROPERTY//NONSGML Message Container Shared//EN"

#define CMC_PT_MESSAGE_CONTAINER_TYPE\
"—/[IXAPIA/CMC/PROPERTY//NONSGML Message Container Type//EN"

/* Recipient */

#define CMC_PT_RECIPIENT_ADDRESS\
"_//XAPIA/CMC/PROPERTY//NONSGML Recipient Address//EN"

#define CMC_PROP_TYPE_RECIPIENT_CONTENT_RETURN_REQUESTED \
"—/[XAPIA/CMC/PROPERTY//NONSGML Recipient Content Return Requested//EN"

#define CMC_PT_RECIPIENT_NAME \
"_/IXAPIA/CMC/PROPERTY//NONSGML Recipient Name//EN"

#define CMC_PT_RECIPIENT_RECEIPT_REQUESTED \
"—/[IXAPIA/CMC/PROPERTY//NONSGML Recipient Receipt Requested//EN"

#define CMC_PT_RECIPIENT_REPORT_REQUESTED \
"—/[XAPIA/CMC/PROPERTY//NONSGML Recipient Report Requested//EN"

186 Recommendation X.446 (08/97)

#defi ne CMC_PT_RECI Pl ENT_ROLE \
" _J//XAPIA/ICMC/PROPERTY//NONSGML Recipient Role//EN"

#define CMC_PT_RECIPIENT_TYPE\
"_/IXAPIA/ICMC/PROPERTY//NONSGML Recipient Type//EN"

#define CMC_PT_RECIPIENT_RESPONSIBILITY_FLAG\
"—/[IXAPIA/CMC/PROPERTY//NONSGML Recipient Responsibility Flag//EN"

/* Report */

#define CMC_PT_REPORT_READ \
"_/IXAPIA/ICMC/PROPERTY//NONSGML Report Read//EN"

#define CMC_PT_REPORT_UNSENT \
"_|IXAPIA/ICMC/PROPERTY//NONSGML Report Unsent//EN"

#define CMC_PT_REPORT_SIZE\
"_/IXAPIA/ICMC/PROPERTY//NONSGML Report Size//EN"

#define CMC_PT_REPORT_SUBJECT \
"—//XAPIA/CMC/PROPERTY//NONSGML Report Subject//EN"

#define CMC_PT_REPORT_TIME_RECEIVED \
"_//XAPIA/ICMC/PROPERTY//NONSGML Report Time Received//EN"

#define CMC_PT_REPORT_TIME_SENT \
"_JIXAPIA/JCMC/PROPERTY//NONSGML Report Time Sent/EN"

#define CMC_PT_REPORT_APPLICATION_ID\
"_/IXAPIA/ICMC/PROPERTY//NONSGML Report Application Id/EN"

#define CMC_PT_REPORT_SUBJECT_MESSAGE_ID \
"—/[IXAPIA/CMC/PROPERTY//NONSGML Report Subject Message Id//EN"

#define CMC_PT_REPORT_ITEM_COUNT \
"_/IXAPIA/ICMC/PROPERTY//NONSGML Report Item Count//EN"

#define CMC_PT_REPORT_ID \
"_/IXAPIA/ICMC/PROPERTY//NONSGML Report Id//EN"

#define CMC_PT_REPORT_MESSAGING_SYSTEM_ID \
"_/IXAPIA/CMC/PROPERTY//NONSGML Report Messaging System Id//EN"

/* Root Container */

#define CMC_PT_ROOT_CONTAINER_CHILD_ALLOWED \
"_I/XAPIA/ICMC/PROPERTY//NONSGML Root Container Child Allowed//EN"

#define CMC_PT_ROOT_CONTAINER_COMMENT \
"—/[XAPIA/CMC/PROPERTY//NONSGML Root Container Comment//EN"

#define CMC_PT_ROOT_CONTAINER_LOCATION\
"—/[IXAPIA/CMC/PROPERTY//NONSGML Root Container Location//EN"

#define CMC_PT_ROOT_CONTAINER_NAME \
"_//XAPIA/ICMC/PROPERTY//NONSGML Root Container Name//EN"

#define CMC_PT_ROOT_CONTAINER_SHARED \
"_|IXAPIA/CMC/PROPERTY//NONSGML Root Container Shared//EN"

/* Per Recipient Information */

#define CMC_PT_PRI_TYPE\
"_/IXAPIA/ICMC/PROPERTY//NONSGML PRI Type//EN"

#define CMC_PT_PRI_DELIVERY_TIME \
"_|IXAPIA/ICMC/PROPERTY//NONSGML PRI Delivery Time//EN"

#define CMC_PT_PRI_REASON \
"_/IXAPIA/ICMC/PROPERTY//NONSGML PRI Reason//EN"

#define CMC_PT_PRI_DIAGNOSTIC \
"—/[XAPIA/CMC/PROPERTY//NONSGML PRI Diagnostic//EN"

#define CMC_PT_PRI_RECIPIENT_NAME \
"_/IXAPIA/ICMC/PROPERTY//NONSGML PRI Recipient Name//EN"

#define CMC_PT_PRI_RECIPIENT_ADDRESS\
"_|IXAPIA/ICMC/PROPERTY//NONSGML PRI Recipient Address//EN"

Recommendation X.446 (08/97)

187

#define CMC_PT_PRI _COWMENT \
" _IIXAPIAICMC/PROPERTY//NONSGML PRI Comment/EN"

/* Profile Container */

#define CMC_PT_PROFILE_CHARACTER_SET \
"—/[XAPIA/CMC/PROPERTY//NONSGML Profile Character Set//EN"

#define CMC_PT_PROFILE_LINE_TERM \
"_J/XAPIA/CMC/PROPERTY//NONSGML Profile Line Term//EN"

#define CMC_PT_PROFILE_DEFAULT_SERVICE \
"—/[XAPIA/ICMC/PROPERTY//NONSGML Profile Default Service//EN"

#define CMC_PT_PROFILE_DEFAULT_USER \
"_|IXAPIA/JCMC/PROPERTY//NONSGML Profile Default User//EN"

#define CMC_PT_PROFILE_REQ_PASSWORD \
"—[IXAPIA/CMC/PROPERTY//NONSGML Profile Req Password//EN"

#define CMC_PT_PROFILE_REQ_SERVICE \
"_J/XAPIA/ICMC/PROPERTY//NONSGML Profile Req Service//EN"

#define CMC_PT_PROFILE_REQ_USER \
"—/[XAPIA/ICMC/PROPERTY//NONSGML Profile Req User//EN"

#define CMC_PT_PROFILE_UI_AVAIL \
"_/IXAPIA/JCMC/PROPERTY//NONSGML Profile Ul Avail//EN"

#define CMC_PT_PROFILE_SUP_NOMKMSGREAD \
"—//XAPIA/ICMC/PROPERTY//NONSGML Profile Sup NoMkMsgRead//EN"

#define CMC_PT_PROFILE_SUP_COUNTED_STR \
"—/[XAPIA/CMC/PROPERTY//NONSGML Profile Sup Counted Str//EN"

#define CMC_PT_PROFILE_VER_IMPLEM \
"_//XAPIA/CMC/PROPERTY//NONSGML Profile Ver Implem//EN"

#define CMC_PT_PROFILE_VER_SPEC \
"_|IXAPIA/CMC/PROPERTY//NONSGML Profile Ver Spec/EN"

#define CMC_PT_PROFILE_USERS \
"_|IXAPIA/ICMC/PROPERTY//NONSGML Profile Users//EN"

#define CMC_PT_PROFILE_OBJECT_SUP \
"_JIXAPIA/CMC/PROPERTY//NONSGML Profile Object Sup//EN"

#define CMC_PT_PROFILE_PROP_SUP \
"—/[XAPIA/CMC/PROPERTY//NONSGML Profile Prop Sup//EN"

#define CMC_PT_PROFILE_CONF \
"_/IXAPIA/JCMC/PROPERTY//NONSGML Profile Conf//EN"

#define CMC_PT_PROFILE_OBJECT_EXT \
"_IIXAPIA/ICMC/PROPERTY//NONSGML Profile Object Ext//EN"

#define CMC_PT_PROFILE_PROP_EXT \
"_JIXAPIA/ICMC/PROPERTY//NONSGML Profile Prop Ext/EN"

#define CMC_PT_PROFILE_AUTO_ACTION \
"—/[XAPIA/CMC/PROPERTY//NONSGML Profile Auto Action//EN"

/* Property Value Constants. CMC_id values. */
/* Object Class. Applies to all objects. */
#define CMC_PV_OBJECT_CLASS 0

/* Address Book */

#define CMC_PV_ADDRESS BOOK_CHILD_ ALLOWED 1
#define CMC_PV_ADDRESS BOOK_COMMENT 2
#define CMC_PV_ADDRESS BOOK_LOCATION 3
#define CMC_PV_ADDRESS BOOK_NAME 4
#define CMC_PV_ADDRESS BOOK_ PARENT 5
#define CMC_PV_ADDRESS BOOK_SERVER_NAME 6
#define CMC_PV_ADDRESS BOOK_SHARED 7
#define CMC_PV_ADDRESS BOOK _TYPE 8

188 Recommendation X.446 (08/97)

/* Content ltem */

#defi ne CMC_PV_CONTENT | TEM CHARACTER SET 9

#defi ne CMC_PV_CONTENT | TEM_CONTENT _| NFORMATI ON 10
#defi ne CMC_PV_CONTENT_| TEM CREATE_TI ME 11
#defi ne CMC_PV_CONTENT_| TEM_ENCODI NG_TYPE 12
#defi ne CMC_PV_CONTENT | TEM FI LE_DI RECTORY 13
#def i ne CNC PV w\ITENT ITEM Fl LE NANVE 14
#defi ne CMC_PV_CONTENT_| TEM LAST_MoDI FI ED 15
#defi ne CMC_PV_CONTENT_| TEM_RENDER _PGCSI TI ON 16
#defi ne CMC_PV_CONTENT | TEM SI ZE 17
#def i ne CNC PV w\ITENT | TEM TI TLE 18
#defi ne CMC_PV_CONTENT | TEM CONTENT_TYPE 19
#defi ne CMC_PV_CONTENT_| TEM | TEM NUMBER 20
#define CMC_PV_CONTENT | TEM | TEM TYPE 21
/* Distribution List */

#define CMC_PV_DI STRI BUTI ON_LI ST_NAME 22
#define CMC_PV_DI STRI BUTI ON_LI ST_ADDRESS 23
#define CMC_PV_DI STRI BUTI ON_LI ST_COMVENT 24
#def i ne CNC PV DI STRI BUTI O\I LI ST LAST_MODI FI CATI ON_TI ME 25
#define CMC_PV_DI STRI BUTI ON_LI ST_PARENT 26
#defi ne CMC_PV_DI STRI BUTI ON_LI ST_SHARED 27
/* Message */

#defi ne CMC_PV_MESSAGE TYPE 28
#defi ne CMC_PV_MESSAGE_PRI ORI TY 29
#defi ne CMC_PV_MESSAGE_SI ZE 30
#defi ne CMC_PV_MESSAGE_SUBJECT 31
#def i ne CNC PV I\/ESSAGE APPLI CATION_I D 32
#defi ne CMC_PV_MESSAGE_TI ME_RECEI VED 33
#defi ne CMC_PV_MESSAGE_TI ME_SENT 34
#defi ne CMC_PV_MESSAGE_DEFERRED DELI VERY_TI ME 35
#def i ne CNC PV I\/ESSAGE I'N REPLY_TO 36
#defi ne CMC_PV_MESSAGE_| D 37
#defi ne CMC_PV_MESSAGE_RECEI PT_REQUESTED 38
#defi ne CMC_PV_MESSAGE_SENSI TI VI TY 39
#defi ne CMC_PV_MESSAGE_| TEM COUNT 40
#defi ne CMC_PV_MESSAGE_NRN_DI AGNOSTI C 41
#defi ne CMC_PV_MESSAGE_NRN_REASON 42
#defi ne CMC_PV_MESSAGE_REPORT _REQUESTED 43
#defi ne CMC_PV_MESSAGE_ROLE 44
#defi ne CMC_PV_MESSAGE_AUTO ACTI ON 45
#defi ne CMC_PV_MESSAGE_CLI ENT_MSG_STATUS 46
#defi ne CMC_PV_MESSAGE_OUT_MSG_STATUS 47
#def i ne CNC PV I\/ESSAGE APPLI| CATI ON_MSG_STATUS 48
/* Message Container */

#defi ne CMC_PV_MESSAGE _CONTAI NER_CHI LD_ALLOWED 49
#defi ne CMC_PV_MESSAGE_CONTAI NER_COMVENT 50
#def i ne CNC PV I\/ESSAGE CONTAI NER LOCATI ON 51
#defi ne CMC_PV_MESSAGE_CONTAI NER_NANE 52
#defi ne CMC_PV_MESSAGE_CONTAI NER_PARENT 53
#defi ne CMC_PV_MESSAGE_CONTAI NER_SERVER NANE 54
#defi ne CMC_PV_MESSAGE_CONTAI NER_SHARED 55
#defi ne CMC_PV_MESSAGE_CONTAI NER_TYPE 56
/* Recipient */

#defi ne CMC_PV_RECI Pl ENT_ADDRESS 57
#defi ne CMC_PV_RECI Pl ENT_CONTENT RETURN REQUESTED 58
#def i ne CNC PV RECI PI ENT_NAME 59
#def i ne CNC PV RECI PI ENT RECEI PT_REQUESTED 60
#def i ne CNC PV RECI PI ENT REPORT _REQJESTED 61
#def i ne CNC PV RECI PI ENT ROLE 62
#def i ne CNC PV RECI PI ENT TYPE 63
#def i ne CNC PV RECI PI ENT RESPONSI BI LI TY_FLAG 64
/* Report */

#defi ne CMC_PV_REPORT_READ 65
#defi ne CMC_PV_REPORT_UNSENT 66
#def i ne CNC PV REP(RT S| ZE 67
#defi ne CMC_PV_REPORT_SUBJECT 68
#defi ne CMC_PV_REPORT_TI ME_RECEI VED 69
#def i ne CNC PV REPO?T TI I\/E SENT 70
#def i ne CNC PV REPO?T APPLI CATI ON_ID 71
#def i ne CNC PV REPO?T SUBJECT _ IVESSAGE ID 72
#def i ne CNC PV REPORT _ ITEM_COJNT 73
#def i ne CNC PV REPORT _I D 74
#def i ne CNC PV REPO?T MESSAGA NG_SYSTEM | D 75

Recommendation X.446

(08/97)

189

/* Root Container */

#defi ne CMC_PV_ROOT_CONTAI NER_CHI LD _ALLOWED 76

#defi ne CMC_PV_ROOT_CONTAI NER_COMVENT 77

#defi ne CMC_PV_ROOT_CONTAI NER_LOCATI ON 78

#defi ne CMC_PV_ROOT_CONTAI NER_NANVE 79

#defi ne CMC_PV_ROOT_CONTAI NER_SHARED 80

/* Per Recipient Information */

#define CMC PV_PRI _TYPE 81

#define CMC_PV_PRI _DELI VERY_TI ME 82

#defi ne CMC_PV_PRI _REASON 83

#define CMC_PV_PRI _DI AGNOSTI C 84

#defi ne CMC_PV_PRI _RECI Pl ENT_NAME 85

#defi ne CMC_PV_PRI _RECI P| ENT_ADDRESS 86

#defi ne CMC_PV_PRI _COMVENT 87

/* Profile */

#defi ne CMC_PV_PROFI LE_CHARACTER_SET 88

#defi ne CMC_PV_PROFI LE_LI NE_TERM 89

#defi ne CMC_PV_PROFI LE_DEFAULT_SERVI CE 90

#defi ne CMC_PV_PROFI LE_DEFAULT_USER 91

#defi ne CMC_PV_PROFI LE_REQ PASSWORD 92

#defi ne CMC_PV_PROFI LE_REQ SERVI CE 93

#defi ne CMC_PV_PROFI LE_REQ USER 94

#define CMC_PV_PROFI LE U _AVAI L 95

#defi ne CMC_PV_PROFI LE_SUP_NOVKMSGREAD 96

#defi ne CMC_PV_PROFI LE_SUP_COUNTED STR 97

#defi ne CMC_PV_PROFI LE_VER | MPLEM 98

#defi ne CMC_PV_PROFI LE_VER SPEC 99

#defi ne CMC_PV_PROFI LE_USERS 100
#defi ne CMC_PV_PROFI LE_OBJECT SUP 101
#defi ne CMC_PV_PROFI LE_PROP_SUP 102
#defi ne CMC_PV_PROFI LE_CONF 103
#defi ne CMC_PV_PROFI LE_OBJECT_EXT 104
#defi ne CMC_PV_PROFI LE_PROP_EXT 105
#defi ne CMC_PV_PROFI LE_AUTO_ACTI ON 106

[*OBJECT PROPERTY CONSTANT VALUES*/

/* Address Book */

#defi ne CMC_ADDRESS BOOK LOCATI ON _LOCAL ((

#defi ne CMC_ADDRESS BOCOK LOCATI ON_SERVER ((.

#def i ne CMC_ADDRESS BOOK LOCATI ON_UNKNOWN ((CMC_enum 2)
((
((

#defi ne CMC_ADDRESS BOCK_TYPE_GLOBAL
#def i ne CMC_ADDRESS BOOK_TYPE_PERSONAL

/* Content Infornmation */

#define CMC_CHARSET_437 " —/[XAPIA/CHARSET//NONSGML IBM 437//EN"
#define CMC_CHARSET_850 "—IIXAPIA/ICHARSET//NONSGML IBM 850//EN"
#define CMC_CHARSET_1252 "—//XAPIA/CHARSET//NONSGML Microsoft 1252//EN"
#define CMC_CHARSET_ISTRING "—/IXAPIA/CHARSET//INONSGML Apple ISTRING//EN"
#define CMC_CHARSET_UNICODE "—/IXAPIA/CHARSET//NONSGML UNICODE//EN"
#define CMC_CHARSET_T61 "—//XAPIA/ICHARSET//NONSGML TSS T61//EN"
#define CMC_CHARSET_IA5 "—/IXAPIA/ICHARSET//NONSGML TSS IA5//EN"
#define CMC_CHARSET_ISO_10646 "—//XAPIA/CHARSET//NONSGML I1SO 10646//EN"
#define CMC_CHARSET_ISO_646 "—/IXAPIA/CHARSET//NONSGML ISO 646//EN"

#define CMC_CHARSET ISO_8859_1 "—//XAPIA/CHARSET//NONSGML ISO 8859-1//EN"

/* Encoding Type */

#define CMC_ET_7_BIT \
"_//XAPIA/CMC/ENCODING TYPE//NONSGML 7 Bit//EN"

#define CMC_ET_BASE64 \
"_//XAPIA/CMC/ENCODING TYPE//NONSGML Base64//EN"

#define CMC_ET_BINARY \
"_//XAPIA/CMC/ENCODING TYPE//NONSGML Binary//[EN"

#define CMC_ET_8 BIT \
“_//XAPIA/CMC/ENCODING TYPE//NONSGML 8 Bit//EN"

#define CMC_ET_QUOTED_PRINTABLE \
"—//XAPIA/CMC/ENCODING TYPE//NONSGML Quoted Printable//EN"

/* Content Type */

#define CMC_CT_PLAIN_TEXT \
"_/IXAPIA/CMC/CONTENT TYPE//NONSGML Plain Text//EN"
#define CMC_CT_GIF_IMAGE \

"—//XAPIA/ICMC/CONTENT TYPE//NONSGML GIF Image//EN"
190 Recommendation X.446 (08/97)

#def i ne CMC_CT_JPEG | MAGE

" —I/XAPIA/CMC/CONTENT TYPE//NONSGML JPEG Image//EN"

#define CMC_CT_BASIC_AUDIO

“"_/IXAPIA/CMC/CONTENT TYPE//NONSGML Basic Audio//EN"

#define CMC_CT_MPEG VIDEO

"_//XAPIA/ICMC/CONTENT TYPE//NONSGML MPEG Video//EN"

#define CMC_CT_MESSAGE

"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML Message//EN"

#define CMC_CT_PARTIAL_MESSAGE

"_//XAPIAICMC/CONTENT TYPE//NONSGML Partial Message//EN"

#define CMC_CT_EXTERNAL_MESSAGE

"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML External Message//EN"

#define CMC_CT_APPLICATION_OCTET_STREAM

"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML Application Octet Stream//EN"
\

#define CMC_CT_APPLICATION_POSTSCRIPT

"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML Application PostScript/EN"
\

#define CMC_CT_ALTERNATIVE_MULTIPART

"_//XAPIA/ICMC/CONTENT TYPE//NONSGML Alternative Multipart//EN"

#define CMC_CT_DIGEST_MULTIPART

"—//XAPIA/CMC/CONTENT TYPE//NONSGML Digest Multipart//EN"

#define CMC_CT_MIXED_MULTIPART

"_//XAPIA/ICMC/CONTENT TYPE//NONSGML Mixed Multipart/EN"

#define CMC_CT_OLE \

“"_//XAPIA/ICMC/CONTENT TYPE//NONSGML OLE//EN"

#define CMC_CT_MIXED_MU LTIPART

"—//XAPIA/ICMC/CONTENT TYPE//NONSGML Mixed Multipart//EN"

#define CMC_CT_X400_G3_FAX\

"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML X400 G3 Fax//[EN"

#define CMC_CT_X400_G4_FAX\

"—//XAPIA/CMC/CONTENT TYPE//NONSGML X400 G4 Fax//EN"

#define CMC_CT_X400_ENCRYPTED \

"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML X400 Encrypted//EN"

#define CMC_CT_X400_NATIONALLY_DEFINED \

"_//XAPIA/ICMC/CONTENT TYPE//NONSGML X400 Nationally Defined/EN"

#define CMC_CT_X400_FILE_TRANSFER \

"—//XAPIA/CMC/CONTENT TYPE//NONSGML X400 File Transfer//EN"

#define CMC_CT_X400_VOICE \

"_//XAPIA/ICMC/CONTENT TYPE//NONSGML X400 Voice//EN"

#define CMC_CT_X400_VIDEOTEX \

"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML X400 Videotex//EN"

#define CMC_CT_X400_MIXED_MODE \

"—//XAPIA/CMC/CONTENT TYPE//NONSGML X400 Mixed Mode//EN"

#define CMC_CT_X400_PRIVATELY_DEFINED_6937

\

"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML X400 Privately Defined 6937//EN"

#define CMC_CT_X400_EXTERNAL_TRACE \

"_//XAPIAICMC/CONTENT TYPE//NONSGML X400 External Trace//EN"

#define CMC_CT_X400_INTERNAL_TRACE \

"_/IXAPIA/ICMC/CONTENT TYPE//NONSGML X400 Internal Trace//EN"

#define CMC_CT_SMTP_SESSION_TRANSCRIPT \

"—/[IXAPIA/CMC/CONTENT TYPE//NONSGML SMTP Session Transcript//EN"

/* Content Item Type */

#define CMC_IT_NOTE

#define CMC_IT_ATTACHMENT
#define CMC_IT_ANNOTATION

/* Message Types and Message Constants */
#define CMC_MT _IPM

#define CMC_MT_RECEIPT

#define CMC_MT_EDI

#define CMC_MT_DIRECTOR

#define CMC_MT_DOCMGMT

#define CMC_MT_WORKFLOW

#define CMC_MT_CALSCHED

#define CMC_PRIORITY_NORMAL
#define CMC_PRIORITY_URGENT
#define CMC_PRIORITY_LOW

#define CMC_MESSAGE_SENSITIVITY_PERSONAL
#define CMC_MESSAGE_SENSITIVITY_PRIVATE
#define CMC_MESSAGE_SENSITIVITY_CONFIDENTIAL
#define CMC_MESSAGE_SENSITIVITY_NONE

((CMC_enum) 0)
((CMC_enum) 1)
((CMC_enum) 2)

((CMC_enum) 0)
((CMC_enum) 1)
((CMC_enum) 2)
((CMC_enum) 3)
((CMC_enum) 4)
((CMC_enum) 5)
((CMC_enum) 6)

((CMC_enum) 0)
((CMC_enum) 1)
((CMC_enum) 2)

((CMC_enum) 0)
((CMC_enum) 1)
((CMC_enum) 2)

((CMC_enum) 3)

Recommendation X.446 (08/97)

191

#defi ne CMC_RECEI PT_RN ((eMC_enum) 0)
#def i ne CMC_RECEI PT_NRN ((eMC_enum 1)
#defi ne CMC_RECEI PT_BOTH ((cMC_enum 2)
#defi ne CMC_RECEI PT_NONE ((cMC_enum 3)
#defi ne CMC_REPORT_DR ((cMC_enum) 0)
#def i ne CMC_REPORT_NDR ((eMC_enum 1)
#defi ne CMC_REPORT_BOTH ((eMC_enum 2)
#defi ne CMC_REPORT_NONE ((eMC_enum 3)
#defi ne CMC_MESSAGE_ROLE_ORI G NAL ((CMC_enum 0)
#def i ne CMC_MESSAGE_ROLE_RETURNED ((eMC_enum 1)
#def i ne CMC_MESSAGE_ROLE_FORWARDED ((eMC_enum 2)
#defi ne CMC_MESSAGE_ROLE REPLI ED ((eMC_enum 3)
#def i ne CMC_MESSAGE_ROLE_OBSOLETED ((eMC_enum 4)
#def i ne CMC_MESSAGE_ROLE_RESENT ((CMC_enum 5)
#defi ne CMC_AA DELETE ((cMC flags) 1)
/*Client Message Status*/

#defi ne CMC_MESSAGE_STATUS_DRAFT ((eMC_enum 0)
/*Qut Message Status*/

#defi ne CMC_MESSAGE_STATUS DELETED ((eMC_enum 0)
#defi ne CMC_MESSAGE_STATUS_SUBM TTED ((eMC_enum 1)
#defi ne CMC_MESSAGE_STATUS_SENT ((eMC_enum 2)

/*In Message Status*/

#defi ne CMC_MESSAGE_STATUS_NEW ((-

#def i ne CMC_MESSAGE_STATUS READ ((eMC_enum 1)
#defi ne CMC_MESSAGE_STATUS CHANGED ((

/* Message Contai ner Types and Constants */

#def i ne CMC_MESSAGE_CONTAI NER_LOCATI ON_LOCAL
#defi ne CMC_MESSAGE_CONTAI NER_LOCATI ON_SERVER
#defi ne CMC_MESSAGE_CONTAI NER_LOCATI ON_UNKNOMN

((

((

((
#defi ne CMC_MCT_| NBOX ((CMC_
#defi ne CMC_MCT_OUTBOX ((CMC_enum) 1)
#defi ne CMC_MCT_DRAFTS ((
#defi ne CMC_MCT_DELETED ((
#defi ne CMC_MCT_FI LED ((
#defi ne CMC_MCT_SENT ((

/* Reci pient */
#defi ne CMC_RECI PI ENT_ROLE TO ((
#defi ne CMC_RECI Pl ENT_ROLE_CC ((
#defi ne CMC_RECI PI ENT_ROLE_BCC ((
#defi ne CMC_RECI Pl ENT_ROLE_ORI G NATOR ((
#defi ne CMC_RECI Pl ENT_ROLE_AUTHORI ZI NG_USER ((-
#defi ne CMC_RECI Pl ENT_ROLE_I N_REPLY_TO ((CMC_enum) 5)

((

((

((

((

#defi ne CMC_RCT_UNKNO/W

#defi ne CMC_RCT_I NDI VI DUAL

#defi ne CMC_RCT_GROUP

#def i ne CMC_RCT_REPORT_RECI PI ENT

/* Report */

#defi ne CMC_RPT_RECEI PT_NOTI CE ((

#defi ne CMC_RPT_NONRECEI PT_NOTI CE ((-

#defi ne CMC_RPT_DELI VERY_NOTI CE ((c™MC_enum 2)
#defi ne CMC_RPT_NONDELI VERY_NOTI CE ((

/* Root Container */

#defi ne CMC_ROOT_CONTAI NER_LOCATI ON_LOCAL ((>

#defi ne CMC_ROOT_CONTAI NER_LOCATI ON_SERVER ((eMC_enum 1)
#defi ne CMC_ROOT_CONTAI NER_LOCATI ON_UNKNO/WN ((

/* Per Recipient Information */
#define CMC PRI DR ((.

#defi ne CMC_PRI _NDR ((cMC_enum 1)
#defi ne CMC_PRI _UNKNOMWN ((

/* Profile */

#defi ne CMC_CONF_SI MPLE_CMC ((>
#define CMC_CONF_FULL_CMC ((cMC_enum 1)

192 Recommendation X.446 (08/97)

[* EXTENSI ON FLAGS */

#def i ne
#def i ne
#defi ne
#defi ne
#def i ne

CMC_EXT_REQUI RED
CMC_EXT_OUTPUT
CMC_EXT_LAST_ELENMENT
CMC_EXT_RSV_FLAG_MASK
CMC_EXT_| TEM FLAG_MASK

((cMC fl ags)
((eMC fl ags)
((eMC fl ags)
((eMC fl ags)
((cMC fl ags)

0x00010000)
0x00020000)
0x80000000)
OxFFFF0000)
Ox0000FFFF)

#i f ndef CMC_WCHAR

/* SEND */
CMC return_code
cnt_send(
CMC session_id
CMC_nessage
cMC fl ags
CMC ui _id
CMC _ext ensi on

)

/* SEND DOCUMENT */
CMC return_code
cnt_send_docunent s(
CMC string
CMC string
CMC string
cMC fl ags
CMC string
CMC string
CMC string
CMC ui _id
);
/* ACT ON */
CMC return_code
cnt_act _on(
CMC session_id
CMC _nessage_reference
CMC_enum
cMC fl ags
CMC ui _id
CMC_ext ensi on
)
/* LI ST */
CMC return_code
cnc_list(
CMC session_id
CMC string
cMC fl ags
CMC _nessage_reference
CMC_ui nt 32
CMC ui _id
CMC_nessage_sunmary
CMC_ext ensi on
);
/* READ */
CMC return_code
cnt_read(
CMC session_id
CMC _nessage_reference
CMC fl ags
CMC_nessage
CMC ui _id
CMC_ext ensi on

sessi on,
*message,

send_fl ags,

ui _id,

*send_ext ensi ons

reci pi ent _addresses,
subj ect,

t ext _note,
send_doc_f1 ags,
file_paths,
file_nanes,
delimter,

ui _id

sessi on,

*message_r ef erence,
operation,

act _on_fl ags,

ui _id,

*act _on_ext ensi ons

sessi on,
nmessage_type,
list flags,
*seed,

*count,

ui _id,

**result,

*| i st _extensions

sessi on,

*message_r ef erence,
read_f1 ags,
**message,

ui _id,

*read_ext ensi ons

Recommendation X.446

(08/97)

193

/* LOOK UP */

CMC return_code

cnt_| ook _up(
CMC session_id
CMC reci pi ent
CcMC fl ags
CMC ui _id
CMC_ui nt 32
CMC reci pi ent
CMC_ext ensi on

)

/* FREE */
CMC return_code
cnc_free(

CMC _buf fer
)

/* LOGOFF */

CMC return_code

cnt_| ogof f (
CMC session_id
CMC ui _id
CcMC fl ags
CMC_ext ensi on

)

/* LOGON */

CMC return_code

cnt_I| ogon(
CMC string
CMC string
CMC_string
CMC object __identifier
CMC ui _id
CMC_ui nt 16
cMC fl ags
CMC session_id
CMC_ext ensi on

)

/* QUERY CONFI GURATI ON */
CMC return_code
cnt_query_configuration(
CMC session_id
CMC_enum
CMC buf fer
CMC_ext ensi on
)
/* FULL CMC */

/* COPY OBJECT */

CMC return_code

cht_copy_obj ect (
CMC _obj ect _handl e
CMC_obj ect _handl e
CMC _obj ect _handl e
CMC_ext ensi on

)

/* ADD PROPERTI ES */
CMC return_code
cnt_add_properties(
CMC _obj ect _handl e
CMC_ui nt 32
CMC _property
CMC_ext ensi on

194 Recommendation X.446 (08/97)

sessi on,
*recipient_in,

| ook_up_fl ags,

ui _id,

*count,
**reci pi ent _out,

*| ook_up_ext ensi ons

menory

sessi on,

ui _id,

| ogof f_fl ags,

*| ogof f _ext ensi ons

servi ce,

user,

password,
character_set,

ui _id,

cal l er_cnt_versi on,
| ogon_f I ags,

*sessi on,

*| ogon_ext ensi ons

sessi on,

item

ref er ence,
*config_extensions

cont ai ner,

sour ce_obj ect,

*new_obj ect,

*copy_obj ect _ext ensi ons

obj ect,

nunber properties,
*properties,
*add_properties_extensions

/* COWM T OBJECT */
CMC return_code
cnt_conmmit _obj ect (
CMC _obj ect _handl e
CMC_ext ensi on

)

/* COPY OBJECT HANDLE */

CMC return_code

cnt_copy_obj ect _handl e(
CMC _obj ect _handl e
CMC _obj ect _handl e
CMC_ext ensi on

)

sour ce_obj ect,
*conm t _obj ect _ext ensi ons

sour ce_handl e,
*new_handl e,
*copy_obj ect _handl e_ext ensi ons

/* CREATE DERI VED MESSAGE OBJECT */

CMC return_code

cnt_create_derived _nessage_obj ect (

CMC_obj ect _handl e
CMC_enum
CMC _bool ean
CMC _obj ect _handl e
CMC _bool ean
CMC_ext ensi on

)

/* DELETE OBJECTS */

CMC return_code

cnt_del et e_obj ect s(
CMC_ui nt 32
CMC _obj ect _handl e
CMC_ext ensi on

)

/* DELETE PROPERTIES */
CMC return_code
cnt_del ete_properties(
CMC _obj ect _handl e
CMC_ui nt 32
cMC i d
CMC_ext ensi on

)

/* CGET ROOT HANDLE */
CMC return_code
cnt_get _root _handl e(
CMC session_id
CMC _obj ect _handl e
CMC_ext ensi on
);
/* | DENTI FI ER TO NAME */
CMC return_code
cnc_identifier_to _namg(
cMCid
CMC_nane
CMC_ext ensi on

)

/* LI ST CONTAI NED PROPERTI ES */

CMC return_code

cnt_|ist_contained properties(

CMC _cursor _handl e
CMC_si nt 32
CMC_si nt 32

cMC i d

CMC _property
CMC_ext ensi on

ori gi nal _nessage,

derived_acti on,

i nherit_contents,

*deri ved_nessage

nodi fi ed_nessage,
*create_derived_obj ect _extensions

nunber _obj ect s,
*obj ect,
*del et e_obj ect s_ext ensi ons

obj ect,

nunber _properti es,
*property_ids,

*del et e_properti es_extensions

sessi on,
*r oot _obj ect _handl e,
*get _root handl e_ext ensi ons

identifier,
*nanme,
*identifier_to_name_extensions

cursor,
*nunber _obj ect,

*nunber _properties,

*property_ids,

***properties,
*|ist_contained_properties_extensions

Recommendation X.446 (08/97)

195

/*

LI ST NUMBER MATCHED */

CMC return_code
cnc_l|ist_nunber _mat ched(

)
/*

CMC _cursor _handl e
CMC_ui nt 32
CMC_ext ensi on

LI ST OBJECTS */

CMC return_code
cnc_|ist _objects(

)
/*

CMC _cursor _handl e
CMC_si nt 32
CMC_obj ect _handl e
CMC_ext ensi on

LI ST PROPERTI ES */

CMC return_code
cnc_|ist_properties(

)
/*

CMC_obj ect _handl e
CMC_ui nt 32

cMCid

CMC_ext ensi on

NAME TO | DENTI FI ER */

CMC return_code
cnt_nane_to_identifier(

)
/*

CMC_nane
cMCid
CMC_ext ensi on

OPEN CURSCR */

CMC return_code
cnt_open_cur sor (

)
/*

CMC_obj ect _handl e

CMC cursor _restriction

CMC_ui nt 32

CMC _cursor_sort_key
CMC _cursor _handl e
CMC_ext ensi on

OPEN OBJECT HANDLE */

CMC return_code
cnt_open_obj ect _handl e(

)
/*

CMC session_id
CMCid

CMC _obj ect _handl e
CMC_ext ensi on

READ CURSOR */

CMC return_code
cnt_read_cursor (

)
/*

CMC _cursor _handl e
CMC_ui nt 32

CMC_ui nt 32
CMC_ext ensi on

READ PROPERTI ES */

CMC return_code
cnt_read_properties(

196

CMC_obj ect _handl e
CMC_ui nt 32

cMC i d

CMC _property
CMC_ext ensi on

Recommendation X.446

(08/97)

*cursor,
*nunber _nat ches,
*|ist_nunber nmat ched_ext ensi ons

*cursor,

*nunber _obj ect s,

**obj ect s,

*| i st_objects_extensions

*obj ect,

*nunber _properties,
**property_ids,
*|ist_properties_extensions

namne,
*identifier,
*nane_to_identifier_extensions

obj ect,

*restrictions,
nunber _sort _orders,
*sort _keys,

*cursor,

*open_cur sor _ext ensi ons

sessi on,

obj ect _cl ass,

*new_obj ect,

*open_obj ect _handl e_ext ensi ons

*cursor,

*posi tion_nunerator,
*posi tion_denoni nat or,
*read_cursor _extensions

obj ect,

*nunber _properties,
*property_ids,

**properties,
*read_properties_extensions

/* READ PROPERTY COSTS */
CMC return_code
cnt_read_property_ costs(
CMC _obj ect _handl e
CMC_ui nt 32
cMC i d
CMC_enum
CMC_ext ensi on

)

/* RESTORE OBJECT */
CMC return_code
cnt_restore_object(
CMC_obj ect _handl e
CMC string
CMC_obj ect _handl e
CcMC fl ags
CMC_ext ensi on

)

/* SAVE OBJECT */
CMC return_code
cnt_save_obj ect (
CMC_obj ect _handl e
CMC string
CMC fl ags
CMC_ext ensi on

)

/* SEND MESSAGE OBJECT */

CMC return_code

cnt_send_nessage_obj ect (
CMC _obj ect _handl e
CMC_ext ensi on

)

/* UPDATE CURSCR POSI TI ON */

CMC return_code

cnt_update_cursor_position(

CMC _cursor _handl e
CMC_ui nt 32

CMC_ui nt 32
CMC_ext ensi on

)

obj ect,

*nunber _properties,
*property_ids,

**cost s,
*read_property_costs_extensions

cont ai ner,
file_specification,

*rest ored_obj ect,
restore_fl ags,

*rest ore_obj ect _extensions

obj ect,
file_specification,
save_fl ags,

*save_obj ect _extensi ons

nmessage_to_send,
*send_nessage_obj ect _ext ensi ons

*cursor,
posi tion_numerat or,
posi ti on_denom nat or,

*updat e_cursor_position_extensions

/* UPDATE CURSCR POCSI TI ON W TH SEED */

CMC return_code

cnt_update_cursor_position_w th_seed(

CMC _cursor _handl e
CMC_obj ect _handl e
CMC_ext ensi on
);
/* CHECK EVENT */
CMC return_code
cnt_check_event (
CMC session_id
CMC_event
CMC_ui nt 32
CMC _buf fer
CMC _buf fer
CMC _ext ensi on

)

/* REGQ STER EVENT */
CMC return_code
cnt_regi ster_event (
CMC session_id
CMC_event
CMC _cal | back
CMC _buf fer
CMC_ext ensi on

cursor,
seed,

*updat e_cursor_position_w th_seed_extensions

sessi on,

event _type,

m ni num ti meout,

check _event data,

*cal | back_dat a,
*check_event _ext ensi ons

sessi on,

event _type,

cal | back,

regi ster_dat a,

*regi ster_event _ext ensi ons

Recommendation X.446

197

/* UNREGQ STER EVENT */
CMC return_code
cnt_unregi ster_event (
CMC session_id
CMC fl ags
CMC cal | back
CMC _buf fer
CMC_ext ensi on

)

/* CALL CALLBACKS */

CMC return_code

cnt_call _cal |l backs(
CMC session_id
CMC_event
CMC_ext ensi on

)

/* EXPORT STREAM */
CMC return_code
cnt_export _strean
CMC_stream handl e
CMC string
CMC_ui nt 32
cMC fl ags
CMC_ext ensi on

)

/* | MPORT FILE TO STREAM */

CMC return_code

cnc_inport _file to _strean

CMC_stream handl e
CMC string
CMC_ui nt 32
CMC_ext ensi on

);

/* OPEN STREAM */

CMC return_code

cnt_open_strean(
CMC_obj ect _handl e
CMC _property
CMC_enum
CMC_stream handl e
CMC_ext ensi on

);

/* READ STREAM */

CMC return_code

cnt_read_strean(
CMC_stream handl e
CMC _ui nt 32
CMC buf fer
CMC_ext ensi on

)

/* SEEK STREAM */

CMC return_code

cnt_seek_strean
CMC_stream handl e
CMC_enum
CMC _ui nt 32
CMC_ext ensi on

)

/* WRI TE STREAM */
CMC return_code
cnt_write_stream
CMC_stream handl e
CMC_ui nt 32
CMC _buf fer
CMC_ext ensi on

198 Recommendation X.446

(08/97)

sessi on,

event _type,

cal | back,

unr egi st er _dat a,

*unr egi ster_event _ext ensi ons

sessi on,
event _type,
*cal | _cal | backs_ext ensi ons

stream
file_specification,

count,

export _fl ags,

*export _stream ext ensi ons

stream

file_specification,

file_ offset,
*inport_file_to_stream extensions

obj ect,

*property,

operation,

*stream

*open_stream ext ensi ons

stream

*count,

content information,
*read_stream ext ensi ons

stream

operation,

*| ocati on,

*seek_stream ext ensi ons

*stream

*count,
*content _i nformati on,
*write_stream extensions

/* CGET LAST ERROR */

CMC return_code

cnt_get last_error(
CMC session_id
CMC_obj ect _handl e
CMC string
CMC_ext ensi on

)

sessi on,

obj Ref ,

*error_buffer,

*get | ast_error_extensions

/* MULTI PLE | MPLEMENTATI ONS DI SPATCH TABLE */

typedef struct {
CMC_ext ensi on

/* SEND */

CMC return_code

(*cnc_send) (
CMC session_id
CMC_nessage
CMC fl ags
CMC ui _id
CMC_ext ensi on

)

/* SEND DOCUMENT */
CMC return_code
(*cnt_send_docunent s) (
CMC string
CMC string
CMC_string
CMC fl ags
CMC string
CMC string
CMC_string
CMC ui _id
)

/* ACT ON */
CMC return_code
(*cnt_act _on)(
CMC session_id
CMC _nessage_reference

CMC_enum
CMC fl ags
CMC ui _id
CMC_ext ensi on
)
[* LIST */

CMC return_code
(*cnc_list)(
CMC session_id
CMC_string
CMC fl ags
CMC _nessage_reference
CMC_ui nt 32
CMC ui _id
CMC_nessage_sunmary
CMC_ext ensi on
)
/* READ */
CMC return_code
(*cnt_read) (
CMC session_id
CMC _nessage_reference
CMC fl ags
CMC _nessage
CMC ui _id
CMC_ext ensi on

*di spat ch_t abl e_ext ensi ons;

sessi on,
*message,

send_fl ags,

ui _id,

*send_ext ensi ons

reci pi ent _addresses,
subj ect

text _note,
send_doc_fl ags,
file_paths,
file_names,
delimter,

ui _id

sessi on,

*message_r ef erence,
operati on,

act _on_fl ags,

ui _id,

*act _on_extensi ons

sessi on,
message_type,
list_flags,
*seed,

*count,

ui _id,

**result,

*|i st _extensions

sessi on,

*message_r ef erence,
read_fl ags,
**message,

ui _id,

*read_ext ensi ons

Recommendation X.446 (08/97)

199

200

[* LOOK UP */

CMC return_code

(*cnc_| ook _up) (
CMC _session_id
CMC_r eci pi ent
CMC fl ags
CMC ui _id
CMC _ui nt 32
CMC_r eci pi ent
CMC_ext ensi on

)

/* FREE */
CMC return_code
(*cnc_free)(

CMC _buf fer
)

/* LOGOFF */

CMC return_code

(*cnc_| ogoff) (
CMC session_id

CMC ui _id
CMC fl ags
CMC_ext ensi on
)
/* LOGON */

CMC return_code
(*cnc_I ogon) (
CMC string
CMC string
CMC_string
CMC obj ect _identifier
CMC ui _id
CMC _uint 16
CMC fl ags
CMC session_id
CMC_ext ensi on

)

/* QUERY CONFI GURATI ON */
CMC return_code
(*cnc_query_configuration)(
CMC session_id
CMC_enum
CMC buf fer
CMC_ext ensi on
)
/* FULL CMC */

/* COPY OBJECT */

CMC return_code

(*cnc_copy_obj ect) (
CMC _obj ect _handl e
CMC _obj ect _handl e
CMC _obj ect _handl e
CMC_ext ensi on

)

/* ADD PROPERTI ES */
CMC return_code
(*cnt_add_properties)(
CMC_obj ect _handl e
CMC _ui nt 32
CMC _property
CMC_ext ensi on

)
Recommendation X.446 (08/97)

sessi on,
*recipient_in,

| ook_up_fl ags,

ui _id,

*count,

**reci pi ent _out,

*| ook_up_ext ensi ons

menory

sessi on,

ui _id,

| ogof f _fl ags,

*| ogof f _ext ensi ons

servi ce,

user,

password,
character_set,

ui _id,

call er_cnt_version,
| ogon_f I ags,

*sessi on,

*| ogon_ext ensi ons

sessi on,

item

r ef er ence,

*confi g_extensions

cont ai ner,
sour ce_obj ect,
*new_obj ect,

*copy_obj ect _ext ensi ons

obj ect,
nunber _properties,
*properties,

*add_properties_extensions

/[* COW T OBJECT */

CMC return_code

(*cntc_conmit _obj ect) (
CMC _obj ect _handl e
CMC_ext ensi on

)

/* COPY OBJECT HANDLE */
CMC return_code
(*cnc_copy_obj ect _handl e) (
CMC_obj ect _handl e
CMC _obj ect _handl e
CMC_ext ensi on

)

sour ce_obj ect,
*conm t _obj ect _ext ensi ons

sour ce_handl e,
*new_handl e,
*copy_obj ect _handl e_ext ensi ons

| * CREATE DERI VED MESSACE OBJECT */

CMC return_code

(*cnt_create_derived _nessage_object) (

CMC _obj ect _handl e
CMC_enum
CMC bool ean
CMC _obj ect _handl e
CMC _bool ean
CMC_ext ensi on
)
/* DELETE OBJECTS */
CMC return_code
(*cnt_del et e_obj ects) (
CMC_ui nt 32
CMC_obj ect _handl e
CMC_ext ensi on

)

/* DELETE PROPERTIES */
CMC return_code
(*cnc_del ete_properties)(
CMC _obj ect _handl e
CMC _ui nt 32
cMCid
CMC_ext ensi on

)

/* GET ROOT HANDLE */
CMC return_code
(*cnc_get _root _handl e) (
CMC session_id
CMC_obj ect _handl e
CMC_ext ensi on
)
/* 1 DENTI FI ER TO NAME */
CMC return_code
(*cnt_identifier_to _nane)(
cMCid
CMC_nane
CMC_ext ensi on

)

ori gi nal _nessage,

derived_acti on,

i nherit_contents,
*derived_nessage,

nmodi fi ed_nessage,
*create_derived_obj ect _extensions

nunber _obj ect s,
*obj ect,
*del et e_obj ect s_ext ensi ons

obj ect,

number _properti es,
*property_ids,

*del et e_properti es_extensi ons

sessi on,
*r oot _obj ect _handl e,
*get _root handl e_ext ensi ons

i dentifier,
*name,
*identifier_to_nanme_extensions

/* LI ST CONTAI NED PROPERTI ES */

CMC return_code

(*cnt_list_contai ned _properties)(

CMC _cursor_handl e
CMC sint 32

CMC _si nt 32

cMCid

CMC _property
CMC_ext ensi on

cursor,
*nunber _obj ect,

*nunber _properties,

*property ids,

***properties,

*| i st_contained_properties_extensions

Recommendation X.446 (08/97)

201

202

/* LI ST NUMBER MATCHED */
CMC return_code

(*cnc_list_nunber _mat ched) (

CMC _cursor _handl e
CMC_ui nt 32
CMC_ext ensi on

)

[* LI ST OBJECTS */
CMC return_code
(*cnt_list_objects)(
CMC _cursor _handl e
CMC sint 32
CMC _obj ect _handl e
CMC_ext ensi on
)
/* LI ST PROPERTIES */
CMC return_code
(*cnc_list_properties)(
CMC _obj ect _handl e
CMC _ui nt 32
cMCid
CMC_ext ensi on
)

/* NAME TO | DENTI FI ER */
CMC return_code
(*cnc_nanme_to_identifier)(
CMC_nane
cMCid
CMC_ext ensi on
)
/* OPEN CURSOR */
CMC return_code
(*cnc_open_cursor) (
CMC _obj ect _handl e
CMC cursor_restriction
CMC _ui nt 32
CMC _cursor_sort _key
CMC _cursor _handl e
CMC_ext ensi on

)

/* OPEN OBJECT HANDLE */
CMC return_code
(*cnc_open_obj ect _handl e) (
CMC session_id
cMCid
CMC _obj ect _handl e
CMC_ext ensi on

)

/* READ CURSOR */
CMC return_code
(*cnt_read_cursor) (
CMC _cursor_handl e
CMC _ui nt 32
CMC _ui nt 32
CMC_ext ensi on

)

/* READ PROPERTI ES */
CMC return_code
(*cnt_read_properties)(
CMC_obj ect _handl e
CMC _ui nt 32
cMCid
CMC _property
CMC_ext ensi on

)

Recommendation X.446 (08/97)

*cursor,
*numnber _nat ches,
*| i st _nunmber mat ched_ext ensi ons

*cursor,

*nunber _obj ect s,

**obj ect s,

*| i st_obj ects_extensions

*obj ect

*nunber _properties,
**property_ids,
*|ist_properties_extensions

nane,
*jdentifier,
*nanme_to_identifier_extensions

obj ect,

*restrictions,

nunber _sort_orders,
*sort _keys,

*cursor,
*open_cur sor _ext ensi ons

sessi on,

obj ect _cl ass,

*new_obj ect,

*open_obj ect _handl e_ext ensi ons

*cursor,

*posi tion_nunerator,
*posi ti on_denomni nat or,
*read_cursor _extensi ons

obj ect,

*nunber _properties,
*property ids,

**properties,
*read_properties_extensions

| * READ PROPERTY COSTS */

CMC return_code

(*cnc_read_property_costs)(
CMC_obj ect _handl e

CMC _ui nt 32
cMCid
CMC_enum
CMC_ext ensi on
)
/* RESTORE OBJECT */

CMC return_code
(*cnt_restore_object)(
CMC _obj ect _handl e

CMC_string
CMC_obj ect _handl e
CMC fl ags
CMC_ext ensi on
)
/* SAVE OBJECT */

CMC return_code
(*cnt_save_obj ect) (
CMC _obj ect _handl e

CMC_string
CMC fl ags
CMC_ext ensi on
)
/* SEND MESSAGE OBJECT */

CMC return_code
(*cnc_send_message_obj ect) (
CMC _obj ect _handl e
CMC_ext ensi on
)
/ * UPDATE CURSOR PCsI TI ON */
CMC return_code
(*cnt_updat e_cursor_position)(

obj ect,

*nunber _properties,
*property_ids,

**cost s,

*read_property costs_extensions

cont ai ner,
file_specification,

*rest ored_object,
restore_fl ags,

*rest ore_obj ect _ext ensi ons

obj ect,
file_specification,
save_fl ags,

*save_obj ect _ext ensi ons

message_t o_send,
*send_nessage_obj ect _ext ensi ons

posi ti on_nurer at or,
posi ti on_denom nat or,
*updat e_cursor _position_extensions

CMC _cursor _handl e *cursor,
CMC _ui nt 32
CMC _ui nt 32
CMC_ext ensi on
)
/* UPDATE CURSOR PCSI TI ON W TH SEED */

CMC return_code

(*cnc_updat e_cursor_position_wi th_seed)(

CMC _cursor _handl e
CMC _obj ect _handl e
CMC_ext ensi on
)
/* CHECK EVENT */
CMC return_code
(*cnc_check_event) (
CMC _session_id
CMC_event
CMC_ui nt 32
CMC buf fer
CMC _buf fer
CMC _ext ensi on

)

/* REQ STER EVENT */
CMC return_code
(*cnt_regi ster_event) (
CMC session_id
CMC_event
CMC _cal | back
CMC _buf fer
CMC _ext ensi on

cursor,
seed,
*updat e_cursor _position_w th_seed_extensions

sessi on,

event _type,

m ni mum ti meout ,
check_event dat a,

*cal | back_dat a,

*check _event _ext ensi ons

sessi on,

event _type,

cal | back,

regi ster_dat a,

*regi ster_event _extensions

Recommendation X.446 (08/97) 203

204

/* UNREG STER EVENT */
CMC return_code
(*cnc_unregi ster_event) (

CMC session_id

CMC fl ags

CMC cal | back

CMC _buf fer

CMC_ext ensi on

)

/* CALL CALLBACKS */
CMC return_code
(*cnt_call _cal | backs) (
CMC session_id
CMC_event
CMC_ext ensi on

)

[* EXPORT STREAM */
CMC return_code
(*cnt_export _stream (
CMC _stream handl e
CMC string
CMC _ui nt 32
CMC fl ags
CMC_ext ensi on

)

/* | MPORT FILE TO STREAM */
CMC return_code
(*cnc_inport _file to_stream(
CMC _stream handl e
CMC string
CMC _ui nt 32
CMC_ext ensi on
)
/* OPEN STREAM */
CMC return_code
(*cnct_open_stream (
CMC _obj ect _handl e
CMC _property
CMC_enum
CMC_stream handl e
CMC_ext ensi on
)
/* READ STREAM */
CMC return_code
(*cnt_read_stream (
CMC_stream handl e
CMC ui nt 32
CMC buf fer
CMC_ext ensi on

)

[* SEEK STREAM */
CMC return_code
(*cnt_seek_stream (
CMC_stream handl e
CMC_enum
CMC _ui nt 32
CMC_ext ensi on

)

/* WRI TE STREAM */
CMC return_code
(*cnmc_wite_strean)(
CMC_stream handl e
CMC _ui nt 32
CMC buf fer
CMC _ext ensi on

)

Recommendation X.446 (08/97)

sessi on,

event _type,

cal | back,

unregi st er _dat a,

*unregi ster_event _ext ensi ons

sessi on,
event _type,
*cal | _cal | backs_ext ensi ons

stream
file_specification,

count,

export fl ags,

*export _stream ext ensions

stream
file_specification,
file offset,

*import _file to_stream extensions

obj ect,

*property,

operati on,

*stream

*open_stream ext ensi ons

stream

*count,

content information,
*read_stream ext ensi ons

stream

operati on,

*|] ocati on,

*seek_stream ext ensi ons

*stream

*count,
*content i nformati on,
*write_stream extensions

/* GET LAST ERROR */

CMC return_code

(*cnc_get _last_error)(
CMC session_id
CMC_obj ect _handl e
CMC string
CMC_ext ensi on

)

} CMC di spatch_table;

/* BlI ND | MPLEMENTATI ON */

CMC return_code

cnt_bi nd_i npl enent at i on(
CMC guid
CMC _di spatch_tabl e
CMC_ext ensi on

)

/* UNBI ND | MPLEMENTATI ON */

CMC return_code

cnt_unbi nd_i npl ement at i on(
CMC guid
CMC_ext ensi on

)

#el se

/* SEND */

CMC return_code

cnt_send W
CMC session_id
CMC_nessage
cMC fl ags
CMC ui _id
CMC_ext ensi on

)

/* SEND DOCUMENT */

CMC return_code

cnt_send_docunents_W
CMC string
CMC_string
CMC_string
CMC fl ags
CMC string
CMC_string
CMC_string
CMC ui _id

);

/* ACT ON */

CMC return_code

cnt_act _on_W
CMC session_id
CMC _nessage_ref erence
CMC_enum
cMC fl ags
CMC ui _id
CMC_ext ensi on

)

[* LI ST */

CMC return_code

cnc_list W
CMC session_id
CMC string
CMC fl ags
CMC_nessage_ref erence
CMC_ui nt 32
CMC ui _id
CMC_nessage_sunmary
CMC_ext ensi on

sessi on,

obj Ref ,

*error_buffer,

*get | ast _error_extensions

i mpl enent ati on_nane,
**di spat ch_t abl e,
*cnt_bi nd_ext ensi ons

i mpl erent ati on_narne,

*cnt_unbi nd_i npl enent ati on_ext ensi ons

/* WCHAR / UNI CODE Function Counterparts */

sessi on,
*message,

send_fI ags,

ui _id,

*send_ext ensi ons

reci pi ent _addr esses,
subj ect,

t ext _note,
send_doc_f1 ags,

fil e_paths,
file_nanes,
delimter,

ui _id

sessi on,

*nmessage_r ef erence,
operati on,

act _on_fl ags,

ui _id,

*act _on_ext ensi ons

sessi on,
nmessage_type,
list flags,
*seed,

*count,

ui _id,

**result,

*| i st_extensions

Recommendation X.446

(08/97)

205

/* READ */

CMC return_code

cnc_read W
CMC session_id
CMC _nessage_reference
CcMC fl ags
CMC_nessage
CMC ui _id
CMC _ext ensi on

);

/* LOOK UP */

CMC return_code

cnc_| ook _up W
CMC session_id
CMC reci pi ent
CMC fl ags
CMC ui _id
CMC_ui nt 32
CMC reci pi ent
CMC_ext ensi on

);

/* FREE */

CMC return_code

cnt_free W
CMC _buf fer

)

/* LOGOFF */

CMC return_code

cnc_| ogof f W
CMC session_id
CMC ui _id
cMC fl ags
CMC_ext ensi on

);

/* LOGON */

CMC return_code

cnt_l ogon_W
CMC string
CMC string
CMC string
CMC object _identifier
CMC ui _id
CMC ui nt 16
CcMC fl ags
CMC session_id
CMC_ext ensi on

)

/* QUERY CONFI GURATI ON */
CMC return_code
cnt_query_configuration_W
CMC session_id
CMC_enum
CMC _buf f er
CMC _ext ensi on

)
/* FULL CMC */

/* COPY OBJECT */

CMC return_code

cht_copy_obj ect W
CMC_obj ect _handl e
CMC _obj ect _handl e
CMC _obj ect _handl e
CMC_ext ensi on

206 Recommendation X.446 (08/97)

sessi on,

*nmessage_r ef erence,
read_fl ags,
**message,

ui _id,

*read_ext ensi ons

sessi on,
*recipient_in,

| ook_up_fl ags,

ui _id,

*count,
**reci pi ent _out,

*| ook_up_ext ensi ons

menory

sessi on,

ui _id,

| ogof f_fl ags,

*| ogof f _ext ensi ons

servi ce,

user,

password,
character_set,

ui _id,

cal l er_cnt_versi on,
| ogon_fl ags,

*sessi on,

*| ogon_ext ensi ons

sessi on,

item

r ef erence,
*config_extensions

cont ai ner,
source_obj ect,
*new_obj ect,

*copy_obj ect _ext ensi ons

/* ADD PROPERTI ES */

CMC return_code

cnt_add_properties W
CMC _obj ect _handl e
CMC_ui nt 32
CMC _property
CMC_ext ensi on

)

/[* COM T OBJECT */

CMC return_code

cnc_conmmt_object W
CMC_obj ect _handl e
CMC_ext ensi on

)

/* COPY OBJECT HANDLE */

CMC return_code

cnt_copy_obj ect _handl e W
CMC _obj ect _handl e
CMC _obj ect _handl e
CMC_ext ensi on

)

obj ect,

nunber _properties,
*properties,
*add_properties_extensions

sour ce_obj ect,
*conmi t _obj ect _ext ensi ons

sour ce_handl e,
*new_handl e,
*copy_obj ect _handl e_ext ensi ons

/* CREATE DERI VED MESSAGE OBJECT */

CMC return_code

cnt_create_derived _nessage object W

CMC _obj ect _handl e
CMC_enum
CMC _bool ean
CMC _obj ect _handl e
CMC _bool ean
CMC _ext ensi on
);
/* DELETE OBJECTS */
CMC return_code
cnt_del ete_objects W
CMC_ui nt 32
CMC _obj ect _handl e
CMC _ext ensi on
)
/* DELETE PROPERTIES */
CMC return_code
cnt_del ete_properties_W
CMC _obj ect _handl e
CMC_ui nt 32
cMCid
CMC_ext ensi on
)
/* CGET ROOT HANDLE */
CMC return_code
cnt_get _root _handl e W
CMC session_id
CMC _obj ect _handl e
CMC_ext ensi on
)
/* | DENTI FI ER TO NAME */
CMC return_code

cnc_identifier _to name W

cMCid
CMC _nane
CMC_ext ensi on

ori gi nal _nessage,

derived_action,

i nherit_contents,

*deri ved_nessage

nodi fi ed_nessage,
*create_derived_obj ect _extensions

nunber obj ect s,
*obj ect,
*del et e_obj ect s_ext ensi ons

obj ect,

nurber _properti es,
*property_ids,

*del et e_properti es_extensi ons

sessi on,
*r oot _obj ect _handl e,
*get _root handl e_ext ensi ons

identifier,
*nane,
*identifier_to _name_extensions

Recommendation X.446 (08/97)

207

/* LI ST CONTAI NED PROPERTI ES */
CMC return_code
cnc_list_contained_properties_W

CMC _cursor _handl e cursor,

CMC _si nt 32 *nunber _obj ect,

CMC_si nt 32 *nunber _properties,

cveid *property_ids,

CMC _property ***properties,

CMC_ext ensi on *| i st_contained_properties_extensions

)
/* LI ST NUVBER MATCHED */

CMC return_code
cnt_|ist_nunber _matched W

CMC _cursor _handl e *cursor,
CMC _ui nt 32 *nunber _nat ches,
CMC_ext ensi on *|ist_nunber _mat ched_ext ensi ons

)

/* LI ST OBJECTS */
CMC return_code
cnc_list_objects_ W

CMC _cursor _handl e *cursor,

CMC_si nt 32 *nunber _obj ect s,

CMC _obj ect _handl e **obj ect s,

CMC_ext ensi on *|ist_obj ects_extensions

)

/* LI ST PROPERTIES */
CMC return_code
cnc_list_properties_W

CMC _obj ect _handl e *obj ect,

CMC_ui nt 32 *nunber properties,

cvCid **property_ids,

CMC_ext ensi on *| i st_properties_extensions

)
/* NAMVE TO | DENTI FI ER */

CMC return_code
cnt_nane_to_identifier W

CMC_nane property_nane,
cMCid *property_id,
CMC_ext ensi on *nane_to_identifier_extensions

)

/* OPEN CURSOR */
CMC return_code
cnt_open_cursor W

CMC _obj ect _handl e obj ect,

CMC cursor _restriction *restrictions,

CMC_ui nt 32 nunber _sort _orders,

CMC _cursor_sort_key *sort _keys,

CMC _cursor _handl e *cursor,

CMC_ext ensi on *open_cur sor _ext ensi ons

)

/* OPEN OBJECT HANDLE */
CMC return_code
cnc_open_obj ect _handl e_W

CMC session_id sessi on,

cvCid obj ect _cl ass,

CMC_obj ect _handl e *new_obj ect,

CMC_ext ensi on *open_obj ect _handl e_ext ensi ons

)

/* READ CURSOR */
CMC return_code
cnt_read_cursor_ W

CMC _cursor _handl e *cursor,

CMC_ui nt 32 *posi tion_nunerator,
CMC_ui nt 32 *posi ti on_denoni nat or,
CMC_ext ensi on *read_cur sor _ext ensi ons

208 Recommendation X.446 (08/97)

/* READ PROPERTI ES */
CMC return_code
cnt_read_properties_W
CMC _obj ect _handl e
CMC_ui nt 32
cMC i d
CMC _property
CMC_ext ensi on

)

/* READ PROPERTY COSTS */
CMC return_code

cnc_read _property costs W

CMC_obj ect _handl e
CMC_ui nt 32

cMC i d

CMC_enum

CMC_ext ensi on

)

/* RESTORE OBJECT */
CMC return_code
cnt_restore_object W
CMC_obj ect _handl e
CMC string
CMC_obj ect _handl e
CMC fl ags
CMC_ext ensi on

)

/* SAVE OBJECT */
CMC return_code
cnt_save_object W
CMC _obj ect _handl e
CMC string
CMC fl ags
CMC_ext ensi on

)

/* SEND MESSACGE OBJECT */
CMC return_code

cnt_send_nessage_obj ect W

CMC _obj ect _handl e
CMC_ext ensi on

)

/* UPDATE CURSCR POCSI TI ON */

CMC return_code

cnt_update_cursor_position W

CMC _cursor _handl e
CMC_ui nt 32

CMC _ui nt 32
CMC_ext ensi on

)

obj ect,

*nunber _properties,
*property_ids,

**properties,
*read_properties_extensions

obj ect,

*nunber _properties,
*property_ids,

**cost s,
*read_property_costs_extensions

cont ai ner,
file_specification,

*rest ored_obj ect,
restore_fl ags,

*rest ore_obj ect _extensions

obj ect,
file_specification,
save_fI ags,

*save_obj ect _extensi ons

nmessage_to_send,
*send_nessage_obj ect _ext ensi ons

*cursor,

posi tion_nurmerator,

posi ti on_denom nat or,

*updat e_cursor_position_extensions

/* UPDATE CURSOR PCSI TI ON W TH SEED */

CMC return_code

cnt_update_cursor_position_w th_seed_ W

CMC _cursor _handl e
CMC _obj ect _handl e
CMC_ext ensi on

)

/* CHECK EVENT */
CMC return_code
cnt_check_event W
CMC session_id
CMC_event
CMC_ui nt 32
CMC _buf fer
CMC _buf fer
CMC_ext ensi on

cursor,
seed,
*updat e_cursor _position_w th_seed_extensions

sessi on,

event _type,

m ni num ti meout ,

check _event data,

*cal | back_dat a,
*check_event _ext ensi ons

Recommendation X.446 (08/97)

209

/* REQ STER EVENT */
CMC return_code
cnt_register_event W
CMC session_id
CMC_event
CMC _cal | back
CMC _buf fer
CMC_ext ensi on

)

/* UNREGQ STER EVENT */
CMC return_code
cnt_unregi ster_event _W
CMC session_id
cMC fl ags
CMC _cal | back
CMC _buf fer
CMC_ext ensi on

)

/* CALL CALLBACKS */

CMC return_code

cnt_cal |l _cal | backs_ W
CMC session_id
CMC_event
CMC_ext ensi on

)

/* EXPORT STREAM */
CMC return_code
cnt_export _stream W
CMC_stream handl e
CMC string
CMC_ui nt 32
cMC fl ags
CMC_ext ensi on

)

/* I MPORT FILE TO STREAM */
CMC return_code
cnc_inport file to stream W

CMC_stream handl e

CMC string

CMC_ui nt 32

CMC_ext ensi on

)

/* OPEN STREAM */

CMC return_code

cnt_open_stream W
CMC_obj ect _handl e
CMC _property
CMC_enum
CMC_stream handl e
CMC _ext ensi on

)

/* READ STREAM */
CMC return_code
cnc_read_stream W
CMC_stream handl e
CMC_ui nt 32
CMC _buf fer
CMC_ext ensi on

)

/* SEEK STREAM */

CMC return_code

cnt_seek _stream.
CMC_stream handl e
CMC_enum
CMC_ui nt 32
CMC_ext ensi on

210 Recommendation X.446 (08/97)

sessi on,

event _type,

cal | back,

regi ster_dat a,

*regi ster_event _extensi ons

sessi on,

event _type,

cal | back,

unr egi st er _dat a,

*unr egi st er _event _ext ensi ons

sessi on,
event _type,
*cal | _cal | backs_ext ensi ons

stream
file_specification,

count,

export _fl ags,

*export _stream ext ensi ons

stream
file_specification,
file offset,

*inmport file to_stream extensions

obj ect,

*property,

operation,

*stream

*open_stream ext ensi ons

stream

*count,

content _information,
*read_stream ext ensi ons

stream

operation,

*| ocati on,

*seek_stream ext ensi ons

/* WRI TE STREAM */
CMC return_code
cnt_wite stream W

CMC_stream handl e *stream
CMC _ui nt 32 *count,
CMC_buf f er *content _i nformati on,

CMC_ext ensi on
)

/* CET LAST ERROR */

CMC return_code

cnc_get last_error W
CMC session_id
CMC_obj ect _handl e
CMC string
CMC_ext ensi on

)

*Write_stream extensions

sessi on,

obj Ref,

*error_buffer,

*get | ast_error_extensions

/* MULTI PLE | MPLEMENTATI ONS DI SPATCH TABLE UNI CODE */

typedef struct {

CMC_ext ensi on

/* SEND */

CMC return_code

(*cnc_send_W (
CMC session_id
CMC_nessage
CMC fl ags
CMC ui _id
CMC_ext ensi on

)

/* SEND DOCUMENT */
CMC return_code
(*cnc_send_documents_W (
CMC string
CMC string
CMC string
CMC fl ags
CMC string
CMC string
CMC string
CMC ui _id
)
/* ACT ON */
CMC return_code
(*cnc_act _on_W (
CMC session_id
CMC _nessage_reference
CMC_enum
CMC fl ags
CMC ui _id
CMC_ext ensi on
)
[* LIST */
CMC return_code
(*cnc_list _W(
CMC session_id
CMC string
CMC fl ags
CMC _nessage_reference
CMC_ui nt 32
CMC ui_id
CMC_nessage_sunmary
CMC_ext ensi on

*di spat ch_t abl e_ext ensi ons;

sessi on,
*message,

send_fl ags,

ui _id,

*send_ext ensi ons

reci pi ent _addr esses,
subj ect

text _note,
send_doc_f1 ags,
file_paths,
file_names,
delimter,

ui _id

sessi on,
*message_ref erence,
operati on,

act _on_fl ags,

ui _id,

*act _on_extensi ons

sessi on,
nmessage_type,
list flags,
*seed,

*count,

ui _id,

**result,

*| i st_extensions

Recommendation X.446 (08/97)

211

212

/* READ */
CMC return_code
(*cntc_read W (
CMC session_id
CMC_nessage_ref erence
CMC fl ags
CMC_nessage
CMC ui _id
CMC _ext ensi on
)
/[* LOOK UP */
CMC return_code
(*cnc_l ook _up W (
CMC session_id
CMC reci pi ent
CMC fl ags
CMC ui _id
CMC_ui nt 32
CMC reci pi ent
CMC _ext ensi on
)
/* FREE */
CMC return_code
(*cnc_free W (
CMC _buf fer
)

/* LOGOFF */
CMC return_code
(*cnt_| ogoff W(

CMC session_id

CMC ui _id
CMC fl ags
CMC_ext ensi on
)
/* LOGON */

CMC return_code
(*cnc_| ogon_W (
CMC_string
CMC string
CMC string
CMC obj ect _identifier
CMC ui _id
CMC ui nt 16
CMC fl ags
CMC session_id
CMC_ext ensi on

)

/* QUERY CONFI GURATI ON */

CMC return_code
(*cnc_query_configuration_W(
CMC session_id

CMC_enum
CMC buf fer
CMC_ext ensi on

)
/* FULL CMC */

/* COPY OBJECT */

CMC return_code

(*cnt_copy_object W (
CMC _obj ect _handl e
CMC _obj ect _handl e
CMC _obj ect _handl e
CMC_ext ensi on

)

Recommendation X.446 (08/97)

sessi on,
*message_r ef er ence,
read_fl ags,
**message,

ui _id,
*read_ext ensi ons

sessi on,
*recipient_in,

| ook_up_fl ags,

ui _id,

*count,
**reci pi ent _out,

*| ook_up_ext ensi ons

menory

sessi on,

ui _id,

| ogof f_fl ags,

*| ogof f _ext ensi ons

servi ce,

user,

password,

char acter_set,

ui _id,

call er_cnt_version,
| ogon_f I ags,

*sessi on,

*| ogon_ext ensi ons

sessi on,

item

ref erence,

*confi g_extensions

cont ai ner,

sour ce_obj ect,

*new_obj ect,
*copy_obj ect _ext ensi ons

/* ADD PROPERTI ES */
CMC return_code
(*cnc_add_properties W/(
CMC _obj ect _handl e
CMC_ui nt 32
CMC _property
CMC_ext ensi on

)

/* COM T OBJECT */

CMC return_code

(*cnc_commit _object W(
CMC_obj ect _handl e
CMC_ext ensi on

)

/* COPY OBJECT HANDLE */

CMC return_code

(*cnt_copy_obj ect _handl e W (
CMC _obj ect _handl e
CMC_obj ect _handl e
CMC_ext ensi on

)

obj ect,

nunber _properties,
*properties,
*add_properties_extensions

sour ce_obj ect,
*conmit _obj ect _ext ensi ons

source_handl e,
*new_handl e,
*copy_obj ect _handl e_ext ensi ons

/ * CREATE DERI VED MESSACE OBJECT */

CMC return_code

(*cnt_create_derived nessage_object W(

CMC _obj ect _handl e
CMC_enum
CMC _bool ean
CMC _obj ect _handl e
CMC _bool ean
CMC _ext ensi on
)
/* DELETE OBJECTS */
CMC return_code
(*cnc_del ete_objects W (
CMC_ui nt 32
CMC _obj ect _handl e
CMC_ext ensi on
)

/* DELETE PROPERTIES */
CMC return_code
(*cnc_del ete_properties_W(
CMC _obj ect _handl e
CMC_ui nt 32
cMCid
CMC_ext ensi on

)

/* GET ROOT HANDLE */

CMC return_code

(*cnc_get _root _handl e W (
CMC session_id
CMC_obj ect _handl e
CMC_ext ensi on

)

/* | DENTI FI ER TO NAME */
CMC return_code
(*cnt_identifier_to name W(

cMCid

CMC_nane

CMC_ext ensi on

ori gi nal _nessage,

derived_action,

i nherit_contents,
*derived_nessage,

nodi fi ed_nessage,
*create_derived_obj ect _extensi ons

nunber obj ect s,
*obj ect
*del et e_obj ect s_ext ensi ons

obj ect,

nurmber _properti es,
*property_ids,

*del et e_properti es_extensi ons

sessi on,
*r oot _obj ect _handl e,
*get _root handl e_ext ensi ons

identifier,
*nanme,
*identifier_to_nanme_extensions

Recommendation X.446 (08/97)

213

/* LI ST CONTAI NED PROPERTI ES */
CMC return_code
(*cnc_list_contai ned_properties_W(

CMC cursor _handl e cursor,

CMC _si nt 32 *nunber _obj ect,

CMC_si nt 32 *nunber _properties,

cvMCid *property ids,

CMC _property ***properties,

CMC_ext ensi on *|i st_contai ned_properties_extensions

)
/* LI ST NUVBER MATCHED */

CMC return_code
(*cnct_list_nunber _mat ched W (

CMC _cursor _handl e *cursor,
CMC _ui nt 32 *numnber _nat ches,
CMC_ext ensi on *| i st _nunmber _mat ched_ext ensi ons

)

/* LI ST OBJECTS */
CMC return_code
(*cnc_list_objects_W(

CMC _cursor _handl e *cursor,

CMC _si nt 32 *nunber _obj ect s,

CMC_obj ect _handl e **obj ect s,

CMC_ext ensi on *|ist_objects_extensions

)

/* LI ST PROPERTIES */
CMC return_code
(*cnc_list_properties W(

CMC_obj ect _handl e *obj ect,

CMC_ui nt 32 *nunber properti es,

cMCid **property_ids,

CMC_ext ensi on *|i st_properties_extensions

)
/* NAME TO | DENTI FI ER */

CMC return_code
(*cnt_nane_to_identifier W(

CMC_nane name,
cMCid *identifier,
CMC_ext ensi on *nane_to_identifier_extensions

)

/* OPEN CURSOR */
CMC return_code
(*cnc_open_cursor _W(

CMC _obj ect _handl e obj ect,

CMC cursor _restriction *restrictions,

CMC_ui nt 32 nunmber _sort _orders,

CMC _cursor_sort_key *sort _keys,

CMC _cursor _handl e *cursor,

CMC_ext ensi on *open_cur sor _ext ensi ons

)

/* OPEN OBJECT HANDLE */
CMC return_code
(*cnt_open_obj ect _handl e_W (

CMC session_id sessi on,

cavCid obj ect _cl ass,

CMC_obj ect _handl e *new_obj ect,

CMC_ext ensi on *open_obj ect _handl e_ext ensi ons

)

/* READ CURSOR */
CMC return_code
(*cnc_read_cursor_W(

CMC _cursor _handl e *cursor,

CMC_ui nt 32 *posi tion_nunerator,
CMC_ui nt 32 *posi ti on_denomni nat or,
CMC_ext ensi on *read_cursor_extensi ons

)
214 Recommendation X.446 (08/97)

/ * READ PROPERTI ES */
CMC return_code
(*cnc_read_properties_W(
CMC_obj ect _handl e
CMC_ui nt 32
cMCid
CMC _property
CMC_ext ensi on

)

/ * READ PROPERTY COCSTS */
CMC return_code
(*cnt_read _property costs_ W(
CMC _obj ect _handl e
CMC_ui nt 32
cMCid
CMC_enum
CMC_ext ensi on

)

/* RESTORE OBJECT */
CMC return_code
(*cnt_restore_object W(
CMC _obj ect _handl e
CMC_string
CMC_obj ect _handl e
CMC fl ags
CMC_ext ensi on

)

/* SAVE OBJECT */
CMC return_code
(*cnt_save_object W(
CMC _obj ect _handl e
CMC_string
CMC fl ags
CMC_ext ensi on

)

/* SEND MESSAGE OBJECT */

CMC return_code

(*cnc_send_nessage_obj ect _W (
CMC _obj ect _handl e
CMC_ext ensi on

)

/ * UPDATE CURSOR PCsI TI ON */

CMC return_code

obj ect,

*nunber _properties,
*property_ids,

**properties,
*read_properties_extensions

obj ect,

*nunber _properties,
*property_ids,

**cost s,

*read_property costs_extensions

cont ai ner,
file_specification,

*rest ored_obj ect,
restore_fl ags,

*rest ore_obj ect _extensions

obj ect,
file_specification,
save_fl ags,

*save_obj ect _ext ensi ons

message_to_send,
*send_nessage_obj ect _ext ensi ons

(*cnt_updat e _cursor_position_ W(

CMC _cursor _handl e
CMC_ui nt 32

CMC _ui nt 32
CMC_ext ensi on

)

*cursor,
posi ti on_numer at or,
posi ti on_denomni nat or,

*updat e_cursor _position_extensions

/* UPDATE CURSOR POCSI TI ON W TH SEED */

CMC return_code

(*cnc_updat e_cursor_position_with_seed W (

CMC _cursor _handl e
CMC _obj ect _handl e
CMC_ext ensi on

)

/* CHECK EVENT */
CMC return_code
(*cnt_check _event W (
CMC session_id
CMC_event
CMC_ui nt 32
CMC _buf fer
CMC buf fer
CMC_ext ensi on

cursor,
seed,

*updat e_cursor_position_w th_seed_extensions

sessi on,

event _type,

m ni mum ti meout
check_event dat a,

*cal | back_dat a,
*check_event _ext ensi ons

Recommendation X.446

215

216

/* REQ STER EVENT */
CMC return_code
(*cnct_regi ster_event W (
CMC session_id
CMC_event
CMC _cal | back
CMC _buf fer
CMC _ext ensi on

)

/* UNREGQ STER EVENT */
CMC return_code
(*cnc_unregi ster_event _W(
CMC session_id
CMC fl ags
CMC _cal | back
CMC buf fer
CMC_ext ensi on

)

/* CALL CALLBACKS */
CMC return_code
(*cnc_call _call backs W (
CMC session_id
CMC_event
CMC_ext ensi on

)

/* EXPORT STREAM */
CMC return_code
(*cnc_export _stream W (
CMC_stream handl e
CMC string
CMC_ui nt 32
CMC fl ags
CMC_ext ensi on

)

/* 1 MPORT FI LE TO STREAM */

CMC return_code

sessi on,

event _type,

cal | back,

regi ster_data,

*regi ster_event _extensions

sessi on,

event _type,

cal | back,

unr egi st er _dat a,

*unregi st er _event _ext ensi ons

sessi on,
event _type,
*cal | _cal | backs_ext ensi ons

stream
file_specification,

count,

export fl ags,

*export _stream extensi ons

(*cnc_inport file to stream W(

CMC_stream handl e
CMC string

CMC_ui nt 32
CMC_ext ensi on

)

/* OPEN STREAM */

CMC return_code

(*cnc_open_stream W (
CMC_obj ect _handl e
CMC _property
CMC_enum
CMC st ream handl e
CMC_ext ensi on

)

/* READ STREAM */
CMC return_code
(*cnt_read_stream W (
CMC_stream handl e
CMC_ui nt 32
CMC _buf fer
CMC_ext ensi on

)

/* SEEK STREAM */

CMC return_code

(*cnt_seek_stream W (
CMC_stream handl e
CMC_enum
CMC_ui nt 32
CMC_ext ensi on

)

Recommendation X.446 (08/97)

stream

file_specification,

file offset,

*inmport _file to_stream extensions

obj ect,

*property,

operati on,

*stream

*open_stream ext ensi ons

stream

*count,

content _information,
*read_stream ext ensi ons

stream

operati on,

*| ocati on,

*seek _stream ext ensions

/* WRI TE STREAM */
CMC return_code
(*cnc_wite _stream W (
CMC_stream handl e
CMC_ui nt 32
CMC _buf fer
CMC_ext ensi on

)

/* CGET LAST ERROR */

CMC return_code

(*cnc_get last_error W(
CMC session_id
CMC_obj ect _handl e
CMC string
CMC_ext ensi on

)

} CMC _di spatch_tabl e;

/* BI ND | MPLEMENTATI ON */

CMC return_code

cnt_bind_i npl enent ati on_W
CMC guid
CMC _di spatch_tabl e
CMC_ext ensi on

)

/* UNBI ND | MPLEMENTATI ON */
CMC return_code
cnt_unbi nd_i npl enment ati on_W
CMC guid
CMC_ext ensi on

)
#endi f

*stream

*count,

*content i nformati on,
*Write_stream extensions

sessi on,

obj Ref,

*error_buffer,

*get | ast_error_extensions

i npl enent ati on_nane,
**di spat ch_t abl e,
*cnc_bi nd_ext ensi ons

i mpl enent ati on_nane,
*cnec_unbi nd_i npl erent ati on_ext ensi ons

typedef CMC return_code (*CMC_P_BI ND_| MPLEMENTATI ON) (

CMC guid
CMC _di spatch_table
CMC_ext ensi on

)

i mpl erent ati on_nane,
**di spatch_t abl e,
*cnt_bi nd_ext ensi ons

typedef CMC return_code (*CMC_P_UNBI ND_|I MPLEMENTATI ON) (

CMC guid
CMC_ext ensi on
)
/* Function Constants */
/* SEND */
#defi ne CMC_SEND U REQUESTED

/* SEND DOCUMENT */

#defi ne CMC_FI RST_ATTACH_AS_TEXT_NOTE

/* ACT ON */
#def i ne CMC_ACT_ON_EXTENDED
#defi ne CMC_ACT_ON_DELETE

/* LIST */
#defi ne CMC_LI ST_UNREAD ONLY

#define CMC_LI ST_MSG REFS _ONLY
#define CMC_LI ST_COUNT_ONLY

#defi ne CMC_LENGTH_UNKNOMN
/* READ */

#defi ne CMC_DO NOT_MARK_AS READ
#defi ne CMC_MSG_AND ATT_HDRS ONLY
#defi ne CMC_READ FI RST_UNREAD MESSAGE

[* LOOKUP */

#def i ne CMC_LOOKUP_RESOLVE_PREFI X_SEARCH
#def i ne CMC_LOOKUP_RESOLVE_| DENTI TY

#def i ne CMC_LOOKUP_RESOLVE_UI
#def i ne CMC_LOOKUP_DETAI LS_UI

#def i ne CMC_LOOKUP_ADDRESSI NG _Ul

i mpl enent ati on_nane,
*cnt_unbi nd_ext ensi ons

((cMC flags) 1)
((cMC_flags) 2)

((CcMC_enum 0)
((cMC_enum 1)

—~N
—~N

83328 320

Recommendation X.446 (08/97)

217

[* LOGOFF */

#defi ne CMC_LOGOFF_Ul _ALLOWED ((cMC flags) 1)
/* LOGON */
#defi ne CMC_VERSI ON ((CMC_ui nt16) 100)

/* QUERY CONFI GURATI ON ENUVS */
#def i ne CMC_CONFI G_CHARACTER SET ((

#def i ne CMC_CONFI G_LI NE_TERM ((

#def i ne CMC_CONFI G_DEFAULT_SERVI CE ((

#def i ne CMC_CONFI G_DEFAULT_USER ((

#def i ne CMC_CONFI G_REQ PASSWORD ((

#def i ne CMC_CONFI G_REQ SERVI CE ((ove_
#def i ne CMC_CONFI G_REQ USER ((CVC_enum) 7)
#define CMC_CONFI G Ul _AVAI L ((

#def i ne CMC_CONFI G_SUP_NOVKMSGREAD ((

#def i ne CMC_CONFI G_SUP_COUNTED_STR ((

#def i ne CMC_CONFI G_VER_| MPLEM ((

#def i ne CMC_CONFI G_VER_SPEC ((

/* CONFI G LI NE TERM ENUM */
#defi ne CMC_LI NE_TERM CRLF ((CvVC_
#define CMC_LI NE_TERM CR ((CMC_enum) 1)
#define CMC_LI NE_TERM LF ((

/* CONFI G REQUI RED LOGON PARAMETER ENUM */
#defi ne CMC_REQUI RED_NO ((.

#defi ne CMC_REQUI RED_YES ((cMC_enum 1)
#defi ne CMC_REQUI RED_OPT ((

/ * CREATE DERI VED MESSAGE OBJECT */
#defi ne CMC_DERI VED_ACTI ON_FORWARD ((CMC_

#defi ne CMC_DERI VED_ACTI ON_REPLY ORI Gl NATOR ((CMC_enum) 1)
#defi ne CMC_DERI VED_ACTI ON_REPLY ALL ((

/* READ PROPERTY COSTS */
#defi ne CMC_COST_UNDETERM NED ((

#defi ne CMC_COST_NONE ((.

#defi ne CMC_COST_M NOR ((eMC_enum 2)
#defi ne CMC_COST_MAJOR ((

/* RESTORE OBJECT FLAGS */

#defi ne CMC_RESTORE_OBJECT OVERWRI TE ((cMmC flags) 1)
/* SAVE OBJECT FLAGS */

#defi ne CMC_SAVE OBJECT_OVERWRI TE ((cMC flags) 1)
#defi ne CMC_SAVE_OBJECT_NOCREATE ((eMC_flags) 2)

/ * EXPORT STREAM */

#def i ne CMC_EXPORT _STREAM OVERWRI TE ((CMC_

#def i ne CMC_EXPORT_STREAM NOCREATE ((CMC_flags) 2)
#def i ne CMC_EXPORT_STREAM APPEND ((

/* OPEN STREAM */

#defi ne CMC_OPEN_READ ((cMC_enum 0)
#defi ne CMC_OPEN VRl TE ((eMC_enum 1)
/* SEEK STREAM */

#defi ne CMC_SEEK_BEG NNI NG ((eMC_enum 0)
#defi ne CMC_SEEK END ((eMC_enum 1)
#defi ne CMC_SEEK_CURRENT_PCSI TI ON ((CMC_enum 2)

/* DEFI NED OBJECT I D S FOR CHARACTER SETS */

#defi ne CMC_CHAR _CP437 "1 2 840 113556 3 2 437"

#defi ne CMC_CHAR_CP850 "1 2 840 113556 3 2 850"

#defi ne CMC_CHAR _CP1252 "1 2 840 113556 3 2 1252"
#defi ne CMC_CHAR | STRI NG "1 2 840 113556 3 2 0"

#defi ne CMC_CHAR_UNI CODE "1 2 840 113556 3 2 1"

/* RETURN CODE FLAGS */

#defi ne CMC_ERROR _DI SPLAYED ((CMC_return_code) 0x00008000)
#defi ne CMC_ERROR_RSV_MASK ((CMC_return_code) OxO000FFFF)
#defi ne CMC_ERROR | MPL_MASK ((CMC_return_code) OxFFFF0000)

218 Recommendation X.446 (08/97)

/* RETURN CODES */

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

#i f def

}

#endi f
#endi f

CMC_SUCCESS
CMC_E_AVBI GUOUS_REC! Pl ENT
CMC_E_ATTACHVENT _NOT_FOUND
CMC_E_ATTACHVENT_OPEN_FAI LURE
CMC_E_ATTACHVENT _READ_FAI LURE
CMC_E_ATTACHVENT_WRI TE_FAI LURE
CMC_E_COUNTED_STRI NG_UNSUPPORTED
CMC_E_DI SK_FULL

CMC_E_FAI LURE

CMC_E_I NSUFFI Cl ENT_MEMORY

CMC_E_I NVALI D_CONFI GURATI ON

CMC_E_I NVALI D_ENUM
CMC_E_I N\VALI D_FLAG

CMC_E_I NVALI D_MEMORY

CMC_E_| NVALI D_MESSAGE_PARAMETER
CMC_E_| NVALI D_MESSAGE_REFERENCE
CMC_E_| NVALI D_PARAVETER

CMC_E_I NVALI D_SESSI ON_| D
CMC_E_INVALID Ul _ID
CMC_E_LOGON_FAI LURE
CMC_E_MESSAGE_| N_USE
CMC_E_NOT_SUPPORTED
CMC_E_PASSWORD REQUI RED
CMC_E_RECI Pl ENT_NOT_FOUND
CMC_E_SERVI CE_UNAVAI LABLE
CMC_E_TEXT_TOO LARGE

CMC_E_TOO MANY_FI LES
CMC_E_TOO_MANY_RECI Pl ENTS
CMC_E_UNABLE_TO NOT_MARK_AS_READ

CMC_E_UNRECOGNI ZED_MESSAGE_TYPE
CMC_E_UNSUPPORTED_ACTI ON
CMC_E_UNSUPPORTED_CHARACTER SET
CMC_E_UNSUPPORTED_DATA_EXT
CMC_E_UNSUPPORTED_FLAG
CMC_E_UNSUPPORTED_FUNCTI ON_EXT
CMC_E_UNSUPPORTED_VERSI ON
CMC_E_USER_CANCEL
CMC_E_USER_NOT_LOGGED_ON
CMC_E_I NVALI D_OBJECT_HANDLE
CMC_E_PROPERTY_| D_NOT_FOUND
CMC_E_I NVALI D_CURSOR_HANDLE
CMC_E_REQUI RED_PROPS_M SSI NG
CMC_E_I NVALI D_SOURCE_OBJECT
CMC_E_I NVALI D_CONTAI NER_OBJECT
CMC_E_UNRECOGNI ZED_| DENTI FI ER
CMC_E_| NVALI D_PROPERTY_NAME
CMC_E_I NVALI D_RESTRI CTI ON
CMC_E_UNSUPPORTED_KEYS

CMC_E_| NVALI D_STREAM HANDLE
CMC_E_I NVALI D_FI LE_OFFSET
CMC_E_I NVALI D_PROPERTY_| D
CMC_E_NO_MORE_BYTES_TO WRI TE

CMC_E_NAME_NOT_FOUND
CMC_E_I D_NOT_FOUND
CMC_E_TOO_MANY_CONTENT | TEMS
CMC_E_BI ND_FAI LURE
CMC_E_UNBI ND_FAI LURE

CMC_E_I NVALI D_EVENT

CMC_E_CALLBACK_NOT_SUPPORTED
CMC_E_ACCESS_DENI ED

CMC_E_I NVALI D_FI LE_SPECI FI CATI ON
CMC_E_PRCPERTY_NANME_NOT_FOUND
CMC_E_| NVALI D_FUNCTI ON_EXT
CMC_E_FUNCTI ON_| NTERRUPTED

__cplusplus
/[* extern "C' */

/* XCMC_H */

CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC _return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC _return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC _return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC _return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC r et urn_code)
CMC return_code)
CMC return_code)
CMC_r et ur n_code)
CMC _return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)
CMC return_code)

Recommendation X.446

(08/97)

219

B.1

Annex B

CMC vendor extensions

CMC vendor extensions

This Recommendation enables vendor extensions in many areas. Vendors may add extensions to certain CMC data
structures and every CMC function contains a parameter to carry functional extensions. Vendors may define new CMC
object classes, extend the set of properties associated with an object class, add additional enumerated values, and
associate a CMC implementation identifier with an implementation. In addition, some of the functionality of this
Recommendation has been defined using common extensions defined in this Recommendation to preserve backwards
compatibility with XAPIA's CMC-1.0. Further extension sets may aso be defined by future versions of this
Recommendation. Because of this, it isimportant to have a set of guidelines for the naming and definition of extensions.
These guidelines are given below:

1)

2)

3)

4)

5)

220

Extensions item_code ranges will be handed out to vendors or vendor groups in blocks of 256 for creating
extension sets. A vendor/vendor group may get more than one item_code range if necessary for the extension set.
The extension set identifier for all the sets item_code ranges will be the first location of the first block given out.
This extension set identifier is used to query the service for support of a particular extension set.

For example, the extension blocks for Vendor Group X may be 0x00000400, 0x00000900, and 0x00004300 and the
extension set identifier would be 0x00000400 if that was the first block assigned to the vendor. Applications would
ask aservice if it supports extension set 0x00000400, for this vendor group’s extensions.

An extension set will also have a specific prefix assigned to it for use in the names of all extensions in the extension
set. The format of the prefix will be:

CMC_XS [vendor id] for the extension set identifier
CMC_X_[vendor id]_[extension name] for the item codes of extensionsin the set

In the example with Vendor Group X above, if its vendor id was CX, it would define its extensions as:

#define CMC_XS_CX 0x00000400
#define CMC_X_CX_EXT1 0x00000401
#define CMC_X_CX_EXT2 0x00000402

Extension sets defined by this Recommendation will be alocated an extension set number and prefix from the
X.400 API Association. Implementors may also obtain an extension set prefix, and a block of extension codes, from
the X.400 API Association by requesting such a number in writing. Pre-defined extension set numbers are given in
Annex D. Support for different extension sets is indicated through the configuration of the CMC implementation
and can be queried through the function cmc_query_configuration() using the CMC_X_COM_SUPPORT_EXT
extension.

An extension set value of BILATERAL has also been alocated. Extensions may be defined within the
BILATERAL set by any implementation. No registration of an extension set number is required. This set is
provided so that implementors may define extensions without any formal registration. Because of this freedom,
extensions from different vendors may conflict and inhibit application portability and the co-residency of different
CMC implementations. The prefix for these extensions will be CMC_X_BLT_ and the corresponding set identifier
isCMC_XS BLT.

Many objects are named using globally unique identifiers or GUIDs. GUIDs may be assigned by vendors under
vendor-specific names. With the registration for an extension set, a vendor is aso assigned a branch in the GUID
name space:

—I//XAPIA/CMC20/OBJECT CLASS/VENDOR [vendor id]//NONSGML [ext. name]//EN for object classes,

—/IXAPIA/CMC20/PROPERTY/VENDOR [vendor id]//NONSGML [ext. name]//EN for property hames,

Recommendation X.446 (08/97)

—//XAPIA/CMC20/CONTENT TYPE/VENDOR [vendor id]//NONSGML [ext. name]//EN for content types,

—//XAPIA/CMC20/CHARSET/VENDOR [vendor id]//NONSGML [ext. name]//EN for character sets, and

—I/IXAPIA/CMC20/ENCODING TYPE/VENDOR [vendor id]//NONSGML [ext. name]//EN for encoding types.

NOTE — The specification of vendor extensions does not imply that the extensions will be carried unchanged through messaging
protocols and gateways. Details of protocol and gateway limitations associated with these extensions should be specified in
vendor manuals.

6) Vendors may also extend enumerated values to this Recommendation. The enumerated values from 0 to 512 are
reserved for this Recommendation. The vendor may reuse item code values for enumerated values. For the
definition of constants associated with these values, the vendor should use the prefix CMC_X_[vendor id]_[enum],
ensuring that the constants do not conflict with extension names.

To minimize portability issues, implementors are encouraged to specify extensions as generically as possible, and to
contribute these extensions as proposed additions to the CM C-defined extension set. Through this process, the CMC AP
set will evolve in apositive direction in a manner which continues to maximize portability.

B.1.1

B.1.11

Function extensions

CMC_X_COM_SUPPORT_EXT

This extension is used by client applications to query the CMC implementation about which extensions it supports. This
can be used before a session is established to get preliminary information about support before logging on. When this
extension is used with cmc_logon(), this extension will aso indicate which data extensions the client wants added to the
data structures for the session.

NOTE — Some implementations may support different extensions based on what service the client application creates dsession wit
so using this extension at logon time is recommended to verify extension support.

If any extensions are supported by a CMC implementation, this extension must be supported.

USED BY

INPUT

cnc_query_config()
cnt_I| ogon()

extension_flags

All CMC flags are valid. No further flags are defined.
item_data

Count of itemsin array pointed to by item_reference.
item_reference

Pointer to first element in array of structures listing extensions the application requests be supported by the
implementation. The C declaration for this structure is below:

typedef struct {
CMC_ui nt 32 i tem code;
CMC fl ags fl ags;
} CMC_X COM support;
The item_code in the structure is set to the item code of the extensions the application is querying the service

about. These can be either extension sets or individual extensions. An item code of null will be ignored. The
flags for the structures that are used on input are;

CMC_X_COM_SUP_EXCLUDE - Exclude this item when deciding whether the implementation supports an
extension set. On logon, do not attach this item to structures for this session even if other entries request that it
be attached. This flag is used only with extension sets.

Recommendation X.446 (08/97) 221

OUTPUT
extension_flags
unchanged
item_data
unchanged
item_reference

The flags in the structures are set by the implementation to indicate support for the extension. These flags will
not be set if CMC_X_COM_SUP_EXCLUDE was set on input. The possible values are listed below.

CMC_X_COM_SUPPORTED - The extension for this item_code is supported. If it is a data extension and is
passed at logon, it will be included with the structures used for this session. For extension sets, the required
function and data extensions in the set are supported.

CMC_X_COM_NOT_SUPPORTED - The item_code is not supported. For extension sets, not all required
function and data extensions for the set are supported. If this is a data extension or an extension set containing
data extensions, the data will not be attached to structures for this session.

CMC_X_COM_DATA_EXT_SUPPORTED - For extension sets only. This can be returned by the
implementation to indicate that all the required data extensions for the set are supported, but not all of the
required function extensions. As with CMC_X_COM_SUPPORTED, if this is returned amihédogon()

call, the data extensions will be included with the data structures for this session.

CMC_X COM_FUNC_EXT_SUPPORTED - For extension sets only. This can be returned by the
implementation to indicate that all the required function extensions for the set are supported, but not all of the
required data extensions. Unlike CMC_X_COM_SUPPORTED, if this is returned amthéogon() call,

the data extensions available will NOT be included with the data structures for this session and will need to be
requested explicitly.

B.1.1.2 CMC_X Ul _ID_EXT

This extension is used by client applications to specify platform-specific user interface information to the CMC
functions. The user interface information may be used by the CMC implementation to present user dialogues for
resolving additional arguments to the CMC call or any other questions that arise when the service performs the function.
For example, in a windows-based environment, this would be the parent-window handle for the calling application.

NOTE — The CMC implementations are not required to provide Ul, and providing a user interface for one feature does nityt necessar
imply that a user interface is available for all features of the CMC.

Error codes generated as aresult of the use of this function extension will be returned as error codes through the nominal
return code process.

USED BY

All Full CMC functions
INPUT

extension_flags

All CMC flags are valid. Unspecified flags should always be passed as zero (0). Additional flags used by this
function include the following:

CMC_X_ERROR_UI_ALLOWED

222 Recommendation X.446 (08/97)

CMC_X_ERROR_UI_ALLOWED - Set if the function may display Ul on encountering recoverable errors. If
not set, the function may not display a Ul and will return an error code. This flag is valid for all CMC
functions that support this extension.

item_data
zero
item_reference

A pointer to an identifier for a User Interface (e.g. dialogue window) for use in resolving any questions which
might otherwise result in an error and queries the user for additional information as required.

OUTPUT
extension_flags
unchanged
item_data
unchanged
item_reference

unchanged

B.1.1.3 CMC_X_COM_CONFIG_DATA
Get all values available wittmc_query_configuration() in a structure.
USED BY
cmc_query_configuration()
INPUT
extension_flags
All CMC flags are valid. No further flags are defined.
item_data
zero
item_reference
NULL
OUTPUT
extension_flags
CMC_EXT_OUTPUT will be set if a structure is successfully returned.
item_data
unchanged
item_reference

Pointer to a structure containing all the information available from the query configuration call. The
C declaration for this structure is below:

typedef struct {

CMC ui nt 16 ver _spec;

CMC uint 16 ver i nplem

CMC object _identifier *character_set;
CMC_enum line term

CMC string defaul t _service;
CMC string defaul t _user;

Recommendation X.446 (08/97) 223

CMC_enum req_password;

CMC_enum req_service;
CMC_enum reg_user;

CMC _bool ean ui _avail;
CMC_bool ean sup_nonknsgr ead;
CMC _bool ean sup_counted_str;

} CMC_X COM configuration;

The definition for each of the structure members corresponds to the data returned via the reference argument by
cmc_query_configuration() for the similarly named value of the item argument. This structure should be freed with one
call tocmc_free().

B.1.14 CMC_X_COM_PROPERTY_HINTS
This function extension provides cmc _list_objects() with a hint as to what properties the caller will need in the near
future. This hint allows implementations to optimize the retrieval of properties by getting all of the hinted at properties at
onetime.
USED BY

cmc_list_objects()
INPUT

extension_flags

All CMC flags are valid. Unspecified flags should always be passed as zero (0). No additional flags are
defined.

item_data

The number of CMC property namesin the array of structures pointed to by item_reference.

item_reference

A pointer to an array of CMC property names. These ids specify the propertiesthat are being hinted at.
OUTPUT

extension_flags

unchanged

item_data

unchanged

item_reference

unchanged

B.1.1.5 CMC_X_COM_CAN_SEND RECIP
Check if the message serviceis ready to send to the specified recipient.
USED BY
cmc_look_up()
INPUT
extension_flags
All CMC flags are valid. No further flags are defined.
item_data
zero

224 Recommendation X.446 (08/97)

item_reference
NULL

On input, the cmc_look_up() recipient_in parameter will contain the recipient to query the service about. The
extension will only look at the first recipient, if there is more than one passed.

OUTPUT
extension_flags
unchanged
item_data

Set to CMC X _COM_NOT _READY if a transport is not avalable for this recipient type,
CMC_X_COM_READY if the recipient can be sent to immediately, and CMC_X_COM_DEFER if the
message will be accepted but deferred until atransport is ready.

item_reference

unchanged

B.1.1.6 CMC_X_COM_SAVE_MESSAGE
Save a message structure to the inbox.
USED BY
cmc_act_on()
INPUT
extension_flags

Must contain CMC_EXT_REQUIRED to indicate that the save action rather than the delete action should be
carried out. All CMC flags are valid. No further flags are defined.

item_data
zero
item_reference

Pointer to message structure to save in the inbox. This message will have the CMC_MSG_UNSENT flag set
by the CMC implementation to indicate that it has not been sent.

On input, the cmc_act_on() operation parameter must be set to CMC_ACT_ON_EXTENDED to indicate that
the operation is contained in the extensions.

OUTPUT
extension_flags
CMC_EXT_OUTPUT will be set if amessage is successfully saved and the message reference returned.
item_data
unchanged
item_reference

Pointer to the message reference referring to the message saved to the inbox. This pointer must be freed by
cmc_free().

B.1.17 CMC_X_COM_SENT_MESSAGE

Return a message structure containing al the information for the message just sent. This is useful to obtain information
in the message structure set with Ul rather than by the calling application.

Recommendation X.446 (08/97) 225

USED BY
cmc_send()
INPUT
extension_flags
All CMC flags are valid. No further flags are defined.
item_data
zero
item_reference
NULL
OUTPUT
extension_flags
CMC_EXT_OUTPUT will be set if theitem_reference contains a pointer to a message.
item_data
unchanged
item_reference

Pointer to a message structure containing all the information for the message just sent. This pointer should be
freed with cmc_free().

B.1.1.8 CMC_X_COM_PROP_STATUS

This function extension indicates that the operation performed should return per-property status. An error resulting from
an attempted property modification or deletion is called a property problem. If an operation that affects multiple
properties encounters problems that prevent it from processing some of these properties, this extension allows the caller
to receive reports about the property problems.

USED BY
cmc_add_properties()
cmc_delete_properties()
INPUT
extension_flags

All CMC flags are valid. Unspecified flags should always be passed as zero (0). No additional flags are
defined.

item_data
zero
item_reference
NULL
OUTPUT
extension_flags
The CMC_EXT_OUTPUT flag is set if any property problem information is reported.
item_data
Count of itemsin the array pointed to by item_reference. Zero if no property problems are reported.

226 Recommendation X.446 (08/97)

item_reference
Pointer to an array of structures listing the property problems reported. The C declaration for the structureiis:

typedef struct {

CMC_ui nt 32 i ndex;
cMCid id;
CMC-return_code error_code;

} CMC_X COM prop_problem
where:

« index specifies the index of the involved property in the input properties or property_ids array of the
function;

* id specifiesthe involved property;
e error_code specifies the error encountered when processing the request for that property.
The array is allocated by the service and should be freed with acall to cmc_free().

When this extension reports property problems, the function returns the error code
CMC_E PROPERTY_PROBLEMS. In this case, any property that is not mentioned as reporting a problem
can be assumed to have been processed successfully.

ERRORS

B.1.2

B.1.2.1

CMC_E DISK_FULL
CMC_E_FAILURE
CMC_E_INSUFFICIENT_MEMORY
CMC_E_INVALID_ENUM
CMC_E_INVALID_MEMORY
CMC_E_REQUIRED_PROPS MISSING
CMC_E_SERVICE_UNAVAILABLE
CMC_E_TEXT _TOO _LARGE
CMC_E_UNRECOGNIZED_MESSAGE_TYPE
CMC_E_UNSUPPORTED_ACTION
CMC_E_UNSUPPORTED_CHARACTER SET
CMC_E_UNSUPPORTED_FLAG

Data extensions

CMC_X_COM_TIME_RECEIVED

Data extension for atime structure for the delivery time of the message.

At logon, the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate that this data member should
be attached to the message and message summary structures during the session.

USED BY

INPUT

CMC_message
CMC_message_summary

This extension isignored on input of message structure.

OUTPUT

extension_flags
NULL
item_data

zero

Recommendation X.446 (08/97) 227

item_reference

Pointer to a time structure indicating the receive time for the message. See the CMC_time structure for more
information.

B.1.22 CMC_X_COM_RECIP_ID

A data extension to add a unique opaque recipient identifier to the recipient structure. This is provided by the
implementation during recipient name resolution and can be used to avoid further name resolution during send in some
services. Thisis analogous to the message reference.

At logon, the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate that this data member should
be attached to the recipient structure during the session.

USED BY
CMC recipient
INPUT
extension_flags
All CMC flags are valid. No further flags are defined.
item_data
length of the recipient id
item_reference
pointer to the recipient id
OUTPUT
extension_flags
unchanged
item_data
length of the recipient id
item_reference

pointer to the recipient id

B.1.23 CMC_X_COM_ATTACH_CHARPOS

Data extension to support display of a graphic representation of the attachment in the message text note. The extension
holds the character position for the representation.

At logon, the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate that this data member should
be attached to the attachment structure during the session.

USED BY
CMC_attachment
INPUT
extension_flags
All CMC flags are valid. No further flags are defined.
item_data

Zero-based character offset of the attachment within the text_note data.

NOTE — This is a character offset rather than a byte offset, which is an important distinction when multi-byte character sets
are in use.

item_reference
NULL
228 Recommendation X.446 (08/97)

OUTPUT
extension_flags
unchanged
item_data
Zero-based character offset of the attachment within the text_note data.
item_reference

unchanged

B.1.24 CMC_X_COM_PRIORITY
Data extension for message priority.

At logon, the item code is passed in the CMC_X_COM_SUPPORT_EXT array to indicate that this data member should
be attached to the message structure during the session.

USED BY

CMC_message
CMC_message_summary

INPUT
extension_flags
All CMC flags are valid. No further flags are defined.
item_data

Set to CMC_X_COM_URGENT, CMC_X_COM_NORMAL, or CMC_X_COM_LOW, depending on the
urgency of the message.

item_reference
NULL
OUTPUT
extension_flags
unchanged
item_data

Set to CMC_X_COM_URGENT, CMC_X_COM_NORMAL, or CMC_X_COM_LOW, depending on the
urgency of the message.

item_reference

unchanged

B.2 Extension set C declaration summary

This subclause lists the declarations that define the CMC interface for the common extensions set in the C programming
language.

The declarations assembled here constitute the contents of a header file to be made accessible to application
programmers. They are included in the header file <xcmcext.h>. The symbols the declarations define are the only
symbols the service makes visible to the application.

/* COVMON EXTENSI ONS DECLARATI ONS */

/* EXTENSI ON SET I D */

#defi ne CMC_XS _COM ((CMC_ui nt32) 0)
/* FUNCTI ON EXTENSI ONS */

/* Query for extension support in inplenmentation */

Recommendation X.446 (08/97) 229

#def i ne CMC_X_COM SUPPORT_EXT ((CMC_ui nt 32) 16)

typedef struct {
CMC _ui nt 32 i tem code;
CMC fl ags fl ags;
} CMC_X COM support;

#defi ne CMC_X_ COM _SUPPORTED ((eMc_flags) 1)
#defi ne CMC_X COM NOT_SUPPORTED ((cMmc_flags) 2)
#defi ne CMC_X COM DATA EXT SUPPORTED ((CMC fl ags) 4)
#defi ne CMC_X COM FUNC _EXT_ SUPPORTED ((CMC fl ags) 8)

#defi ne CMC_X_COM_SUP_EXCLUDE ((omC_flags) 16)
/* Get back a structure with configuration data */
#defi ne CMC_X_COM_CONFI G_DATA ((CMC_uint32) 17)
typedef struct {
CMC uint 16 ver _spec;
CMC ui nt 16 ver _inplem
CMC obj ect _identifier character_set;
CMC_enum line term
CMC string default _servi ce;
CMC string defaul t _user;
CMC_enum req_password;
CMC_enum req_service;
CMC_enum reg_user;
CMC _bool ean ui _avail;
CMC_bool ean sup_nonknsgr ead;
CMC _bool ean sup_counted_str;

} CMC_X COM configuration;

/* Check to see if a recipient can be sent */

#defi ne CMC_X COM CAN SEND RECI P ((CMC_ui nt32) 18)
#defi ne CMC_X_COM_READY ((eMc_enum 0)
#def i ne CMC_X_COM NOT_READY ((eMc_enum 1)
#defi ne CMC_X_COM DEFER ((eMc_enum 2)

/* Save a nessage to the inbox */

#defi ne CMC_X_COM _SAVE_MESSAGE ((CMC_ui nt32) 19)

/* Get back a nessage structure for the nessage just sent */
#defi ne CMC_X_ COM SENT_MESSAGE ((CMC_ui nt 32) 20)
/* DATA EXTENSI ONS */

/* attach received data to nessage and nessage summary structures */

#defi ne CMC_X COM Tl ME_RECEI VED ((CMC_ui nt32) 128)
/* attach a unique id to resolved recipient structures */
#define CMC_X COM RECIP_ID ((CMC_ui nt32) 129)

/* set character position in the nmessage text to display an icon
associated with a particular attachnment */

#define CMC_X_COM ATTACH_CHARPOS ((CMC_ui nt32) 130)
#define CMC_X COM PRI ORI TY ((CMC_uint32) 131)
#defi ne CMC_X_COM NORMAL ((eMc_enum 0)
#defi ne CMC_X _COM LOW ((eMC_enunm) 1)
#define CMC_X_ COM URGENT ((eMc_enum 2)

B.2.1 X.400 extension set

The following extension set identifiers are being registered with XAPIA for X.400 usage:

#define OMC_XS_X400 ((CMC_ui nt 32) 0x00000600)
#define OMC_X_X400_ERROR ((CMC_ui nt 32) 0x00000601)
#define OMC_X_X400_MSG_PARENT ((CMC_ui nt 32) 0x00000602)

230 Recommendation X.446 (08/97)

#define OMC_X_X400_MSG | D ((CMC_ui nt 32) 0x00000603)
#defi ne CMC_X_X400 MSG REPORT | D ((CMC_ui nt 32) 0x00000604)
#defi ne OMC_X_X400_REPORT ((CMC_ui nt 32) 0x00000605)

B.2.1.1 CMC_Report structure
Thefollowing "C" structureis being used in the CMC_X_X400_REPORT extension:
typedef struct {

CMC r eci pi ent *meg_recipient;
CMC_enum report_type;
CMC tinme delivered_tine;
CMC_ui nt 32 reason_code;
CMC fl ags report flags;

} CMC report;

/* report_type */
#def i ne CMC_X400_DR ((CMC_enum 0)
#def i ne CMC_X400_NDR ((CMC_enum 1)

/* report_flags */
#def i ne CMC_REPORT_LAST_ELEMENT ((CMC fl ags) 0x80000000)
B.2.1.2 Error codes CMC_EX X400 STD

A new error code is defined to further qualify that a CMC function’s failure is due to an X.400 exception/abort/error
condition. This code will be used in the higher-order 16 bits of the CMC return_code to indicate that the error is
associated with the Recommendation X.400-X.420 (1988) messaging services.

The"C" definition of thiserror is:
#defi ne CMC_EX X400_STD ((CMC_ui nt16) 400)

Thus, if the CMC implementation wishes to classify an error condition that is caused by the underlying X.400 message
service and optional X.400 related CMC_extensions will be returned, the CMC_return_code can be set to the following:

CMC return_code.<lower order 16 bits>
CMC return_code.<higher order 16 bits>

CMC_E_FAILURE, or the most appropriate error
CMC_EX_X400_STD

B.2.2 Additional extensionsfor simple CM C/X400 mapping

B.221 CMC_X_X400 ERROR

If the CMC function fails because the underlying X.400 operation is not successful, the error resulted from the X.400
operations is returned to the CMC application so that it can find out the root cause of the error. This extension contains
specific errors that are defined by the Recommendation X.400-X.420 (1988). See the related document for the
explanation and value of the error.

NOTE — If the CMC application wants the CMC implementation to return this extension should an X.400 error occur, therapplicatio
must supply the storage of this extension when the CMC function is invoked; otherwise, the CMC implementation cannas return thi
extension because the extension argument of each CMC function is only an address to where the buffer has been allocated by the
application. Unless the CMC V1.0 specification is modified to allow the function extension argument to be an input and output
argument, the other alternative is that the CMC implementation supplies a new Errorinfo function for the application tioeobtain
error detailed in this extension after a CMC function has been failed with an X.400 related error.
USED BY

cmc_act_on(), cmc_list(), cmc_logon(), cmc_logoff(), cmc_read(), cmc_send()
OUTPUT

item_code

CMC_X_ X400 ERROR

item_data

item_data.<higher order 16 bits> = X.400 defined operation number

item_data.<lower order 16 bits> = X.400 defined return codes of the operation

Recommendation X.446 (08/97) 231

item_reference

NULL

extension_flags

All CMC flags are valid. No further flags are defined.

B.2.22 CMC_X_X400 MSG_PARENT

X.400 Message Store supports nested messages using the parent and child messages concept. For example, a body part
of an IPM that contains a forwarded IPM, the forwarded IPM is a child message and the forwarding IPM is the parent
message, or, the content of a report, a returned |PM is the child message and the report itself is the parent message. A
new extension will be used to allow the application to determine whether a message is a parent or a child.

Identification used to indicate whether the message reference of the CMC_message or CMC_message_summary is an
X.413 parent message or child message. If the associated message is a parent message, this extension will not be
returned.

USED BY

CMC_message and CMC_message_summary
OUTPUT

item_code

CMC_X_X400 MSG_PARENT

item_data

X.413.parent-sequence-number for child message

item_reference

NULL

extension_flags

All CMC flags are valid. No further flags are defined.

B.223 CMC_X_X400 MSG_ID

When sending a message, X.400 creates a unique identifier for this message, an MTS identifier. This identifier is used
for message tracking and to report delivery/non delivery of a message. Thisidentifier is returned to the CMC application
via the message ID extension when reading, listing, or sending a message. Thus the application can respond to or
reference a particular message with the appropriate action.

A unique identification of a message that is given by the underlying messaging service when the CMC application is
either reading, listing, or sending a message.

USED BY
CMC_message, CMC_message_summary, and cmc_send().
Reading and listing a message:

When a message structure (or a message summary structure) is returned to the user after a call to cmc_read()
(or emc _list()), the message ID extension is attached to the structure. The item_data for the message ID
extension isinsignificant and is hence 0. The item_reference points to a CMC_string structure allocated by the
service and contains a readable format of the unique MTS identifier.

Sending a message:

When the user sends a message using cmc_send(), the CMC service has the capability of returning to the
caler the MTS identifier allocated for that message in the send extension structure, if the caller allocates
memory for the extension template with the item code of CMC_X X400 MSG_ID. If this extension is
missing, the CMC service will not return the MTS identifier. The CMC service returns the MTS identifier by
allocating a CMC_string with the required data and attaching a pointer to this data to the item_reference. The

232 Recommendation X.446 (08/97)

extension_flags are set with CMC_EXT_OUTPUT on. This indicates to the caller that item_reference should
be freed using cmc_free() after making use of it.

OUTPUT
item_code
CMC_X_X400 MSG_ID
item_data
NULL
item_reference
pointer to CMC_string of MTS identifier
extension_flags

All CMC flags are valid. No further flags are defined.

B.2.24 CMC_X_X400 MSG_REPORT_ID

When reading a delivery or non-delivery report, the underlying messaging service returns a unique identifier for the
report (MTS identifier); thisis different from the original message that the report is about.

A unique identifier of a delivery or non-delivery report that is given by the underlying messaging service when that
report is being read by the application.

USED BY
CMC_message
OUTPUT
item_code
CMC_X_X400 MSG_REPORT_ID
item_data
NULL
item_reference
pointer to cmc_string of areadable format of the unique MTS identifier
extension_flags

All CMC flags are valid. No further flags are defined.

B.225 CMC_X_X400 REPORT

This is used to convey the specific X.400 delivery or non-delivery information to the CMC application when the
information base to be returned is an X.400 report. This extension is returned as the message extension of the
CMC_message.

Return of specific delivery or non-delivery report information that is defined by Recommendation X.411 (1988). See the
related document for the explanation and value of the reason codes and diagnostic codes.

USED BY
CMC_message
OUTPUT
item_code
CMC_X_X400 REPORT
item_data
NULL
Recommendation X.446 (08/97) 233

item_reference
pointer to the CMC_report structure
extension_flags
All CMC flags are valid. No further flags are defined.
B.23 Other extension sets
Other extension sets will be defined by the XAPIA and by vendor groups to support various messaging protocols.

Currently extension sets are being defined for use with G3 facsimile, G3-64 facsimile, G4 facsimile, telex and Teletex
service via Recommendation T.611. To find out what extension sets are available, contact the XAPIA.

B.2.4 Platform-specific information including run-time bindings

CMC implementors are encouraged to provide run-time binding interfaces to their CMC service implementations. In
general, these interfaces are platform- and/or operating system-dependent. This subclause provides severa genera
requirements and platform-specific requirements for several common platforms and operating systems.

Unless specified otherwise below, the following definitions apply to all platforms:

byt e CMC sint8

16 bit int CMC sint16

32 bit long int CMC sint 32

16 bit unsigned int CMC_ui nt 16

32 bit unsigned long int CMC uint32

32 bit pointer CMC_buf f er

32 bit char pointer CMC string
CMC_ui nt 32 CMC ui _id

CMC _ui nt 32 CMC session_id

B.24.1 Explicit and implicit binding

All functions in the CMC API should be linkable implicitly and explicitly. Implicit linking builds the linkage of the
application and the CMC service implementation into the application. Explicit linking requires the application to contain
run-time code that links a CM C service implementation.

It is aso recommended that all extension functions be loaded explicitly, since their absence on some CMC
implementations would otherwise prevent the application from loading.

Static and dynamic linking mechanisms are defined for several common platforms below.

B.2.4.2 AppleMacintosh binding

For static linking, applications should use the Pascal calling convention and 32-bit flat pointers to call an Apple
Macintosh CMC implementation.

For dynamic linking, contact Apple Computer, Inc.

The CMC implementation should always attempt to provide Apple Internationa Strings (ISTRING).

B.24.3 MS-DOSbinding

For static linking, applications should use "far" calls, the C calling convention, and 32-bit segmented "far" pointers to
cal an MS-DOS CMC implementation. This is compatible with the Microsoft C "large" memory model. Any future
changes to this mechanism will be published by Microsoft.

The CMC implementation should always attempt to provide code page 437 or 850.

B.2.4.4 MSWindows 3.x binding

For dynamic linking, MS-Windows 3.x CMC implementations should use Dynamic Linked Libraries and link by name
to the CMC functions.

234 Recommendation X.446 (08/97)

At run-time, to determine if a CMC service is available, applications should call GetProfilelnt() to look for the CMC
variable in the [MAIL] clause of WINL.INI. If this variable is present and non-zero, it indicates that a CMC.DLL library
is available. If the CMC variable is not found or is zero, then the functions cannot be called. Any future changes to this
mechanism will be published by Microsoft.

CMC functions should be called "far", using the Pascal calling convention, and 32-bit segmented "far" pointers.

CMC structures will be aligned to every 4-byte (32-bit) boundaries. This will not apply to the byte fields in the time
structure or the counted string structure.

The CMC implementation should always attempt to provide code page 1252.

B.245 MSWindowsNT binding

For dynamic linking, MS-Windows NT CMC implementations should use Dynamic Linked Libraries and link by name
to the CMC functions.

At run-time, to determine if a CMC service is available, applications should query the registry to see if CMC is
available. The exact mechanism for this will be published by Microsoft.

CMC functions should be called using the STDCALL calling convention.

B.246 0S21.xand 2.x 16-bit DLL binding

For dynamic linking, OS/2 1.x and 2.x 16-bit CMC implementations should use Dynamic Linked Libraries and link by
name to the functions.

At run-time, to determine if a CMC service is available, applications should call WinQueryProfilelnt() to look for the
CMC variable in the [MAIL] clause of OS2.INI. The variable will indicate whether the DLL is 16-bit or 32-bit. If this
variable is present and non-zero, it indicates that a CMC.DLL library is available. If the CMC variableis not found or is
zero, then the functions cannot be called. Any future changes to this mechanism will be published by IBM.

CMC functions should be called "far", using the System calling convention, and 32-bit segmented "far" pointers.

The CMC implementation should always attempt to provide code page 850.

B.24.7 0S22.032-bit DLL binding

For dynamic linking, OS/2 2.0 32-bit CMC implementations should use Dynamic Linked Libraries and link by name to
the functions.

At run-time, to determine if a CMC service is available, applications should call WinQueryProfilelnt() to look for the
CMC variable in the [MAIL] clause of OS2.INI. The variable will indicate whether the DLL is 16-bit or 32-bit. If this
variable is present and non-zero, it indicates that a CMC.DLL library is available. If the CMC variableis not found or is
zero, then the functions cannot be called. Any future changes to this mechanism will be published by IBM.

CMC functions should be called "far", using the System calling convention, and 32-bit flat "far" pointers.

The CMC implementation should always attempt to provide code page 850.

B.24.8 UNIX SVR4 binding

For dynamic linking, implementations should comply with the UNIX System V Release 4.0 System V Application
Binary Interface (ABI) specification and link by name to the functions.

At run-time, to determine if a CMC service is available, applications should look for the CMC implementation on the
absolute path /usr/lib/XAPI/libCMC.so. The implementation for the system will be placed in this location. Any future
changes to this mechanism will be published by your UNIX vendor.

CMC functions and structures should use the System calling convention.

The CMC implementation should always attempt to provide code page 850.

Recommendation X.446 (08/97) 235

B.25 Simple CMC usage of X.400 backbone services

This subclause describes how Common Messaging Call (CMC) API version 1.0 functions are mapped to an underlying
X.400 message handling system on the Message Store (MS) boundary, and how CMC messages are mapped to the
X.400 messages. This Recommendation does not address the following:

X.500 directory (address) mapping, which can be accessed viathe cmc_look_up.

The User Interface (Ul) dialogue, which is an option in the cmc_send_documents() function, as this is not
basic to the interaction between the CM C (messaging-enabled application) and the X.400 messaging system.

This Recommendation assumes the reader is familiar with the Remote Operation Service Element (ROSE) and P1, P2,
P22, P3, and P7 protocols and service elements, as well as the specifications and objectives of the CMC APl version 1.0.
The following Recommendations are referenced:

— Recommendations X.200-X.219 (OSI Model and Notation, Service Definition);

— Recommendations X.220-X.229 (OSI Protocol Specifications);

— Recommendations X.400-X.420 (1984 X.400 MHS);

— Recommendations X.400-X.420 (1988 X.400 MHS);

— Recommendation F.401 (1988), Annex B (Representation of O/R Addresses for human usage) or its aligned
equivalent;

— ISO/IEC 10021-2:1990/Amd.1, Annex F (Representation of O/R Addresses for Human usage);
— XAPIA CMC API version 1.0;

— XAPIA CMC API version 2.0.

The mapping between CMC version 1.0 and X.400 described in this Recommendation is done with two objectives:

* Inline with the simple and high level objectives of CMC 1.0, the mapping does not utilize the full set of the X.400
features and so only a basic profile is recommended.

» Balance the major concern of interoperability between different CMC version 1.0 implementations using any of a
variety of X.400 messaging systems as a message transport.

B.2.5.1 Introduction

The Common Messaging Call Application Program Interface (CMC API) provides a set of high-level functions for
messaging-enabled applications to send and receive electronic messages. This interface requires support by messagin
services. A major messaging service is OSl's X.400 Message Handling System (MHS). This Recommendation is
directed to those who wish to integrate the CMC API with the X.400 MHS.

For each CMC implementation, the view and capabilities presented by CMC must be mapped to the view and
capabilities of the underlying messaging service. To maximize interoperability between CMC applications that use
different underlying messaging services, XAPIA offers several guidelines. Message strings are to be mapped to
international character sets wherever possible and message attachment types are to be mapped to commonly recognize
attachment types wherever appropriate or possible.

To achieve this mapping, the characteristics of the underlying message service (MHS) must be understood and used in
the most appropriate manner. The rest of this Recommendation provides the following discussion:

e Ahigh level overview of Recommendation X.400.
* A general discussion in using simple CMC API over the X.400 messaging service, such as options, considerations,
and possible extensions to support a richer set of functionality for messaging-enabled applications and messaging-

reliant applications.

* A basic mapping profile for simple CMC API that gives simple interoperability for sending and receiving messages
across a variety of X.400 MHS communication services.

236 Recommendation X.446 (08/97)

B.2.5.2 X.400 high-level overview

The message handling services provided by X.400 Message Handling System include an Interpersonal Messaging (1PM)
service and a message transfer service. These services enable subscribers to exchange messages on a store-and-forward
basis. The Message Handling Service defines a set of message types and capabilities that an originator can send to
recipients.

An originator prepares a message with the assistance of a User Agent (UA). The User Agent is an application that
interacts with the Message Transfer System (MTS) to submit messages. The Message Transfer System (MTS) consists
of a number of Message Transfer Agents (MTAS). Operating together, these MTAS relay the message to the intended
recipient User Agents that then make the message available to the intended recipients.

The 1988 version of X.400 included an optional Message Store (MS). A user can submit messages through the Message
Store and receive messages that have been delivered to that Message Store. The Message Store acts only on behalf of
individual users.

Submission and Delivery with a Message Store

Indirect
Submission Submission
User P> Message Message
Agent Retrieval Store Delive Transfer
< < i Agent

T0727000-96/d06

The operations between an MS and the MTS correspond to the P3 protocol. The operations between a UA and the MS
correspond to the P7 protocol. The P7 operations are:

* Retrieval service (Summarize, List, Fetch, Delete, Register-M S with a possible asynchronous signal, and Alert).

e Indirect-submission uses the submission services of X.411 (message-submission, probe-submission, cancel-
deferred-delivery and submission-contral).

» Administration services (register and change credentias).

e To connect and disconnect the MS services, the MS-Bind and MS-Unbind operations are used. The bind operation
is used to identify, authenticate, and set the security context for an M S service user.

The P7 operations are invoked by the UA using the Remote Operation Service Element (ROSE, defined in
Recommendations X.219 and X.229). The ROSE model consists of request and reply interaction. This allows the UA
application to request a P7 operation and obtain the result of that P7 operation.

B.2.5.3 General approach and considerations

This subclause presents a generic view of mapping CMC v1.0 (also known as Simple CMC v2.0) to X.400 MHS and
some of the possible considerations and options. The discussion does not address the human interface because the
messaging-enabled applications are viewed as being capable of running without human interaction although they could
be run by user commands or scripts. This means that the applications do not require a graphical user interface and can be
run as background processes.

B.2.5.3.1 CMC functions and X.400 M S operations

According to the functional models of CMC v1.0 and X.400 MS, the CMC functions map reasonably well to the MS
services. The CMC Logon and Logoff map to the MS Bind and Unbind. The CMC Send maps to the MS indirect
submission. The CMC Read maps to MS Fetch. The CMC Act On and CMC List are covered by the MS Delete,
Summarize and List.

Recommendation X.446 (08/97) 237

Mail-enabled Mail-enabled

application application
A
i CMC API CMC API ——
v
CMC Service > X.400 Agent X.400 Agent > > CMC Service
4 A
T0727010-96/d07

N A

X.400 Messaging System

Application to Application CMC messaging service

The two purposes of the CMC API are to provide a generic set of messaging capabilities that are independent of any
operating system and to provide a minimum number of function calls needed to send or receive a message. Minimal
function calls and interoperability are key requirements. When mapping the CMC functions to the MS operations and to
implement these requirements, two approaches to a simple function call API can be used below. The choice between
these two styles determines the way the CMC calls are implemented:

— simple CMC call functions and lots of special extensions for the local environment;

— CMC call functions that hide internal complexity and support generic extensions.

B.2.5.3.2 CMC messages and X.400 messages

Much of the work in translating CMC messages to and from X.400 messages involves conversion between the CMC
message structures and X.400 message structures. Thus, the names and addresses of the CMC messaging service ust
need conversion to X.400 user (originator and recipient) names and addresses that are known as O/R names (which
include O/R addresses).

Other parts of a CMC message structure that require conversion are the message_type, the time_sent, the recipients an
the attachments. A CMC message subject is simply an X.400 IPM subject (with some restrictions on length), while the
text_note may require special handling because of differences between Recommendation X.400 and CMC. The CMC
flags, extensions, and other original input parameters are basically used just for assisting the conversion. They are not
sent as part of the X.400 message so that information is in most cases lost when the delivered X.400 message is
converted back to a CMC message for the destination CMC application.

Some conversion, convention, and other choices needed for using X.400 messaging as the underlying message service:
are:

Text conversions

* Character set conversion;

« Name and address conversions.

L ocal operating system and messaging system conventions

» Connection/disconnection conventions;

e Underlying messaging system error awareness;

* Message Store conventions and special requirement conventions.
Outbound message conventions

» Native or generic conventions such as text conversion options;

« End destination special conversions.

238 Recommendation X.446 (08/97)

Inbound message conver sions

e Handling of CMC messages that cannot be handled locally;

» Handling of CMC messages that have parts that cannot be handled locally;

* Handling of bad CMC messages;

* Non-CMC message handling.

Extensions both generic and locally special

e Extensionsto handle aspects of the underlying system that are not CMC generic;
» Extensionsto add special X.400 features such as priority or delivery notification;
» Extensionsto use specific X.400 body parts as attachments;

» Extensionsthat are used to match the sending and destination local systems.

B.2.5.3.3 CMC message attachments and X.400 body parts

The CMC message attachments (text and binary) are equivalent to X.400 body parts. The most appropriate body part for
a CMC message attachment is different for each "version" of Recommendation X.400 (i.e. 1984, 1988, or 1992). The
recommended equivalents are listed below.

CMC ASCII <=> |Abtext

CMC text_noteasafile <=> |AbText Body Part

CMC text attachment <=> 1984 X.400 I|A5Text Body Part
CMC text attachment <=> 1988 X.400 Externally Defined Body Part
CMC text attachment <=> 1992 X.400 File Transfer Body Part

CMC binary attachment <=> 1984 X.400 Bilateraly Defined Body Part
CMC binary attachment <=> 1988 X.400 Externally Defined Body Part

CMC binary attachment <=> 1992 X.400 File Transfer Body Part

B.2.5.3.4 Input/output conventions and requirements

The common almost universal character set used within X.400 is International Alphabet Number 5 (IA5 Text) which is
similar to ASCII but not quite. Such ASCII charactersas"@", "%", and"_" are not in the basic I1A5 but they are in the
International Reference Version (IRV). For display and input purposes, the other (national) versions of A5 require a
conversion convention. The NIST OIW has a conversion algorithm for the interchange of 1A5 text and ASCII text and it
is recommended that this be used if the text that the loca CMC messaging-enabled application deals mainly with is an
IA5 non-IRV version. A similar convention is needed for other character sets such as EBCDIC, |SO 10646, UNICODE,
etc., aswell as ways to handle filenames with embedded blanks that have been passed in through CMC Counted Strings.

The X.400 names and addresses are internally arranged in Recommendation X.400 as a structured set of data objects
similar to but more complex than the CMC recipient’s structure. There is a convention for displaying one's X.400 name
and address on name cards, etc. This convention, together with the other standard display conventions in Annex B of
Recommendation F.401 (that refers to ISO/IEC 10021-2 Annex F), should be used for CMC text string representation of
X.400 recipient addresses. The use of CMC Look Up could provide a simple way to go from a known name such as
"eowens' to either atext string (name)address illustrated below or to a CMC recipient structure.

CMC recipients (originator in CMC_message summary or recipients in CMC_message structures) take
address strings that match those recommended in Recommendation F.401. For example, the CMC_recipient
address string with "S=Owens; G=Edward; P=ccmail; A=telemail; C=US"

Recommendation X.446 (08/97) 239

There will be a need for multiple conventions for name and address representations if a mixture of underlying messaging
systems is supported. The previous illustration assumes that there is only one underlying messaging system (X.400).
Also, with the names and addresses that are passed through the messaging system, there are conversion requirements
when the character sets used in the messaging system do not support the original name and address conventions. If
name@address cannot be passed through except by a convention such as name(a)address in 1A5 display text, then the
reverse convention must be applied at the other end or the convention understood by the recipient. As an example, when
the X.400 address involves domain-defined attributes such as a DDA for an Internet address, then the name and address
could be:

DDA :RFC-882=fred(a)widget.co.uk;O=gateway;P=abc;C=gb

Word size and/or byte ordering conventions can also create problems so that some attachments are unusable, and
numbers are garbled. Normally, the solution to most of these problems is to standardize the contents and formats of what
goes on the wire. However, if what goes on the wire is dependent on the underlying message system and there could be
an unknown number of these used (although not al of them by any CMC messaging-enabled application), then a
different solution is necessary. One simplistic solution is to have the sender messaging-enabled applications be aware of
the receiving messaging-enabled application’s capabilities and tailor the message accordingly. This simplifies transfers
between systems with similar capabilities. An alternative is to send additional information with the message that tells the
receiving system about the sender’ s capabilities and/or the message’ s particular formatting and other specia details.

If special conventions can be set up, then using CMC extensions provides a way of telling both the CMC send
implementations how to pass such information through the underlying messaging system to the CMC read
implementation such that the messaging-enabled application can choose how to read the message. At this time it is
recommended that CMC 1.0 leave this up to local implementation as the issues are best resolved when al the loca
requirements are understood.

B.2.5.3.5 X.400 connecting/disconnecting and M Srequirements

Connecting to or disconnecting from an X.400 underlying service is subject to local variations and also to what service
or interface. The present assumption is that the connection is to the X.413 Message Store. This service encompasses the
CMC requirements and provides additional functionality. The various features and functionality of X.413 interface
require interpretation so that the expected CM C services are provided in an understandable way.

For the X.413 Bind operation to act as a CMC Logon to an X.400 messaging system, then the arguments "user" and
"password" are required to be strings containing the messaging service user name and the password that gives the user
access to the underlying servicee These in X.413 terms are the ORAddressAndOrDirectoryName and
InitiatorCredentials. Assuming only simple authentication is required by the X.413 service, then it is recommended that
"user" be the Recommendation F.401 display text version of the X.400 user name and address.

For non-simple authentication and other X.413 MS Bind input arguments that the user could require, the special CMC
extensions provide a local way to add security context, fetch restrictions and Mail Store configuration requests. Extra
CMC extensions may also be necessary to deal locally with the returned result from the MS Bind call or the returned
Bind errors. The simple choice is to ignore the MS Bind call result and to have CMC_E_FAILURE returned by the
CMC Logon function if the MS Bind returns an error. A different choice is to use an optional CMC extension to report
the associated X.400 error.

Incoming X.400 messages are stored in the Message Store and read either by explicitly requesting a particular (known
number) mail message or by requesting the next "unread" mail item. The attachments will be returned in either a
temporary directory with their attach filenames as filenames or in temporary named files in a directory with some
indication of the sender’s title. Those parts of incoming mail messages that cannot be mapped into the CMC message
structure will be discarded.

The Message Store must have a P7 interface and implement both X.413 features for making inquires about the relevant
contained client mail messages and for delivering requested items and also "X.420" items such as the header and various
Body Parts contained in an X.420 Interpersonal Message’' s contents.

240 Recommendation X.446 (08/97)

The MS Unbind closes the association between the user (or messaging-enabled application) and has no argument, result
or error. Thusa CMC Logoff has no extra complications due to the underlying X.400 messaging service.

Mail-enabled applications (or users) should be aware of a Message Store feature. The Message Store can hold child-
entries beside main-entries for the stored messages. These children are listed as well as their parents but the messaging-
enabled application (or user) can only delete child-entries by deleting their parent entry. Deleting a child-entry does not
work as expected.

B.2.5.4 Message conversion

This subclause discusses the conversion of CMC messages to X.400 messages, the conversion of X.400 messages to
CMC messages, and the conversion of non-CMC X.400 messages.

B.2.5.4.1 Converting CMC messagesto X.400 messages

A CMC message structure includes a message type, a subject, recipient(s) and possibly a note and/or a set of
attachments. The X.400 equivalent of this CMC message is a user Message Protocol Data Unit (MPDU). A 1984 MPDU
has a basic structure of an envelope and content. Additional services are provided to individuals who want to
communicate with others by User Agents (UA). This service is an Interpersonal Messaging System (IPMS) with
assigned content type for those messages. IPM UAs communicate with other IPM UAs. The IPM content is divided into
header and body. So for conversion purposes the CMC message is split up into envelope, header, and body.

The X.400 envelope contains the sender’s identity (name and address), the recipients’ identities, and specific X.400
message envelope details. The IPM header contains the identity of the sender, a set of authorizing users, set of recipient
identities (primary, copy, and blind copy), a subject and other X.400 specific details. The body is a sequence of body
parts. Each body part is one of a set of different types. The most relevant types are IA5Text and Bilaterally Defined
Body Part (Type 14). More relevant types have been defined for later versions (1988 and 1992) of
Recommendation X.400.

Later body part type additions include the Externally Defined Body Part (1988) and the File Transfer Body Part (1992).
These two types are much better for CMC use as more than just the data can be conveyed (and not lost). Thus thereis a
range of choices for the note and the attachments.

CMC message X.400 IPM message
reference | Envelope
sender
type
recipients
subject > P
Content
time_sent
text_note Header
sender
recipients p recipients
p Ssubject
Body
attachments > Body part
flags p| Body part
extensions

T0727020-96/d08

Recommendation X.446 (08/97) 241

Some of the choices are listed below:

* Convert al CMC messages to X.400 (1984) with text (note and attachment) held in IA5Text body parts and
"binary" attachments held in BDBP/Unidentified(Type 14).

» Convert al CMC messagesto X.400 (1988) with text_note in IA5Text and attachments held in EDBP(Type 15).

» Convert attachments depending on year (version) of Recommendation X.400.

e Convert according to a special CMC extension that indicates what X.400 body part to use in every case including
the use of other body parts.

The later versions of Recommendation X.400 have a greater range and choice of body parts. These later body parts are
more closely aligned with the CMC attachment requirements. The 1984 X.400 supported both a text style body part and
an octet string style body part. Both IA5Text and Bilaterally Defined Body parts are only able to carry text or "binary"
strings but not the extra attachment information of attach_title nor attach filename. A convention such as using an extra
body part for the extrainformation is possible but not recommended.

The 1988 X.400-Series discourages the use of the Bilaterally Defined body part and recommends the use of the
Externally Defined body part. The extra capabilities of the externally defined body part permit the attach_title to be
carried with the body part. The 1992 X.400 has defined a File Transfer body part to transfer the contents of a stored file
and, optionaly, its attributes. The contents portion is like the Externally Defined body part while the optional
parameter’s portion carries attributes such as the related-stored-file, contents-type, relationships, and file-attributes. Thus
the File Transfer body part isideally suited for carrying CMC attachments.

The 1984 X.400 is the major supported X.400 messaging system; thus, a compromise is needed. A suggested basic
profile uses the 1984 X.400 body parts and requires that if the later body parts are used, then they can be downgraded to
be equivaent to the 1984 body parts. Also, those X.400 messaging-enabled applications that use the more advanced
body parts must be able to accept the basic profile set in their place. This means that attach_titles require an automated
substitution at the receiving end because they are not transferred.

X.400 Message Handling Systems require a set of mandatory attributes as part of a message submission. Among these
mandatory inputs is that of originator, the ORName of the sender. Thisis aso required for the MS Logon so that if the
CMC message's recipients do not include one with arole of CMC_ROLE_ORIGINATOR, then the "user" from the MS
Logon parameters shall be used as a default. A recipient name is also required and the message submission should be
rejected if oneis not supplied.

The X.400 message that is sent as an Interpersonal Message (IPM) must have its content-type set to interpersonal-
messaging-198(4 or 8). Other mandatory X.400 mandatory attributes should be supplied either as a default (Priority set
as normal) or the PerMessagel ndicators set with bits indicating no disclosure of recipients alowed, implicit conversion
prohibited, no aternate recipient, and no return of content. Also another mandatory input attribute should request the
OriginatorReportRequest bits set to indicate a non-delivery report.

To support the use of the most appropriate body part or to add other X.400 attributes to a message, the use of optional
CMC extensions is recommended. They are discussed in the later subclause. However, for initial and basic use of the
X.400 messaging service, the basic profile that does not require extra extensions is recommended as this leads to
interoperability but not the best interchange between two messaging-enabled systems that support each other’s
extensions.

B.2.5.4.2 Converting X.400 messagesto CM C messages

X.400 messages come in a variety of types and versions. The mgjor type and size that is appropriate for CMC is the
Interpersonal Message (IPM); however, an X.400 Message Store can hold any sort of X.400 message including damaged
ones. The mgjor varieties are messages, probes and reports. Within messages are "P1" messages, Interpersonal Messages
(IPMs) and other "P2" messages such as X.435 EDI messages. The IPMsinclude notifications (IPNs) and versions based
on 1984, 1988, and 1992 standards.

242 Recommendation X.446 (08/97)

Several simple choices are easily made:
» The CMC user seesboth "CMC" and other X.400 messages held in the Message Store.
e TheCMC user can aso partially read the other X.400 messages.

e The CMC user can delete those other messages (except when they are children of others).

The conversion of CMC messages into X.400 messages has been described in the previous subclause. Thus the
conversion back to CMC messages is fairly straightforward apart from any information that is lost in the process. For
example, the 1984 X.400 body parts used to carry attachments cannot carry the attach_name also so that islost.

X.400 IPM message CMC message
Envelope reference
sender
L p| type
recipients
P —Jp»| subject
Content time_sent
Header > text_note
sender
recipients > recipients
subject
Body
Body part
p attachments
Body part ’7 flags
extensions

T0727030-96/d09

The reports that are generated by delivery or non-delivery of a"CMC" X.400 message appear as reports in the sender’s
Message Store. At the request of the originator, the report will contain the returned |PM that is non-deliverable. It is also
possible that an X.400 report will contain a delivery report for some recipients and non-delivery report for other
recipients depending on the point of failure. From the MS point of view, both the DRs and NDRs are part of the report
that is quite different from the point of view of CMC. These need to be converted in a suitable way so that a CMC user
can correlate that report with the message that was sent.

Other X.400 messages that are in the Message Store might be "CMC" messages sent by other CMC users that have a
different method of converting their CMC messages to X.400. Thus a whole range of possible conversions needs to be
handled. Whatever method chosen should allow the receiving user to choose to either ignore the conversion, accept part
of it, or accept al of it, as there are other facilities for conversion available.

There are additional problems surrounding the downgrading and upgrading or other X.400 conversions of X.400
messages. All this means that either there are a few straightforward imports from a "non-CMC" X.400 message into a
CMC message that would enable a CMC user to "see" that message or a complex set of rules. For simple conversions,
IA5Text body parts are either notes or text attachments. All other body parts could be classed as "binary" and the CMC
user left with "type" and perhaps "title" as clues to the attachment'’s contents. All messages that are not convertible could
be indicated by text in the subject line.

Often the local X.400 version (1984, 1988, or 1992) would be the major factor in whether an X.400 message or an |PM
body part is convertible. The type of a message or a body part could be used to discard that element and replace with an
indicator to the CMC user.

Recommendation X.446 (08/97) 243

A simple convention is recommended for the basic (minimal) profile. The message sending side’s profile has the non-
delivery report request set so that reports can appear in the Message Store. As the major information contained in the
report is whether the message was delivered or not, then only this needs to be returned to the messaging-enabled
application. Thus a required conversion is the substitution of a report by a message containing the text_note of "this
message was (not) delivered" along with the recipients, etc.

Other conversions will be needed if the content-type is for a different version (X.400 year) and the body parts are not the
ones expected. For example, a Bilaterally Defined body part in place of an Externally Defined Body Part or a File
Transfer body part in place of an IA5Text body part. Although conversion from one body part to another in these cases
requires extra code, the conversion rules are simple.

B.2.5.4.3 Converting non-CM C/X.400 messages

When a messaging-enabled application or its user has an X.400 address, the X.400 Message Store will store any X.400
message such as an EDI message, |PM, or report that is sent to that address. Thus the user can send many messages that
are not CMC-originated messages or are CMC messages that use different conventions that the local CMC mail system
cannot handle. To deal with these issues, there needs to be a set of conventions on what is discarded, on what is partialy
converted so that the user knows some of the message’ s details and what parts can be substituted or omitted.

Simple conversion possibilities are:

* All non-CMC messages are discarded when they are "read" by a CMC application.

» All CMC messages in a different form (such as a PEM message as an X.400 P22 body part) that cannot be handled
by the local system (e.g. 1984 X.400-based) are discarded. Those body parts that the local CMC and X.400
implementation can deal with are replaced by either asimple text_note, a character string file, or a"binary" file.

e Convert al unknown body parts into a partialy usable file form by using a simple display conversion of all

printable characters as is and converting all non-printable characters into a display form of "Vhex"hex™ so that a
"user" can determineif that fileis salvageable.

As before, special optional CMC extensions can be used to convey extra information back to the messaging-enabled
application or to provide hints and requests to the CMC Read function on how to convert or interpret various attributes
and body parts in the received message. As well as handling strange messages, the local CMC interface should have
conventions dealing with error returns coming from the underlying messaging system. The issue is whether those
messaging system errors are passed up to the CMC messaging-enabled application or not. And, if so, then in what form:
either converted to acommon CMC error convention, or |eft in their base form?

Underlying messaging error choices are:

* Replacewith CMC_E FAILURE on cdlls, else, ignore.

» If present, put raw error into a special X.400 error CMC extension.

. Convert error to astandard CMC extension for communication errors.

B.25.4.4 ExtraCMC extensions

There are many things that could be done with extensions. The following list isaquick sample:

e extensionsto select which of several underlying messaging systemsto use;

e extensionsto configure and set up the environment that CMC and the messaging system use;
e extensionsto add extra X.400 attributes beyond the basic set used by CMC;

e extensionsthat determine what X.400 body parts to use based on several factors;

e extensionsto tell the CMC read function how to handle non-basic incoming messages;

» extensionsthat are passed with the message system to tell the receiver how to processit.

244 Recommendation X.446 (08/97)

The use of extensions raises a range of issues. The first issue is that of whether they are really necessary. A basic set-up
could or should rely on no extensions but just handle the minimum defined requirements of the simple CMC callsin an
acceptable manner. The various implementations can deal specifically with local requirements and so tailor their actions
and behaviour.

There are many possible CMC_extensions and also ways to characterize those extensions. There are extensions that are
necessary for adapting the local CMC version 1.0 to its local underlying messaging system or even to select which of its
local messaging systems to use.

These extensions are characterized as local. Other extensions can be termed specia as they deal with the use of non-
CMC features (at least for CMC version 1.0). Such extensions are needed for interoperability.

For Recommendation X.400, there are extensions that are required for handling X.400 messaging that are basic and thus
generic. The generic X.400 extensions would handle X.400 result and error returns. These generic extensions could be
even further generalized to encompass result and error returns from other non-X.400 messaging services.

The error returns from the X.400 calls can be returned to the messaging-enabled application that uses the CMC calls by
using a specific CMC_extension. This is essential for those CMC call clients that need to recover by finding out where
the call went astray and not be left in the dark.

Other generic X.400 CMC_extensions would deal with message priority, request non-delivery and/or delivery reports.
Other extensions could carry the user's X.400 certificate and Message Store restrictions. The CMC_message's
message_type carries identifiers such as Object Identifiers that allow the CMC message sender to specify any form of
X.400 message. If the CMC functions or the underlying X.400 system does not support that particular X.400 message
type (or specifically require that type not be used) then another "generic" extension would be needed to carry back to the
CMC call user that error information. Similar issues surround adding a special extension to select the X.400 body part
appropriate for the CMC_attachment’ s attach_type.

Other possible extensions can be used to assist the receiving side deal with incoming messages such as which reports are
to be discarded or not read but reported in a special way. End-to-end transfer of extensions (or their information) to
assist the receiver in handling the message is too far-out for immediate consideration.

B.25.5 Basic mapping profilefor smple CMC (CMC 1.0)

When the X.400 Message Handling System is used as the underlying messaging system, the basic message sending and
receiving must be supported by all CMC version 1.0 implementations. For this purpose, a basic profile provides that
functionality.

Each CMC implementation using the "basic profile" approach must be able to send (CMC Send) any message that
requires only the basic IPM format and uses the two recommended X.400 body parts for attachments (and text_note)
where required. Also those X.400 messaging-enabled applications that use more advanced body parts must be able to
accept the basic profile set in their place. CMC implementations receiving (CMC Read) messages delivered by
Recommendation X.400 must be able to correctly read and deal with those "basic profile" messages. All other X.400
messages may be rejected.

For the basic profile, the following rules should be applied: if the incoming message or the structure of the outgoing
message does not fit a standard pattern, then that message should be discarded and optionally awarning or error returned
to the messaging-enabled application. Similarly, when the input parameters do not match the allowable set or cannot be
handled by the underlying messaging service, then an error (or awarning if that's not feasible) should be returned to the
messaging-enabled application.

The rest of this subclause describes the minimal basic mapping required for the simplistic usage of the X.400 messaging
services. Use of the full X.400 message services that are available can be provided by more additional/optional
extensions that have not been added in this basic profile. Thus, considerations must be made for interoperability (if
feasible) between the basic profile and that profile extended by extensions.

NOTE — A special naming convention is used when referencing the various X.400 defined fields. Each field is named using the
standard followed by the field name as it appears in the standard. If the field is defined within a field, a "." chasact¢o indicate
this. For example: X.420.heading.authorizing-users.

Recommendation X.446 (08/97) 245

B.2.5.5.1 Mapping of CMC_recipient

The CMC _recipient is mapped to an X.411.ORName using the textual Representation of O/R Address for Human Usage
that is defined in 1SO/IEC 10021-2:1990/Amd.1, Annex F. All legal form of ORName as defined in X.411 can be used.

Specific mappings are:

CMC _recipient.name
maps to an X.411.0RName.directory-name if the implementation supports the directory name; otherwise,
itisignored.

CMC_recipient.name_type
is assumed to be INDIVIDUAL on output from X.400 to CMC.

CMC_recipient.address
maps to X.411.ORName.ORAddress.

CMC recipient.role

If CMC_ROLE_ORIGINATOR, maps to X.411.OriginatorName.ORAddress. It aso maps to
X.420.Heading.originator when the messageisan IPM or IPN.

If CMC_ROLE_TO, maps to X.411.RecipientName.ORAddress. It also maps to X.420.Heading.primary-
recipients when the messageisan IPM or IPN.

If CMC_ROLE_CC, maps to X.411.RecipientName.ORAddress. It also maps to X.420 Heading.copy-
recipients when the messageisan IPM or IPN.

If CMC_ROLE_BCC, maps to X.411.RecipientName.ORAddress. It also maps to X.420.Heading.blind-
copy-recipients when the message isan |PM or IPN.

If CMC_ROLE_AUTHORIZING_USER, maps to X.420.Heading.authorizing-users when the message is
an IPM or IPN.

CMC_recipient.recip_flags
are inspected for the last.

CMC recipient.recip_extensions

areignored.

B.2.5.52 Mapping of CMC_message

CMC_message_summary is mapped to the information base associated with an X.413 message submission operation or
an X.413 Fetch operation.

Specific mapping are:

246

CMC_message.message _reference

maps to X.413.entry-sequence-number.

CMC_message.message type
maps to X.413.entryType; where "CMC:IPM" = delivered-message, "CMC: REPORT" = delivered-
report, and "CMC:IPM" = returned-content with the new extension CMC_X_X400_MSG_PARENT to
identify thisis a nested message.

CMC_message.subject
maps to X.413.Content of X.420.heading.subject.

CMC_message.time_sent
isNULL on cmc_send(), or maps to X.413.Message-submission-time on cmc_read().

Recommendation X.446 (08/97)

CMC_message.text_note

iSNULL, or on cmc_send() and if CMC_TEXT_NOTE_AS FILE is set, then maps to the first body part
of X.413.Content of X.420.body.ia5text.data, or on cmc_read() maps to the first available iabtext body
part.

The X.420.body.iabtext.repertoire is ignored.

CMC_message.recipient
maps to X.411.RecipientName AND X.420.heading.originator, authorizing-users, primary-recipients,
copy-recipients, and blind-copy-recipients in accordance with the CMC_recipient.role setting.

CMC_message.attachment

maps to X.420.body.BodyPart. Each attachment is mapped to the corresponding body part. See B.2.5.5.4
"Mapping of CMC_attachment".

CMC_message.message flags
sets according to X.413.EntryStatus for CMC_SUM_READ and CMC_SUM_UNSENT, checking for
last element for CMC_SUM_LAST_ELEMENT, and CMC_MSG_TEXT_NOTE_AS FILE for first
attachment and first iaStext body part handling.

CMC_message.message_extensions
isNULL or optionally returns CMC_X_X400_MSG_PARENT extension.

B.2.55.3 Mapping of CMC_message summary
CMC_message_summary is mapped to the parameters associated with an X.413 list or summarize operation.
Specific mappings are:

CMC_message_summary.message_reference
maps to X.413.entry-sequence-number.

CMC_message_summary.message _type

maps to X.413.entryType; where "CMC:IPM" = delivered-message, "CMC: REPORT" = delivered-

report, and "CMC:IPM" = returned-content.

CMC_message_summary.subject
maps to X.413.Content of X.420.heading.subject.

CMC_message summary.time_sent
maps to X.413.Message-submission-time.

CMC_message summary.byte length
maps to X.413.Content-length.

CMC_message_summary.originator
maps to X.413.0riginator-name.

CMC_message.summary_flags
sets according to X.413.EntryStatus and/or last element.

CMC_message_summary.message_summary_extensions
isNULL or optionally returns CMC_X_ X400 MSG_REPORT extension.

B.2.5.5.4 Mapping of CMC_attachment

CMC_attachment maps to body parts of the message associated with an X.413 submission operation or an X.413 Fetch
operation. If the CMC_message has a text note, it is used as the first iabtext body part. Each attachment is mapped to an

X.420 body part.
Specific mappings are:

CMC_attachment.attach _title

isNULL, or mapsto the
X.420.body.ExternallyDefinedBodyPart.data.dataV al ueDescriptor.

Recommendation X.446 (08/97)

CMC_attachment.attach_type

isNULL, or mapsto OID of an
X.420.body.ExternallyDefinedBodyPart.data.directReference.

A CMCATT TEXT type OID is mapped to the build-in type or OID of an
X.420.body.I1A5TextBodyPart. The IA5TextBodyPart.data.repertoire field is not used.

A CMC_ATT_BINARY type is mapped to the build-in type or OID of an
X.420.body.BilaterallyDefinedBodyPart.

Other attach_type maps to X.420.body.ExternallyDefinedBodyPart. The fields of the EXTERNAL type
are mapped as follows:

e Parameter (optional) is not used.

» Direct Reference data maps to the specified OID.
 Indirect Reference data (optional) is not used.

» Datavalue descriptor (optional) is not used.

« Encoding is set to arbitrary.

CMC_attachment.attach_filename

maps to the implementation’s external file name and is not passed to X.400. The content of the file is
stored as the data of the corresponding X.400 body parts.

CMC_attachment.attach flags
maps according to the owner of the attach_filename and the last element of an attachment.

CMC_attachment.attach_extensions
NULL.

B.2.5.6 Mapping of CMC functions

Most of the CMC functions are mapped to a ROSE operation containing an X.413 operation. The invoke Ids used within
a ROSE operation must be a unique number. The invoke Ids can be generated by the implementation. Also, linked Ids
are not used. If any extensions or message types cannot be supported in this basic profile, then an error is returned to the
CMC functions and the corresponding messages (or portion of it) will be discarded or ignored.

B.256.1 CMCActOn

cmc_act_on() maps to a ROSE envelope containing an X.413 Delete operation. The X.413 Delete operation has the
following structure:

[information-base-type, items (choice of selector or sequence-number)]

The information-base-type is X.413.store-message (default). The items are assumed to be X.413.EntrySequenceNumber
supplied by message reference.

Parameter mapping

CMC return_code
cnt_act _on(

CMC session_id sessi on, | ocal session id
CMC_nessage_reference *message_r ef erence, X. 413. Ent r ySequenceNunber
CMC_enum operati on, supports CMC_ACT_ON DELETE

only. (due to underlying X 400
oper ati ons)

CMC fl ags act _on_fl ags, NULL or i gnored

CMC ui _id ui _id, NULL or ignored

CMC_ext ensi on *act _on_ext ensi ons NULL or CMC X X400 ERROR on
out put

)
248 Recommendation X.446 (08/97)

Additional comments

None.

B.25.6.2 CMC Free

cmc_free() does not require any mapping to X.400 calls.

Parameter mapping

CMC return_code
cnc_free(
CMC _buf fer menory

)i

Additional comments

None.

B.25.6.3 CMCList

cmc _list() maps to a ROSE envelope with an X.413 List or Summarize operation. The X.413 List and Summarize
operations have the following structure:

[information-base-type, selector, (requested-attributes or summary-request)]

The information-base-type is X.413.store-message (default). The items are assumed to be X.413.EntrySequenceNumber
supplied by message reference.

Parameter mapping

CMC return_code

cnec_|ist(
CMC session_id sessi on, | ocal session id
CMC string nmessage_type, list filter on entryType
CMC fl ags list_flags, UNREAD, REF_ONLY, COUNT_ONLY
CMC _nessage_reference *seed, X. 413. Ent r ySequenceNunber
CMC_ui nt 32 *count , Count er
CMC ui _id ui _id, NULL
CMC_message_sunmary **result, CMC. 1 PM or CMC: REPORT or QD
CMC_ext ensi on *|ist_extensions Nul I or CMC X X400 ERROR

)

Additional comments

1)
2)

3)

4)

5)
6)

Child Entries (optional) is not used.

If aseed isprovided in the CMC call, then it can be used to specify a range: select a sequence number FROM range
and use the seed provided. The sequence TO range (optional) is not used.

If the CMC message type parameter is specified OR the CMC_LIST _UNREAD_ONLY flagis set, afilter is used.
When the two conditions are present, use an AND operator. If CMC_LIST_UNREAD_ONLY is s, a filter
element is set to: "Not Item Equality EntryStatus Value (processed)". If message type is specified, afilter element is
set to: "Item Equality EntryType Value (message OR report)".

Limit is specified if the CMC list count parameter is not zero. If so, list count maps directly to the limit integer
value.

Override (optional) is not used.
The following attributes are to be returned from the list operation:
id-att-parent-sequence-number
id-att-entry-type
id-att-originator-name
id-att-content-length
id-att-message-submission-time
id-att-subject
id-att-content-type
Recommendation X.446 (08/97) 249

B.25.6.4 CMC Logoff

cmc_logoff() maps to a ROSE envelope with an X.413 Unbind operation. The X.413 Unbind operation has no

argument, result, nor error.

Parameter mapping

CMC return_code
cnt_| ogof f (
CMC session_id
CMC ui _id
cMC fl ags
CMC_ext ensi on

)
Additional comments

None.

B.25.6.5 CMC Logon

sessi on,

ui _id,

| ogof f_fl ags,

*| ogof f _ext ensi ons

| ocal session id
NULL
NUL L

NULL

cmc_logon() maps to a ROSE envelope with an X.413 MS Bind operation. The X.413 MS Bind operation has the

following structure:

[initiator-name, initiator-credentials, security-context, fetch-restrictions, ms-configuration-request]

Parameter mapping

CMC _return_code
cnt_| ogon(
CMC string
CMC string

CMC string
CMC object _identifier

CMC ui _id

CMC _ui nt 16
cMC fl ags

CMC session_id
CMC _ext ensi on

)

Additional comments

servi ce,
user,

password,
character_set,

ui _id,

call er_cnt_version,
| ogon_fI ags,

*sessi on,

*| ogon_ext ensi ons

The following optional elements are not used:

a) MS Security Context;
b) Fetch Restriction;
¢) MS Configuration Request.

B.25.6.6 CMC Look Up

NULL, or local path service
that accesses the M textual
formof initiator-nane,

see B.2.4.4.1 "Mapping of
CMC reci pient”
X.411.initiator-
credential s.sinple
Password NULL or | ocal
from Query

Configurati on NULL

return

| ocal version nunber v1.0
NULL or is not used
| ocal session id

NULL, or CMC_X_X400_ ERROR

cmc_look_up() does not require any mapping or X.400 calls. This function is not mandatory for supporting of the X.400

messaging service.
Parameter mapping

CMC return_code
cnc_| ook _up(
CMC session_id
CMC r eci pi ent
CMC fl ags

250 Recommendation X.446

sessi on
*recipient_in

| ook_up_fl ags

(08/97)

| ocal session id

see mappi ng of CMC reci pi ent
all zero, or |ocal

i mpl enent ati ons

CMC_ui _i d ui id

CMC_ui nt 32 *count
CMC _r eci pi ent **reci pi ent _out
CMC _ext ensi on *| ook_up_ext ensi ons

)
Additional comments

None.

B.25.6.7 CMC Read

NULL

output from| ocal
i npl ement ati on

see mappi ng of CMC reci pi ent
NULL

cmc_read() maps to a ROSE envelope with an X.413 Fetch operation. The X.413 Fetch operation has the following

structure:

[information-base-type, item choice of search (set of seq#) or precise (sequence#), requested _attributes]

The information-base-type is X.413.store-message (default). The items are assumed to be X.413.EntrySequenceNumber

supplied by message reference.
Parameter mapping

CMC _return_code

cnc_read(
CMC session_id sessi on,
CMC_nessage_ref erence *nessage_reference,

CMC fl ags read_f1l ags,
CMC_nessage **nmessage

CMC ui _id ui _id

CMC_ext ensi on *r ead_ext ensi ons

'

Additional comments

| ocal session id

NULL for first UNREAD, or
X. 413. Ent r ySequenceNunber

cannot support
CMC_DO_NOT_MARK_AS_READ
poi nter to stored-nessage,
see mappi ng of CMC nessage
NULL

NULL, or CMC_X X400_ERROR

If the CMC message reference parameter is specified, select a precise fetch. Otherwise, select a search fetch.

Case Precise:

The supplied message reference can be used as the M S sequence number.

Case Search:
Child Entries (optional) is not used.

Select a sequence number FROM range and use the "0" sequence number.

The sequence TO range (optional) is not used.

A filter is specified if the CMC_READ_FIRST _UNREAD_ONLY flag is set. The filter item is set to

"Not Item Equality EntryStatus Vaue (processed)".
Limit (optional) is not used.
Override (optional) is not used.
The following attributes are to be returned:
id-att-parent-sequence-number
id-att-entry-type
id-att-message-submission-time

id-att-content-type (IPM, 1PN, Externally defined, etc.)

Recommendation X.446 (08/97) 251

B.25.6.8 CMC Send

cmc_send() maps to a ROSE envelope with X.413 Submission operation. The X.413 Submission operation has the
following structure:

[envel ope(M essageSubmissionEnvel ope) with an IPM content(Content)]

Parameter mapping

CMC return_code

cnt_send(
CMC session_id sessi on, | ocal session id
CMC_nessage *message, see mappi ng of CMC nessage
cMC fl ags send_fl ags, al ways zero
CMC ui _id ui _id, NULL
CMC_ext ensi on *send_ext ensi ons NULL, or CMC X COM PRI ORI TY,

)

or CMC_X_X400 ERROR

Additional comments

X.411 MessageSubmissionEnvel ope (P3 Envelope):

The Originator is filled-in with the originator ORName (see ORName mapping). If originator is not specified,
then the ORName used in cmc_logon() will be used.

Original Encoded Information type (optional) is not used.

Content typeis set to Built-in and the type is |PM-84.

Content Identifier (optional) is not used.

Priority (optional) is normal (default), or is mapped from CMC_X_COM_PRIORITY if present.

Per Message Indicator (optional) is using the default values:
disclosure-of-recipient is prohibited (default);
implicit-conversion-prohibited is allowed (default);
aternate-recipient-allowed is prohibited (default);
content-return-requested is not requested (default).

Deferred Delivery Time (optional) is not used.

Extensions (optional) is not used.

All Recipients ORName addresses are filled-in (see mapping of CMC_recipient). After each Recipient’'s
ORName isfilled-in the following fields are set:

Originator Report Request is "non-delivery report” (default).
Explicit Conversion (optional) is prohibited (default).
Extensions (optional) is not used.

The content of the P3 envelope isa P2 IPM message that is a P2 envelope and one or more body parts.

X.420.1PM .heading (P2 Envelope):

252

The user isfilled-in with the originator ORName (see mapping of CMC_recipient).

The user relative identifier is formed by appending the same invoke ID generated for the ROSE envelope to
the string "CMC:IPM".

For Primary recipients, Copy recipients, and Blind Copy recipients, Notification requests (optional) and Reply
requested (optional) are not used.

Recommendation X.446 (08/97)

Replied To IPM (optional) is not used.
Obsolete IPMs (optional) is not used.

Related IPMs (optional) is not used.

Message Subject maps directly to the CMC_message subject field.

Expire Time (optional) is not used.

Reply Time (optional) is not used.

Reply Recipients (optional) is not used.
Importance (optional) is normal (default).
Sensitivity (optional) is not used.
Auto-Forwarded (optional) is not used.

Extensions (optional) is not used.

X.420.1PM .body:

If the CMC_message has atext note, it isused as the first IA5Text body part. When creating an IA5Text body

part, the repertoire field (optional) isignored.

For al other CMC attachments, a corresponding X.400 body part is created. If CMC_attachment type is
CMC_ATT_TEXT, it is mapped to an IA5Text body part. If typeis CMC_ATT_BINARY, it is mapped to a
Bilaterally defined body part. For other CMC types, the supplied OID value is used and creates an externally

defined body part (EDBP).

B.2.5.6.9 CMC Send Documents

cmc_send_documents() maps to the ROSE envelopes each containing an X.413 MS Bind operation, X.413 Submission
operation, X.413 MS Unbind operation. They are the combined sequence of cmc_logon(), cmc_send(), and
cmc_logoff().

Parameter mapping

CMC return_code
cnt_send_docunent s(

)

CMC string reci pi ent _addresses,
CMC string subj ect

CMC string text _note,

CMC fl ags send_doc_f1 ags,

CMC string file_paths,

CMC string attach_titles,

CMC string delimter,

CMC ui _id ui _id,

Additional comments

None.

X. 411. envel ope. reci pi ents and
X. 420 aut hori zi ng users,
primary, copy, and blind copy
reci pients; see mappi ng of
CMC _reci pi ent

X. 420. headi ng. subj ect

first X 420.body. | A5Text Bo-
dyPart. data

caller-supplied flags

| ocal filenanes, not passed
in X. 400 nessage

X. 420. EDBP. dat a. dat aVa-
| ueDescri ptor

delimter character
NULL

Recommendation X.446 (08/97) 253

B.2.5.6.10 CMC Query Configuration
This call does not require any mapping or X.400 calls. It simply returns the configuration of the specified item.
Parameter mapping

CMC return_code
cnt_query_configuration(

CMC session_id sessi on, | ocal session id
CMC_enum item | ocal inplenentation
CMC _buf fer r ef erence, | ocal inplenentation
CMC_ext ensi on *confi g_extensi ons NULL

)
Additional comments

None.

254 Recommendation X.446 (08/97)

Annex C

Programming examples

Ccl Programming examples

This Recommendation offers the following programming examples.

C.1.1 Query Configuration, Logon, and L ogoff

/* local variables used */

CMC return_code St at us;
CMC _bool ean U _avail abl e;
CMC session_id Sessi on;

/* find out if U is available with this inplenentation before starting */

Status = cnt_query_configuration(

NULL, /* No session id.
CMC_CONFI G_Ul _AVAI L, /* See if U is available.
&Ul _avai |l abl e, /* Return val ue.

NULL) ; /* No extensions.

/* error handling */
/* Log on to systemusing U */

Status = cnt_| ogon(

NULL, /* Default service.

NULL, /* Pronpt for usernane.
NULL, /* Pronpt for password.
NULL, /* Default Character set.
(CMC_ui _i d) NULL, /* Default U ID.

CMC_VERSI ON, /* Version 1 CMC calls.
CMC_LOGON_Ul _ALLOWED | /* Full logon Ul.
CMC_ERROR_Ul _ ALLOVED, /* Use U to display errors.
&Sessi on, /* Returned session id.
NULL) ; /* No extensions.

[* error handling */
/* Do various CMC calls */
/* Log off fromthe inplenentation */

Status = cnt_| ogof f(

Sessi on, /* Session id.

(CMC_ui _id)NULL, /* No U wll be used.
0, /* No flags.

NULL) ; /* No extensions.

[* error handling */

c.1.2 Send and Send Documents functions

/* local variables used */

CMC _at t achnent Att ach;
CMC session_id Sessi on;
CMC_nessage Message;
CMC r eci pi ent Reci p[2] ;
CMC return_code St at us;

/* Build recipient list with two recipients. Add one "To" recipient. */

"Bob Weaver"; /* Send to Bob Weaver.
CMC_TYPE | NDI VI DUAL; /* Bob’s a person.

Reci p[0] . name
Reci p[0] . name_t ype
Reci p[0] . addr ess

Recommendation X.446 (08/97)

NULL; /* Look_up Bob’s address.

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

255

Reci p[0] .rol e = CMC_ROLE TGO /* He’s a "To" recipient.
Reci p[0].fl ags = 0; /* Not the last elenent.
Reci p[0] . ext ensi ons = NULL; /* No recipient extensions.
/* Add one "Cc" recipient. */
Reci p[1] . nane = "Mary Yu"; /* Send to Mary Yu.
Reci p[1] . nane_t ype = CMC_TYPE_I| NDI VI DUAL; /[* Mary's a person.
Reci p[1] . addr ess = NULL; /* Look_up Mary’s address.
Recip[1].role = CMC_ROLE_CC; /* She’s a "Cc" recipient.
Reci p[1].fl ags = CMC_RECI P_LAST _ELEMENT;/* Last recipient elenent.
Reci p[1] . ext ensi ons = NULL; /* No recipient extensions.
/* Attach a file. */
Attach.attach title = "stock. wks"; /[* Original file nane.
Attach. attach_typ = NULL; /* No specific type.
Attach.attach_filenane = "tnmp22.tm"; /* File to attach.
Attach. attach_fl ags = CMC _ATT_LAST _ELEMENT; /* Last attachnent.
Attach. attach_extensi ons = NULL; /* No attach. extensions.
/* Put it together in the message structure. */
Message. mnessage_reference = NULL; /* Ignored on cnt_send calls.
Message. nessage_t ype = NULL; /* Interpersonal nessage type.
Message. subj ect = "Stock"; /* Message subject.
Message. ti ne_sent = NULL; /* Ignored on cnt_send calls.
Message. t ext _note = "Time to buy"; /* Message note.
Message. reci pi ents = Reci p; /* Message recipients.
Message. att achnent s = &Attach; /* Message attachnents.
Message. nessage_fl ags = 0; /* No flags.
Message. mnessage_ext ensi ons = NULL; /* No nessage extensions.
/* Send the nmessage! */
Status = cnct_send(

Sessi on, /* Session id. - set with | ogon call.

&\Vessage, /* Message structure.

0, /* No flags.

(CMC_ui _i d) NULL, /* No U wll be used.

NULL) ; /* No extensions.

/* error handling */

/* Now do the same thing with the send docunents call

St at us

/

256

cnt_send_docunent s(

"to: Bob Waver, cc: Mary Yu", /*
" St ock", /*
"Time to buy", /*

CMC_LOGON_ Ul _ALLOWED |
CMC_SEND U _REQUESTED |

CMC_ERROR Ul _ALLOVED, | *

"stock. wks", /*

"tnmp22. t mp", /*

u, ||, /*

NULL) ; /*
* error handling */

Recommendation X.446 (08/97)

and U */

Message reci pi ents.
Message subj ect.
Message note.

Flags (allow various U's).
File to attach.

File nanme to carry on attach.
Mul ti-value delimter.
Default U 1D

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

C.1.3 Ligt, read, and deletethefirst unread message
/* local variables used */

CMC_nessage_summary *pMsgSummary;,
CMC _nessage *pMessage;
CMC _ui nt 32 i Count ;

/* read the first unread nessage and delete it */

i Count = 5;

Status = cnc_list(
Sessi on, /* Session id.
NULL, /* List ALL nessage types.
CMC LI ST_UNREAD ONLY, /* Get only unread nessages.
NULL, /* Starting at the top.
& Count /* I nput/Qutput nessage count.
(CMC_ui _i d) NULL, /* No U wll be used.
&MsgSummrary, /* Return nessage sunmmary |ist.
NULL) ; /* No extensions.

[* error handling */

Status = cnt_read(
Sessi on, /* Session id.
pMsgSumar y[0] - >nmessage_reference, /* Message to read.

CMC_MSG _AND ATT_HDRS ONLY, /* don't get attach files.
& Message, /* Returned nessage.
(CMC_ui _i d) NULL, /* No Ul.

NULL) ; /* No extensions.

[* error handling */

Status = cnt_act_on(

Sessi on, /* Session id.
pMsgSummar y[0] - >nessage_reference, /* Message to del ete.
CMC_ACT_ON _DELETE, /* Message to read.
0, /* no flags.

(CMC_ui _i d) NULL, /* No Ul .

NULL) ; /* No extensions.

/[* error handling */
/* free the nmenory returned by the inplenmentation */

Status = cnc_free(pMsgSunmary);
Status = cnt_free(pMessage);

/* do the same thing without the list call, since the read call can get the fi

unread nmail nessage */

Status = cnc_read(

Sessi on, /* Session id.

NULL, /* Read the first nessage.
CMC_READ_FI RST_UNREAD_MESSACGE | /* get first unread nsg.
CMC_MSG_AND_ATT_HDRS_ONLY, /* don't get attach files.
& Message, /* Returned nessage.
(CMC_ui _i d) NULL, /* No Ul.

NULL) ; /* No extensions.

/[* error handling */

Status = cnt_act_on(

Sessi on, /* Session id.
pMessage- >nmessage_r ef erence, /* message to delete.
CMC_ACT_ON_DELETE, /* Message to read.
0, /* no flags.

(CMC_ui _i d) NULL, /* No Ul.

NULL) ; /* No extensions.

/* error handling */
/* free the menory returned by the inplenmentation */

Status = cnt_free(pMessage);

Recommendation X.446 (08/97)

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

rst

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

257

C.1.4 Look up aspecificrecipient and get its details

/* local variables used */

CMC session_id Sessi on;
CMC _r eci pi ent *pReci pi ent;
CMC r eci pi ent Reci p;

CMC return_code St at us;

/* ook up a nane to pick correct recipient */

Reci p. nane = "Bob Stack"; /* Send to Bob Weaver. */
Reci p. name_t ype = CMC_TYPE_I NDI VI DUAL; /* Bob’s a person. */
Reci p. addr ess = NULL; /* Look _up Bob’'s address. */
Recip.rol e = NULL; /* Rol e not used. */
Reci p.recip_fl ags = 0; /* No flags. */
Reci p. reci p_extensions = NULL; /* No recipient extensions. */
Status = cnc_| ook _up(
Sessi on, /* Session id. */
&Reci p, /* Name to | ook up. */
CMC _LOOKUP_RESOLVE Ul | /* Di sanbi guate using Ul . */
CMC_ERROR_Ul _ALLOVED, /* Display errors using Ul . */
(CMC_ui _i d) NULL, /* Default U ID. */
1, /* Only want 1 back. */
pReci pi ent, /* Returned recipient ptr. */
NULL) ; /* No extensions. */

/* Display details stored for this recipient */

Status = cnt_| ook _up(

Sessi on, /* Session id. */
pReci pi ent, /* Nane to get details on. */
CMC_LOOKUP_DETAI LS U | /* Show details U. */
CMC_ERROR_Ul _ ALLOWVED, /* Display errors using Ul . */
(CMC_ui _i d) NULL, /* Default U 1D */
0, /* No limt on return count. */
NULL, /* No records returned. */
NULL) ; /* No extensions. */

/* free the menory returned by the inplenmentation */

cnc_free(pRecipient);

C.15 Use of extensions

/* local variables used */

CMC return_code St at us;

CMC session_id Sessi on;

CMC _ext ensi on Ext ensi on;
CMC_X_COM support Supported[2];
CMC ui nt 16 i ndex;

/* find out if the common extension set is supported, but | don’t need
COM_X_CONFI G_DATA support */

Supported[0] .item code CMC_XS_CcoMm

Supported[0].flags = 0;

Supported[1] .item code CMC_X _COM CONFI G_DATA;
Supported[1].flags = CMC_X_ COM SUP_EXCLUDE;

CMC_X_COM_SUPPORT_EXT;

Ext ensi on. item code

Extension.itemdata = 2;
Extension.itemreference = Support ed;
Ext ensi on. extensi on_fl ags = CMC_EXT_LAST_ELEMENT,;

258 Recommendation X.446 (08/97)

Status = cnc_query_configuration(

NULL, /* No session id.

CMC _CONFI G_Ul _AVAI L, /* See if U is available.
&Ul avai |l abl e, /* Return val ue.

&Ext ensi on) ; /* Pass in extensions.

[* error handling */
if (Supported[O].flags & CMC_X COM NOT_SUPPORTED)
return FALSE;, /* compbn extensions | need are not avail able */

/* Log on to system and get the data extensions for this session */

Supported[0].item code = CMC_XS_CcoMm
Supported[0].flags = 0;
Supported[1] .item code = CMC_X _COM CONFI G_DATA;
Supported[1].flags = CMC_X_ COM SUP_EXCLUDE;
Ext ension.item code = CMC_X COM _SUPPORT _EXT;
Extension.itemdata = 2;
Extension.itemreference = Support ed;
Ext ensi on. extensi on_fl ags = CMC_EXT_REQUI RED | CMC _EXT_LAST_ELEMENT;
Status = cnt_| ogon(
NULL, /* Default service.
NULL, /* Pronpt for usernane.
NULL, /* Pronpt for password.
NULL, /* Default Character set.
(CMC_ui _i d) NULL, /* Default U 1D
CMC_VERSI ON, /* Version 1 CMC calls.
CMC_LOGON_Ul _ALLOWED | /* Full logon U.
CMC_ERROR_Ul _ALLOVED, /* Use U to display errors.
&Sessi on, /* Returned session id.
&Ext ensi on); /* Logon extensions.

/* error handling */

if (Supported[0O].flags & CMC X COM NOT_SUPPORTED)
return FALSE, /* conmmpn extensions | need are not avail able */
/* the common data extensions will be used for this session */

/* exanmple of howto free data returned fromthe CMC i npl enentation in
function out put extensions. */

for (index = 0; ; index++) {
i f (Extensions[index].extension flags & CMC EXT_QUTPUT) {
if (cnc_free(Extensions[index].itemreference) != CMC success)
/* Handl e unexpected error here */
}
}
(Ext ensi ons[i ndex].extension_flags & CMC_EXT_LAST_ELEMENT)
br eak;
}

/* Do various CMC calls */
/* Log off fromthe inplenentation */

Status = cnc_| ogof f(

Sessi on, /* Session id.

(CMC_ui _id)NULL, /* No U wll be used.
0, /* No flags.

NULL) ; /* No extensions.

[* error handling */

C.1.6 cmc_bind_implementation

CMC return_code Status = CMC_SUCCESS;

CMC _bool ean U _avail abl e;
CMC session_id Sessi on;
HI NSTANCE hl i bCMC = (HI NSTANCE) NULL;

Recommendation X.446 (08/97)

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

259

260

CMC_P_BI ND_| MPLEMENTATI ON | pf nCMCBi ndl npl enrent ati on = NULL;

CMC _di spatch_tabl e *pDi spat chTabl e = NULL;
CMC_obj ect _handl e root _obj ect _handl e = CMC_NULL_HANDLE;
extern CMC guid sel ect ed_i npl enent at i on_nane;
if (!(hlibCMC = LoadLi brary ("CMC.DLL")))
{
/* error handling */
}

if (!'(lpfnCMCBI ndl npl enentation =

(CMC_P_BI ND_| MPLEMENTATI ON) Get ProcAddress (hli bCMC, "cnt_bi nd_i npl enent -

ation™)))
{
/* error handling */
}
/[* Call into a selected CMC Manager to bind to specific CMC inplenentation. */
Status = | pf nCMCBi ndl npl enent ati on(sel ect ed_i npl ement ati on_nane,
&pDi spat chTabl e,
NULL) ;
if (pDispatchTable == NULL)
{
/* error handling */
}

[* find out if U is available with this inplenentation before starting.

M xing calls, be careful. */

Status = pDi spatchTabl e->cnt_query_configurati on(

NULL, /* No session id.
CMC_CONFI G_Ul _AVAI L, /* See if U is available.
&Ul _avai |l abl e, /* Return val ue.

NULL) ; /* No extensions.

[* error handling */
/* Log on to systemusing U */

Status = pDi spat chTabl e->cnt_| ogon(

NULL, /* Default service.

NULL, /* Prompt for usernane.
NULL, /* Pronpt for password.
NULL, /* Default Character set.
(CMC_ui _i d) NULL, /* Default U 1D

CMC_VERSI ON, /* Version 1 CMC calls.
CMC_LOGON_Ul _ALLOWED | /* Full logon U.
CMC_ERROR_Ul _ ALLOWVED, /* Use U to display errors.
&Sessi on, /* Returned session id.
NULL) ; /* No extensions.

/[* error handling */
/* Make calls into specific CMC inplenentation. */

Status = pDi spatchTabl e->cnt_get root handl e(Sessi on,
& oot _obj ect _handl e,
NULL) ;
[* error handling */

/* Log off fromthe inplenmentation */

Status = pDi spat chTabl e- >cnt_| ogof f (

Sessi on, /* Session id. */
(CMC_ui _id)NULL, /* No U wll be used. */
0, /* No flags. */
NULL) ; /* No extensions. */

[* error handling */

Recommendation X.446 (08/97)

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* Let inplenmentation free the dispatch table it gave us. */
pDi spat chTabl e->cnt_free(pD spat chTabl e);

/* Unbind fromthe CMC i npl enentation. C eans up storage
created in CMC Manager and/or CMC inpl enmentation other
than the CMC di spatch_table. */

cnc_unbi nd_i npl erent ati on(sel ect ed_i npl enent at i on_nane,
NULL) ;

[* error handling */
/* Free the DLL instance. */
FreeLi brary (hlibCMO);

C.2 Example of cmc_bind_implementation

CMC return_code
cnt_bi nd_i npl enent at i on(

CMC guid i mpl enent ati on_nane,
CMC _di spatch_table **di spatch_t abl e,
CMC_ext ensi on *cnt_bi nd_ext ensi ons

)

{
SCODE sc = SUCCESS_SUCCESS;

CMC_di spatch_t abl e *pDi spat chTabl e=NULL;

pDi spat chTabl e = (CMC dispatch_table *)(calloc(1l, sizeof (CMC dispatch_table)));

if (pDispatchTabl e == NULL)
return CMC_E_I NSUFFI Cl ENT_MEMORY;

el se
/* Store local for later cnc_free processing. */
/* Popul ate the Dispatch Table. */

pDi spat chTabl e- >cnt_send = cnt_send;

pDi spat chTabl e- >cnt_send_docunments = cnt_send_docunent s;

pDi spat chTabl e->cnt_act _on = cnt_act _on;

pDi spat chTabl e->cnt_list = cnt_list;

pDi spat chTabl e->cnt_read = cnt_read;

pDi spat chTabl e->cnt_I| ook_up = cnt_| ook _up;

pDi spat chTabl e->cnt_free = cnt_free;

pDi spat chTabl e->cnt_| ogoff = cnt_I ogoff;

pDi spat chTabl e->cnt_| ogon = cnt_| ogon;

pDi spat chTabl e->cnt_query_configurati on = cnt_query_configuration;

pDi spat chTabl e->cnt_add_obj ect = cnt_add_obj ect;

pDi spat chTabl e->cnt_add_properties = cnc_add_properties;

pDi spat chTabl e->cnt_comrt_object = cnc_comit_obj ect;

pDi spat chTabl e- >cnt_copy_obj ect _handl e = cnt_copy_obj ect _handl e;

pDi spat chTabl e->cnt_create_deri ved _nessage_obj ect =
cnt_create_derived nessage_obj ect;

pDi spat chTabl e->cnt_del ete_objects = cnt_del et e_obj ects;

pDi spat chTabl e->cnt_del ete_properties = cnt_del ete_properties;

pDi spat chTabl e->cnt_get _root _handl e = cnt_get _root handl e;

pDi spat chTabl e->cnt_identifier _to nanme = cnt_identifier_to_nane;

pDi spat chTabl e->cnt_| i st_contai ned_properties = cnt_list_contai ned properti es;

pDi spat chTabl e->cnt_| i st_nunber _matched = cnt_I|ist_nunber_ natched;
pDi spat chTabl e->cnt_|ist_objects = cnt_list_objects;

pDi spat chTabl e->cnt_|ist_properties = cnc_list_properties;

pDi spat chTabl e->cnt_nane_to_identifier = cntc_name_to_identifier
pDi spat chTabl e- >cnt_open_cursor = cnt_open_cursor

pDi spat chTabl e- >cnt_open_obj ect _handl e = cnt_open_obj ect _handl g;
pDi spat chTabl e->cnt_read _cursor = cnt_read_cursor

pDi spat chTabl e->cnt_read_properties = cntc_read _properties;

pDi spat chTabl e->cnt_read_property costs = cnt_read_property _costs;
pDi spat chTabl e->cnt_restore_object = cnt_restore_object;

pDi spat chTabl e- >cnt_save_obj ect = cnt_save_object;

pDi spat chTabl e- >cnt_send_nessage_obj ect = cnt_send_nessage_obj ect;

pDi spat chTabl e->cnt_update_cursor _position = cnt_update_cursor_position;

pDi spat chTabl e- >cnt_update_cursor_position with seed =
cnt_update_cursor_position_w th_seed;

Recommendation X.446 (08/97)

261

C3

262

pDi spat chTabl e- >cnt_check_event
pDi spat chTabl e->cnt_regi ster_event
pDi spat chTabl e- >cnt_unr egi st er _event cnt_unregi ster_event;

pDi spat chTabl e->cnt_cal | _cal | backs cnt_cal |l _cal | backs;

pDi spat chTabl e- >cnt_export _stream = cnt_export_stream

pDi spat chTabl e->cnt_inport file to stream= cnt_inport file to _stream
pDi spat chTabl e- >cnt_open_stream = cnt_open_stream

pDi spat chTabl e->cnt_read_stream = cnt_read_stream

pDi spat chTabl e- >cnt_seek_stream = cnt_seek_stream

pDi spat chTabl e->cnt_wite stream= cnc_wite_stream

pDi spat chTabl e->cnt_get | ast_error cnt_get last_error;

*/
*di spatch_table pDi spat chTabl e;
return CMC_SUCCESS;

cnt_check_event;
cnt_regi ster_event;

/* Load the output variable.

Composing a message

#def i NUM_RECI P_PROPS
#def i NUM_MESSAGE_PRCOPS
#def i NUM_CONTENT_PRCPS

#def i ne RECI P_NAVE_| NDEX
#def i ne RECI P_ADDRESS_| NDEX
#defi ne RECI P_ROLE_| NDEX
#def i ne RECI P_TYPE_| NDEX

#def i ne MSG_TYPE_I NDEX
#def i ne MSG_PRI ORI TY_| NDEX
#def i ne MSG_SUBJECT | NDEX
#defi ne MSG_ROLE_| NDEX

#def i CONTENT_CHARSET_| NDEX
#def i CONTENT_I NFORVATI ON_I NDEX
#def i CONTENT_SI ZE_| NDEX

#def i CONTENT_TI TLE_I NDEX

#def i CONTENT_| TEMNUM | NDEX
#def i CONTENT_| TEMTYPE_| NDEX

CMC return_code
extern

ne
ne
ne

ne
ne
ne
ne

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne

OORWNRFRPO WNFO WNFPO O~Dd

St at us CMC_SUCCESS;
CMC session_id Session;

extern

CMC_obj ect _handl e
CMC_obj ect _handl e
CMC_obj ect _handl e

CMC _di spatch_t abl e *pDi spat chTabl e;
Message = CMC_NULL_HANDLE;

Reci pi ent CMC_NULL_HANDLE;
Contentltem = CMC_NULL_HANDLE;

CMC string error_buf = NULL;

CMC property Reci pi ent Props[NUM_RECI P_PROPS] ;
CMC _property MessagePr ops[NUM_MESSAGE PROPS] ;
CMC property Cont ent Pr ops[NUM_CONTENT_PROPS] ;
CMC _opaque_dat a MessageBody;

CMC_CHAR MsgBuf f er [MAX_BODY_LEN] ;

/* Load Reci pient Property Structure. */

RECI P_NAVME_|I NDEX] . property_id = CMC_PV_RECI P| ENT_NAMNE;
RECI P_NANE_I NDEX] . t ype CMC_stri ng;
RECI P_NAME_|I NDEX] . val ue. CMC_pv_string =

"Pierre Peret";

ent Props[REClI P_ADDRESS | NDEX] . property_id = CMC_PV_RECI Pl ENT_ADDRESS;
ent Props[REClI P_ADDRESS | NDEX] . type = CMC string;

ent Props[RECI P_ADDRESS | NDEX] . val ue. CMC _pv_string
"uunet! p. per et @\205. bul | . com USENET" ;

RECI P_ROLE_| NDEX] . property_id = CMC_PV_REC!I Pl ENT_ROLE;

RECI P_ROLE | NDEX] .t ype = CMC_enum

RECI P_ROLE_|I NDEX] . val ue. CMC_pv_enuner at ed
CMC_RECI Pl ENT_ROLE_TO,

ent Props[RECI P_TYPE | NDEX] . property_id = CMC_PV_RECI Pl ENT_TYPE;

ent Props[RECI P_TYPE_| NDEX] . t ype CMC_enum

ent Props[REClI P_TYPE_| NDEX] . val ue. CMC_pv_enurner at ed
CMC_RCT_| NDI VI DUAL;

Reci pi
Reci pi
Reci pi

ent Props
ent Props
ent Props

Reci pi
Reci pi
Reci pi

Reci pi
Reci pi
Reci pi

ent Props
ent Props
ent Props

Reci pi
Reci pi
Reci pi

Recommendation X.446 (08/97)

/* Load Message Property Structure. */

MessagePr ops[MSG_TYPE | NDEX] . property_id = CMC_PV_MESSAGE TYPE;
MessagePr ops[MSG_TYPE | NDEX] . t ype = CMC_enum
MessagePr ops[MSG_TYPE | NDEX] . val ue. CMC pv_enunerated =

CMC_MT_I PM

MessagePr ops[MSG PRI ORI TY_| NDEX] . property_id = CMC_PV_MESSAGE PRI ORI TY;
MessagePr ops[MSG_PRI ORI TY_I NDEX] . t ype = CMC_enum
MessagePr ops[MSG_PRI ORI TY_I| NDEX] . val ue. CMC pv_enunerated =

CMC_PRI ORI TY_NORVAL;

MessagePr ops[MSG_SUBJECT | NDEX] . property_id = CMC_PV_MESSAGE SUBJECT;
MessagePr ops[MSG_SUBJECT_| NDEX] . type = CMC_stri ng;
MessagePr ops[MSG_SUBJECT | NDEX] . val ue. CMC pv_string =

"Hey Pierre, don’t forget";

MessagePr ops[MSG_ROLE | NDEX] . property_id = CMC_PV_MESSAGE ROLE;

MessagePr ops[MSG_ROLE | NDEX] . t ype = CMC_enum

MessagePr ops[MSG_ROLE | NDEX] . val ue. CMC _pv_enunerated =
CMC_MESSAGE_ROLE_ORI G NAL;

/* Load Message Content Item Property Structure. */

Cont ent Pr ops[CONTENT_CHARSET | NDEX] . property_id =
CMC_PV_CONTENT_| TEM CHARACTER_SET;

Cont ent Pr ops[CONTENT_CHARSET | NDEX] . t ype = CMC_gui d;

Cont ent Pr ops[CONTENT _CHARSET | NDEX] . val ue. CMC pv_guid =
CMC_CHARSET_1252;

Cont ent Pr ops[CONTENT _| NFORVATI ON_| NDEX] . property id =
CMC_PV_CONTENT _| TEM CONTENT _| NFORNMATI ON;
Cont ent Pr ops[CONTENT _| NFORVATI ON_| NDEX] . t ype = CMC opaque_dat a;

strcpy(MsgBuffer, "to FOCUS on the API");

MessageBody. si ze = strlen(MsgBuffer) + 1;
MessageBody. dat a (CMC byte *)calloc(1, strlen(MsgBuffer) + 1);

Cont ent Pr ops[CONTENT _| NFORVATI ON_| NDEX] . val ue. CMC_pv_opaque_dat a.
data = MessageBody. dat a;

Cont ent Pr ops[CONTENT _| NFORMVATI ON_| NDEX] . val ue. CMC_pv_opaque_dat a.
si ze = MessageBody. si ze;

Cont ent Props[CONTENT_SI ZE | NDEX] . property_id =
CMC_PV_CONTENT_| TEM SI ZE;

Cont ent Props[CONTENT_SI ZE | NDEX] . t ype = CMC_ui nt 32;

Cont ent Props[CONTENT_SI ZE_| NDEX] . val ue. CMC _pv_ui nt 32 =
MessageBody. si ze;

Cont ent Props[CONTENT_TI TLE | NDEX] . property _id =
CMC_PV_CONTENT_| TEM TI TLE;

Cont ent Props[CONTENT_TI TLE | NDEX] . type = CMC stri ng;

Cont ent Props[CONTENT_TI TLE | NDEX] . val ue. CMC pv_string =
"Message Body";

Cont ent Props[CONTENT_I TEMNUM | NDEX] . property_id =
CMC_PV_CONTENT_| TEM | TEM_NUMBER;

Cont ent Props[CONTENT_I TEMNUM | NDEX] . t ype = CMC_ui nt 32;

Cont ent Pr ops[CONTENT _| TEMNUM | NDEX] . val ue. CMC pv_ui nt 32 = 0;

Cont ent Props[CONTENT _| TEMTYPE_| NDEX] . property id =
CMC_PV_CONTENT_| TEM | TEM TYPE;

Cont ent Props[CONTENT _| TEMTYPE_| NDEX] . t ype = CMC_enum

Cont ent Props[CONTENT _| TEMTYPE_| NDEX] . val ue. CMC_pv_enuner ated =
CMC_| T_NOTE;

/[* Create a Recipient Cbject. */

Status = pDi spat chTabl e- >cnt_open_obj ect _handl e(Sessi on,
&Reci pi ent,
CMC_TYPE_COC_RECI PI ENT,
NULL) ;
/* error handling */

Recommendation X.446 (08/97)

263

/* Popul ate the Recipient Object with some properties. */

Status = pDi spatchTabl e->cnt_add_properti es(Reci pi ent,
NUM_RECI P_PROPS,
&Reci pi ent Props,
NULL) ;

if (Status != CMC_SUCCESS)

pDi spat chTabl e->cnt_get | ast _error(Sessi on,

Reci pi ent,
&error_buf,
NULL) ;

/* NOTE - The add properties extension paraneter in
the cnt_add_properties call above coul d have been

used for obtaining per property error information. */
[* error handling */

}
/* Create a Message (bject. */

Status = pDi spat chTabl e->cnt_open_obj ect _handl e(Sessi on,
&M\essage,
CMC_TYPE_OC_MESSAGE,
NULL) ;
[* error handling */

/* Popul ate the Message hject with sone properties. */

Status = pDi spatchTabl e->cnt_add_properti es(Message,
NUM_MESSAGE_PROPS,
&M\essagePr ops,
NULL) ;

if (Status != CMC_SUCCESS)

pDi spat chTabl e->cnt_get | ast _error (Sessi on,
Message,
&error_buf,
NULL) ;

/* NOTE - The add properties extension parameter in
the cmc_add_properties call above could have been

used for obtaining per property error information. */
[* error handling */

}

[* Create a Content Item Object. */

Status = pDispatchTable->cmc_open_object_handle(Session,
&Contentltem,
CMC_TYPE_OC_CONTENT_ITEM,

NULL);
[* error handling */

[* Populate the Content Item Object with some properties. */

Status = pDispatchTable->cmc_add_properties(Contentltem,
NUM_CONTENT_PROPS,
&ContentProps,
NULL);

if (Status != CMC_SUCCESS)

pDispatchTable->cmc_get last_error(Session,
Contentltem,
&error_buf,
NULL);

/* NOTE - The add properties extension parameter in
the cmc_add_properties call above could have been
used for obtaining per property error information. */

[* error handling */

}
264 Recommendation X.446 (08/97)

/* Now nove the Recipient and Content Item Objects into the
Message oject. */

Status = pDi spat chTabl e->cnt_copy_obj ect (Message,
Reci pi ent,
&\essage,
NULL) ;

if (Status != CMC_SUCCESS)
{
pDi spat chTabl e->cnt_get | ast _error(Sessi on,
Message,
&error_buf,
NULL) ;
[* error handling */

}

Status = pDi spatchTabl e->cnt_copy_obj ect (Message,
Contentltem

&Message,
NULL) ;
if (Status != CMC_SUCCESS)

{

pDi spat chTabl e->cnt_get | ast _error (Sessi on,
Message,
&error_buf,
NULL) ;

/* error handling */

}

/* Try sending the nessage. */

Status = pDi spatchTabl e->cnt_send_nessage_obj ect (Message,

NULL) ;
if (Status != CMC_SUCCESS)
{
pDi spat chTabl e->cnt_get | ast _error(Sessi on,
Message,
&error_buf,
NULL) ;

[* error handling */

}
/[* C eanup. */
cfree(MessageBody. dat a) ;

pDi spat chTabl e->cnt_free(Contentlten);
pDi spat chTabl e->cnt_free(Reci pient);
pDi spat chTabl e->cnt_free(Message) ;

pDi spat chTabl e->cnt_free(error_buf);

c4 Check for new messages

CMC return_code St at us = CMC_SUCCESS;

extern CMC session_id Session;

extern CMC _di spatch_t abl e *pDi spat chTabl e;
CMC _obj ect _handl e root _object handl e = NULL;

CMC cursor _handl e Root Cursor = CMC _NULL_HANDLE;
CMC_cur sor _handl e Fol der Cur sor = CMC_NULL_HANDLE;

CMC cursor _restriction Root Restricti on;

CMC string error_buf = NULL;

CMC_enum | nboxTypeFl ag = CMC_MCT_I NBOX;
CMC_ui nt 32 NewMessageFl ag = CMC_EVENT_NEW MESSAGES;
CMC_ui nt 32 M nTi meQut = 0;

CMC_new _nessage_check data CheckDat a;
CMC_new_nessage_cal | back_dat a*Cal | backDat a = NULL;
CMC_cal | back NewMessageCal | Back;

Recommendation X.446 (08/97) 265

/* Get the Root Object Handle. */

Status = pDi spatchTabl e->cnt_get root handl e(
Sessi on,
& oot _obj ect handl e,
NULL) ;
[* error handling */

/* Open a cursor on the Root Container. Start by
setting up a restriction to find the I nbox Fol der.
Assum ng the Exi stence of single Inbox Fol der. */

Root Restriction.type = CMC_RESTRI CTI ON_CONTENT;

Root Restriction.cr.restriction_content.logical = CMC LOG CAL_EQ

Root Restriction.cr.restriction_content. property =
CMC_PV_MESSAGE_CONTAI NER_TYPE;

Root Restriction.cr.restriction_content. property value =
(CMC _buf fer) & nboxTypeFl ag;
Root Restriction. Property_extensi ons = NULL;

Status = pDi spat chTabl e->cnt_open_cursor (
root obj ect handl e,
&Root Restricti on,
0,
NULL,
&Root Cur sor,
NULL) ;

/* error handling */

/* Register to poll for new nessages */
/* Sets Container for which new nessages are checked to the Inbox */

CheckDat a. nunber _cont ai ners = 1;
CheckDat a. cont ai ners = &Root Cur sor;

Status = pDi spatchTabl e->cnt_regi ster(

Sessi on,

NewMessageF! ag,

NULL,

(CMC_buffer) &CheckDat a,
NULL) ;

/[* error handling */
/* Check for New Messages */

Status = pDi spat chTabl e->cnt_check_event (
Sessi on,
NewMessageF!l ag,
M nTi meCut ,
(CMC_buffer) &CheckDat a,
Cal | BackDat a,
NULL) ;

[* error handling */

if (CheckData != NULL) {
printf("You have new mail!\n");

/* Set up callback for new nmessages */

Status = pDi spatchTabl e->cnt_regi ster_event (
Sessi on,
NewMessageF! ag,
NewMessageCal | Back,
(CMC _buffer) &CheckDat a,
NULL) ;
/* error handling */

/* Force call back function */

Status = pDi spatchTabl e->cnt_cal |l _cal | backs(
Sessi on,
NewMessageFl ag,
NULL) ;
/* error handling */

266 Recommendation X.446 (08/97)

/* Unregister for the new nessages event */

Status = pDi spat chTabl e- >cnt_unregi ster_event (

Sessi on,

NewMessageF! ag,
NewMessageCal | Back,

(CMC _buf fer) &CheckDat a,
NULL) ;

[* error handling */

/* C eanup. */

pDi spat chTabl e- >cnt_f ree(Root Cur sor);
pDi spat chTabl e->cnt_f ree(Fol der Cursor);
pDi spat chTabl e->cnt_free(hFol der);

pDi spat chTabl e->cnt_free(l nbox);

CMC return code

(*NewiessageCal | Back) (CMC session_id sessi on,
CMC_event event,
CMC buf fer cal | back_dat a,
CMC _buf fer regi ster_data,
CMC_ext ensi on *cal | back_ext ensi ons)
{

printf("You have new mail!\n");

pDi spat chTabl e->cnt_free(cal | back_dat a);
pDi spat chTabl e->cnt_free(regi ster_data);

ret urn(CMC_SUCCESS) ;

}
C5 Filing a message
#def i ne NUM_RECI P_PROPS 4
#def i ne NUM_MESSAGE_PROPS 5
#def i ne NUM_CONTENT _PROPS 6
#def i ne RECI P_NAME_| NDEX 0
#def i ne RECI P_ADDRESS | NDEX 1
#defi ne RECI P_ROLE | NDEX 2
#defi ne RECI P_TYPE_| NDEX 3
#defi ne MSG_TYPE_I NDEX 0
#defi ne MSG_PRI ORI TY_I NDEX 1
#def i ne MSG_SUBJECT | NDEX 2
#defi ne MSG_ROLE_I NDEX 3
#defi ne MSG_CLI ENT_MSG_STATUS | NDEX 4
#def i ne CONTENT_CHARSET | NDEX 0
#def i ne CONTENT | NFORMATI ON_| NDEX 1
#def i ne CONTENT_SI ZE | NDEX 2
#defi ne CONTENT_TI TLE_| NDEX 3
#defi ne CONTENT_| TEMNUM | NDEX 4
#def i ne CONTENT_| TEMTYPE_| NDEX 5
CMC return_code Status = CMC_SUCCESS;
extern CMC session_id Session;
extern CMC _di spatch_t abl e *pDi spat chTabl e;
CMC _obj ect _handl e root _object _handle = CMC_NULL_HANDLE;
CMC _obj ect _handl e hFol der = CMC_NULL_HANDLE;
CMC _obj ect _handl e Message = CMC _NULL_HANDLE;
CMC _obj ect _handl e Reci pi ent = CMC_NULL_HANDLE;
CMC_obj ect _handl e Contentltem = CMC NULL_ HANDLE;
CMC _cursor _handl e Root Cursor = CMC_NULL_HANDLE;
CMC cursor _restriction RootRestriction;
CMC_si nt 32 Fol der Count = 1; /* Assune 1 Drafts Fol der.
CMC string error_buf = NULL;
CMC_enum DraftsTypeFl ag = CMC_MCT_I NBOX;
CMC property Reci pi ent Props[NUM_RECI P_PROPS] ;
CMC property MessagePr ops[NUM MESSAGE PROPS] ;
CMC property Cont ent Props[NUM_CONTENT_PROPS] ;
CMC _opaque_dat a MessageBody;
CMC_CHAR MsgBuf f er [MAX_BODY_LEN] ;

Recommendation X.446

268

/* Get the Root Object Handle.

*/

Status = pDi spatchTabl e->cnt_get r oot handl e(Sessi on,

/* error
/*

Open a cursor

& oot _obj ect _handl e,
NULL) ;

handl i ng */

on the Root Container. Start by

setting up a restriction to find the Drafts Fol der.

Assum ng the Exi stence of the Drafts Fol der.

*/

Root Restriction.type = CMC_RESTRI CTI ON_CONTENT;

Root Restriction.cr.restriction_content.| ogical

= OMC_LOG CAL_EQ

Root Restriction.cr.restriction_content. property =

CMC_PV_MESSAGE_CONTAI NER_TYPE;

Root Restriction.cr.restriction_content. property value =

Root Restriction. Property_extensions =

(CMC _buffer)&braftsTypeFl ag;
NULL;

Status = pDi spatchTabl e->cnt_open_cursor (root _obj ect handl e,

/* error

&Root Restriction,
Oy

NULL,

&Root Cur sor,
NULL) ;

handl i ng */

Status = pDi spatchTabl e->cnt_|i st _obj ect s(&Root Cur sor,

/* error

/* Create and popul ate a Message.
/* Load Reci pient Property Structure.

Reci pi
Reci pi
Reci pi

Reci pi
Reci pi
Reci pi

Reci pi
Reci pi
Reci pi

Reci pi
Reci pi
Reci pi

/* Load Message Property Structure.

MessagePr ops
MessagePr ops
MessagePr ops

MessagePr ops
MessagePr ops
MessagePr ops

MessagePr ops
MessagePr ops
MessagePr ops

MessagePr ops
MessagePr ops
MessagePr ops

ent Props
ent Props
ent Props[REClI P_NANME | NDEX] . val ue. CMC pv_string =

ent Props
ent Props
ent Props[REClI P_ADDRESS | NDEX] . val ue. CMC pv_string =

ent Props
ent Props
ent Props[REClI P_ROLE_| NDEX] . val ue. CMC_pv_enuner ated =

ent Props
ent Props -
ent Props[RECI P_TYPE_| NDEX] . val ue. CMC_pv_enuner ated =

&Fol der Count ,
&hFol der,
NULL) ;

handl i ng */

*/
*/

RECI P_NAME | NDEX] . property_id = CMC_PV_RECI Pl ENT_NAME;
RECI P_NAME | NDEX] . type = CMC string;

"Pierre Peret";
RECI P_ADDRESS | NDEX] . type = CMC string;
"uunet ! p. peret @205. bul | . com USENET" ;

RECI P_ROLE | NDEX] . property_id = CMC_PV_RECI Pl ENT_ROLE;
RECI P_ROLE | NDEX] . type = CMC_enum

CMC_RECI PI ENT_ROLE_TO,
RECI P_TYPE_I NDEX] . property_id = CMC_PV_REC! Pl ENT_TYPE;
RECI P_TYPE_| NDEX] . t ype = CMC_enum

CMC_RCT_| NDI VI DUAL;
*/

MSG TYPE | NDEX] . property_id = CMC_PV_MESSAGE TYPE;
MSG TYPE | NDEX] . type = CMC_enum
MSG TYPE | NDEX] . val ue. CMC pv_enunerated =
CMC_MI_I PM
MSG PRI ORI TY_| NDEX] . property _id = CMC_PV_MESSAGE PRI ORI TY;
MSG PRI ORI TY_I NDEX] . type = CMC_enum
MSG_PRI ORI TY_I| NDEX] . val ue. CMC_pv_enunerated =
CMC_PRI ORI TY_NORVAL;
MSG_SUBJECT | NDEX] . property_id = CMC_PV_MESSAGE SUBJECT;
MSG_SUBJECT | NDEX] . type = CMC string;
MSG_SUBJECT_| NDEX] . val ue. CMC pv_string =
"Lunch";
MSG_ROLE_| NDEX] . property_id = CMC_PV_MESSAGE _ROLE;
MSG ROLE | NDEX] . type = CMC_enum
MSG_ROLE_| NDEX] . val ue. CMC_pv_enunerated =
CMC_MESSACE _ROLE ORI Gl NAL;

MessagePr ops[MSG_CLI ENT_NMSG_STATUS | NDEX] . property_id =

CMC_PV_MESSAGE_CLI ENT_MSG_STATUS;

MessagePr ops[MSG_CLI ENT_MSG_STATUS_| NDEX] . t ype = CMC_enum
MessagePr ops[MSG_CLI ENT_MSG_STATUS | NDEX] . val ue. CMC_pv_enunerated =

Recommendation X.446

CMC_MESSAGE_STATUS_DRAFT;
(08/97)

REC! P_ADDRESS_| NDEX] . property_id = CMC_PV_RECI Pl ENT_ADDRESS;

/* Load Message Content ltem Property Structure. */

Cont ent Props[CONTENT _CHARSET | NDEX] . property_id =
CMC_PV_CONTENT_| TEM CHARACTER_SET;

Cont ent Pr ops[CONTENT _CHARSET | NDEX] . type = CMC_gui d;

Cont ent Pr ops[CONTENT_CHARSET_| NDEX] . val ue. CMC_pv_guid =
CMC_CHARSET_1252;

Cont ent Props[CONTENT _| NFORMATI ON_| NDEX] . property id =
CMC_PV_CONTENT_| TEM CONTENT _| NFORVATI ON;
Cont ent Pr ops[CONTENT _| NFORVATI ON_| NDEX] . t ype = CMC opaque_dat a;

strcpy(MsgBuffer, "Wat tine are we |eaving for lunch?");

MessageBody. si ze = strlen(MsgBuffer) + 1;
MessageBody. data = (CMC byte *)calloc(1l, strlen(MsgBuffer) + 1);

Cont ent Props[CONTENT _| NFORMATI ON_I NDEX] . val ue. CMC_pv_opaque_dat a.
dat a = MessageBody. dat a;

Cont ent Pr ops[CONTENT _| NFORMATI ON_|I NDEX] . val ue. CMC_pv_opaque_dat a.
si ze = MessageBody. si ze;

Cont ent Props[CONTENT_SI ZE | NDEX] . property_id =
CMC_PV_CONTENT_I TEM SI ZE;

Cont ent Props[CONTENT_SI ZE | NDEX] . t ype = CMC_ui nt 32;

Cont ent Props[CONTENT_SI ZE | NDEX] . val ue. CMC _pv_ui nt 32 =
MessageBody. si ze;

Cont ent Props[CONTENT_TI TLE_| NDEX] . property_id =
CMC_PV_CONTENT_I TEM TI TLE;

Cont ent Props[CONTENT_TI TLE_| NDEX] . t ype = CMC_stri ng;

Cont ent Props[CONTENT_TI TLE | NDEX] . val ue. CMC pv_string =
"Message Body";

Cont ent Props[CONTENT_I TEVMNUM | NDEX] . property_id =
CMC_PV_CONTENT_| TEM | TEM_NUMBER,

Cont ent Props[CONTENT_| TEMNUM | NDEX] . t ype = CMC_ui nt 32;

Cont ent Props[CONTENT _| TEMNUM | NDEX] . val ue. CMC pv_ui nt 32 = 0;

Cont ent Props[CONTENT _| TEMTYPE_| NDEX] . property_id =
CMC_PV_CONTENT_| TEM | TEM TYPE;

Cont ent Props[CONTENT _| TEMTYPE_| NDEX] . t ype = CMC_enum

Cont ent Props[CONTENT _| TEMTYPE_| NDEX] . val ue. CMC_pv_enuner ated =
CMC_| T_NOTE;

/* Create a Recipient Cbject. */

Status = pDi spat chTabl e- >cnt_open_obj ect _handl e(Sessi on,
&Reci pi ent,
CMC_TYPE_CC_RECI PI ENT,
NULL) ;

/* error handling */
/* Popul ate the Recipient Object with some properties. */

Status = pDi spatchTabl e->cnt_add_properti es(Reci pi ent,
NUM_RECI P_PROPS,
&Reci pi ent Props,

NULL) ;
if (Status != CMC_SUCCESS)

{

pDi spat chTabl e->cnt_get | ast _error (Sessi on,
Reci pi ent,
&error_buf,
NULL) ;

/* NOTE - The add properties extension paraneter in

the cnt_add _properties call above coul d have been
used for obtaining per property error information. */
[* error handling */

}
Recommendation X.446 (08/97)

269

/* Create a Message (bject. */

Status = pDi spat chTabl e->cnt_open_obj ect _handl e(Sessi on,
&Message,
CMC_TYPE_OC_MESSAGE,
NULL) ;
/* error handling */

/* Popul ate the Message hject with sone properties. */

Status = pDi spatchTabl e->cnt_add_properti es(Message,
NUM_MESSAGE_PROPS,

&MessagePr ops,
NULL) ;
if (Status != CMC_SUCCESS)

{

pDi spat chTabl e->cnt_get | ast _error (Sessi on,
Message,
&error_buf,
NULL) ;

/* NOTE - The add properties extension paraneter in

the cnt_add_properties call above coul d have been
used for obtaining per property error information. */
/* error handling */

}
/* Create a Content Item Cbject. */

Status = pDi spat chTabl e->cnt_open_obj ect _handl e(Sessi on,
&Contentltem
CMC_TYPE_OC_CONTENT_| TEM
NULL) ;
[* error handling */

/* Popul ate the Message hject with sone properties. */

Status = pDi spatchTabl e->cntc_add_properties(Contentltem
NUM_CONTENT _PROPS,
&Cont ent Pr ops,
NULL) ;

if (Status != CMC_SUCCESS)
{
pDi spat chTabl e->cnt_get | ast _error(Sessi on,
Contentltem
&error_buf,
NULL) ;

/* NOTE - The add properties extension paraneter in
the cnt_add_properties call above could have been

used for obtaining per property error information. */
/* error handling */

}

/* Now nove the Recipient and Content Item Cbjects into the
Message bject. */

Status = pDi spat chTabl e->cnt_copy_obj ect (Message,
Reci pi ent,
&\Wessage,
NULL) ;

if (Status != CMC_SUCCESS)
{
pDi spat chTabl e->cnt_get | ast _error(Sessi on,
Message,
&error_buf,
NULL) ;
/[* error handling */

}
270 Recommendation X.446 (08/97)

St at us = pDi spat chTabl e- >cnt_copy_obj ect (Message,
Contentltem
&M\essage,
NULL) ;

if (Status != CMC_SUCCESS)

pDi spat chTabl e->cnt_get | ast _error(Sessi on,
Message,
&error_buf,
NULL) ;

[* error handling */

}

/* Move nessage into the Drafts Fol der. */

Status = pDi spat chTabl e->cnt_copy_obj ect (hFol der,
Message,
&M\essage,
NULL) ;

if (Status != CMC_SUCCESS)

pDi spat chTabl e->cnt_get | ast _error(Sessi on,

hFol der,
&error_buf,
NULL) ;
/[* error handling */
}
Status = pDi spatchTabl e->cnc_comi t _obj ect (Message,
NULL) ;

if (Status != CMC_SUCCESS)

pDi spat chTabl e->cnt_get | ast _error (Sessi on,
hFol der,
&error_buf,
NULL) ;

/* error handling */

}
/* C eanup. */

cfree(MessageBody. dat a) ;

pDi spat chTabl e->cnt_free(Contentlten);
pDi spat chTabl e->cnt_free(Reci pient);
pDi spat chTabl e->cnt_free(Message) ;

pDi spat chTabl e->cnt_free(hFol der);

pDi spat chTabl e- >cnt_f r ee(Root Cursor);
pDi spat chTabl e->cnc_free(error_buf);

C.6 Deleting a message

CMC return_code Status = CMC_SUCCESS;

extern CMC session_id Session;

extern CMC _obj ect _handl e root _obj ect _handl e;

extern CMC _di spatch_t abl e *pDi spat chTabl e;

extern CMC_obj ect _handl e hFol der;

extern CMC_cur sor _handl e Fol der Cur sor;

CMC_obj ect _handl e hDel et edFol der = CMC_NULL_HANDLE;

CMC_obj ect _handl e Message = CMC_NULL_HANDLE;

CMC_obj ect _handl e Messagel nDel eted = CMC_NULL_HANDLE;

CMC cursor _restriction RootRestriction;

CMC_cur sor _handl e Root Cur sor = CMC_NULL_HANDLE;

CMC _si nt 32 Fol derCount = 1; /* Assume 1 Drafts Folder. */
CMC _si nt 32 MessageCount = 1; /* Assune deletion of 1 entry */
CMC string error_buf = NULL;

CMC_enum Del et edTypeFl ag = CMC_MCT_DELETED;

/* Open a cursor on the Root Container. Start by
setting up a restriction to find the Del eted Fol der.
Assumi ng the Exi stence of the Deleted Fol der. */

Recommendation X.446 (08/97) 271

Root Restriction.type = CMC_RESTRI CTI ON_CONTENT;
Root Restriction.cr.restriction_content.|ogical = CMC_LOG CAL_EQ
Root Restriction.cr.restriction_content. property =
CMC_PV_MESSAGE_CONTAI NER_TYPE;
Root Restriction.cr.restriction_content. property_val ue =
(CMC_buf fer) &Del et edTypeF! ag;
Root Restriction. Property_extensi ons = NULL;

Status = pDi spat chTabl e->cnt_open_cursor (root _obj ect _handl e,
&Root Restri cti on,
0,
NULL,
&Root Cur sor,
NULL) ;
[* error handling */

Status = pDi spatchTabl e->cnt_|i st _obj ect s(&Root Cur sor,
&Fol der Count ,
&hDel et edFol der,
NULL) ;
/[* error handling */

/* NOTE - Assunming U code has set a Fol derCursor on a Message entry
in alist box which is the nessage to delete. */

/* Get the nmessage to be deleted. */

Status = pDi spatchTabl e->cnt_|ist_object s(&Fol der Cursor,
&MWessageCount ,
&\essage,
NULL) ;
/[* error handling */

/* Let's first nove the nessage to the Del eted Fol der. */

Status = pDi spat chTabl e->cnt_copy_obj ect (hDel et edFol der,
Message,
&\vessagel nDel et ed,
NULL) ;

if (Status != CMC_SUCCESS)

pDi spat chTabl e->cnt_get | ast _error(Sessi on,

hFol der,
&error_buf,
NULL) ;
[* error handling */
}
Status = pDi spatchTabl e->cnt_comit _obj ect (Messagel nDel et ed,
NULL) ;

if (Status != CMC_SUCCESS)

pDi spat chTabl e->cnt_get | ast _error(Sessi on,
hDel et edFol der,
&error_buf,
NULL) ;

[* error handling */

}

/* Now let’s pernmanently delete the nmessage fromthe source fol der.
I nval i dat es Message handle. */

Status = pDi spat chTabl e->cnt_del et e_obj ect s(MessageCount
&\essage,
NULL) ;

if (Status != CMC_SUCCESS)

pDi spat chTabl e->cnt_get | ast _error(Sessi on,
Message,
&error_buf,
NULL) ;

[* error handling */

}
272 Recommendation X.446 (08/97)

[* Cl eanup. */

pDi spat chTabl e->cnt_free(hDel et edFol der) ;
pDi spat chTabl e->cnt_free(Messagel nDel et ed) ;
pDi spat chTabl e->cnt_free(Root Cursor);

pDi spat chTabl e->cnc_free(error_buf);

C.7 Retrieving a message

#defi ne MAX_CACHE 25

CMC return_code Status = CMC_SUCCESS;

extern CMC session_id Session;

extern CMC _di spatch_t abl e *pDi spat chTabl e;
CMC _obj ect _handl e root _obj ect handl e = NULL;

CMC_obj ect _handl e hFol der = NULL;

CMC_obj ect _handl e Messages = NULL;

CMC _cursor _handl e Root Cur sor,

CMC _cursor _handl e Fol der Cur sor,

CMC cursor _restriction RootRestriction;

CMC si nt 32 Fol der Count = 1;

CMC si nt 32 MessageCount = MAX CACHE;

CMC_enum | nboxTypeFl ag = CMC_MCT_| NBOX;
CMC_enum Messaged assFl ag = CMC_TYPE_OC_MESSAGE;

/* Get the Root Object Handle. */

Status = pDi spatchTabl e->cnt_get _root _handl e(Sessi on,
& oot _obj ect _handl e,
NULL) ;
[* error handling */

/* Open a cursor on the Root Container. Start by
setting up a restriction to find the I nbox Fol der.
Assum ng the Exi stence of single Inbox Fol der. */

Root Restriction.type = CMC_RESTRI CTI ON_CONTENT;

Root Restriction.cr.restriction_content.logical = CMC LOG CAL_EQ

Root Restriction.cursor_restriction.restriction_content. property =
CMC_PV_MESSAGE_CONTAI NER_TYPE;

Root Restriction.cursor_restriction.restriction_content.property_value =
(CMC_buf f er) & nboxTypeFl ag;

Root Restriction. Property_extensi ons = NULL;

Status = pDi spatchTabl e->cnt_open_cursor (root _obj ect handl e,
&Root Restriction,
0,
NULL,
&Root Cur sor,
NULL) ;
/[* error handling */

Status = pDi spatchTabl e->cnt_|i st _obj ect s(&Root Cur sor,
&Fol der Count ,
&hFol der,
NULL) ;
/[* error handling */

/* Build a restriction on the Folder. Fetch all nessages. */

Fol der Restriction.type = CMC_RESTRI CTI ON_CONTENT;
Fol der Restriction.cr.restriction_content.|logical = CMC LOG CAL_EQ
Fol derRestriction.cr.restriction_content.property =
CMC_PV_OBJECT_CLASS;
Fol der Restriction.cr.restriction_content.property_val ue =
(CMC _buf fer) &essageC assFl ag;

/* Open a cursor on the Folder. */

St at us = pDi spat chTabl e- >cnt_open_cur sor (hFol der,
&Fol der Restriction,
0,
NULL,
&Fol der Cur sor,
NULL) ;
[* error handling */

Recommendation X.446 (08/97) 273

274

/* Enunmerate all the nmessages in the inbox in chunks of MAX_CACHE. */

whi |l e (MessageCount !'= 0)

{
Status = pDi spatchTabl e->cnt_| i st_obj ect s(&Fol der Cur sor,
&MwessageCount ,
&M\essages,
NULL) ;

[* error handling */

/[* Build Property array of desired properties (see conposing a
message exanple), call cnc_read properties and Display in
Li stbox for each Message Object returned.

NOTE - The individual object handles need to be copied by a call to
cnt_copy_object _handle() prior to invoking cnc_free() on this pointer. */

pDi spat chTabl e->cnt_free(Messages);
}
[* Cl eanup. */

pDi spat chTabl e->cnt_free(Root Cursor);
pDi spat chTabl e- >cnt_f ree(Fol der Cursor);
pDi spat chTabl e->cnt_free(hFol der);

Recommendation X.446 (08/97)

SeriesA
SeriesB
SeriesC
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

Series J
SeriesK
SeriesL

SeriesM

SeriesN
Series O
SeriesP
SeriesQ
SeriesR
Series S
SeriesT
SeriesU
SeriesV
Series X
SeriesZ

ITU-T RECOMMENDATIONS SERIES

Organization of the work of the ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks
Audiovisual and multimedia systems

Integrated services digital network

Transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside
plant

TMN and network maintenance: international transmission systems, telephone
circuits, telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the tel egphone network

Data networ ks and open system communication

Programming languages

	ITU-T Rec. X.446 (08/97) COMMON MESSAGING CALL API
	Summary
	Source
	FOREWORD
	CONTENTS
	COMMON MESSAGING CALL API
	1 Introduction
	1.1 Purpose
	1.2 Overview
	1.3 Terminology
	1.4 References
	1.5 Levels
	1.6 C naming conventions

	2 CMC architecture
	2.1 Functional model
	2.2 Computational model
	2.3 Configuration model
	2.4 Object model

	3 CMC object classes
	3.2 CMC API object classes

	4 Data structures
	4.1 Basic data types
	4.2 Array data types
	4.3 Attachment
	4.4 Boolean
	4.5 Buffer
	4.6 Callback Data Structures
	4.7 Counted String
	4.8 Cursor Handle
	4.9 Cursor Restriction
	4.10 Cursor Sort Key
	4.11 Dispatch Table
	4.12 Enumerated
	4.13 Events
	4.14 Extension
	4.15 Flags
	4.16 GUID
	4.17 Identifier
	4.18 ISO Date and Time
	4.19 Message
	4.20 Message Reference
	4.21 Message Summary
	4.22 Name
	4.23 Object Handle
	4.24 Object Identifier
	4.25 Opaque Data
	4.26 Property
	4.27 Recipient
	4.28 Report
	4.29 Return Code
	4.30 Session Id
	4.31 Stream Handle
	4.32 String
	4.33 Time
	4.34 User Interface Identifier

	5 Object properties
	5.1 Address book object properties
	5.2 Content item object properties
	5.3 Distribution list object properties
	5.4 Message object properties
	5.5 Message container object properties
	5.6 Per recipient information object properties
	5.7 Profile container object properties
	5.8 Recipient object properties
	5.9 Report object properties
	5.10 Root container object properties

	6 Functional interface
	6.1 Simple CMC functions
	6.2 Full CMC functions

	7 Return codes
	8 Conformance
	Annex A
	C declaration summary
	A.1 C declaration summary
	Annex B
	CMC vendor extensions
	B.1 CMC vendor extensions
	B.2 Extension set C declaration summary
	Annex C
	Programming examples
	C.1 Programming examples
	C.2 Example of cmc_bind_implementation
	C.3 Composing a message
	C.4 Check for new messages
	C.5 Filing a message
	C.6 Deleting a message
	C.7 Retrieving a message

