TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

G.164

TRANSMISSION SYSTEMS AND MEDIA

APPARATUS ASSOCIATED WITH LONG - DISTANCE TELEPHONE CIRCUITS AND OTHER TERMINAL EQUIPMENTS

ECHO SUPPRESSORS

ITU-T Recommendation G.164

(Extract from the Blue Book)

NOTES

1	ITU-T Recommendation G.164 was published in Fascicle III.1 of the Blue Book. This file is an extract from
the Blue	Book. While the presentation and layout of the text might be slightly different from the Blue Book version, the
contents	of the file are identical to the <i>Blue Book</i> version and copyright conditions remain unchanged (see below).

2	In t	his	Recommendation,	the	expression	"Administration"	is	used	for	conciseness	to	indicate	both	a
telecomn	nunic	atio	n administration and	d a re	ecognized o	perating agency.								

© ITU 1988, 1993

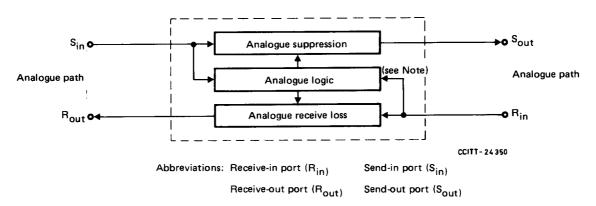
All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ECHO SUPPRESSORS

(Geneva, 1980; amended at Malaga-Torremolinos, 1984 and at Melbourne, 1988)

1 General

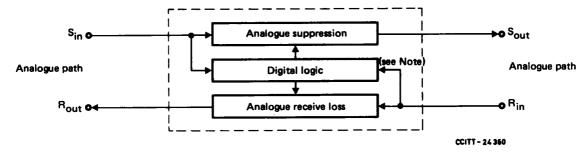
1.1 Application


This Recommendation is applicable to the design of echo suppressors used on international telephone connections which have:

- 1.1.1 mean one-way propagation times between subscribers of up to the maximum regarded as acceptable in Recommendation G.114. (The design of the echo suppressor should not impose any lower limit of delay on its use);
- 1.1.2 a level of circuit noise entering the send-in port (S_{in}) or receive-in port (R_{in}) of up to -40 dBm0p;
- 1.1.3 round trip end delays between the receive-out port (R_{out}) and S_{in} port of the echo suppressor of up to 24 ms (including all transmission and switching plant).
- *Note* Recommendation G.161 [1] refers to 25 ms. The value of 24 ms, a multiple of 2, is used in this Recommendation as being more applicable to the design of digital echo suppressors;
- 1.1.4 a loss of the echo path in dB (see the Recommendation cited in [2] that is likely to be such that the minimum loss from R_{out} to S_{in} of the echo suppressor will be equal to the difference between relative levels at, these two ports plus 6 dB.

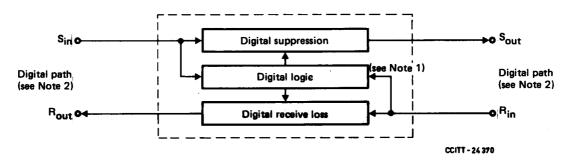
Echo suppressors must be designed to perform in a satisfactory manner under all the conditions described above.

1.2 Design features


Echo suppressors conforming to the characteristics given in this Recommendation are terminal, half-echo suppressors having differential operation and a break-in algorithm which incorporates a partial break-in state. They may be further characterized by whether the transmission paths, the logic functions and the speech processing (suppression and receive loss) use analogue or digital techniques. The combinations of these which are most likely to be practicable and to which this Recommendation is particularly addressed are shown in Figures 1/G.164, 2/G.164, 3/G.164 and 4/G.164 as Types A, B, C and D. All the requirements of this Recommendation apply equally to Types A, B, C and D except where noted.

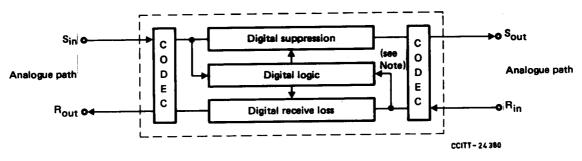
Note - This input may be connected to either side of the receive loss, depending on the logic circuitry.

FIGURE 1/G.164


Type A echo suppressor

Note - This input may be connected to either side of the receive loss, depending on the logic circuitry.

FIGURE 2/G.164


Type B echo suppressor

- Note 1 This input may be connected to either side of the receive loss, depending on the logic circuitry.
- Note 2 The digital path may be at any digital interface, i.e. 64 kbit/s, 1544 or 2048 kbit/s or at any higher order interface.

FIGURE 3/G.164

Type C echo suppressor

Note - This input may be connected to either side of the receive loss, depending on the logic circuitry.

FIGURE 4/G.164

Type D echo suppressor

1.3 Variants

- 1.3.1 Recommendation G.161 [1] is still applicable for the design of analogue echo suppressors. Analogue echo suppressors must conform to either Recommendation G.164 in its entirety or Recommendation G.161 [1] in its entirety.
- 1.3.2 This Recommendation is applicable to echo suppressors that employ fixed differential sensitivity, see § 3, and those that employ adaptive differential sensitivity, see § 4.

1.4 Compatibility

It is necessary for all echo control devices used on international connections to be compatible with each other. Echo suppressors designed according to this Recommendation will be compatible with each other, with echo suppressors conforming to Recommendation G.161 [1] and with echo cancellers designed to Recommendation G.165. Compatibility is defined as follows:

Given:

- 1) that a particular-type of echo control device (say Type I) has been designed so that satisfactory performance is achieved when any practical connection is equipped with a pair of such devices, and
- 2) that another particular type of echo control device (say Type II) has been likewise designed;

then Type II is said to be compatible with Type I if it is possible to replace an echo control device of one type with one of the other type, without degrading the performance of the connection to an unsatisfactory level.

In this sense compatibility does not imply that the same test apparatus or methods can necessarily be used to test both Type I and Type II echo control devices.

1.5 Need for test methods

Objective test methods are very important to permit measurement of essential operating characteristics of echo suppressors. Suitable test methods are therefore given in § 6 of this Recommendation. Echo suppressors must operate properly in response to speech signals. Because of the difficulty of defining a speech test signal, the following tests are type tests and rely on the use of sine wave signals for convenience and repeatability. These tests should be performed on echo suppressors only after the design has been shown to properly operate on speech input signals.

1.6 Enabling/disabling

Each echo suppressor should be equipped with:

- a) a facility which provides for enabling or disabling by an externally derived ground (earth) from the trunk circuit. The enabler should function to permit or prevent normal echo suppressor operation. Certain Type C echo suppressors may be disabled directly by a digital signal.
 - Some digital data signals may require type C echo suppressors to provide 64 kbit/s bit sequence integrity in the externally disabled state.
- b) a tone disabler which functions to prevent the introduction of the suppression and receive loss when specified disabling tone signals are transmitted through the suppressors. Thus it should disable for specified tones but should not disable on speech. (See § 5.)

1.7 Explanatory notes

- 1.7.1 When an echo suppressor is in its suppression mode, it places a large loss in the return path which, besides suppressing echo, prevents the speech of the second party of the conversation from reaching the first party when both parties are talking simultaneously (termed "double-talking"). To reduce this effect (called "chopping") during double-talking, the echo suppressor must be able to operate in a second mode when both parties are talking simultaneously. The terminology usually used is that the second party must be able to "break-in" or remove suppression when the second party interrupts during an utterance by the first party.
- 1.7.2 The result of break-in is to transform the circuit from one permitting speech in one direction to one permitting speech on both directions simultaneously, and a necessary consequence of this action is to permit echo to return unsuppressed. To reduce the amount of echo returned during break-in, loss is inserted in the receive path. This, of course, attenuates the received speech. If the break-in action is adjusted to minimize the echo, the speech of one or both double-talking parties will still be chopped to some extent as the control of the echo suppressor transfers from one party to the other. The basic requirements in the design of an echo suppressor are therefore two:
 - 1) to provide adequate suppression of echo when speech from one talker only is present;
 - 2) to provide ease and unobtrusiveness of break-in during double-talking.

The second requirement involves two mutually exclusive functions:

- a) avoidance of chopping of double-talking speech;
- b) elimination of echo during and after double-talking.

- 1.7.3 A differential circuit is used to detect the condition when break-in should take place. The level of the speech in the send path is compared with the level of the speech in the receive path to determine whether the send speech is the echo of the first party, or speech of the second party. Echo is reduced in level by the echo path loss and is delayed by twice the propagation time between the echo suppressor and the points of reflection. (The round trip delay in the echo path is called "end-delay".) The minimum echo path loss and the maximum end-delay must be considered in the design of the differential circuit.
- 1.7.4 Echo suppressors with fixed differential sensitivity are designed such that if speech in the send path is below the level of the expected echo (considering the minimum echo path loss), suppression will not be removed. If speech in the send path is above the level of the expected echo, break-in will occur and the suppression will be removed.
- 1.7.5 Echo suppressors with adaptive differential sensitivity are designed to adapt to the actual echo path loss on the connection (which is usually substantially higher than the minimum value, see Recommendation G.122, § 2). Speech in the send path is thus more often above the level of the expected echo, and break-in occurs more easily. The adaptation time is typically less than one second and adaptation is stopped or slowed down during double-talking. The adaptive function reduces the degradation in the send path due to speech chopping.
- 1.7.6 Break-in hangover is used to minimize chopping of double-talking speech. A two step process is recommended as a protection against false break-in due to echo or to impulse noise:
 - a) The state of partial break-in is entered initially. This state is characterized by short break-in hangover times. The receive loss may or may not be inserted but, if used, must have an equally short break-in hangover time.
 - b) After the signal conditions producing break-in have persisted for some time, the full break-in state is entered. Receive loss must be inserted and longer break-in hangover times applied.

2 Definitions relating to echo suppressors

2.1 echo suppressor

F: suppresseur d'écho

S: supresor de eco

A voice-operated device placed in the 4-wire portion of a circuit and used for inserting loss in the transmission path to suppress echo. The path in which the device operates may be an individual circuit path or a path carrying a multiplexed signal.

2.2 **full echo suppressor**

F: suppresseur d'écho complet

S: supresor de eco completo

An echo suppressor in which the speech signals on either path control the suppression loss in the other path.

2.3 half-echo suppressor

F: demi-suppresseur d'écho

S: semisupresor de eco

An echo suppressor in which the speech signals of one path control the suppression loss in the other path but in which this action is not reciprocal.

2.4 differential echo suppressor

F: suppresseur d'écho différentiel

S: supresor de eco diferencial

An echo suppressor whose operation is controlled by the difference in level between the signals on the two speech paths.

4

2.5 partial break-in echo suppressor

F: suppresseur d'écho à intervention partielle

S: supresor de eco con intervención parcial

An echo suppressor which includes partial and full break-in functions.

2.6 adaptive break-in echo suppressor

F: suppresseur d'écho à intervention adaptable

S: supresor de eco con intervención adaptativa

An echo suppressor in which the break-in differential sensitivity is automatically adjusted according to the attenuation of the echo path.

2.7 suppression loss

F: affaiblissement de blocage

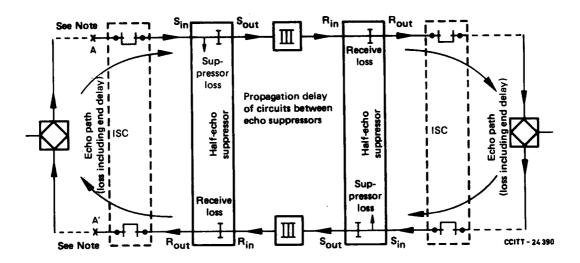
S: atenuación para la supresión

The specified minimum loss which an echo suppressor introduces into the send path (of the echo suppressor) to reduce the effect of echo currents.

2.8 receive loss

F: affaiblissement à la réception

S: atenuación en la recepción


The specified loss which an echo suppressor introduces into the receive path (of the echo suppressor) to reduce the effect of echo currents during break-in.

2.9 **terminal echo suppressor** (see Figure 5/G.164)

F: suppresseur d'écho terminal

S: supresor de eco terminal

An echo suppressor designed for operation at one or both terminals of a circuit.

ISC International switching centre

Note - In some applications the echo suppressor is inserted at point A, A'.

FIGURE 5/G.164

2.10 suppression operate time

F: temps de fonctionnement pour le blocage

S: tiempo de funcionamiento para la supresión

The time interval between the instant when defined test signals, applied to the send- and/or receive-in ports, are altered in a defined manner and the instant when the suppression loss is introduced into the send path of the echo suppressor.

2.11 suppression hangover time

F: temps de maintien pour le blocage

S: tiempo de bloqueo para la supresión

The time interval between the instant when defined test signals applied to the send- and/or receive-in ports are altered in a defined manner, and the instant when the suppression loss is removed from the send path.

2.12 partial break-in

F: intervention partielle

S: intervención parcial

A temporary condition of break-in which exists at the onset of break-in. This state is characterized by a short break-in hangover time. The receive loss may be inserted during partial break-in provided it also has the short break-in hangover time.

2.13 partial break-in operate time

F: temps de fonctionnement pour l'intervention partielle

S: tiempo de funcionamiento para la intervención parcial

The time interval between the instant when defined test signals, applied to the send- and/or receive-in ports, are altered in a defined manner such as to remove suppression and the instant when suppression is removed. Insertion of loss in the receive path may occur at the same time or slightly after removal of suppression.

2.14 full break-in

F: intervention totale

S: intervención total

A stable condition of break-in which follows the partial break-in condition once it has been determined, with high probability, that the signal causing break-in is speech. This state is characterized by the insertion of receive loss and longer break-in hangover times.

2.15 full break-in operate time

F: temps de fonctionnement pour l'intervention totale

S: tiempo de funcionamiento para la intervención total

The time interval between the instant when defined test signals, applied to the send- and/or receive-in ports, are altered in a defined manner such as to remove suppression and extend the hangover time and the instant when the extended hangover time is applied. Removal of suppression occurs at the same time as for partial break-in. Insertion of loss in the receive path may occur at the same time or slightly after removal of suppression.

2.16 break-in hangover time

F: temps de maintien pour l'intervention

S: tiempo de bloqueo para la intervención

The time interval between the instant when defined test signals, applied to the send- and/or receive-in ports, are altered in a defined manner such as to restore suppression and the instant when suppression is restored. The hangover time for removal of loss in the receive path may be longer than that for restoration of suppression.

2.17 differential sensitivity

F: sensibilité différentielle

S: sensibilidad diferencial

The difference, in dB, between the relative level of the test signals applied to the send path and receive path when break-in occurs.

3 Characteristics of echo suppressors with fixed break-in differential sensitivity

3.1 Transmission performance

The performance characteristics apply, unless otherwise noted, when steady state signals are separately applied to the send and receive paths.

The limits on transmission characteristics specified below shall be observed over the temperature range +10 °C to 40 °C and over the power supply variations permitted by individual Administrations.

Echo suppressors of Types A, B and D are placed in the voice-frequency portion of a 4-wire circuit which is nominally of 600-ohms impedance. The send (transmit or office-to-line) and the receive (line-to-office) paths are at different relative levels in different national networks; two such sets of levels are:

- 1) send, -16 dBr; receive, +7 dBr;
- 2) send, -4 dBr; receive, +4 dBr.

Test tone frequencies are 800 Hz or 1000 Hz, nominal. To avoid submultiples of the 8000-Hz sampling frequency, test tone frequencies should fall within the ranges 804 to 860 Hz and 1004 to 1020 Hz respectively.

3.1.1 Type A and B echo suppressors

3.1.1.1 Insertion loss

The insertion loss at 800 Hz (or 1000 Hz) of an echo suppressor in an unoperated condition shall be 0 ± 0.3 dB, for test tone levels < 0 dBm0.

3.1.1.2 Attenuation distortion

The attenuation distortion shall be such that if Q dB is the loss at 800 Hz (or 1000 Hz), the loss shall be within the range (Q + 0.3) dB to (Q - 0.2) dB at any frequency in the band 300-3400 Hz, and at 200 Hz within the range of (Q + 1.0) dB to (Q - 0.2) dB.

3.1.1.3 Delay distortion

The delay distortion shall not exceed 30 μs measured between any two frequencies in the band 1000-2400 Hz and 60 μs in the band 500-3000 Hz.

3.1.1.4 Impedance

The values of impedance and return loss shall apply to all states of operation of the echo suppressors.

- 1) The nominal value of the inputs and outputs shall be 600 ohms (nonreactive).
- 2) The return loss with respect to the nominal impedance shall not be less than 20 dB from 300-600 Hz nor less than 25 dB from 600-3400 Hz.
- 3) The impedance unbalance to earth of each port shall not be less than 50 dB over the frequency range 300 to 3400 Hz.

3.1.1.5 Overload

The insertion loss at 800 Hz (or 1000 Hz) shall not increase by more than 0.2 dB for test tone levels from 0 to +5.0 dBm0.

3.1.1.6 Harmonic distortion

The total harmonic distortion power, for a pure 800 Hz (or 1000 Hz) sine wave at a level of 0 dBm0, shall not exceed -34 dBm0.

3.1.1.7 Intermodulation

For frequencies $f_1 = 900$ Hz and $f_2 = 1020$ Hz applied simultaneously each at a level of -5 dBm0, the difference between the output levels of either frequency f_1 or f_2 and the level of either of the intermodulation products at $(2 f_1 - f_2)$ or $(2 f_2 - f_1)$ should be at least 45 dB. When speech compressors are used to provide loss during break-in, this requirement is reduced during the break-in mode to 26 dB for the receive path (W-state receive path).

3.1.1.8 Transient response

If loss devices which are inserted in the receive path operate at a syllabic rate, the transient performance of such devices should conform to Recommendation G.162 which deals with the overall transient response of compandors.

3.1.1.9 Noise

The mean weighted psophometric power introduced by an echo suppressor shall not exceed -70 dBm0p. The mean unweighted noise power in a band of 300-3400 Hz introduced by an echo suppressor shall not exceed -50 dBm0.

3.1.1.10 Crosstalk

When an echo suppressor is installed in a working circuit, the crosstalk attenuation between the send path and the receive path (and conversely) shall be such that the signal power in the disturbed path due to crosstalk from the disturbing path shall not exceed -65 dBm0 for any sinusoidal signal in the disturbing path having a power of +5 dBm0 or less and within the band 300-3400 Hz.

3.1.1.11 Spurious outputs produced by the echo suppressor

The various operations of the echo suppressor must not result in any appreciable spurious outputs such as internally generated impulses due to transient conditions. In particular these must not be of such magnitude as would be likely to falsely operate the suppression or break-in feature of any other echo suppressor that might be in the connection. Consideration must include that of multilink connections having several pairs of echo suppressors in tandem.

To prevent false operation of other echo suppressors in a built-up connection, the zero-to-peak voltage of any transient output produced in the receive or transmit paths (terminated in 600 ohms) due to echo suppressor operation caused by signals in the opposite path should not exceed 20~mV at a point of zero relative level (-34 dBV0) after first filtering the transient to a 500~to~3000~Hz bandwidth. Additionally, the duration of any such transient should be such that it is not audible in the presence of normal levels of noise (e.g. -50 dBm0p).

3.1.2 Type C echo suppressor

3.1.2.1 *General*

An echo suppressor of Type C inserted into a digital transmission path between codecs meeting the performance characteristics of Recommendation G.712 [3] should not alter such performance.

3.1.2.2 Group delay

The group delay through the echo suppressor shall not exceed 0.25 ms.

3.1.2.3 Effect of digital loss pads

Digital loss pads inserted into the receive path during the break-in mode may increase the quantizing distortion. Type C echo suppressors, which maintain signalling bit integrity for channel associated signalling for systems in accordance with Recommendation G.733 [4] by bypassing the least significant bit, are likely to exhibit a greater increase in quantizing distortion during the break-in mode than Type C echo suppressors used in systems with common channel signalling. See Footnote c) to Table 1/G.164.

3.1.2.4 Effect of instantaneous digital compressors

When an instantaneous compressor is employed in the receive path of the suppressor during break-in, it shall not produce distortion exceeding the following limits:

a) Harmonic distortion

With a sinusoidal input signal of 0 dBm0 at any frequency between 300 Hz and 1 kHz, the third harmonic distortion produced should not exceed -30 dBm0.

b) Intermodulation distortion

With an input signal of two equal amplitude sinusoids at $f_1 = 900$ and $f_2 = 1020$ Hz at levels of -3 to -35 dBm0, the distortion products at $(2 f_1 - f_2)$ and $(2 f_2 - f_1)$ should not exceed a level of -16 dB relative to the output level of each tone. For input levels below -35 dBm0 this ratio should be at least -20 dB.

3.1.3 Type D echo suppressors

3.1.3.1 General

The performance characteristics of Recommendation G.712 [3] apply for the codecs.

3.1.3.2 Group delay

The group delay shall not exceed that of the codecs alone by more than 0.25 ms.

3.1.3.3 Effect of digital loss pads

Digital loss pads inserted into the receive path during the break-in mode may increase the quantization distortion over the limits specified in Recommendation G.712 [3]. See Footnote c) to Table 1/G.164.

3.1.3.4 Effect of instantaneous digital compressors

See § 3.1.2.4.

- 3.2 Characteristics with steady-state input signals applied independently to the send and receive paths
- 3.2.1 The action of an echo suppressor with fixed differential sensitivity which incorporates the general features described in \S 1 is explained below with the aid of the idealized operational diagram shown in Figure 6/G.164. The significant combinations of input signals are represented by the areas X, Y, Z, W and V.
- 3.2.2 The area X corresponds to the absence of any appreciable signal on either the send or the receive path. The area Y corresponds to the presence of signals only on the send path. The area Z represents those combinations of signal levels for which the echo suppressor should provide suppression in the send path. The area W corresponds to break-in when the suppression should be absent. The area V corresponds to hysteresis that is provided to ensure that the break-in condition is retained when the signal on the send path has fallen slightly below the minimum level at which break-in would be initiated; the area V therefore represents a bistable condition. Table 1/G.164 shows the losses that should be inserted in the two paths, when each of the five areas X, Y, Z, W and V is occupied continuously. The right band column of the table refers to tests described in § 6. Figure 7/G.164 shows the boundaries for the receiving loss C, that should be inserted in the receive path during break-in. The information given in Figures 6/G.164 and 7/G.164 and in Table 1/G.164 applies for steady-state signals with the inter-area boundaries being crossed very slowly.

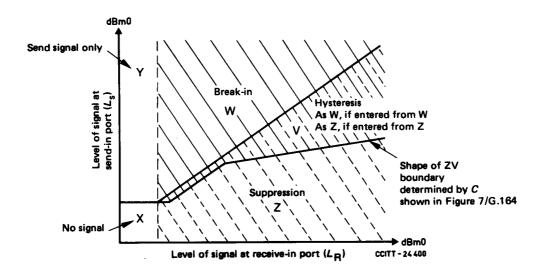
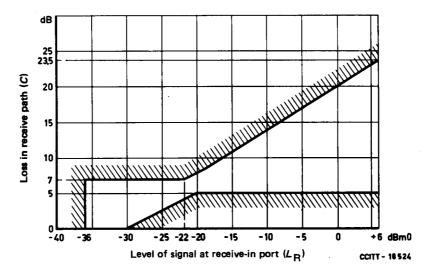


FIGURE 6/G.164

Conceptual diagram showing operational states of echo suppressors with fixed differential sensitivity under ideal conditions


TABLE 1/G.164 **Key to operational diagram Figure 6/G.164**

Area	Loss in send path (dB)	Loss in receive path (dB)	Test No.
X	0	0	1
Y	0	0 p)	2
W	0	Within limits for <i>C</i> shown in Figure 7/G.164 ^{c)}	2
Z	50 minimum ^{a)}	0	1
V	As W, if enter As Z, if enter		

When echo suppressors are used on low noise circuits, suppression of the far end noise may be objectionable due to noise contrast. Two administrations have shown that this impairment may be reduced by the insertion of noise, equivalent to far end noise, during suppression.

b) When the loss in the receive path is provided by a speech compressor, the loss should be zero for receive signals ≤ -36 dBm0.

c) Information given in Supplement No. 21 at the end of this fascicle indicates that for A-law encoded telephone signals, the additional quantizing distortion due to a fixed digital loss pad is minimum for a loss value of 6 dB. For high level receive signals this will also apply to loss values which are an integer multiple of 6 dB. For μ -law encoded telephone signals the additional quantizing distortion is practically independent of the digital loss pad value.

Note - The recommended values are those enclosed in the nonshaded area.

FIGURE 7/G.164

Recommended loss C, to be inserted in receive path during break-in

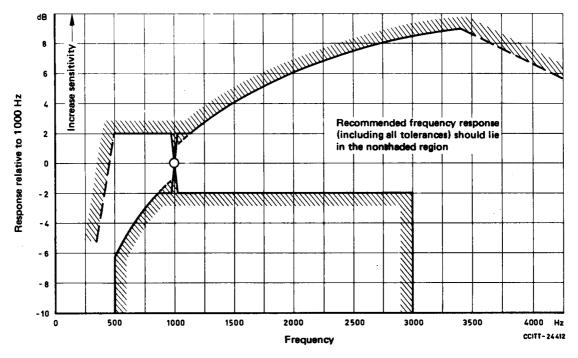
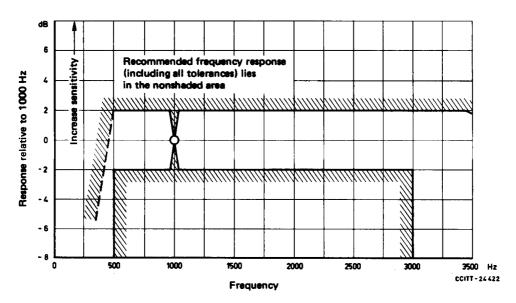

- 3.2.3 The features shown in Figure 6/G.164 are concerned only with characteristics that can be determined without knowledge of, or access to, the internal circuits of echo suppressors. These characteristics are determined by application of test signals to the external terminals of the echo suppressor and observation of its state by external measurements. Test methods for measurements to verify compliance with the requirements are given in § 6.
- 3.2.4 The signal levels that define the various thresholds are given in Table 2/G.164.
- 3.2.4.1 The nominal suppression threshold is -31 dBm0 when there is essentially no speech in the send path. The release from suppression is also nominally -31 dBm0 but can be as much as 3 dB below the suppression threshold. When signals above the threshold exist in both the send and receive paths, the intent of the requirement is that the echo suppressor be in the suppress (Z) state if $L_R \ge L_S$, should transfer to the break-in (W) state for $L_S \ge L_R$ and should revert to the suppression state for $L_R \ge L_S + C$. Tolerances are provided to account for filter, power supply and temperature variations.
- 3.2.4.2 The frequency response limits of the suppression control path are given in Figure 8/G.164. The frequency response limits of the break-in control paths are given in Figure 9/G.164. It is desirable to provide such filtering in echo suppressors. However, this is difficult to implement in the case of Types C and D. Therefore, for these types, this filtering may be omitted where Administrations can ensure that any interfering signals are at such a low level that they do not adversely affect echo suppressor operation. Tests 1 and 3 of § 6 can be used to measure the frequency responses.

TABLE 2/G.164

Inter-area threshold levels


Boundary	Symbol of threshold	At 1000 Hz (see Note 1) dBm0 at 20 ± 5°C	At 1000 Hz (see Note 1) dBm0 between 10 and 40°C	Variation with frequency	Test No.
Suppression					
X to Z	Txz	$-33 \le Txz \le -29$ for $L_S = -40$	$T'xz = Txz \pm 1$		1
Z to X	Tzx _{max} . Tzx _{min} .	Txz - 0 dB Txz - 3 dB	T'xz - 0 dB T'xz - 3 dB	Figure 8/G.164	1
Break-in					
V to W (previous input Z)	Tvw	$L_{R} - 3 \le L_{S} \le L_{R} \text{ (see Note } (-26.5 \le L_{R} \le +3)$	es 3, 4 ,5 and 6)	T 'vw = T vw ± 1.5 dB between 500 and 3000 Hz (see Note 2)	3
V to Z (previous input W)	Tvz _{max.} . Tvz _{min} .	Tvw - C + 2 dB (see Notes Tvw - C - 3 dB $(-26.5 \le L_R \le + 3)$	3, 4 and 5)	T 'vz = T vz \pm 1.5 dB between 500 and 3000 Hz (see Note 2)	3

- $L_{\rm S}$ Level (dBm0) at send-in port.
- L_R Level (dBm0) at receive-in port.
- C Loss inserted in the receiving path during break-in. This characteristic must conform with the limits shown in Figure 7/G.164.
- Note 1 The test frequency is 1004 to 1020 Hz to avoid submultiples of the 8000 Hz sampling frequency.
- Note 2 Tolerances in the attenuation/frequency characteristics of the two filters of the break-in detector must be taken into account, but it is desirable that the break-in threshold should be as independent of frequency as possible; a tolerance of \pm 1.5 dB should apply if $L_{\rm S}$ and $L_{\rm R}$ are varied together over the frequency range 500-3000 Hz.
- Note 3 This excludes tolerances due to codecs (± 0.5 dB in Recommendation G.712 [3]).
- Note 4 The Tvw and Tvz tolerance limits may occasionally be exceeded by up to 1 dB in the range $-26.5 \le L_R \le +3$ dBm0 due to quantizing effects. This can, in theory, cause false retention of break-in when using steady state test signals (see test 8). This does not occur for speech signals.
- *Note* 5 The limiting values of the *T*vw and *T*vz thresholds combined with small values of echo path loss and small values of *C* can, in theory, cause oscillation between suppression and break-in for tests using low-level steady state signals. This has not been observed on existing echo suppressors and does not occur for speech signals.
- *Note* 6 The fixed *T*vw threshold, symbolizing differential sensitivity having a nominal value of 0 dB, ensures against false break-in due to echo for a minimum echo path loss of 6 dB (see § 1.1.4).

Note - Decrease in sensitivity below 500 and above 3400 Hz should have a value of at least 12 dB/octave.

$FIGURE\ 8/G.164$ Recommended frequency response of suppression control path of echo suppressor

Note - Decrease in sensitivity below 500 and above 3400 Hz should have a nominal value of at least 12 dB/octave.

FIGURE 9/G.164

Recommended frequency response of each control path of break-in detector of echo suppressor

Fascicle III.1 - Rec. G.164

- 3.3 Dynamic characteristics when signals are applied, removed or changed in the send and receive paths independently
- 3.3.1 The dynamic characteristics can be specified by stating the time that elapses when the conditions of the signals pass from a point in one area to one in another before the state appropriate to the second area is established (Figure 6/G.164 and Figure 12/G.164). When passing from X to Z, this is termed the suppression operate time and when passing in the opposite direction it is termed suppression hangover time. When passing from the Z area through V to W (or Y) it is termed the breakin operate time and when passing from W through V to Z it is termed the break-in hangover time. The V/W and V/Z boundaries may, in practice, be crossed at any angle; the requirements in Table 3/G.164 deal with vertical and horizontal directions.
- 3.3.2 The suppression (X/Z) operate time should be nearly constant for the sudden application of any signal in the receive path greater than the threshold (-31 dBm0) in the absence of any appreciable signal in the send path. Similarly, for transitions from suppression to break-in for $L_{\rm R}$ constant (Z/V/W), the operate times shown in Table 3/G.164 should in general apply to the complete range of possible signal pairs ($L_{\rm R}$ and $L_{\rm S}$) and not just to the two pairs shown in Table 3/G.164.
- 3.3.3 The hangover times shown in Table 4/G.164 should in general apply whenever suppression or break-in has occurred irrespective of the levels of the causative signals.
- 3.3.4 When sudden changes are made in the levels of sinusoidal test signals at a frequency of 1000 Hz, the times of operation given in Table 3/G.164 apply and the recommended values of hangover given in Table 4/G.164 apply. The right-hand part of each table refers to tests described in § 6.
- 3.3.5 The operate times of the receive pad in the Y/W transition is not separately stated or tested, but should be within the limits allowed for the suppression operate time.
- 3.4 Performance under conditions of small echo-path loss and when end-delay may be present

The foregoing requirements apply when the echo suppressor is tested under conditions such that the signals in the send and receive paths are independent. In practice, satisfactory performance must also be maintained when the send path is connected to the receive path through an echo path that may have end-delay and low loss. Three features of the dynamic performance must be checked under these conditions. § 6 describes test arrangements suitable for measuring these conditions. The three conditions are described as follows:

- 3.4.1 An echo (leakage through the echo path) must not cause false operation of the break-in condition when the echo-path loss is low and the end-delay is zero. The trouble could be caused by inappropriate design of the control path time constants. When a signal is suddenly applied to $R_{\rm in}$, this trouble would show itself as a temporary false operation of the break-in condition, persisting for the duration of the break-in hangover time (see Test No. 7).
- 3.4.2 If insufficient protection against end-delay is incorporated in the echo suppressor, the break-in circuit may operate on the trailing edge of the echo. This can occur with the sudden removal of a signal at $R_{\rm in}$ when the echo-path loss is low and the end-delay is large (see Test No. 7).
- 3.4.3 In certain designs it can happen that the hysteresis represented by the bistable area V (see Figure 6/G.164) is excessive in relation to the amount of loss inserted in the receive path. This can result in the false retention of break-in by echo occurring under the following conditions: A steady-state signal is present at R_{in} port and is coupled to S_{in} port via the echo path. A signal of sufficient amplitude and duration to cause break-in is then applied to S_{in} port. Upon cessation of this signal, the echo of the receive signal falsely maintains the break-in condition (see Test No. 8).

TABLE 3/G.164

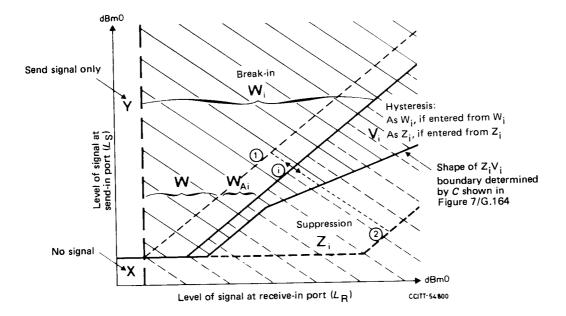
Operate times

Boundary	Initial s (see N	-	Final signals (see Note)		Recommended value	Test No.	Excursion (see Figure	Test circuit	Oscilloscope trace
	Send L _S (dBm0)	Receive L _R (dBm0)	Send L _S (dBm0)	Receive L _R (dBm0)	(ms)		12/G.164)	(Figure number)	(Figure number)
Suppression X/Z	-40 -40	-40 -40	-40 -40	-25 -11	≤ 2	4	a> b a> d	14/G.164	15/G.164
Break-in Z/V/W L _S constant	-15 -15 -15	-10 -5 0	-15 -15 -15	-25 -25 -25	24 à 36	5	$\begin{array}{c} h \longrightarrow i \\ g \longrightarrow i \\ f \longrightarrow i \end{array}$	14/G.164	16/G.164
Break-in $Z/V/W$ L_R constant	-40 -40	-25 -15	-19 - 9	-25 -15	Partial: ≤ 2 Full: 6-10	6	$b \longrightarrow k$ $c \longrightarrow j$	17/G.164	17/G.164

Note - See also § 3.3.2.

TABLE 4/G.164

Hangover times


Boundary	Initial s	ignals	Final signals		Recommended value	Test No.	Excursion (see Figure	Test circuit	Oscilloscope trace
	Send L _S (dBm0)	Receive L _R (dBm0)	Send L _S (dBm0)	Receive L _R (dBm0)	(ms)		12/G.164)	(Figure number)	(Figure number)
Suppression Z/X	-40 -40	-25 -11	-40 -40	-40 -40	24-36	4	b> a d> a	14/G.164	15/G.164
Break-in $W/V/Z$ L_R constant	-19 - 9	-25 -15	-40 -40	-25 -15	Partial: ≤ 26 Full: 48-66	6	k> b j> c	17/G.164	18/G.164

4 Characteristics of echo-suppressor with adaptive break-in differential sensitivity

4.1 Provisions of § 3

The provisions of § 3 apply to echo suppressors with adaptive break-in differential sensitivity when $a_x = 0$ (see below). Tests 1 through 8 (see § 6) must be performed and the requirements in Tables 1/G.164 and 2/G.164 apply only when $a_x = 0$.

- 4.2 Characteristics of the adaptive function with signals applied independently to the send and receive paths
- 4.2.1 The action of the adaptive function is explained below with the aid of the idealized operational diagram shown in Figure 10/G.164.

Note
$$1 - W_i = W + W_{Ai}$$
, where W_{Ai} may vary with time
Note $2 - \text{Line}$ (i) $(L_S = L_R - a_x)$ may vary between line (i) $(L_S = L_R)$ and line (2) $(L_S = L_R - a_{x \text{max}})$.

FIGURE 10/G.164

Conceptual diagram showing operational states of adaptive break-in echo suppressors under ideal conditions

4.2.2 The adaptive function automatically adjusts the differential sensitivity to the echo path loss. The adaptation characteristic a_x is used to describe this change in sensitivity, and the Tvw threshold (see Table 2/G.164) becomes the Tv $_1$ w $_1$ threshold given by

$$L_{\rm R}$$
 - $a_{\rm x}$ - $3 \le L_{\rm S} \le L_{\rm R}$ - $a_{\rm x}$,

 a_x is such that, for echo path losses of 6 dB, it equals 0 and the equation reduces to:

$$L_{\rm R}$$
 - $3 \le L_{\rm S} \le L_{\rm R}$

as given in Table 2/G.164.

4.2.3 When the echo suppressor is in the suppression mode (area Z_i , Figure 10/G.164) the adaptive function will cause rapid convergence of a_x to the value of the echo path loss a_E minus 6 dB, i.e.:

$$a_x = L_{\rm R} - L_{\rm S} - 6 \, {\rm dB}.$$

 a_x may be quantized with up to approximately 3 dB steps. In this case the value of a_x after convergence shall be:

$$a_E - 9 \le a_x \le a_E - 6$$

except that $a_x \ge 0$. This equation shall hold for a_E at least up to 26 dB i.e. for $a_{x max} \ge 20$ dB (see Table 5/G.164). The rate of convergence is given in Table 6/G.164.

 ${\it TABLE~5/G.164}$ Loss value of a_x after convergence in ${\bf Z_i}$ state

Echo path loss, a_E	a_{χ} (dB)
≤6	0
7	0 to 1
8	0 to 2
9	0 to 3
10	1 to 4
x	<i>x</i> -9 to <i>x</i> -6
	-
26	17 to 20
	-
	-
$a_{x \max} + 6$	$a_{x \max}$ -3 to $a_{x \max}$
$a_{x \max} + 7$	$a_{x \max}$ -2 to $a_{x \max}$
$a_{x \max} + 8$	$a_{x \max}$ -1 to $a_{x \max}$
$\geq a_{x \max} + 9$	$a_{x \max}$

TABLE 6/G.164

Rate of change of adaptation characteristic a_x

Operational states (see Figure 10/G.164)	Variations of adaptation characteristic a_{χ}	Rate of change	Test No.
Z _i	Adapting to the echo return loss (increasing or decreasing) $(a_x \rightarrow a_E - 6 \text{ dB})$	> 4 dB/s (see Note 1)	10 b)
Y	Storing the last value	-	-
W	Storing the last value	-	-
$egin{array}{c} W_{i} \ W_{Ai} \end{array}$	Storing the last value or decreasing to minimum possible value causing suppression	(see Note 2)	10 a)
X	Clearing the last value $(a_\chi \to 0 \text{ dB})$	> 4 dB/s	10 c)
V _i	As Z_i , if entered from Z_i As W_i , if entered from W_i		

Note 1 - Rates of adaptation on speech for a_x of approximately 10 dB/s have been shown to be subjectively acceptable.

Note 2 - If a_{χ} is decreased in the W_{Ai} region, the rate of change should not exceed the rate of adaptation for a_{χ} in the Z_i region.

- 4.2.4 The break-in mode of the echo suppressor (area W_i) is divided into two sub-areas W_{Ai}
- 4.2.4.1 In the W area the last value of a_x should be stored.
- 4.2.4.2 In the W_{Ai} area two different strategies are possible. The first is to store the last value of a_x . The second is to permit a_x to decrease toward zero. The rate of change of a_x should preferably be slower than the rate of adaptation (see Table 6/G.164, Note 2). Experience has shown that these two strategies perform very similarly when the echo suppressor is operating on speech rather than test sine waves.
- 4.2.5 When no speech is present (X area), a_x should decrease to zero (see Table 6/G.164).
- 4.2.6 Tests 9 and 10 in § 6, may be used to measure the dynamic characteristics of the adaptive function.

5 Characteristics of echo-suppressor tone disablers

5.1 General

Each echo suppressor should be equipped with a tone disabler which functions to prevent the introduction of the suppression and receive loss when data or other specified tone signals are transmitted through the suppressor. Thus it should disable for specified tones but should not disable on speech. The tone disabler should detect and respond to a disabling signal which may be present in the send or receive path.

5.2 *Disabling characteristics* (see Figure 11/G.164)

The disabling tone transmitted is $2100 \text{ Hz} \pm 15 \text{ Hz}$ at a level of $-12 \pm 6 \text{ dBm0}$. The frequency of the tone applied to the disabler is $2100 \text{ Hz} \pm 21 \text{ Hz}$ (see Recommendation V.21 [5]). The disabling channel bandwidth should be chosen wide enough to encompass this tone (and possibly other disabling tones used within national networks). At the same time, the disabling channel bandwidth should be such that, in conjunction with guard action and timing, adequate protection is provided against false operation of the disabler by speech signals. The disabling channel sensitivity (threshold level) should be such that the disabler will operate on the lowest expected power of the disabling tone. The band characteristics shown in Figure 11/G.164 will permit disabling by the 2100-Hz disabling tone as well as others used in North America. The figure indicates that in the frequency band 2079 Hz to 2121 Hz disabling *must* be possible whilst in the band 1900 Hz to 2350 Hz it *may* be possible.

Providing that only the recommended 2100-Hz disabling tone is used internationally, interference with signalling equipment will be avoided. Unintentional disabling of the echo suppressor by signalling tones is not considered detrimental, since the echo suppressor serves no needed functions during the time when signalling tones are present on the circuit.

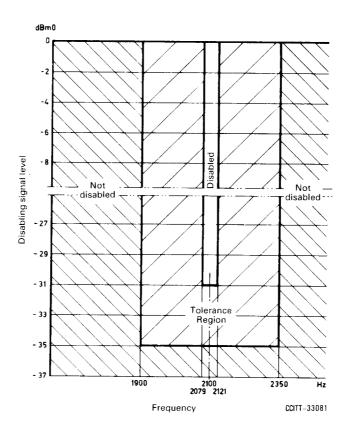


FIGURE 11/G.164
Required disabling band characteristics

5.3 Guard band characteristics

Energy in the voice band, excluding the disabling band, must be used to oppose disabling so that speech will not falsely operate the tone disabler. The guard band should be wide enough and with a sensitivity such that the speech energy outside the disabling band is utilized. The sensitivity and shape of the guard band must not be such that the maximum idle or busy circuit noise will prevent disabling. In the requirement, white noise is used to simulate speech and circuit noise. Thus, the requirement follows:

Given that white noise (in a band of approximately 300-3400 Hz) is applied to the tone disabler simultaneously with a 2100-Hz signal, the 2100-Hz signal is applied at a level 3 dB above the midband disabler threshold level. The white noise energy level required to inhibit disabling should be no greater than the level of the 2100-Hz signal and no less than a level 5 dB below the level of the 2100-Hz signal. As the level of the 2100-Hz signal is increased over the range of levels to 30 dB above the midband disabler threshold level, the white noise energy level required to inhibit disabling should always be less than the 2100-Hz signal level.

5.4 Holding-band characteristics

The tone disabler, after disabling, should hold in the disabled state for tones in a range of frequencies. The bandwidth of the holding mode should encompass all present or possible future data frequencies. The release sensitivity should be sufficient to maintain disabling for the lowest level data signals expected, but should be such that the disabler will release for the maximum idle or busy circuit noise. Thus the requirement follows:

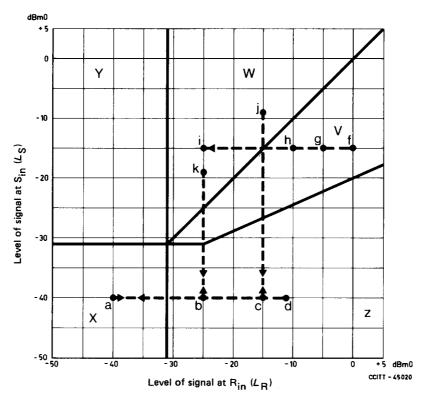
The tone disabler should hold in the disabled mode for any single-frequency sinusoid in the band from 390-700 Hz having a level of -27 dBm0 or greater, and from 700-3000 Hz having a level of -31 dBm0 or greater. The tone disabler should release for any signal in the band from 200-3400 Hz having a level of -36 dBm0 or less.

5.5 *Operate time*

The operate time must be sufficiently long to provide talk-off protection, but less than the CCITT recommended limit of 400 ms. Thus the requirement is that the tone disabler operate within 300 ± 100 ms after receipt of the sustained disabling signal having a level in the range between a value 3 dB above the midband disabler threshold level and a value of 0 dBm0.

5.6 False operation due to speech currents

It is desirable that the tone disabler should rarely operate falsely on speech. To this end, a reasonable objective is that, for an echo suppressor installed on a working circuit, usual speech currents should not on the average cause more than 10 false operations during 100 hours of speech. In addition to the talk-off protection supplied by the disabling channel bandwidth, by guard band operation and by the operate time, talk-off protection can be supplied by recycling. That is, if speech which simulates the disabling signal is interrupted because of inter-syllabic periods, before disabling has taken place the operate timing mechanism should reset. However, momentary absence or change of level in a true disabling signal should not reset the timing.


5.7 Release time

The disabler should not release for signal dropouts less than the CCITT recommended value of 100 ms. To cause a minimum of impairment upon accidental speech disabling, it should release within 250 ± 150 ms after a signal in the holding band fails at least 3 dB below the maximum holding sensitivity.

6 Test arrangements to measure essential operating characteristics of echo suppressors

6.1 General considerations

6.1.1 An echo suppressor with sinusoidal signals applied to its $S_{\rm in}$ and $R_{\rm in}$ ports will assume one of a number of states depending on the relative levels of the two signals. Any given combination of levels of the two input signals may be represented by a point on a typical operational diagram (see, for example, Figure 12/G.164). Each area on this diagram corresponds (under steady conditions) to a particular state identified by the losses in the two speech paths and the internal organization of its logic.

Note — The boundaries shown are typical. The lower boundary of the V region is shown for the maximum loss C allowed by Figure 7/G.164.

FIGURE 12/G.164

Operational diagram showing levels used in dynamic tests (see Table 3/G.164 and 4/G.164)

- 6.1.2 The tests described here assume the use of analogue test signals. In the case of Type C echo suppressors, codecs meeting Recommendation G.712 [3] will be required to interface the suppressor to the analogue test equipment. When tests are performed on Types C and D echo suppressors, due account must be made for the added propagation delays due to the codecs when measuring operate times by the observation of output signals. Further, in level measurements due account must be made for codec tolerances. Frequencies which are submultiples of the sampling frequency may give misleading results and should be avoided in these tests. Note that if external filtering is required to meet the requirements of § 3.2.4.2, it should be included when these tests are performed.
- 6.1.3 The *static* characteristics of an echo suppressor are specified by stating the inter-area boundaries and the losses in the two speech paths when signals pass slowly from one area to another.

The *dynamic* characteristics of both echo suppressors with fixed and adaptive differential sensitivity are specified by stating the time that elapses when a signal passes suddenly from a point in one area to one in a second area before the state appropriate to the second area is established.

All characteristics unique to echo suppressors with adaptive differential sensitivity are dynamically tested.

The various tests described in § 6 are summarized in Table 7/G.164.

TABLE 7/G.164

Recommended tests for echo suppressors

Test	Characteristic measured	Block diagram (Figure)	Oscilloscope trace (Figure)	Type of echo suppressor N: non-adaptive, A: adaptive
1	Suppression threshold and loss	13/G.164	_	N, A
2	Y/W threshold and receive loss	13/G.164	-	N, A
3	Break-in differential sensitivity	13/G.164	-	N, A
4	Suppression operate and hangover times	14/G.164	15/G.164	N, A
5	Break-in $L_{\rm S}$ constant	14/G.164	16/G.164	N, A
6	Partial and full break-in L_R constant	17/G.164	18/G.164	N, A
7	False break-in protection	19/G.164	-	N, A
8	Test for excessive hysteresis	20/G.164	21/G.164	N, A
9	Adaptive break-in differential sensitivity	22/G.164	23/G.164	A
10	 a) Rate of decrease of a_x in the W_{Ai} state b) Rate of increase of a_x in the Z_i state c) Rate of clearing of a_x in the X state 	22/G.164 25/G.164 27/G.164	24/G.164 26/G.164 28/G.164	A

6.1.4 The descriptions of the test circuits presented here are given so as to indicate a possible method for the application of the appropriate test signals. Other techniques for producing these signals (for example, the use of separate sine wave generators for send and receive) may be employed. Although the test frequency is nominally 1000 Hz, a frequency in the range of 1004-1020 Hz should be chosen to avoid a submultiple of the sampling frequency.

6.2 Measurement of static characteristics

The static characteristics measured are losses in the send and receive paths and the inter-area threshold levels (Tables 1/G.164 and 2/G.164). The equipment required is:

- one oscillator with 600-ohm balanced output impedance;
- two 600-ohm balanced attenuators;
- one 600-ohm mixing pad;
- two level-measuring sets with 600-ohm balanced input impedance.

The diagram of connections is shown in Figure 13/G.164.

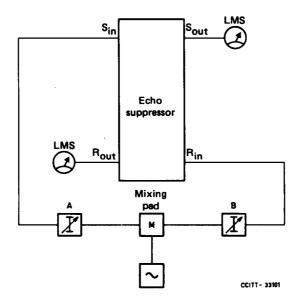


FIGURE 13/G.164

Test circuit for measurement of static characteristics (Tests 1, 2 and 3)

6.2.1 Test No. 1 - Suppression threshold and loss

- 1) Set the oscillator to 1000 Hz (for tolerances, see § 6.1.4).
- 2) Adjust *A* and *B* so that $L_S = L_R = -40$ dBm0.
- 3) Note that no loss is inserted in the send and receive paths. Requirement: See Table 1/G.164 (X area).
- 4) Increase L_R until suppression occurs and note the value of L_R and the suppression loss. Requirement: $-33 \le (L_R = Txz) \le -29 \text{ dBm0}$ (see Table 2/G.164).
- 5) Decrease L_R until suppression releases and note the value of L_R . Requirement: $Txz 3 \le L_R < Txz$ (see Table 2/G.164).
- 6) Set the oscillator to appropriate frequencies to check for conformity within the bounds shown in Figure 8/G.164 and repeat steps 2 to 5.

6.2.2 Test No. 2 - Y/W threshold and receive loss in break-in state

- 1) Set the oscillator to 1000 Hz (for tolerances, see § 6.1.4).
- 2) Adjust *A* so that $L_S = +3$ dBm0.

3) Adjust B so that L_R varies over the range -40 dBm0 $\leq L_R \leq L_S$. Operation within the boundaries of Figure 7/G.164 is observed by monitoring L_{Rin} - L_{Rout} which equals loss C. Y/W threshold occurs where C > 0 dB.

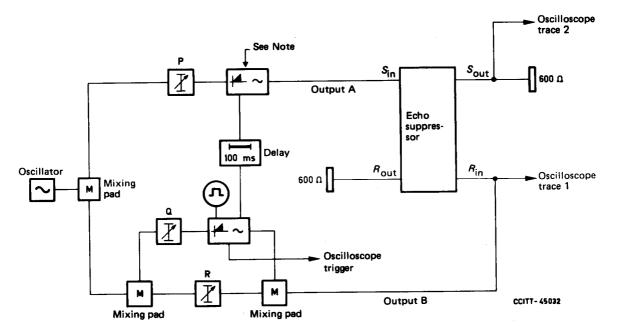
Note - Record values of C as a function of L_R for use in Test No. 3, step 5.

6.2.3 Test No. 3 - Break-in differential sensitivity

- 1) Set the oscillator to 1000 Hz (for tolerances, see § 6.1.4).
- 2) Adjust A so that $L_S = -40 \text{ dBm0}$.
- 3) Adjust *B* so that $L_R = -26.5$ dBm0.
- 4) Increase L_S until suppression is removed and loss is inserted in the receive path. Note the value of L_S . Requirement: see T_{VW} , Table 2/G.164.
- 5) Decrease L_S until suppression is inserted and loss is removed, from the receive path. Note the value of L_S . Requirement: see Tvz, Table 2/G.164.
- 6) Increase L_R in appropriate steps up to +3 dBm0 and repeat steps 4 and 5.
- 7) Set the oscillator to appropriate frequencies to check for the conformity within the bounds shown in Figure 9/G.164 and repeat steps 2 to 6.

6.3 Measurement of dynamic characteristics when L_S and L_R are applied independently

The dynamic characteristics measured are the suppression and break-in operate and hangover times (Tables 3/G.164 and 4/G.164). The equipment required is:


- one oscillator with 600-ohm balanced output impedance, set to 1000 Hz;
- three 600-ohm balanced attenuators;
- three 600-ohm mixing pads;
- two tone-burst generators, the ON and OFF periods of which must be independently variable from zero to at least 200 ms each, and which are capable of being held manually in either state. The input and output impedance in both states must be 600 ohms. One tone-burst generator is driven by the other and has 100 ms delay such that it turns ON 100 ms after the other turns ON;
- two 600-ohm terminating resistors;
- one dual beam oscilloscope, preferably with long persistence screen.

Note - If the ON or OFF periods of the tone pulses are not stated then the value of 200 ms for either should be assumed. Refer to Tables 3/G.164 and 4/G.164 for appropriate performance requirements for Test Nos. 4, 5 and 6.

6.3.1 Tests in which L_S is maintained constant

6.3.1.1 Test No. 4 - Suppression operate and hangover times

- Adjust attenuators P, Q and R shown in Figure 14/G.164 to produce the L_R and L_S values of Tables 3/G.164 and 4/G.164.
- 2) Read times as shown in Figure 15/G.164.

Note - For suppression operate and hangover times, this modulator is maintained in the conducting state.

FIGURE 14/G.164

Test circuit for the measurement of dynamic characteristics with constant L_S [Suppression (Test No. 4) and break-in (Test No. 5)]

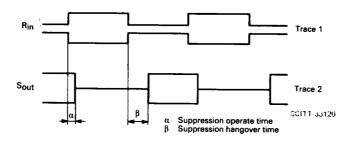


FIGURE 15/G.164

Trace for suppression operate and hangover times

6.3.1.2 Test No. 5 - Break-in operate time, L_S constant

In this test, L_R is decreased while a constant L_S is maintained, and a break-in operate time is measured. Since break-in hangover with L_S constant is difficult to measure (due to the difficulty of ensuring a return to the Z state), it is not possible to distinguish between partial and full break-in. This is not considered to be important for break-in with L_S constant.

- 1) Adjust attenuators P, Q and R shown in Figure 14/G.164 to produce the $L_{\rm R}$ and the $L_{\rm S}$ values of Table 3/G.164.
- 2) Read times as shown in Figure 16/G.164.

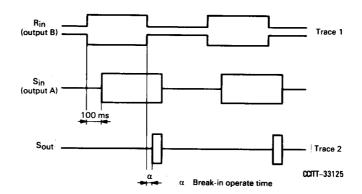
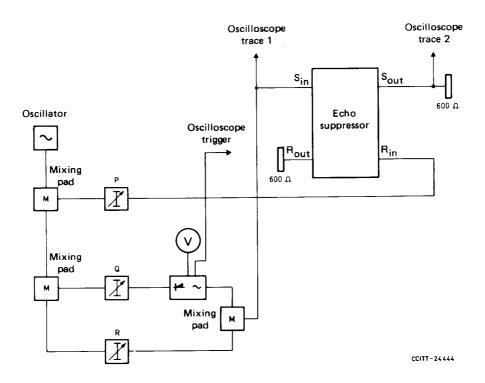


FIGURE 16/G.164


Trace for break-in operate time, L_S constant

6.3.2 Test in which L_R is maintained constant

6.3.2.1 Test No. 6 - Partial and full break-in operate and hangover times, LR constant

The equipment required is the same as for Test Nos. 4 and 5, set up according to Figure 17/G.164. In this test L_R is kept constant, L_S is increased, and the partial and full break-in operate and hangover times are measured. To test for partial and full break-in, the duration of time L_S is in the ON state must be varied.

- 1) Set oscillator to 1000 Hz (for tolerances, see § 6.1.4).
- 2) Adjust attenuator P of Figure 17/G.164 to produce $L_{\rm R}$ = -25 dBm0.
- 3) Adjust attenuators Q and R of Figure 17/G.164 to produce $L_S = -40$ dBm0 in the OFF state and $L_S = -19$ dBm0 in the ON state.
- 4) Starting with a 0 ms duration ON state for L_S , increase the duration of the ON state until partial break-in occurs. Partial break-in is characterized by the short operate and hangover times given in Tables 3 and 4/G164. Note the oscilloscope traces in a) of Figure 18/G.164 for the definitions of the times.
- 5) Continue to increase the duration of L_S ON until full break-in, characterized by the extended operate and hangover times of Tables 3/G.164 and 4/G.164 occurs. Note the oscilloscope traces in b) of Figure 18/G.164 for the definitions of the times.
- Repeat steps 3 to 5 for other pairs of levels given in Tables 3/G.164 and 4/G.164. Note that for all values of $L_R > -26.5$ dBm0 and L_S increasing from below threshold to a value $> L_R$, partial and full break-in should occur.

Note - Variable element V allows the ON and OFF times of the toneburst generator to be separately varied from 0 to 100 ms.

FIGURE 17/G.164

Test circuit for measurement of dynamic characteristics with $L_{\rm R}$ [break-in, Z/V/W, (Test No. 6)]

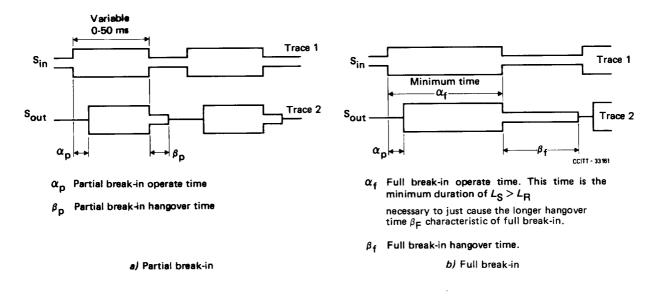


FIGURE 18/G.164

Trace for partial and full break-in operate and hangover times, L_{R} constant

6.4 Measurement of echo-suppressor operation when the S_{in} is connected to R_{out} port through an echo path that may include delay as well as loss

In this test, the echo suppressor is checked for false break-in on returning echo.

6.4.1 Test No. 7 - False operation of break-in

The diagram of connections is shown in Figure 19/G.164, and the equipment required is:

- one oscillator with 600-ohm balanced output impedance;
- three 600-ohm balanced attenuators;
- one 600-ohm terminating resistor;
- two 600-ohm mixing pads;
- one tone-burst generator;
- one audio-frequency delay device variable in the range 0-24 ms;
- one dual beam oscilloscope.
- 1) Set oscillator to 1000 Hz, and delay element to zero delay (for tolerances, see § 6.1.4).
- 2) Adjust X so that the total loss of echo path (*a-t-b*) is equal to the difference in test levels on the send and receive path, plus 6 dB.
- 3) Adjust Y so that the OFF signal is -26 dBm0.
- 4) Adjust Z so that the ON signal is -20 dBm0.
- 5) While the pulsed signal is applied to R_{in} , check for absence of signal on Trace 2 of the oscilloscope, indicating correct operation.
- 6) Reduce X until false break-in occurs, and note that the decrease in echo path loss is not less than 2 dB.
- 7) Repeat steps 4, 5 and 6 with signals at R_{in} of -10 and 0 dBm0 when the pulse generator is ON.
- 8) Repeat steps 2, 4 and 7 with signals at R_{in} of -40 dBm0 when the pulse generator is OFF.
- 9) Repeat steps 2 to 8 with the delay set to 24 ms.

Note that false break-in should not occur for *any* pulsed pair of signal levels at $R_{\rm in}$ with the delay set at up to 24 ms, and the echo path loss 6 dB or greater.

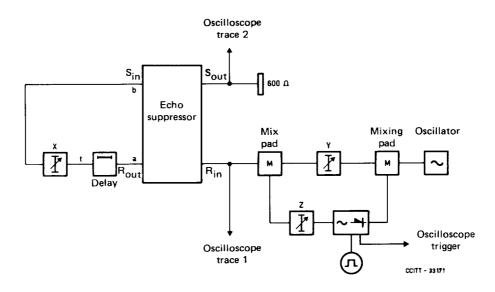


FIGURE 19/G.164

Test circuit for false break-in

6.4.2 Test No. 8 - False retention of break-in due to provision of excessive hysteresis

The diagram of connections is shown in Figure 20/G.164 and the equipment required is:

- one oscillator with 600-ohm balanced output impedance;
- three 600-ohm balanced attenuators;
- two 600-ohm mixing pads;

- one 600-ohm terminating resistor;
- one tone-burst generator;
- one amplifier (used as buffer);
- one dual beam oscilloscope.
- 1) Set the oscillator to 1000 Hz (for tolerances, see § 6.1.4).
- 2) Adjust Q so that the path loss between R_{out} and S_{in} is equal to the difference in test levels at these points plus 6 dB.
- 3) Adjust R so that $L_R = -28 \text{ dBm0}$.
- 4) Adjust P so that $L_S = (L_R + 3)$ dBm0.
- 5) Check that the signal on trace 2 of the oscilloscope is proper (see Figure 21/G.164) denoting non-occurrence of false retention of break-in.
- 6) Repeat steps 3 to 5 for values of $L_{\rm R}$ of -16 and 0 dBm0.

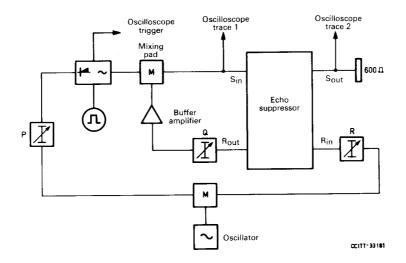


FIGURE 20/G.164

Test circuit for false retention of break-in due to provision to excessive hysteresis

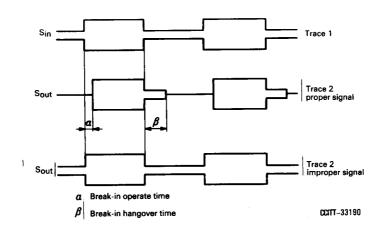
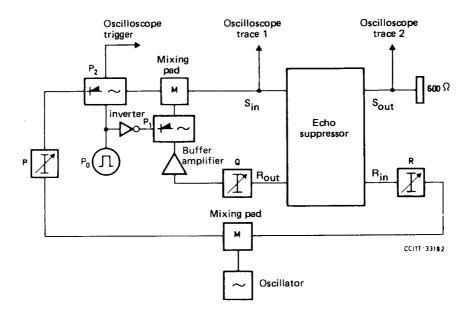


FIGURE 21/G.164

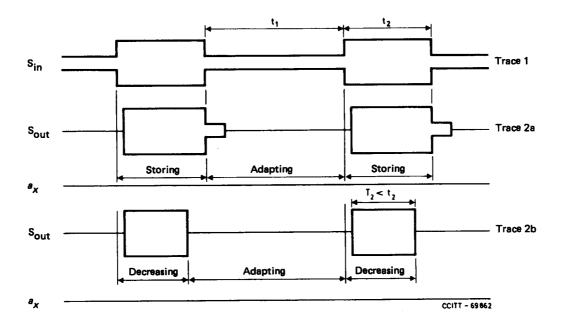
Traces for false retention of break-in due to provision of excessive hysteresis


6.5 Measurements of the specific dynamic characteristics of adaptive break-in echo suppressors

6.5.1 Test No. 9 - Adaptive break-in differential sensitivity

The connection diagram is shown in Figure 22/G.164 and the equipment required is:

- one oscillator with 600-ohm balanced impedance;
- three 600-ohm balanced attenuators;
- one 600-ohm terminating resistor;
- two 600-ohm mixing pads;
- two tone-burst generators with period variable up to 10;
- one inverter;
- one amplifier (used for buffer);
- one dual beam oscilloscope.
- 1) Set the oscillator to 1000 Hz (for tolerances, see § 6.1.4);
- 2) Adjust *R* so that $L_R = 0$ dBm0;
- 3) Adjust Q so that the attenuation between R_{out} and S_{in} is equal to the difference in test levels at these points plus 6 dB ($a_E = 6$ dB);
- 4) With P initially set to at least 55 dB, reduce P to increase $L_{\rm S}$ until suppression is removed. On trace 2 of the oscilloscope (see Figure 23/G.164) verify that $Tv_{\rm i}w_{\rm i}$ satisfies $L_{\rm R}$ a_E + 3 < $L_{\rm S}$ < $L_{\rm R}$ a_E + 6;
- 5) Repeat steps 2 to 4 for $L_R = -8 \text{ dBm0}$;
- 6) Repeat steps 2 to 4 for $L_R = -15 \text{ dBm0}$;
- 7) Repeat steps 2 to 6 for $a_E = -15 \text{ dB}$;
- 8) Repeat steps 2 to 5 for a_E = -24 dB;
- 9) Repeat steps 2 to 4 for $a_E = -26 \text{ dB}$;


Explanation: Test No. 9 checks that the minimum range of a_x is at least 20 dB ($a_{xmax} > 20$ dB).

Note $I - P_0 = P_2 = \overline{P}_1$ (relationship between waveforms P_0 , P_1 and P_2). Note 2 — This diagram may also be used in Test No. 10a, see § 6.5.2.1.

FIGURE 22/G.164

Test circuit for measurement of adaptive break-in differential sensitivity and rate of decrease of a_{χ} in the W_{Ai} area

Note 1 - Initially set t_1 to five seconds and t_2 to approximately one second.

Note 2 - A smaller value of t_1 may be used depending on the rate of increase and amplitude of variation of a_χ in the Z_i state.

Note 3 - Two variants of Trace 2 are possible:

- a) For $a_E = 6$ dB, break-in hangover time « β » (see Figure 21/G.164) must be observed after the W/Z transition (Trace 2a).
- b) For $a_E > 6$ dB, time « β » must be observed after the W_{Ai}/Z_i transition if a_x is stored in the W_{Ai} state (Trace 2a) (see Table 6/G.164), but not observed if a_x is decreased and the duration t_2 is long enough (Trace 2b).

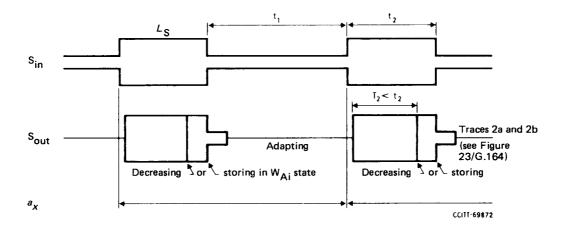
FIGURE 23/G.164

Traces for measurement of adaptive break-in differential sensitivity

6.5.2 Test No. 10 - Measurement of rates of change for a_x

6.5.2.1 Measurement of the rate of decrease of a_x in the W_{Ai} state, Test No. 10 a

The connection diagram (Figure 22/G.164) and the required equipment are the same as in Test No. 9.


- 1) Set the oscillator to 1000 Hz (for tolerances, see § 6.1.4.)
- 2) Adjust *R* so that $L_R = 0$ dBm0
- 3) Adjust Q so that $a_E = 20$ dB [after convergence in state Z_i , a_x must be equal to 14 dB nominally (a_{xC})]
- 4) Using P, increase L_S until suppression is removed and loss C inserted in the receive path (see Figure 7/G. 164). Check that Tv_i w_i satisfies -17 < L_S < -14 (dBm0)
- 5) Repeat step 4 to obtain traces of Figure 24/G.164. When break-in elapses (end of T_2) before end of t_2 , the echo suppressor makes a_x decrease in the W_{Ai} area. Then measure T_2 .
- 6) The end of break-in occurs when a_x has decreased to threshold level a_{xE} where

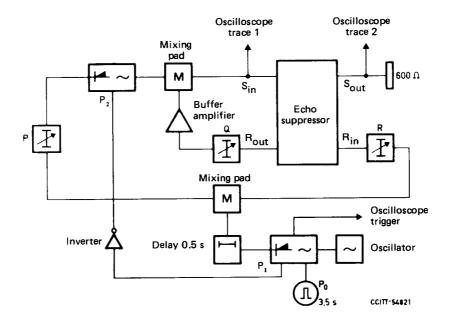
$$L_{R} - C - L_{S} - 3 \le a_{xE} \le L_{R} - C - L_{S}$$
.

Check that the theoretical decreasing speed of a_x in the W_{Ai} state is approximately given by:

$$V = \frac{a_{xC} - a_{xE}}{T_2} \quad dB/s$$

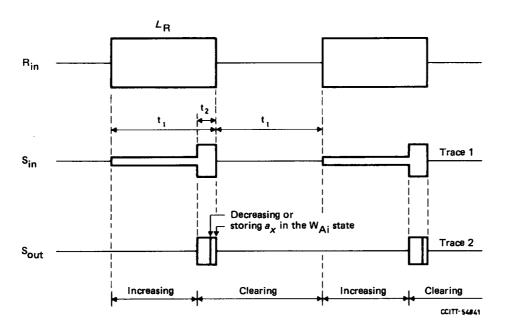
where $a_{xC} = 14 \text{ dB}$.

Note $1 - t_1$ could be as long as approximately 3.5 s in duration depending on the rate of increase of a_x in the Z_i state. Note 2 - The rate of decrease of a_x in the W_{Ai} state may be very slow. It may be necessary for t_2 to be increased in order to be able to observe the wave form of Trace 2b.


FIGURE 24/G.164

Traces for measurement of the rate of decrease of a_{χ} in the W_{Ai} state

6.5.2.2 Measurement of the rate of increase of a_x in the Z_i state (see Figure 25/G.164 and Figure 26/G.164), Test No. 10b

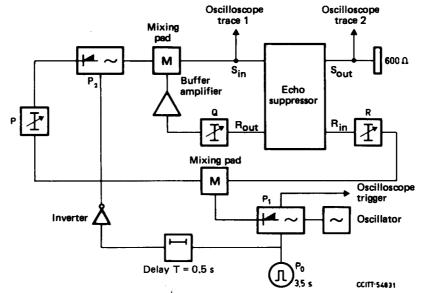

The connection diagram is shown Figure 25/G.164 and the equipment required is:

- one oscillator with 600-ohm balanced impedance;
- three 600-ohm balanced attenuators;
- two 600-ohm mixing pads;
- one 600-ohm terminating resistor;
- two tone-burst generators with period variable up to 10 s;
- one inverter;
- one amplifier (used as a buffer);
- one audio-frequency delay device with 500 ms delay;
- one dual beam oscilloscope.
- 1) Set the oscillator to 1000 Hz (for tolerances, see § 6.1.4);
- 2) Adjust *R* so that $L_R = 0$ dBm0;
- 3) Adjust Q so that $a_E = 20$ dB;
- 4) Adjust *P* so that $L_S = -12 \text{ dBm0}$;
- 5) Adjust the tone "ON" and "OFF" periods of P_0 to 3.5 s;
- 6) Check that t_1 and t_2 are respectively equal to 3.5 and 0.5 s;
- 7) Check that break-in occurs on trace 2 of the oscilloscope (see Figure 26/G.164).

Note $-P_0 = P_1 = \overline{P}_2$ (relationship between waveforms P_0 , P_1 and P_2)

${\it FIGURE~25/G.164}$ Test circuit for measurement of the rate of increase of a_x in the Z_{Ai} state

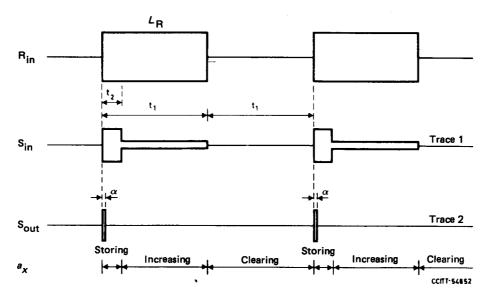
Note – Either trace is possible depending on the algorithm used in the W_{Ai} state.


FIGURE 26/G.164

Traces for measurement of the rate of increase of a_x in the Z_i state

6.5.2.3 Measurement of the rate of clearing of a_x in the X state (see Figures 27/G.164 and Figure 28/G.165), Test No. 10 c

The diagram of connection is shown in Figure 27/G.164 and the equipment required is the same as for Test No. 10b.


- 1) Set the oscillator to 1000 Hz (for tolerances, see § 6.1.4);
- 2) Adjust Q so that $a_E = 20$ dB;
- 3) Adjust *R* so that $L_R = 0$ dBm0;
- 4) Adjust *P* so that $L_S = -12 \text{ dBm0}$;
- 5) Adjust the tone "ON" and "OFF" periods of P_0 to 3.5 s;
- 6) Check that t_1 and t_2 are respectively equal to 3.5 and 0.5 s;
- 7) Check that break-in does not occur on trace 2 of the oscilloscope.

Note $-P_0 = P_1$; $P_2 = \overline{P_1 \times \delta(T)}$ (relationship between waveforms P_0 , P_1 and P_2)

FIGURE 27/G.164

Test circuit for measurement of the rate of P_2 clearing of a_X in the X state

Note - A possible presence of L_S out during $\alpha < 2$ ms does not affect the result of the test.

FIGURE 28/G.164

Traces of measurement of the rate of clearing of a_χ in the X state

References

- [1] CCITT Recommendation *Echo suppressors suitable for circuits having either short or long propagation times*, Orange Book, Vol. III, Rec. G.161, ITU, Geneva, 1977.
- [2] CCITT Recommendation *Influence of national networks on stability and echo in international connections*, Orange Book, Vol. III, Rec. G.122, Part B, b), ITU, Geneva, 1977.
- [3] CCITT Recommendation *Performance characteristics of PCM channels between 4-wire interfaces at voice frequencies*, Vol. III, Rec. G.712.
- [4] CCITT Recommendation *Characteristics of primary PCM multiplex equipment operating at 1544 kbit/s*, Vol. III, Rec. G.733.
- [5] CCITT Recommendation 300-baud modem standardized for use in the general switched telephone network, Vol. VIII, Rec. V.21.