IP Telephony
- Quality-of-Service Aspects

Bruce Pettitt
Overview - QoS for IP Telephony

- Background QoS Concepts
- Impact of Packet Loss and Delay
- The QoS Challenge for IP Telephony
- Technology Solutions supporting QoS
 - speech coding
 - traffic engineering
 - QoS resource management
- IP Telephony & QoS - Situation Analysis
- Summary - Major Issues
Background QoS Concepts

- Original “Best-Effort” Internet was designed
 - to guarantee network survivability
 - not to support high-speed, real-time applications
- New mechanisms now support “mission-critical” real-time, interactive applications
- QoS/Performance “guarantees” are described in Service Level Agreements
- IP Telephony presents QoS challenges, especially when inter-working with the traditional telephone network

Quality of Service addresses:
- end-user satisfaction
- efficient operations / cost savings
Impact of Packet Loss (Error) and Delay - from the user perspective

<table>
<thead>
<tr>
<th>Relatively Error Tolerant</th>
<th>Interactive</th>
<th>Responsive</th>
<th>Timely</th>
<th>Non-critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversational voice and video</td>
<td>Telnet, interactive games</td>
<td>Voice messaging</td>
<td>Streaming audio and video</td>
<td>Fax</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error Intolerant</th>
<th>Interactive</th>
<th>Responsive</th>
<th>Timely</th>
<th>Non-critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversational voice and video</td>
<td>Telnet, interactive games</td>
<td>Voice messaging</td>
<td>Streaming audio and video</td>
<td>Fax</td>
</tr>
</tbody>
</table>

- Interactive: delay $<< 1$ sec
- Responsive: delay ~ 1 sec
- Timely: delay < 10 sec
- Non-critical: delay > 10 sec
The QoS Challenge for IP Telephony

Challenge: Provide highly-reliable, ubiquitous, real-time service with acceptable speech quality while ensuring adequate performance for other traffic types.
Technology Solutions supporting QoS

• Speech Coding Aspects
• Traffic Engineering
• QoS Resource Management
Speech Coding Techniques

- **Traditional digital telephony at 64 kbit/s**
 - provides analog-to-digital conversion
 - using Pulse Code Modulation (PCM) technique
 - for “3.1-kilohertz” audio channel

- **Lower bit-rate encoding techniques**
 - good results obtainable at bit rates as low as 8 kbit/s

- **Wideband encoding schemes**
 - provide “Broadcast Quality” for 7-kHz channel

Lower bit rates typically involve some delay interval while a speech burst is observed - as well as additional processing delay to implement the encoding algorithm.
Audio Demonstrations

- Samples of Encoded Speech
- Packet-Loss Effects
- Wideband Capabilities
Samples of Encoded Speech

(1) PCM at 64 kbit/s - as a reference

(2) 8 kbit/s speech codec

• “Rice is often served in round bowls.”
• “The soft cushion broke the man’s fall.”
• “The small pup gnawed a hole in the sock.”
• “The meal was cooked before the bell rang.”
Packet-Loss Effects

Reference without packet loss: 64 kbit/s PCM

With 5% packet loss:

(1) 64 kbit/s PCM
(2) 64 kbit/s PCM with packet-loss concealment
(3) 8 kbit/s speech codec

• “The term ended in late June that year.”
• “Open the crate but don’t break the glass.”
• “Weave the carpet on the right-hand side.”
• “Paste can cleanse the most dirty brass.”
Audio Demonstration - Wideband

• Speech
 - 64 kbit/s PCM for reference
 - 128 kbit/s wideband “broadcast quality”

• Music
 - 64 kbit/s PCM for reference
 - 8 kbit/s speech codec
 - 128 kbit/s wideband “broadcast quality”
Traffic Engineering in IP-based Networks

- Capacity management / Network design
- Long-term planning to handle traffic growth
- Traffic measurement
- Traffic characterization / modelling
- Adaptive / dynamic transport routing

As normally applied to IP-based networks, the term “Traffic Engineering” has a broader meaning than in traditional telephony networks.
QoS Resource Management

- Service differentiation / Priority mechanisms
- Resource allocation / Bandwidth reservation
- Admission controls
- Special QoS requirements for signalling
- Allocation of traffic to virtual networks

- Current standardization efforts are refining these techniques.
- Supporting signalling protocols are also being developed.
IP Telephony & QoS - Situation Analysis

- Many different techniques, standards, and various supporting tools exist to address specific aspects of QoS for IP Telephony
- The solution in a particular case may depend critically on:
 - end-user service specifications
 - need for inter-working with other networks
 - requirements for integration with legacy infrastructure
 - size and complexity of the network
- QoS standards for IP Telephony need further refinement
- Network design remains quite complex - especially when several operators or administrative domains are involved
- Opinions vary on the need for fine-grained call control
- Wireless, cable, and digital subscriber loop systems present special requirements
The Future of IP QoS - Major Questions

• **In the near term:**
 Is “over-dimensioning” network bandwidth better, or more cost-effective, than the use of more complex “traffic-engineering/QoS” methods?

• **In the longer term:**
 Can general IP-oriented QoS solutions be developed to enable true multimedia convergence?