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In 1988 there were about sixty thousand computers connected to the
Internet. Few of them were PCs.1 Instead, the Net was the province of
mainframes, minicomputers, and professional workstations found at
government offices, universities, and computer science research cen-
ters.2 These computers were designed to allow different people to run
software on them at the same time from multiple terminals, sharing
valuable processor cycles the way adjoining neighbors might share a
driveway.3

On the evening of November 2, 1988, many of these computers
started acting strangely. Unusual documents appeared in the depths of
their file systems, and their system logs recorded activities unrelated to
anything the computers’ regular users were doing. The computers also
started to slow down. An inventory of the running code on the ma-
chines showed a number of rogue programs demanding processor
time. Concerned administrators terminated these foreign programs,
but they reappeared and then multiplied. Within minutes, some com-
puters started running so slowly that their keepers were unable to in-
vestigate further. The machines were too busy attending to the wishes
of the mysterious software.
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System administrators discovered that renegade code was spreading through
the Internet from one machine to another. In response, some unplugged their
computers from the rest of the world, inoculating them from further attacks
but sacrificing all communication. Others kept their machines plugged in and,
working in groups, figured out how to kill the invading software and protect
their machines against re-infection.

The software—now commonly thought of as the first Internet worm—was
traced to a twenty-three-year-old Cornell University graduate student named
Robert Tappan Morris, Jr. He had launched it by infecting a machine at MIT
from his terminal in Ithaca, New York.4 The worm identified other nearby
computers on the Internet by rifling through various electronic address books
found on the MIT machine.5 Its purpose was simple: to transmit a copy of it-
self to the machines, where it would there run alongside existing software—
and repeat the cycle.6

An estimated five to ten percent of all Internet-connected machines had
been compromised by the worm in the span of a day. Gene Spafford of Purdue
University called it an “attack from within.”7 The program had accessed the
machines by using a handful of digital parlor tricks—tricks that allowed it to
run without having an account on the machine. Sometimes it exploited a flaw
in a commonly used e-mail transmission program running on the victimized
computers, rewriting the program to allow itself in. Other times it simply
guessed users’ passwords.8 For example, a user named jsmith often chose a pass-
word of . . . jsmith. And if not, the password was often obvious enough to be
found on a list of 432 common passwords that the software tested at each com-
puter.9

When asked why he unleashed the worm, Morris said he wanted to count
how many machines were connected to the Internet. (Proprietary networks
were designed to keep track of exactly how many subscribers they had; the sim-
ple Internet has no such mechanism.) Morris’s program, once analyzed, ac-
corded with this explanation, but his code turned out to be buggy. If Morris
had done it right, his program would not have slowed down its infected hosts
and thereby not drawn attention to itself. It could have remained installed for
days or months, and it could have quietly performed a wide array of activities
other than simply relaying a “present and accounted for” message to Morris’s
designated home base to assist in his digital nose count.

The university workstations of 1988 were generative: their users could write
new code for them or install code written by others. The Morris worm was the
first large-scale demonstration of a vulnerability of generativity: even in the
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custody of trained administrators, such machines could be commandeered and
reprogrammed, and, if done skillfully, their users would probably not even no-
tice. The opportunity for such quick reprogramming vastly expanded as these
workstations were connected to the Internet and acquired the capacity to re-
ceive code from afar.

Networked computers able to retrieve and install code from anyone else on
the network are much more flexible and powerful than their appliancized
counterparts would be. But this flexibility and power are not without risks.
Whether through a sneaky vector like the one Morris used, or through the front
door, when a trusting user elects to install something that looks interesting but
without fully inspecting it and understanding what it does, opportunities for
accidents and mischief abound. Today’s generative PCs are in a similar but
more pronounced bind, one characterized by faster networks, more powerful
processors, and less-skilled users.

A MILD AUTOIMMUNE REACTION

The no-longer-theoretical prospect that a large swath of Internet-connected
computers could be compromised, and then contribute to the attack of others,
created a stir. But to most, the Morris attack remained more a curiosity than a
call to arms. Keith Bostic of the University of California–Berkeley computer
science department described in a retrospective news account the fun of trying
to puzzle out the problem and defeat the worm. “For us it was a challenge. . . .
It wasn’t a big deal.”10

Others perceived the worm as a big deal but did little to fix the problem. The
mainstream media had an intense but brief fascination with the incident.11 A
professional organization for computer scientists, the Association for Comput-
ing Machinery, devoted an issue of its distinguished monthly journal to the
worm,12 and members of Congress requested a report from its research arm,
the U.S. General Accounting Office (GAO).13

The GAO report noted some ambiguities and difficulties in U.S. law that
might make prosecution of worm- and virus-makers burdensome,14 and called
for the creation of a government committee to further consider Internet secu-
rity, staffed by representatives of the National Science Foundation, the Depart-
ment of Defense, and other agencies that had helped fund the Internet’s devel-
opment and operation.15 At the time it was thought that the Internet would
evolve into a “National Research Network,” much larger and faster, but still
used primarily by educational and other noncommercial entities in loose coor-
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dination with their U.S. government sponsors.16 The most tangible result
from the government inquiry was a Defense Department–funded program at
Carnegie Mellon University called CERT/CC, the “Computer Emergency Re-
sponse Team Coordination Center.” It still exists today as a clearinghouse for
information about viruses and other network threats.17

Cornell impaneled a commission to analyze what had gone wrong. Its report
exonerated the university from institutional responsibility for the worm and
laid the blame solely on Morris, who had, without assistance or others’ knowl-
edge, engaged in a “juvenile act” that was “selfish and inconsiderate.”18 It re-
buked elements of the media that had branded Morris a hero for exposing 
security flaws in dramatic fashion, noting that it was well known that the 
computers’ Unix operating systems had many security flaws, and that it was no
act of “genius” to exploit such weaknesses.19 The report called for a university-
wide committee to advise the university on technical security standards and an-
other to write a campus-wide acceptable use policy.20 It described consensus
among computer scientists that Morris’s acts warranted some form of punish-
ment, but not “so stern as to damage permanently the perpetrator’s career.”21

That is just how Morris was punished. He apologized, and criminal prosecu-
tion for the act earned him three years of probation, four hundred hours of
community service, and a $10,050 fine.22 His career was not ruined. Morris
transferred from Cornell to Harvard, founded a dot-com startup with some
friends in 1995, and sold it to Yahoo! in 1998 for $49 million.23 He finished his
degree and is now a tenured professor at MIT.24

As a postmortem to the Morris worm incident, the Internet Engineering
Task Force, the far-flung, unincorporated group of engineers who work on In-
ternet standards and who have defined its protocols through a series of formal
“request for comments” documents, or RFCs, published informational RFC
1135, titled “The Helminthiasis of the Internet.”25 RFC 1135 was titled and
written with whimsy, echoing reminiscences of the worm as a fun challenge.
The RFC celebrated that the original “old boy” network of “UNIX system wiz-
ards” was still alive and well despite the growth of the Internet: teams at univer-
sity research centers put their heads together—on conference calls as well as
over the Internet—to solve the problem.26 After describing the technical de-
tails of the worm, the document articulated the need to instill and enforce eth-
ical standards as new people (mostly young computer scientists like Morris)
signed on to the Internet.27

These reactions to the Morris worm may appear laughably inadequate, an
unwarranted triumph of the principles of procrastination and trust described
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earlier in this book. Urging users to patch their systems and asking hackers to
behave more maturely might, in retrospect, seem naïve. To understand why
these were the only concrete steps taken to prevent another worm incident—
even a catastrophically destructive one—one must understand just how deeply
computing architectures, both then and now, are geared toward flexibility
rather than security, and how truly costly it would be to retool them.

THE GENERATIVE TRADE-OFF

To understand why the Internet-connected machines infected by the Morris
worm were so vulnerable, consider the ways in which proprietary networks
were more easily secured.

The U.S. long distance telephone network of the 1970s was intended to
convey data between consumers in the form of telephone conversations. A
group of hackers discovered that a tone at a frequency of 2,600 hertz sent over
a telephone line did not reach the other side, but instead was used by the phone
company to indicate to itself that the line was idle.28 For example, the tone
could be used by a pay phone to tell network owner AT&T that it was ready for
the next call. It was not intended for customers to discover, much less use. As
fortune would have it, a children’s toy whistle packaged as a prize in boxes of
Cap’n Crunch cereal could, when one hole was covered, generate a shrill tone
at exactly that frequency.29

People in the know could then dial toll-free numbers from their home
phones, blow the whistle to clear but not disconnect the line, and then dial a
new, non-toll-free number, which would be connected without charge.30

When this vulnerability came to light, AT&T was mortified, but it was also
able to reconfigure the network so that the 2,600 hertz tone no longer con-
trolled it.31 Indeed, the entire protocol of in-band signaling could be and was
eliminated. Controlling the network now required more than just a sound gen-
erated at a telephone mouthpiece on one end or the other. Data to be sent be-
tween customers and instructions intended to affect the network could be sep-
arated from one another, because AT&T’s centralized control structure made it
possible to separate the transfer of data (that is, conversations) between cus-
tomers from instructions that affected network operations.32

The proprietary consumer networks of the 1980s used similar approaches 
to prevent network problems. No worm could spread on CompuServe in the
same manner as Morris’s, because CompuServe already followed the post–
Cap’n Crunch rule: do not let the paths that carry data also carry code. The
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consumer computers attached to the CompuServe network were configured as
mere “dumb terminals.” They exchanged data, not programs, with Compu-
Serve. Subscribers browsed weather, read the news, and posted messages to
each other. Subscribers were not positioned easily to run software encountered
through the CompuServe network, although on occasion and in very carefully
labeled circumstances they could download new code to run on their genera-
tive PCs separately from their dumb terminal software.33 The mainframe com-
puters at CompuServe with which those dumb terminals communicated ex-
isted out of view, ensuring that the separation between users and programmers
was strictly enforced.34

These proprietary networks were not user-programmable but instead relied
on centralized feature rollouts performed exclusively by their administrators.
The networks had only the features their owners believed would be economi-
cally viable. Thus, the networks evolved slowly and with few surprises either
good or bad. This made them both secure and sterile in comparison to genera-
tive machines hooked up to a generative network like the Internet.

Contrary to CompuServe’s proprietary system, the Internet of 1988 had no
control points where one could scan network traffic for telltale wormlike be-
haviors and then stop such traffic. Further, the Morris worm really was not per-
ceived as a network problem, thanks to the intentional conceptual separation of
network and endpoint. The Morris worm used the network to spread but did
not attack it beyond slowing it down as the worm multiplied and continued to
transmit itself. The worm’s targets were the network’s endpoints: the computers
attached to it. The modularity that inspired the Internet’s design meant that
computer programming enthusiasts could write software for computers with-
out having to know anything about the network that would carry the resulting
data, while network geeks could devise new protocols with a willful ignorance
of what programs would run on the devices hooked up to it, and what data
would result from them. Such ignorance may have led those overseeing net-
work protocols and operation unduly to believe that the worm was not some-
thing they could have prevented, since it was not thought to be within their de-
sign responsibility.

In the meantime, the endpoint computers could be compromised because
they were general-purpose machines, running operating systems for which out-
siders could write executable code.35 Further, the operating systems and appli-
cations running on the machines were not perfect; they contained flaws that
rendered them more accessible to uninvited code than their designers in-
tended.36 Even without such flaws, the machines were intentionally designed
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to be operated at a distance, and to receive and run software sent from a dis-
tance. They were powered on and attached to the network continuously, even
when not in active use by their owners. Moreover, many administrators of these
machines were lazy about installing available fixes to known software vulnera-
bilities, and often utterly predictable in choosing passwords to protect entry to
their computer accounts.37 Since the endpoint computers infected by the
worm were run and managed by disparate groups who answered to no single
authority for their use, there was no way to secure them all against attack.38

A comparison with its proprietary network and information appliance
counterparts, then, reveals the central security dilemma of yesterday’s Internet
that remains with us today: the proprietary networks did not have the Cap’n
Crunch problem, and the Internet and its connected machines do. On the In-
ternet, the channels of communication are also channels of control.39 There is
no appealing fix of the sort AT&T undertook for its phone network. If one ap-
plies the post–Cap’n Crunch rule and eliminates the ability to control PCs via
the Internet—or the ability of the attached computers to initiate or accept such
control—one has eliminated the network’s generative quality. Such an action
would not merely be inconvenient, it would be incapacitating. Today we need
merely to click to install new code from afar, whether to watch a video newscast
embedded within a Web page or to install whole new applications like word
processors or satellite image browsers. That quality is essential to the way in
which we use the Internet.

It is thus not surprising that there was little impetus to institute changes in
the network in response to the Morris worm scare, even though Internet-con-
nected computers suffered from a fundamental security vulnerability. The de-
centralized, nonproprietary ownership of the Internet and the computers it
linked made it difficult to implement any structural revisions to the way it
functioned, and, more important, it was simply not clear what curative changes
could be made that did not entail drastic, wholesale, purpose-altering changes
to the very fabric of the Internet. Such changes would be so wildly out of pro-
portion with the perceived level of threat that the records of postworm discus-
sion lack any indication that they were even considered.

As the next chapter will explore, generative systems are powerful and valu-
able, not only because they foster the production of useful things like Web
browsers, auction sites, and free encyclopedias, but also because they can allow
an extraordinary number of people to express themselves in speech, art, or code
and to work with other people in ways previously not possible. These charac-
teristics can make generative systems very successful even though they lack cen-
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tral coordination and control. That success draws more participants to the gen-
erative system. Then it stalls.

Generative systems are built on the notion that they are never fully com-
plete, that they have many uses yet to be conceived of, and that the public can
be trusted to invent and share good uses. Multiplying breaches of that trust can
threaten the very foundations of the generative system. A hobbyist computer
that crashes might be a curiosity, but when a home or office PC with years’
worth of vital correspondence and papers is compromised it can be a crisis. As
such events become commonplace throughout the network, people will come
to prefer security to generativity. If we can understand how the generative In-
ternet and PC have made it as far as they have without true crisis, we can pre-
dict whether they can continue, and what would transpire following a breaking
point. There is strong evidence that the current state of affairs is not sustain-
able, and what comes next may exact a steep price in generativity.

AN UNTENABLE STATUS QUO

The Internet and its generative machines have muddled along pretty well since
1988, despite the fact that today’s PCs are direct descendants of that era’s unse-
cured workstations. In fact, it is striking how few truly disruptive security inci-
dents have happened since 1988. Rather, a network designed for communica-
tion among academic and government researchers appeared to scale beautifully
as hundreds of millions of new users signed on during the 1990s, a feat all the
more impressive when one considers how demographically different the new
users were from the 1988 crowd. However heedless the network administrators
of the late ’80s were to good security practice, the mainstream consumers of the
’90s were categorically worse. Few knew how to manage or code their genera-
tive PCs, much less how to rigorously apply patches or observe good password
security.

The threat presented by bad code has slowly but steadily increased since
1988. The slow pace, which has let it remain a back-burner issue, is the result of
several factors which are now rapidly attenuating. First, the computer scientists
of 1988 were right that the hacker ethos frowns upon destructive hacking.40

Morris’s worm did more damage than he intended, and for all the damage it did
do, the worm had no payload other than itself. Once a system was compromised
by the worm it would have been trivial for Morris to have directed the worm to,
for instance, delete as many files as possible.41 Morris did not do this, and the
overwhelming majority of viruses that followed in the 1990s reflected similar
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authorial forbearance. In fact, the most well-known viruses of the ’90s had
completely innocuous payloads. For example, 2004’s Mydoom spread like
wildfire and affected connectivity for millions of computers around the world.
Though it reputedly cost billions of dollars in lost productivity, the worm did
not tamper with data, and it was programmed to stop spreading at a set time.42

The bad code of the ’90s merely performed attacks for the circular purpose
of spreading further, and its damage was measured by the effort required to
eliminate it at each site of infection and by the burden placed upon network
traffic as it spread, rather than by the number of files it destroyed or by the
amount of sensitive information it compromised. There are only a few excep-
tions. The infamous Lovebug worm, released in May 2000, caused the largest
outages and damage to Internet-connected PCs to date.43 It affected more than
just connectivity: it overwrote documents, music, and multimedia files with
copies of itself on users’ hard drives. In the panic that followed, software engi-
neers and antivirus vendors mobilized to defeat the worm, and it was ultimately
eradicated.44 Lovebug was an anomaly. The few highly malicious viruses of the
time were otherwise so poorly coded that they failed to spread very far. The
Michelangelo virus created sharp anxiety in 1992, when antivirus companies
warned that millions of hard drives could be erased by the virus’s dangerous
payload. It was designed to trigger itself on March 6, the artist’s birthday. The
number of computers actually affected was only in the tens of thousands—it
spread only through the pre-Internet exchange of infected floppy diskettes—
and it was soon forgotten.45 Had Michelangelo’s birthday been a little later in
the year—giving the virus more time to spread before springing—it could
have had a much greater impact. More generally, malicious viruses can be
coded to avoid the problems of real-world viruses whose virulence helps stop
their spread. Some biological viruses that incapacitate people too quickly can
burn themselves out, destroying their hosts before their hosts can help them
spread further.46 Human-devised viruses can be intelligently designed—fine-
tuned to spread before biting, or to destroy data within their hosts while still us-
ing the host to continue spreading.

Another reason for the delay of truly destructive malware is that network op-
erations centers at universities and other institutions became more profession-
alized between the time of the Morris worm and the advent of the mainstream
consumer Internet. For a while, most of the Internet’s computers were staffed
by professional administrators who generally heeded admonitions to patch reg-
ularly and scout for security breaches. They carried beepers and were prepared
to intervene quickly in the case of an intrusion. Less adept mainstream con-
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sumers began connecting unsecured PCs to the Internet in earnest only in the
mid-1990s. At first their machines were hooked up only through transient dial-
up connections. This greatly limited both the amount of time per day during
which they were exposed to security threats, and the amount of time that, if
compromised and hijacked, they would themselves contribute to the prob-
lem.47

Finally, there was no business model backing bad code. Programs to trick
users into installing them, or to bypass users entirely and just sneak onto the
machine, were written only for fun or curiosity, just like the Morris worm.
There was no reason for substantial financial resources to be invested in their
creation, or in their virulence once created. Bad code was more like graffiti than
illegal drugs. Graffiti is comparatively easier to combat because there are no
economic incentives for its creation.48 The demand for illegal drugs creates
markets that attract sophisticated criminal syndicates.

Today each of these factors has substantially diminished. The idea of a Net-
wide set of ethics has evaporated as the network has become so ubiquitous.
Anyone is allowed online if he or she can find a way to a computer and a con-
nection, and mainstream users are transitioning to always-on broadband. In
July 2004 there were more U.S. consumers on broadband than on dial-up,49

and two years later, nearly twice as many U.S. adults had broadband connec-
tions in their homes than had dial-up.50 PC user awareness of security issues,
however, has not kept pace with broadband growth. A December 2005 online
safety study found 81 percent of home computers to be lacking first-order pro-
tection measures such as current antivirus software, spyware protection, and
effective firewalls.51 The Internet’s users are no longer skilled computer scien-
tists, yet the PCs they own are more powerful than the fastest machines of the
1980s. Because modern computers are so much more powerful, they can
spread malware with greater efficiency than ever.

Perhaps most significantly, there is now a business model for bad code—one
that gives many viruses and worms payloads for purposes other than simple re-
production.52 What seemed truly remarkable when it was first discovered is
now commonplace: viruses that compromise PCs to create large “botnets”
open to later instructions. Such instructions have included directing the PC to
become its own e-mail server, sending spam by the thousands or millions to 
e-mail addresses harvested from the hard disk of the machine itself or gleaned
from Internet searches, with the entire process typically unnoticeable to the
PC’s owner. At one point, a single botnet occupied 15 percent of Yahoo’s entire
search capacity, running random searches on Yahoo to find text that could be
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inserted into spam e-mails to throw off spam filters.53 One estimate pegs the
number of PCs involved in such botnets at 100 to 150 million, or a quarter of
all the computers on the Internet as of early 2007,54 and the field is expanding:
a study monitoring botnet activity in 2006 detected, on average, the emergence
of 1 million new bots per month.55 But as one account pulling together various
guesses explains, the science is inexact:

MessageLabs, a company that counts spam, recently stopped counting bot-infected
computers because it literally could not keep up. It says it quit when the figure passed
about 10 million a year ago. Symantec Corp. recently said it counted 6.7 million ac-
tive bots during an Internet scan. Since all bots are not active at any given time, the
number of infected computers is likely much higher. And Dave Dagon, who recently
left Georgia Tech University to start a bot-fighting company named Damballa, pegs
the number at closer to 30 million. The firm uses a “capture, mark, and release,”
strategy borrowed from environmental science to study the movement of bot armies
and estimate their size.

“It’s like asking how many people are on the planet, you are wrong the second you
give the answer. . . . But the number is in the tens of millions,” Dagon said. “Had
you told me five years ago that organized crime would control 1 out of every 10
home machines on the Internet, I would have not have believed that. And yet we are
in an era where this is something that is happening.”56

In one notable experiment conducted in the fall of 2003, a researcher con-
nected a PC to the Internet that simulated running an “open proxy”—a condi-
tion in which many PC users unintentionally find themselves.57 Within nine
hours, spammers’ worms located the computer and began attempting to 
commandeer it. Sixty-six hours later the researcher had recorded attempts to
send 229,468 distinct messages to 3,360,181 would-be recipients.58 (The re-
searcher’s computer pretended to deliver on the spam, but in fact threw it
away.) Such zombie computers were responsible for more than 80 percent of
the world’s spam in June 2006, and spam in turn accounted for an estimated 80
percent of the world’s total e-mail.59 North American PCs led the world in De-
cember 2006, producing approximately 46 percent of the world’s spam.60 That
spam produces profit, as a large enough number of people actually buy the
items advertised or invest in the stocks touted.61

Botnets can also be used to launch coordinated attacks on a particular Inter-
net endpoint. For example, a criminal can attack an Internet gambling Web site
and then extort payment to make the attacks stop. The going rate for a botnet
to launch such an attack is reputed to be about $50,000 per day.62 Virus mak-
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ers compete against each other to compromise PCs exclusively, some even us-
ing their access to install hacked versions of antivirus software on victim com-
puters so that they cannot be poached away by other viruses.63 The growth of
virtual worlds and massively multiplayer online games provides another eco-
nomic incentive for virus creators. As more and more users log in, create value,
and buy and sell virtual goods, some are figuring out ways to turn such virtual
goods into real-world dollars. Viruses and phishing e-mails target the acquisi-
tion of gaming passwords, leading to virtual theft measured in real money.64

The economics is implacable: viruses are now valuable properties, and that
makes for a burgeoning industry in virus making where volume matters. Well-
crafted worms and viruses routinely infect vast swaths of Internet-connected
personal computers. In 2004, for example, the Sasser worm infected more than
half a million computers in three days. The Sapphire/Slammer worm in Janu-
ary 2003 went after a particular kind of Microsoft server and infected 90 per-
cent of those servers, about 120,000 of them, within ten minutes. Its hijacked
machines together were performing fifty-five million searches per second for
new targets just three minutes after the first computer fell victim to it. The 
sobig.f virus was released in August 2003 and within two days accounted for
approximately 70 percent of all e-mail in the world, causing 23.2 million virus-
laden e-mails to arrive on AOL’s doorstep alone. Sobig was designed by its
author to expire a few weeks later.65 In May 2006 a virus exploiting a vulnera-
bility in Microsoft Word propagated through the computers of the U.S. De-
partment of State in eastern Asia, forcing the machines to be taken offline
during critical weeks prior to North Korea’s missile tests.66

Antivirus companies receive about two reports a minute of possible new
viruses in the wild, and have abandoned individual review by staff in favor of
automated sorting of viruses to investigate only the most pressing threats.67

Antivirus vendor Eugene Kaspersky of Kaspersky Labs told an industry confer-
ence that antivirus vendors “may not be able to withstand the onslaught.”68

Another vendor executive said more directly: “I think we’ve failed.”69

CERT/CC’s malware growth statistics confirm the anecdotes. The organiza-
tion began documenting the number of attacks—called “incidents”—against
Internet-connected systems from its founding in 1988, as reproduced in Figure
3.1.

The increase in incidents since 1997 has been roughly geometric, doubling
each year through 2003. In 2004, CERT/CC announced that it would no
longer keep track of the figure, since attacks had become so commonplace and
widespread as to be indistinguishable from one another.70 IBM’s Internet Se-
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curity Systems reported a 40 percent increase in Internet vulnerabilities—situ-
ations in which a machine was compromised, allowing access or control by at-
tackers—between 2005 and 2006.71 Nearly all of those vulnerabilities could
be exploited remotely, and over half allowed attackers to gain full access to the
machine and its contents.72 Recall that at the time of the Morris worm there
were estimated to be 60,000 distinct computers on the Internet. In July 2006
the same metrics placed the count at over 439 million.73 Worldwide there were
approximately 1.1 billion e-mail users in 2006.74 By one credible estimate,
there will be over 290 million PCs in use in the United States by 2010 and 2 bil-
lion PCs in use worldwide by 2011.75 In part because the U.S. accounts for 18
percent of the world’s computer users, it leads the world in almost every type of
commonly measured security incident (Table 3.1, Figure 3.2).76

These numbers show that viruses are not simply the province of computing
backwaters, away from the major networks where there has been time to de-
velop effective countermeasures and best practices. Rather, the war is being lost
across the board. Operating system developers struggle to keep up with provid-
ing patches for newly discovered computer vulnerabilities. Patch development
time increased throughout 2006 for all of the top operating system providers
(Figure 3.3).77
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Figure 3.1 Number of security incidents reported to CERT/CC, 1988–2003. Source: CERT
Coordination Center, CERT/CC Statistics 1988–2005, http://www.cert.org/stats#incidents.
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Figure 3.2 Countries as a percentage of all detected malicious activity. Source: S

I S T R at 26.

Table 3.1. Rankings of malicious activity by country

Command
and

Malicious Spam Control Phishing
Country Code Hosts Services Hosts Bots Attacks

United States 1 1 1 1 2 1
China 3 2 4 8 1 2
Germany 7 3 3 2 4 3
France 9 4 14 4 3 4
United Kingdom 4 13 9 3 6 6
South Korea 12 9 2 9 11 9
Canada 5 23 5 7 10 5
Spain 13 5 15 16 5 7
Taiwan 8 11 6 6 7 11
Italy 2 8 10 14 12 10

Source: S C., S I S T R: T  J–
D , at  () [hereinafter S I S T R], http://eval
.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_internet_security_threat_report_xi
__.en-us.pdf.

http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_internet_security_threat_report_xi_03_2007.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_internet_security_threat_report_xi_03_2007.en-us.pdf
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Antivirus researchers and firms require extensive coordination efforts just to
agree on a naming scheme for viruses as they emerge—much less a strategy for
battling them.78 Today, the idea of casually cleaning a virus off of a PC once it
has been infected has been abandoned. When computers are compromised,
users are now typically advised to completely reinstall everything on them—ei-
ther losing all their data or laboriously figuring out what to save and what to ex-
orcise. For example, in 2007, some PCs at the U.S. National Defense Univer-
sity fell victim to a virus. The institution shut down its network servers for two
weeks and distributed new laptops to instructors, because “the only way to en-
sure the security of the systems was to replace them.”79

One Microsoft program manager colorfully described the situation: “When
you are dealing with rootkits and some advanced spyware programs, the only
solution is to rebuild from scratch. In some cases, there really is no way to re-
cover without nuking the systems from orbit.”80

In the absence of such drastic measures, a truly “mal” piece of malware could
be programmed to, say, erase hard drives, transpose numbers inside spread-
sheets randomly, or intersperse nonsense text at random intervals in Word doc-
uments found on infected computers—and nothing would stand in the way.

A massive number of always-on powerful PCs with high-bandwidth con-
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nections to the Internet and run by unskilled users is a phenomenon new to the
twenty-first century.81 This unprecedented set of circumstances leaves the PC
and the Internet vulnerable to across-the-board compromise. If one carries for-
ward the metaphor of “virus” from its original public health context,82 today’s
viruses are highly and near-instantly communicable, capable of causing world-
wide epidemics in a matter of hours.83 The symptoms may reveal themselves to
users upon infection or they may lie in remission, at the whim of the virus au-
thor, while the virus continues to spread. Even fastidiously protected systems
can suffer from a widespread infection, since the spread of a virus can disrupt
network connectivity. And, as mentioned earlier, sometimes viruses are pro-
grammed to attack a particular network host by sending it a barrage of requests.
Summed across all infected machines, such a distributed denial of service at-
tack can ruin even the most well-connected and well-defended server, even if
the server itself is not infected.

The compounded threat to the system of generative PCs on a generative net-
work that arises from the system’s misuse hinges on both the ability of a few 
malicious experts to bring down the system and this presence of a large field of
always-connected, easily exploited computers. Scholars like Paul Ohm caution
that the fear inspired by anecdotes of a small number of dangerous hackers
should not provide cause for overbroad policy, noting that security breaches
come from many sources, including laptop theft and poor business practices.84

Ohm’s concern about regulatory overreaction is not misplaced. Nonetheless,
what empirical data we have substantiate the gravity of the problem, and the
variety of ways in which modern mainstream information technology can be
subverted does not lessen the concern about any given vector of compromise.
Both the problem and the likely solutions are cause for concern.

Recognition of the basic security problem has been slowly growing in Inter-
net research communities. Nearly two-thirds of academics, social analysts, and
industry leaders surveyed by the Pew Internet & American Life Project in 2004
predicted serious attacks on network infrastructure or the power grid in the
coming decade.85 Though few appear to employ former U.S. cybersecurity
czar Richard Clarke’s evocative language of a “digital Pearl Harbor,”86 experts
are increasingly aware of the vulnerability of Internet infrastructure to attack.87

When will we know that something truly has to give? There are at least two
possible models for a fundamental shift in our tolerance of the status quo: a col-
lective watershed security moment, or a more glacial death of a thousand cuts.
Both are equally threatening to the generativity of the Internet.
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A WATERSHED SCENARIO

Suppose that a worm is released that exploits security flaws both in a commonly
used Web server and in a Web browser found on both Mac and Windows plat-
forms. The worm quickly spreads through two mechanisms. First, it randomly
knocks on the doors of Internet-connected machines, immediately infecting
vulnerable Web servers that answer the knock. Unwitting consumers, using
vulnerable Internet browsers, visit the infected servers, which infect users’ com-
puters. Compromised machines become zombies, awaiting direction from the
worm’s author. The worm asks its zombies to look for other nearby machines to
infect for a day or two and then tells the machines to erase their own hard 
drives at the stroke of midnight, adjusting for time zones to make sure the col-
lective crash takes place at the same time around the globe.

This is not science fiction. It is merely another form of the Morris episode, a
template that has been replicated countless times since, so often that those who
run Web servers are often unconcerned about exploits that might have crept
into their sites. Google and StopBadware.org, which collaborate on tracking
and eliminating Web server exploits, report hundredfold increases in exploits
between August 2006 and March 2007. In February 2007, Google found
11,125 infected servers on a web crawl.88 A study conducted in March 2006 by
Google researchers found that out of 4.5 million URLs analyzed as potentially
hosting malicious code, 1.15 million URLs were indeed distributing mal-
ware.89 Combine one well-written worm of the sort that can penetrate firewalls
and evade antivirus software with one truly malicious worm-writer, and we
have the prospect of a panic-generating event that could spill over to the real
world: no check-in at some airline counters using Internet-connected PCs; no
overnight deliveries or other forms of package and letter distribution; no pay-
roll software producing paychecks for millions of workers; the elimination, re-
lease, or nefarious alteration of vital personal records hosted at medical offices,
schools, town halls, and other data repositories that cannot afford a full-time IT
staff to perform backups and ward off technological demons. Writing and dis-
tributing such a worm could be a tempting act of information warfare by any of
the many enemies of modernity—asymmetric warfare at that, since the very
beliefs that place some enemies at odds with the developed world may lead
them to rely less heavily on modern IT themselves.
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A GLACIAL SHIFT

The watershed scenario is plausible, but a major malware catastrophe depends
on just the right combination of incentives, timing, and luck. Truly malicious
foes like terrorists may see Internet-distributed viruses as damaging but refrain
from pursuing them because they are not terror-inducing: such events simply
do not create fear the way that lurid physical attacks do. Hackers who hack for
fun still abide by the ethic of doing no or little harm by their exploits. And
those who hack for profit gain little if their exploits are noticed and disabled,
much less if they should recklessly destroy the hosts they infect.

Hacking a machine to steal and exploit any personal data within is currently
labor-intensive; credit card numbers can be found more easily through passive
network monitoring or through the distribution of phishing e-mails designed
to lure people voluntarily to share sensitive information.90 (To be sure, as banks
and other sensitive destinations increase security on their Web sites through
such tools as two-factor authentication, hackers may be more attracted to PC
vulnerabilities as a means of compromise.91 A few notable instances of bad
code directed to this purpose could make storing data on one’s PC seem tanta-
mount to posting it on a public Web site.)

Finally, even without major security innovations, there are incremental im-
provements made to the growing arsenals of antivirus software, updated more
quickly thanks to always-on broadband and boasting ever more comprehensive
databases of viruses. Antivirus software is increasingly being bundled with new
PCs or built into their operating systems.

These factors defending us against a watershed event are less effective against
the death of a thousand cuts. The watershed scenario, indeed any threat fol-
lowing the Morris worm model, is only the most dramatic rather than most
likely manifestation of the problem. Good antivirus software can still stop ob-
vious security threats, but much malware is no longer so manifestly bad. Con-
sider the realm of “badware” beyond viruses and worms. Most spyware, for 
example, purports to perform some useful function for the user, however half-
heartedly it delivers. The nefarious Jessica Simpson screensaver does in fact
show images of Jessica Simpson—and it also modifies the operation of other
programs to redirect Web searches and installs spyware programs that cannot
be uninstalled.92 The popular file-sharing program KaZaA, though advertised
as “spyware-free,” contains code that users likely do not want. It adds icons to
the desktop, modifies Microsoft Internet Explorer, and installs a program that
cannot be closed by clicking “Quit.” Uninstalling the program does not unin-
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stall all these extras along with it, and the average user does not have the know-
how to get rid of the code itself. FunCade, a downloadable arcade program, au-
tomatically installs spyware, adware, and remote control software designed to
turn the PC into a zombie when signaled from afar. The program is installed
while Web surfing. It deceives the user by opening a pop-up ad that looks like a
Windows warning notice, telling the user to beware. Click “cancel” and the
download starts.93

What makes such badware bad is often subjective rather than objective, hav-
ing to do with the level of disclosure made to a consumer before he or she in-
stalls it. That means it is harder to intercept with automatic antivirus tools. For
example, VNC is a free program designed to let people access other computers
from afar—a VNC server is placed on the target machine, and a VNC client on
the remote machine. Whether this is or is not malware depends entirely on the
knowledge and intentions of the people on each end of a VNC connection. I
have used VNC to access several of my own computers in the United States and
United Kingdom simultaneously. I could also imagine someone installing
VNC in under a minute after borrowing someone else’s computer to check 
e-mail, and then using it later to steal personal information or to take over the
machine. A flaw in a recent version of VNC’s password processor allowed it
to be accessed by anyone94—as I discovered one day when my computer’s
mouse started moving itself all over the screen and rapid-fire instructions ap-
peared in the computer’s command window. I fought with an unseen enemy
for control of my own mouse, finally unplugging the machine the way some
Morris worm victims had done twenty years earlier. (After disconnecting the
machine from the network, I followed best practices and reinstalled every-
thing on the machine from scratch to ensure that it was no longer compro-
mised.)

BEYOND BUGS: THE GENERATIVE DILEMMA

The burgeoning gray zone of software explains why the most common re-
sponses to the security problem cannot solve it. Many technologically savvy
people think that bad code is simply a Microsoft Windows issue. They believe
that the Windows OS and the Internet Explorer browser are particularly poorly
designed, and that “better” counterparts (Linux and Mac OS, or the Firefox
and Opera browsers) can help protect a user. This is not much added protec-
tion. Not only do these alternative OSes and browsers have their own vulnera-
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bilities, but the fundamental problem is that the point of a PC—regardless of
its OS—is that its users can easily reconfigure it to run new software from any-
where.

When users make poor decisions about what new software to run, the results
can be devastating to their machines and, if they are connected to the Internet,
to countless others’ machines as well. To be sure, Microsoft Windows has been
the target of malware infections for years, but this in part reflects Microsoft’s
dominant market share. Recall Willie Sutton’s explanation for robbing banks:
that’s where the money is.95 As more users switch to other platforms, those
platforms will become more appealing targets. And the most enduring way to
subvert them may be through the front door, asking a user’s permission to add
some new functionality that is actually a bad deal, rather than trying to steal in
through the back, silently exploiting some particular OS flaw that allows new
code to run without the user or her antivirus software noticing.

The Microsoft Security Response Center offers “10 Immutable Laws of Se-
curity.”96 The first assumes that the PC is operating exactly as it is meant to,
with the user as the weak link in the chain: “If a bad guy can persuade you to
run his program on your computer, it’s not your computer anymore.”97 This
boils down to an admonition to the user to be careful, to try to apply judgment
in areas where the user is often at sea:

That’s why it’s important to never run, or even download, a program from an un-
trusted source—and by “source,” I mean the person who wrote it, not the person
who gave it to you. There’s a nice analogy between running a program and eating a
sandwich. If a stranger walked up to you and handed you a sandwich, would you eat
it? Probably not. How about if your best friend gave you a sandwich? Maybe you
would, maybe you wouldn’t—it depends on whether she made it or found it lying in
the street. Apply the same critical thought to a program that you would to a sand-
wich, and you’ll usually be safe.98

The analogy of software to sandwiches is not ideal. The ways in which we
pick up code while surfing the Internet is more akin to accepting a few nibbles
of food from hundreds of different people over the course of the day, some es-
tablished vendors, some street peddlers. Further, we have certain evolutionary
gifts that allow us to directly judge whether food has spoiled by its sight and
smell. There is no parallel way for us to judge programming code which arrives
as an opaque “.exe.” A closer analogy would be if many people we encountered
over the course of a day handed us pills to swallow and often conditioned en-
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trance to certain places on our accepting them. In a world in which we rou-
tinely benefit from software produced by unknown authors, it is impractical to
apply the “know your source” rule.

Worse, surfing the World Wide Web often entails accepting and running
new code. The Web was designed to seamlessly integrate material from dis-
parate sources: a single Web page can draw from hundreds of different sources
on the fly, not only through hyperlinks that direct users to other locations on
the Web, but through placeholders that incorporate data and code from else-
where into the original page. These Web protocols have spawned the massive
advertising industry that powers companies like Google. For example, if a user
visits the home page of the New York Times, he or she will see banner ads and
other spaces that are filled on the fly from third-party advertising aggregators
like Google and DoubleClick. These ads are not hosted at nytimes.com—they
are hosted elsewhere and rushed directly to the user’s browser as the nytimes
.com page is rendered. To extend Microsoft’s sandwich metaphor: Web pages
are like fast food hamburgers, where a single patty might contain the blended
meat of hundreds of cows spanning four countries.99 In the fast food context,
one contaminated carcass is reported to be able to pollute eight tons of ground
meat.100 For the Web, a single advertisement contaminated with bad code can
instantly be circulated to those browsing tens of thousands of mainstream Web
sites operated entirely in good faith. To visit a Web site is not only to be asked
to trust the Web site operator. It is also to trust every third party—such as an ad
syndicator—whose content is automatically incorporated into the Web site
owner’s pages, and every fourth party—such as an advertiser—who in turn
provides content to that third party. Apart from advertising, generative tech-
nologies like RSS (“really simple syndication”) have facilitated the automated
repackaging of information from one Web site to another, creating tightly cou-
pled networks of data flows that can pass both the latest world news and the lat-
est PC attacks in adjoining data packets.

Bad code through the back door of a bug exploit and the front door of a poor
user choice can intersect. At the Black Hat Europe hacker convention in 2006,
two computer scientists gave a presentation on Skype, the wildly popular PC
Internet telephony software created by the same duo that invented the KaZaA
file-sharing program.101 Skype is, like most proprietary software, a black box.
It is not easy to know how it works or what it does except by watching it in ac-
tion. Skype is installed on millions of computers, and so far works well if not
flawlessly. It generates all sorts of network traffic, much of which is unidentifi-
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able even to the user of the machine, and much of which happens even when
Skype is not being used to place a call. How does one know that Skype is not
doing something untoward, or that its next update might not contain a zom-
bie-creating Trojan horse, placed by either its makers or someone who compro-
mised the update server? The Black Hat presenters reverse engineered Skype
enough to find a few flaws. What would happen if they were exploited? Their
PowerPoint slide title may only slightly exaggerate: “Biggest Botnet Ever.”102

Skype is likely fine. I use it myself. Of course, I use VNC, too, and look where
that ended up. The most salient feature of a PC is its openness to new func-
tionality with minimal gatekeeping. This is also its greatest danger.

PC VS. INFORMATION APPLIANCE

PC users have increasingly found themselves the victims of bad code. In addi-
tion to overtly malicious programs like viruses and worms, their PCs are
plagued with software that they have nominally asked for that creates pop-up
windows, causes crashes, and damages useful applications. With increasing
pressure from these experiences, consumers will be pushed in one of two un-
fortunate directions: toward independent information appliances that opti-
mize a particular application and that naturally reject user or third-party mod-
ifications, or toward a form of PC lockdown that resembles the centralized
control that IBM exerted over its rented mainframes in the 1960s, or that
CompuServe and AOL exerted over their information services in the 1980s. In
other words, consumers find themselves frustrated by PCs at a time when a va-
riety of information appliances are arising as substitutes for the activities they
value most. Digital video recorders, mobile phones, BlackBerries, and video
game consoles will offer safer and more consistent experiences. Consumers will
increasingly abandon the PC for these alternatives, or they will demand that
the PC itself be appliancized.

That appliancization might come from the same firms that produced some
of the most popular generative platforms. Microsoft’s business model for PC
operating systems has remained unchanged from the founding days of DOS
through the Windows of today: the company sells each copy of the operating
system at a profit, usually to PC makers rather than to end users. The PC mak-
ers then bundle Windows on the machine before it arrives at the customer’s
doorstep. As is typical for products that benefit from network externalities,
having others write useful code associated with Windows, whether a new game,
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business application, or utility, makes Windows more valuable. Microsoft’s in-
terest in selling Windows is more or less aligned with an interest in making the
platform open to third-party development.

The business models of the new generation of Internet-enabled appliances
are different. Microsoft’s Xbox 360 is a video game console that has as much
computing power as a PC.103 It is networked, so users can play games against
other players around the world, at least if they are using Xboxes, too. The busi-
ness model differs from that of the PC: it is Gillette’s “give them the razor, sell
them the blades.” Microsoft loses money on every Xbox it sells. It makes that
money back through the sale of games and other software to run on the Xbox.
Third-party developers can write Xbox games, but they must obtain a license
from Microsoft before they can distribute them—a license that includes giving
Microsoft a share of profits.104 This reflects the model the video game console
market has used since the 1970s. But the Xbox is not just a video game console.
It can access the Internet and perform other PC-like functions. It is occupying
many of the roles of the gamer PC without being generative. Microsoft retains
a privileged position with respect to reprogramming the machine, even after it
is in users’ hands: all changes must be certified by Microsoft. While this action
would be considered an antitrust violation if applied to a PC operating system
that enjoyed overwhelming market share,105 it is the norm when applied to
video game consoles.

To the extent that consoles like the Xbox take on some of the functions of the
PC, consumers will naturally find themselves choosing between the two. The
PC will offer a wider range of software, thanks to its generativity, but the Xbox
might look like a better deal in the absence of a solution to the problem of bad
code. It is reasonable for a consumer to factor security and stability into such a
choice, but it is a poor choice to have to make. As explained in Chapter Five,
the drawbacks of migration to non-generative alternatives go beyond the fac-
tors driving individual users’ decisions.

Next-generation video game consoles are not the only appliances vying for a
chunk of the PC’s domain. With a handful of exceptions, mobile phones are in
the same category: they are smart, and many can access the Internet, but the ac-
cess is channeled through browsers provided and controlled by the phone ser-
vice vendor. The vendor can determine what bookmarks to preinstall or up-
date, what sites to allow or disallow, and, more generally, what additional
software, if any, can run on the phone.106 Many personal digital assistants
come with software provided through special arrangements between device
and software vendors, as Sony’s Mylo does with Skype. Software makers with-
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out deals cannot have their code run on the devices, even if the user desires it.
In 2006, AMD introduced the “Telmex Internet Box,” which looks just like a
PC but cannot run any new software without AMD’s permission. It will run
any software AMD chooses to install on it, even after the unit has been pur-
chased.107 Devices like these may be safer to use, and they may seem capacious
in features so long as they offer a simple Web browser, but by limiting the dam-
age that users can do through their own ignorance or carelessness, the appliance
also limits the beneficial activities that users can create or receive from others—
activities they may not even realize are important to them when they are pur-
chasing the device.

Problems with generative PC platforms can thus propel people away from
PCs and toward information appliances controlled by their makers. Eliminate
the PC from many dens or living rooms, and we eliminate the test bed and dis-
tribution point of new, useful software from any corner of the globe. We also
eliminate the safety valve that keeps those information appliances honest. If
TiVo makes a digital video recorder that has too many limits on what people
can do with the video they record, people will discover DVR software like
MythTV that records and plays TV shows on their PCs.108 If mobile phones
are too expensive, people will use Skype. But people do not buy PCs as insur-
ance policies against appliances that limit their freedoms, even though PCs
serve exactly this vital function. People buy them to perform certain tasks at the
moment of acquisition. If PCs cannot reliably perform these tasks, most con-
sumers will not see their merit, and the safety valve will be lost. If the PC ceases
to be at the center of the information technology ecosystem, the most restric-
tive aspects of information appliances will come to the fore.

PC AS INFORMATION APPLIANCE

PCs need not entirely disappear as people buy information appliances in their
stead. They can themselves be made less generative. Recall the fundamental dif-
ference between a PC and an information appliance: the PC can run code from
anywhere, written by anyone, while the information appliance remains teth-
ered to its maker’s desires, offering a more consistent and focused user experi-
ence at the expense of flexibility and innovation. Users tired of making the
wrong choices about installing code on their PCs might choose to let someone
else decide what code should be run. Firewalls can protect against some bad
code, but they also complicate the installation of new good code.109 As anti-
virus, antispyware, and antibadware barriers proliferate, they create new chal-
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lenges to the deployment of new good code from unprivileged sources. And in
order to guarantee effectiveness, these barriers are becoming increasingly pater-
nalistic, refusing to allow users easily to overrule them. Especially in environ-
ments where the user of the PC does not own it—offices, schools, libraries, and
cyber cafés—barriers are being put in place to prevent the running of any code
not specifically approved by the relevant gatekeeper.

Short of completely banning unfamiliar software, code might be divided
into first- and second-class status, with second-class, unapproved software al-
lowed to perform only certain minimal tasks on the machine, operating within
a digital sandbox. This technical solution is safer than the status quo but, in a
now-familiar tradeoff, noticeably limiting. Skype works best when it can also
be used to transfer users’ files, which means it needs access to those files. Worse,
such boundaries would have to be built into the operating system—placing the
operating system developer or installer in the position of deciding what soft-
ware will and will not run. If the user is allowed to make exceptions, the user
can and will make the wrong exceptions, and the security restrictions will too
often serve only to limit the deployment of legitimate software that has not
been approved by the right gatekeepers. The PC will have become an informa-
tion appliance, not easily reconfigured or extended by its users.

* * *
The Internet Engineering Task Force’s RFC 1135 on the Morris worm closed
with a section titled “Security Considerations.” This section is the place in a
standards document for a digital environmental impact statement—a survey
of possible security problems that could arise from deployment of the standard.
RFC 1135’s security considerations section was one sentence: “If security con-
siderations had not been so widely ignored in the Internet, this memo would
not have been possible.”110

What does that sentence mean? One reading is straightforward: if people
had patched their systems and chosen good passwords, Morris’s worm would
not have been able to propagate, and there would have been no need to write
the memo. Another is more profound: if the Internet had been designed with
security as its centerpiece, it would never have achieved the kind of success it
was enjoying, even as early as 1988. The basic assumption of Internet protocol
design and implementation was that people would be reasonable; to assume
otherwise runs the risk of hobbling it in just the way the proprietary networks
were hobbled. The cybersecurity problem defies easy solution, because any of
the most obvious solutions to it will cauterize the essence of the Internet and
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the generative PC.111 That is the generative dilemma. The next chapter ex-
plains more systematically the benefits of generativity, and Chapter Five ex-
plores what the digital ecosystem will look like should our devices become
more thoroughly appliancized. The vision is not a pleasant one, even though it
may come about naturally through market demand. The key to avoiding such
a future is to give that market a reason not to abandon or lock down the PCs
that have served it so well—also giving most governments reason to refrain
from major intervention into Internet architecture. The solutions to the gener-
ative dilemma will rest on social and legal innovation as much as on technical
innovation, and the best guideposts can be found in other generative successes
in those arenas. Those successes have faced similar challenges resulting from
too much openness, and many have overcome them without abandoning gen-
erativity through solutions that inventively combine technical and social ele-
ments.
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