ITU News

Tells you what's happening in Telecommunications around the world

  |  download pdf
                     

The broadband debate
The need for speed?
 
image
Photo credit: AFP/Imaginechina
 

There is a wealth of recent evidence suggesting that the Internet can contribute significantly to the economy, economic growth, job creation, and innovation in the development of new services and applications. For example, a 2011 analysis of 13 countries by the McKinsey Global Institute found that the Internet contributed 11 per cent of growth over the past five years. This important topic is examined in a report by the Broadband Commission for Digital Development, “Broadband: A Platform for Progress”, published in June 2011 (see June 2011 issue of ITU News).

The range and quality of services that can be offered over the Internet is greatly enhanced by faster data rates. High-speed infrastructure is surely a win-win situation — good for consumers, who enjoy greater choice of services; good for governments and national competitiveness in their communications infrastructure and ability to attract foreign direct investment and create jobs in diverse sectors; and good for industry, where operators sell faster Internet connectivity to gain competitive edge and market share at higher prices and, potentially, higher margins (witness the 4G wars, for example).

But how fast is fast enough? And what factors need to be taken into account in setting targets for speed and deploying infrastructure? Speed does not always mean reliability — and the relationship between speed and reliability is not always easy.

ITU News and the Broadband Commission for Digital Development are launching a new series of mini-debates to promote the objectives of the Commission, underlining the importance of broadband infrastructure in helping accelerate progress towards achieving the Millennium Development Goals. This first debate examines the need for speed.

Slow, but steady?

Sometimes, it is basic connectivity that matters, regardless of the speed of the connection. The phenomenal growth of 2G mobile connectivity in the developing world has done much to empower the previously unconnected, whether by giving people livelihoods (for example, the Grameen “phone ladies” of Sri Lanka and Uganda) or simply by making people contactable and more available for work.

In the developing world, lack of infrastructure often prevents health workers from delivering health care efficiently to isolated patients in rural areas. Some of the gaps in local health systems can be mitigated using simple, locally appropriate communication technologies. In Malawi, Medic Mobile has used SMS and mobile open-source platforms (including Ushahidi, Google Apps and HealthMap) to mobilize communities for vaccination campaigns, collect data and map health services. Using text messages and mobile phones, St. Gabriel’s Hospital in Malawi has tracked new symptoms and doubled the number of patients being treated for tuberculosis, while saving thousands of hours of travel and work time. Medic Mobile is using mobile technology to great effect to monitor drug stocks in rural Ethiopia, track vaccinations in India, support the prevention of mother-to-child transmission of HIV in Malawi and streamline test result delivery for cervical cancer screening in Nicaragua.

In agriculture, e-Krishok is an initiative launched by the Bangladesh Institute of ICT in Development in Bangladesh, which aims to provide farmers with both general information and answers to specific questions through a web-portal. This project has grown from just ten locations in October 2008 to 100 centres with Internet and mobile access by February 2010, as e-Krishok has become the preferred source of information for the many farmers reached by the campaign.

These real-life examples show how even basic ICT can make a real difference to the way people live, work or get health care. Part of the success of these projects is attributable to the use of robust technologies and simple devices that are reliable and do not need a lot of power.

Faster is automatically better?

If these are the gains that can be achieved through lowspeed applications, imagine how much more could be achieved through high-speed connections. Although a precise definition of broadband is elusive (speed of upload versus download, and whether this capacity is sustained in data transfer rates to the exchange or end user), broadband as a concept embraces highspeed, high-capacity, always-on access to ICT services capable of providing various services (voice, video and data).

ITU recognizes fixed (wired) broadband services as subscriptions to high-speed access to the public Internet (over a TCP/ IP connection) at downstream speeds equal to, or greater than, 256 kbit/s. Booz & Company note, for example, that speeds of up to 100 Mbit/s are needed for some telemedicine and distance learning applications, compared to 4–6 Mbit/s required for webbased teleconferencing.

The Phoenix Center in the United States sees the true value of broadband access to a society as varying according to its use, connection speed and method of access. Some countries (such as Denmark) have set national targets for achieving specified levels of coverage with certain speeds by set dates. France and the European Union are seeking to provide universal coverage of broadband Internet access. The UK’s Digital Britain Plan envisages 100 per cent coverage of rural areas with 2 Mbit/s service, in part as the minimum speed needed to deliver iPlayer, the BBC’s Internet TV service, although this target has been deemed modest by some observers. Other countries are now including broadband Internet in their definitions of universal service.

National targets for coverage and transmission capacity (speed) are an important signal by governments of their commitment to establishing the foundations for a modern economy with advanced infrastructure.

image
Photo credit: AFP/Imaginechina
 

Fast enough?

In order for broadband to thrive, and for the market to grow successfully, national targets and operators’ deployment plans should take account of customer needs and the geography of the areas, as well as what the technology is likely to be used for. How fast is fast enough depends on these, more specific factors.

In an era where data usage is growing at an explosive rate, sometimes at a cost to quality of service, operators have to deploy technologies to meet the needs of specific markets or specific geographies in certain areas (for example, urban versus rural), according to the distribution of customers — for example, Clearwire’s selection of new markets for the deployment of mobile broadband in certain areas of the United States. A mismatch between speed and usage may mean that consumers in developing countries find that technologies are not locally appropriate to their real needs. Consumers in developed countries are already finding that brakes are being applied to their data capacities — both for fixed as well as mobile service. In the United States, AT&T has set limits on customers’ use of its high-speed network (with charges for additional capacity), and similar arrangements are common in Canada, Asia and Europe. Matching speeds to needs seems to be the way to go.

 

  Previous Printable version Top email to a friend Next © Copyright ITU News 2014
Disclaimer - Privacy policy