

Challenges facing the **satellite community**

November 2, 2012

Kimberly Baum Vice President, Spectrum Management & Development Americas SES

SES^{*}

Agenda

This presentation will look to the past (WRC-03, WRC-07 & WRC-12) and to the future (WRC-15), and consider practical issues facing satellite operators and their customers.

The focus is on three main areas:

- Terrestrial interference issues in C-band
- Limited Ku band uplink spectrum
- ▲ Expansion of satellite systems into Ka band

Services provided by satellites

C Band	 Cable video distribution (e.g., NSS-806 video neighborhood) OU video distribution (e.g., NSS-806) VSAT networks (e.g., NSS-806/703) GSM Backhaul (e.g., NSS-806/703)
Ku Band	 DTH services (e.g., SES-6/AMC-3/AMC-4) Aeronautical and maritime connectivity (e.g., SES-4/SES-6/AMC-3/AMC-4) GSM backhaul (e.g., SES-4/SES-6/AMC-3/AMC-4) VSAT networks (e.g., SES-4/SES-6/AMC-3/AMC-4)
Ka Band	 Satellite broadband GSM/4G backhaul Potentially DTH in the near future. Aeronautical and maritime connectivity

Terrestrial interference in C-band

<u>Issue</u>

- WRC-15 Agenda Item 1.1 will consider additional spectrum generally for International Mobile Telecommunications (IMT) and other mobile broadband applications
 - Numerous input documents to the ITU already seek consideration of C-band
- The problem is that such use is not compatible with the existing operations in C-band, including FSS, radar systems and fixed point-to-point links
- In particular, C-band is heavily used by FSS systems around the world, and its use is continuing to grow
 - Around 169 C-band satellites are in geostationary orbit today
 - 32 of these satellites cover Latin America
 - There is substantial ongoing investment in C-band satellite capacity worldwide:
 - At least 52 satellites with C-band payloads have been launched in 2007-2012, representing \$12-15 billion in investment
 - At least 35 satellites with C-band payloads are under construction and are scheduled to be launched in 2012-2015, representing \$9-10 billion in investment

Key Services Supported by C-band Satellites

Media Distribution

- C-band is used to distribute media content around the world, including, e.g.
 - Cable distribution to 7038 cable headends around the United States, serving 60 million U.S. households
 - In 2010, 18.7 million cable homes in Latin America served by SES C-band satellites
 - 20 million receive-only C-band television dishes in Brazil alone

Media Contribution

- Special events coverage (e.g. Olympics)
- Satellite news gathering

Feeder Links for mobile-satellite services (MSS)

 Supporting public safety and emergency relief missions around the world.

- Rural and remote communications
 - Internet and basic connectivity in remote areas (remote villages, external territories, maritime platforms, etc.)
 - Cellular backhaul applications
- ▲ Mobility
 - 3510 C-band Earth Stations on Vessels (ESVs) in 2012, providing video distribution, Internet and mobile backhaul services

Other C-band services, including

- Disaster recovery and emergency preparedness
- Tracking, Telemetry & Command (TT&C) for many satellite systems in other frequency bands, for example, for launches

Unique Attributes of C-Band Satellite Services

- C-band satellite services cannot easily be replicated at other satellite bands or via terrestrial means
 - Geographic reach. C-band easily covers entire continents and oceans and offers an economically viable way of providing intercontinental and global communications
 - Smaller or hard-to-reach markets and low density regions are covered as easily as metropolitan areas
 - Particularly ideal for point-to-multipoint applications (broadcast, widely-dispersed networks), and remote/rural deployment
 - Resistance to rain-fade
 - C-band is less susceptible to signal interruptions from heavy rains than higher bands (Ku, Ka), making it better suited for tropical or high-rain areas at high availabilities

Sharing between FSS and BWA/IMT is not feasible

- ITU studies have concluded that protection distances of between 51 430 km are necessary to allow co-frequency sharing between BWA/IMT systems and FSS earth stations
 - Adjacent band protection distances to avoid LNB overload of FSS receivers are between 10 31 km
 - Considering that a typical city has a radius of 15 to 30 km, sharing between BWA/IMT systems and FSS receive earth stations is not realistic
 - See Reports ITU-R M.2109 & S.2199
- ▲ Government, strategic, and commercial FSS services in the C-band will suffer:
 - Signal delays; Synchronization loss; Blackout periods; Blackout areas; Total loss of transmission
 - Many countries Bolivia, Hong Kong, Indonesia, Fiji, to name a few have experienced interference when deploying BWA systems in C-band
 - WiMAX testing led to 30% of TV households in Bolivia missing some of World Cup 2006
 - Similar testing in Hong Kong led to 300,000 households across Asia to lose their TV service

Sharing between FSS and BWA/IMT is not feasible

- Sharing is exasperated by a large number of receive only earth stations already deployed many are unregistered
 - Shielding, for example, requires knowing where all earth stations are
 - Further, site shielding is expensive and infeasible on a regional or worldwide basis

WRC-15 Agenda item 1.1 & C-band

Possible solutions?

- Clearly there is a strong demand for terrestrial mobile broadband communications
- ▲ However, it is important to balance that demand with the need for countries and citizens to have access to other means of communications as well, such as critical satellite services in C-band
- Many other frequency bands are available for IMT, and more desirable from a coverage perspective:
 - 410-430 MHz Cost effective
 - 450-470 MHz Cost effective and widely favored
 - 470-806 MHz Cost effective and widely favored
 - 806-862 MHz Cost-effective and widely favored
 - 2500-2690 MHz UMTS extension band, well-suited to offering these services
 - 3300-3400 MHz Similar to 3400 MHz+ but less impact to C-band satellite services
- ▲ The WRC-15 studies are now starting → We seek your support in maintaining the ability to use C-band for satellite services!

Limited Ku band uplink spectrum

<u>Issue</u>

▲ In ITU Region 2, there is 200 MHz more downlink fixed-satellite service (FSS) spectrum than uplink spectrum

Frequency bands (GHz)	Bandwidth (MHz)	
Earth-to-space direction (uplink)		
12.7-12.75	50	
13.75-14.5	750	
Total spectrum in the uplink	800	
Space-to-Earth direction (downlink)		
10.95-11.2	250	
11.45-11.7	250	
11.7-12.2	500	
Total spectrum in the downlink	1 000	
Uplink and downlink spectrum difference	200	

The unplanned FSS bands in the 10-15 GHz range in ITU Region 2

- Lack of sufficient Ku band uplink spectrum makes it difficult to design satellite systems that maximize use of the available downlink spectrum.
- ▲ This issue will be a problem for any entity seeking to launch a new satellite system, as the prime Ku band uplink spectrum – 14-14.5 GHz – is very congested over Region 2.

Limited Ku band uplink spectrum

Let's consider an example:

- ▲ We are designing a satellite with two beams one over South America & one over North America
- ▲ We want to be able to re-use all of the available downlink spectrum in each beam
- To provide DTH services in the North American beam using all available downlink spectrum, we need 1000 MHz of uplink spectrum
 - 14-14.5 GHz & 13.75-14 GHz are available
 - For the other 250 MHz, we have to find other spectrum → Planned FSS? BSS feeder link spectrum? Ka band?
 - Then these bands cannot be used for other satellites at the same location, and will create a frequency shortage in other bands
 - Or, we could provide the uplink in a geographically isolated beam; however, that means you cannot use that uplink spectrum in the South American beam
- If we were providing VSAT services, it would be difficult to use 13.75-14 GHz for small return earth stations because of ITU minimum earth station size limitations

Limited Ku band uplink spectrum

Possible solutions?

- ▲ WRC-15 is coming to our rescue!
- ▲ Pursuant to its agenda item 1.6.2, it will address this issue:

"to consider possible additional primary allocations to the fixed-satellite service (FSS) (Earth-to-space) of 250 MHz in Region 2 and 300 MHz in Region 3 within the range 13-17 GHz and review the regulatory provisions on the current allocations to the fixed-satellite service within this range, taking into account the results of ITU R studies, in accordance with Resolution **152 (WRC 12)**"

- All countries/companies planning to launch Ku band satellite systems will be affected by this uplink spectrum shortage
- ▲ We encourage countries and companies to participate in this effort
 - ITU studies already underway in <u>ITU-R Working Party 4A</u>

Expansion of satellite systems into Ka band

- Many new satellite systems are have been launched or are planned for Ka band, many of which we will hear about in other presentations this week – Global Xpress, O3b, EchoStar 17, Spaceway 3, AMC-15, AMC-16, WildBlue-1, Viasat-1, to name a few
 - These systems are focused on providing broadband, DTH and mobile services
- From a regulatory perspective, there are several key issues facing their expansion in Region 2:
- ▲ User terminals need access to sufficient spectrum that is not encumbered by terrestrial interference or the need to coordinate on a site-by-site basis with terrestrial systems
 - In this regard, WRC-03 adopted a footnote to the ITU Table of Frequency Allocations, the so-called HDFSS concept, which specified certain bands for high density deployment of earth stations
 - Specifically, No. 5.516B specifies 18.3-19.3, 19.7-20.2 GHz (space-to-Earth) and 28.35-29.1, 29.25-30 GHz (Earth-to-space) for Region 2 HDFSS earth stations (user terminals)
- ▲ At the same time, other types of earth stations, including gateway or hub earth stations, need access to large amounts of spectrum, and can be successfully coordinated with terrestrial stations.

Expansion of satellite systems into Ka band

- Finally, both GSO and non-GSO (e.g., O3b) satellite systems are planned in Ka band.
 - In order to allow consumers in Latin America to take advantage of both types of services, it is important for administrations to consider how to accommodate both types of systems
 - Mechanisms can be drawn from the ITU Radio Regulations Article 22 epfd limits in certain bands & coordination between GSO & non-GSO systems in other bands under No. 9.11A

¡Gracias! Thank you!