International Telecommunication Union

ITU-T Study Group 5

EMF Environmental Characterization

Jeffrey Boksiner Senior Consultant, Telcordia Technologies, Inc

"EMC, safety and EMF effects in telecommunications"

EMF Environmental Characterization

- o Introduction
- o Approach of Study Group 5
- o Recommendation K.52
- Basic principles
- Application examples
- o Current and future efforts
- Additional slides

2

ITU-T Study Group 5

Introduction

- Exposure of human being to Electromagnetic Fields (EMF) raises concerns of possible health effects
- Radio transmitters used for telecommunication are proliferating
- ITU-T SG5 began to study a question on health effects of EMF in 1996

SG5 Approach

- SG5 will provide guidance for compliance with EMF exposure limits
- o SG5 will not develop new limits
- Operators should determine appropriate limits based on relevant national or international standards or national regulations

SG5 Approach

Study Group 5

Study Period 1996-2000
Focus on the development of K.52

o Study Period 2000-2004

 Radio-frequency environmental characterization and health effects related to mobile equipment and radio systems

EMF Exposure Standards

o International

- ICNIRP, Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic field (up to 300 GHz)
 - Adopted in many countries
 - Fundamental reference for K.52
 - Should be used unless a national standard takes precedence

Exposure Fundamentals

o Two-tier exposure limits

- Controlled/occupational exposure
- General population/uncontrolled exposure
 - Also called General Public exposure
- Formulas for multiple exposures
- Formulas for short-term exposures

ITU-T Study Group 5

ICNIRP Exposure Limits 3/4 Power Density

Limit for general public exposure
 Limit for occupational exposure

Achieving Compliance

- Identify appropriate compliance limits
- Perform exposure assessment for intentional transmitters only
- If needed, perform by calculations or measurement

Achieving Compliance

 If the EMF exposure assessment indicates that pertinent exposure limits may be exceeded in areas where people may be present, mitigation/avoidance measures should be applied

Achieving Compliance

- Assessment should be performed as part of planning, licensing or commissioning
 - Use basic criteria of K.52 (Annex B) and/or
 - Use software simulation tools
 - Can use database of transmitter and antenna parameters and locations

K.52 Exposure Classification

- o Compliance zone
 - Potential exposure to EMF is below the applicable limits
- o Occupational zone
 - Potential exposure to EMF is below the limits for occupational exposure but exceeds the limits for general public exposure
- o Exceedance zone
 - Potential exposure to EMF exceeds the limits for both occupational and general public exposure

Mitigation Techniques

o Occupational zone

- Restrict access to general public
 - Physical barriers, lockout procedures or adequate signs can accomplish the access restriction
- Workers may be permitted to enter the area
 - Workers entering the occupational zone should be informed

Mitigation Techniques

o Exceedance zone

- Restrict access to workers and the general public
 - If workers need to enter the area, take steps to control their exposure
 - Temporarily reduce the power of the emitter,
 - Controlling the duration of the exposure so that time-averaged exposure is within safety limits,
 - Use shielding or protective clothing

K.52 Analytical Method

- K.52 Provides simple analytical method using far-field expressions
 - Valid in far field region
 - Conservative evaluation
 - Key parameters
 - Power, antenna pattern, antenna height, antenna azimuth and elevation
 - Note if antenna pattern is not known
 - Use regulatory envelopes, or
 - o ITU-R Reference patterns

Exposure Evaluation Examples

o Frequency = 900 MHz

- Limit for general public = 4.5 W/m^2
- Power to antenna = 100 W
- Reflection coefficient = 1
- Structures of the exceedance zones

Half-Wave Dipole

]_'|'

Point-Multipoint Reference Pattern

• Omnidirectional, Maximum gain = 10

Multipoint Reference Pattern

• Same pattern, output power = 1000 W

Multipoint Reference Pattern

ITU-T Study Group 5

• Same pattern, output power = 100 W

• Elevation tilt = -5 deg

Multipoint Reference Pattern

- o Same pattern, output power = 1000 W
- Elevation tilt = -5 deg

Example Results

- Exceedance zones near the antennas would require mitigation if accessible
- For general public the area of concern is often at ground level

Exposure Evaluation Examples

• Frequency = 2 GHz

- Limit for general public = 10 W/m^2
- Power to antenna = 0 dBW
- Reflection coefficient = 1
- o Structures of the exceedance zones

Study Group 5

30-dB Reference Pattern for Fixed Service

ITU-T Study Group 5

Study Period 2001-2004 Question 3: Work Program

Two new Recommendations

- K.mes for tlc installations compliance to reference level: procedure, tools and instrumentation requirement
- 2. K.rt for radio terminals: compliance to basic limits, i.e. SAR

ITU-T Study Group 5

K.mes:

Measurement and numerical prediction of EMF for tlc installations compliance with human exposure limits

- K.52: indications to perform an exposure assessment based on the evaluation of the electromagnetic field and on accessibility considerations
- K.mes defines tools, methods and procedures that can be used to achieve a reliable compliance assessment.

It is intended to provide:

- Basic requirement for e.m. field measurement: methods, instruments, procedures
- Indications on numerical methods for exposure prediction

K.rt: Mobile Phone and SAR Limits

o The goal: a Recommendation which provides harmonized indications on

- Definition of a conformance test
- SAR limits
- Procedure
- Calibration of E-field probe
- Setup

Study Group 5

Q. 3: The Work Until Now

o K.mes: measurement 75%o K.mes: calculation <10%

o K.rt: nothing

ITU-T

Study Group 5

Questions

ITU-T Study Group 5

Additional Material

National EMF Exposure Standards

o USA

- FCC, 96-326, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation
- ANSI/IEEE C95.1, Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

ITU-T Study Group 5

19.11.01

Exposure Fundamentals

• The key quantity is the **Specific Absorption Rate (SAR)**

 The time derivative of the incremental energy (*dW*) absorbed by (dissipated in) an incremental mass (*dm*) contained in a volume element (*dV*) of a given mass density (*r_m*)

$$SAR = \frac{d}{dt}\frac{dW}{dm} = \frac{d}{dt}\left(\frac{1}{r_m}\frac{dW}{dV}\right)$$

Exposure Fundamentals

• SAR is difficult to measure or predict

- Used for non-inform exposure or where the EMF is influenced by the presence of a body
 - Used for handset exposure
- Use levels for electric and magnetic field or power density derived from SAR limits
- K.52 and this presentation use powerdensity limits

Simultaneous Exposure to Multiple Sources

 Multiple sources at different frequencies above 1 MHz

- E_i is the electric field strength at frequency i
- *E*_{Li} is the reference limit at frequency *i*
- S_i is the power density at frequency i
- S_{Li} is the reference limit at frequency i

$$\sum_{i} \left(\frac{E_i}{E_{l,i}} \right)^2 \le 1 \qquad \text{OR}$$
$$\sum_{i} \frac{S_i}{S_{l,i}} \le 1$$

ITU-T Study Group 5

Analytical Methods

- K.52 Provides simple analytical method using farfield expressions
 - S(R, q, f) is the power density in W/m²
 - *f*(*q*, *f*) is the relative field pattern of the antenna
 - EIRP is the EIRP of the antenna in W
 - **r** is the absolute value of the reflection coefficient
 - *R* is the distance to the putative exposed person

$$S(\mathbf{R}, \mathbf{q}, \mathbf{f}) = (1 + \mathbf{r})^2 \frac{EIRP}{4\mathbf{p}R^2} f(\mathbf{q}, \mathbf{f})$$

/EI (

K.52 Analytical Method

- Valid in far field region
- Conservative evaluation
- o Key parameters
 - Power, antenna pattern, antenna height, antenna azimuth and elevation

iei r

Antenna Patterns

- Important for determination of exposure
- o Use manufacturers data
- o If unknown,
 - Use regulatory envelopes, or
 - ITU-R Reference patterns

Antenna Patterns

o Basically two type

- Cylindrically symmetrical
 - Dish-type antennas
- Separable in spherical coordinates
 - Azimuthal pattern
 - Elevation pattern
 - Mobile or broadcast systems

ITU-T Study Group 5

Half-wave Dipole

- Simple analytical example
- Omnidirectional azimuthal pattern

Example Point to Multipoint

Study Group 5

- Omnidirectional azimuthal pattern
- Reference pattern from the ITU Radio Regulations
 - o Maximum gain = 10

Example Cylindrically-Symmetrical Pattern

- Reference pattern
 from the from ITU R Recommendation
 F.699
 - Maximum gain = 30

Ground-Level Calculation

$$S = \frac{(1+r)^2}{4p} f(q) \frac{EIRP}{x^2 + (h-2)^2}$$

Power Density at Ground Level

10-dB Multipoint Reference Pattern, h = 3 m

Power Density at Ground Level

10-dB Multipoint Reference Pattern, h = 20 m

K.mes: Contents

Measurement

Numerical predictions

- Instruments basic requirement (e.g. calibration factors, isotropy, linearity...)
- 2. Uncertainties
- 3. Procedures
- 4. Compliance and results analysis

- 1. Exceedance volume (see K.52) and punctual calculation
- Propagation models (far field, near field...)
- 3. Ray-tracing techniques

19.11.01

K.mes – Measurement Instrument Requirement (1)

Characterization of:

o Antenna factor (for frequency selective meas)

$$k_{a} \left[\frac{1}{m} \right] = \frac{E_{incident} \left[\frac{V}{m} \right]}{V_{measured} \left[m \right]}$$

o Calibration Factor

$$CF = \frac{E_{incident} [V_m]}{E_{measured} [V_m]}$$

As functions of frequency, amplitude...

K.mes – Measurement Instrument Requirement (2)

• Amplitude linearity

- o Isotropic respond
- Multiple sources integration:

$$E_{tot} = \sqrt{\sum_{f} E_{f}^{2}}$$

• Respond to Pulsed modulated signals (insted of simple continous wave)

0 ...

K.mes-Numerical Predictions

o Applicability of numerical models

- Free space far field
- Free space near field
- Ray tracing: line of sight, reflected and diffracted contributes
- Full wave methods (FDTD, MOM, FEM...)
- o Topographic data base
- Realistic analysis for the maximum radiated power