
Editor: Rick Craft / Sandia National Labs, PO Box 5800, Albuquerque, NM,
87185-0839, USA, Phone +1 505 844 8873, Fax +1 505 284-4778

Telemedicine Interoperability Alliance

Version 0.9

Telemedicine System Interoperability Architecture

Concept Description and Architecture Overview

Copyright, 2003 Sandia Corporation. This work has been authored by Sandia National
Laboratories under Contract No. DE-AC04-94AL85000 with the U.S. Department of
Energy. The United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this work, or allow
others to do so, for United States Government purposes.

Sandia encourages community discussion of the ideas and concepts set forth in this
document. Sandia hereby consents to further distribution of this document, in its entirety,
for technical publication, analysis and comment. Sandia does not, however, authorize
any modification or editing of this document without the express written consent of
Sandia National Laboratories.

NOTICE: Preparation of this draft was funded by the U.S. Army Telemedicine and
Advanced Technologies Research Center and executed by Sandia National Laboratories.
Sandia National Laboratories is operated for the United States Department of Energy by
Sandia Corporation. Neither the United States Government nor any agency thereof, nor
any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would no infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Request for Comments on:
Telemedicine System Interoperability Architecture: Architecture Overview

Comments may be received in any format, but preference is shown for comments to be in
a Microsoft Office electronic document format to facilitate compiling the comments and
responses to the comments. The use of the format shown below is appreciated but
commenters are also welcome to contact the editor by phone.

Comments should be separated and numbered and preferably grouped:

The comments should contain and be structured according to the following:

Author:
1. Author identification

Author identification:
Name, organization, address, fax and phone number, email

2. Author represents: self or others
If others: name, organization, address, fax and phone number, email

Comment:
3. Comment text:
4. Reference to Working Document: document name, version, page, line number(s)
5. Reference to other documents: document name, version, chapter, page, line

numbers(s)
6. Classification of each comment as one of the following:

(T) Typo Technical, grammatical, or typographical error
(Q) Query Uncertain of meaning or lack of clarity
(S) Suggest Suggestion for improvement wich does not arise from any

disagreement with the approach
(m) Minor Minor disagreement with the approach taken or the terms of the

standard. This indicates something which one feels needs discussion
but which one does not necessarily oppose.

(M) Major Serious disagreement with the approach taken or the terms of the
standard. This indicates that failure to accept the change might lead to
opposing the standard in principle. In this case, reasons and useful
discussion must be given as well as possible alternative solutions

7. When making comments one should consider using examples of the problems one

foresees, provide accurate references to other standards, or other documents which
illustrate a point (please enclose applicable portions of a referenced document if it is
not readily available).

8. In addition to comments on the current text, please suggest what kinds of changes you
would like to see to accommodate your comments, with inclusion of revised phrasing
where ever possible

Comments on:
Telemedicine System Interoperability Architecture: Architecture Overview

Please send comments to:

telemed@sandia.gov or

Rick Craft
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0839

Comments from:
Name:
Address:
E-mail:
Author represents self or other (please specify organization):

Classification of Comments

(T) Typo Technical, grammatical, or typographical error
(Q) Query Uncertain of meaning or lack of clarity
(S) Suggest Suggestion for improvement that does not arise from any

disagreement with the approach
(m) Minor Minor disagreement with the approach taken or the terms of the

standard. This indicates something which one feels needs
discussion but which one does not necessarily oppose.

(M) Major Serious disagreement with the approach taken or the terms of the
standard. This indicates that failure to accept the change might
lead to opposing the standard in principle.

(U) Unclassified Comments not falling in other categories.

C
om

m
en

t
N

um
be

r.

Pa
ge

N

um
be

r

Li
ne

N

um
be

r

C
om

m
en

t
T

yp
e

Comment

Table of Contents

1 Introduction.. 4

1.1 Why This Paper ..5
1.2 Organization of This Paper ..5

2 System Concepts... 7
2.1 Utilization Scenarios..7

2.1.1 Tele-Home Care ..7
2.1.2 Rural Clinic ...7
2.1.3 Traveling Nurse ...8
2.1.4 Optimal Wellness ..9
2.1.5 Visiting the Doctor from Home ..9
2.1.6 More Time to Live ..10
2.1.7 Full Circle ...10

2.2 The Difference ...12
2.3 Features We Want Our Stations to Incorporate ...13

2.3.1 User Interface ..14
2.3.1.1 Easy to Replace...14
2.3.1.2 Multiple Simultaneous Devices ..15
2.3.1.3 Readily Extensible ..16

2.3.2 Instruments..16
2.3.2.1 Easy to Add and Remove Devices ..16
2.3.2.2 Multiple Simultaneous Devices ..17
2.3.2.3 Vendor Independence ...17

2.3.3 Record Storage ..17
2.3.3.1 A Range of Storage Locations ..18
2.3.3.2 An Assortment of Data Types...18
2.3.3.3 Extensible..19
2.3.3.4 Media Independent..19
2.3.3.5 Multi-lingual ...19

2.3.4 Processing ...20
2.3.4.1 Dynamically Configurable ..20
2.3.4.2 Distributable..21

2.3.5 Communications ...21
2.3.5.1 A Range of Devices and Formats ...21
2.3.5.2 Shielding Users from the Device Details ..22
2.3.5.3 Supporting Demand-driven Allocation...22

2.3.6 Platform...22
2.3.6.1 Connectivity ..23
2.3.6.2 Association..24
2.3.6.3 Security ...25

2.3.7 Protocols ..25
2.3.7.1 Control How Resources Are Marshaled ...25
2.3.7.2 Allow for User-Unique Preferences..25
2.3.7.3 Intelligent Use of System Resources ..26

2.4 Features for the System to Incorporate ..27

2.4.1 Resource Location...28
2.4.2 Discovery..28
2.4.3 Resource Acquisition ..28
2.4.4 Conferencing...29
2.4.5 Quality Of Service ..29
2.4.6 Security ...29

2.5 Other Considerations..30
2.5.1 Compact, Rugged, and Affordable ...30
2.5.2 Variety of Care Delivery System Operational Concepts30
2.5.3 Technology Neutral...30
2.5.4 Avoid Reinventing the Wheel...30
2.5.5 Solutions We Can Grow Into..31

3 An Interoperability Architecture ... 33
3.1 Overview..33
3.2 Architectural Details ..39

3.2.1 An Example...39
3.2.2 The Heart of the Architecture ...43

3.2.2.1 Core Services ..44
3.2.2.1.1 Registration...44
3.2.2.1.2 Leasing..47
3.2.2.1.3 Subscription ..50

3.2.2.2 Key Components...52
3.2.2.2.1 The Generic Component ...52
3.2.2.2.2 The Registry..53
3.2.2.2.3 Protocols ..56
3.2.2.2.4 Contexts ..60
3.2.2.2.5 The Internal Communications Bus ...61
3.2.2.2.6 Device Buses and Factories and Proxies ..65

3.2.3 Notes on Specific Component Types..67
3.2.3.1 Medical Devices..68
3.2.3.2 Patient Record Repositories ..71
3.2.3.3 User Interface Devices ..75
3.2.3.4 Processing ...78

3.2.4 Station-to-Station Operations..78
3.2.4.1 Communication-Related Components ..78

3.2.4.1.1 Communication Devices...79
3.2.4.1.2 Communications Manager ..79
3.2.4.1.3 Channels..79
3.2.4.1.4 External Communications Manager..80
3.2.4.1.5 Session Manager...80

3.2.4.2 Operation of Station External Communications81
3.2.4.2.1 Initiating a Connection and Starting a Session81
3.2.4.2.2 Accepting An Invitation To Connect and Start a Session.................82
3.2.4.2.3 Launching An External Communications Service83
3.2.4.2.4 Exploring Services On A Remote Station ..86

3.2.4.3 Notes on Specific Communication-Related Services87

3.2.4.3.1 Registry Server Operations ...87
3.2.4.3.2 User Authentication and Credentialing ...88
3.2.4.3.3 Session Management Operations..88
3.2.4.3.4 Medical/POCT Device Operations ...88
3.2.4.3.5 Clinical Imaging Device Communications.......................................89
3.2.4.3.6 Person-to-Person Communications...89
3.2.4.3.7 Patient Record Communications...89
3.2.4.3.8 Dynamic Configuration Communications ..89

3.2.5 Terminologies and Concept Representation ...90
3.2.6 Assuring Station and System Operations..90

3.2.6.1 Assurance Concerns ..90
3.2.6.1.1 Control of Patient Data ...90
3.2.6.1.2 Control of Access to System Services ..92
3.2.6.1.3 Dependable Services...92
3.2.6.1.4 Auditable Operations ..93
3.2.6.1.5 Issues Related to Operational Context ..94

3.2.6.2 The Trust Model..94
3.2.6.2.1 Humans ...94
3.2.6.2.2 Pass-through Devices ..95
3.2.6.2.3 Storage Devices...96
3.2.6.2.4 Access Points ..96
3.2.6.2.5 Station Core...97
3.2.6.2.6 External Communications...98
3.2.6.2.7 Remote Station..98
3.2.6.2.8 Registry Server..98
3.2.6.2.9 Vendor Server ...98

3.2.6.3 A Security Architecture ..99
3.2.6.3.1 Trusted Platform ...99
3.2.6.3.2 Secure Station-Internal Communications ...99
3.2.6.3.3 Secure External Communications ...100
3.2.6.3.4 User Authentication ..100
3.2.6.3.5 User Credentialing ..101
3.2.6.3.6 Access Control..101
3.2.6.3.7 Authorization ..102
3.2.6.3.8 Device Certification ..103
3.2.6.3.9 Secure Time Stamp ...103
3.2.6.3.10 Secure Configuration ..104
3.2.6.3.11 Secure Registration ...104
3.2.6.3.12 System Security Administration ...105
3.2.6.3.13 Auditing ..105

3.3 Implementation Options...106
3.3.1 Candidate Technologies and Standards ..106

3.3.1.1 Distribution of Station Components ...107
3.3.1.1.1 The Common Object Request Broker Architecture107
3.3.1.1.2 The Java Family ..107
3.3.1.1.3 .NET..108

3.3.1.1.4 Generic Web Services...109
3.3.1.1.5 Universal Plug-and-Play...109
3.3.1.1.6 Salutation ..112

3.3.1.2 Internal Communications Bus ...112
3.3.1.2.1 IP-Based Local Area Networks ...113
3.3.1.2.2 Firewire ...113
3.3.1.2.3 Home Audio Video Interconnect ..113

3.3.1.3 Device Buses...115
3.3.1.3.1 IrDA ..115
3.3.1.3.2 Bluetooth...115
3.3.1.3.3 USB...115
3.3.1.3.4 Firewire ...116
3.3.1.3.5 The PCMCIA Family ..116

3.3.1.4 External Communications Media ...116
3.3.1.4.1 Analog Phone ..116
3.3.1.4.2 ISDN ...117
3.3.1.4.3 Traditional Ethernets...117
3.3.1.4.4 Wireless ...117

3.3.1.5 User Interfaces ..117
3.3.1.5.1 A Common Look and Feel and Shared Interface Context118
3.3.1.5.2 Common, Custom Framework..118
3.3.1.5.3 Browser-based Interfaces ..118
3.3.1.5.4 Voice I/O Systems ..118
3.3.1.5.5 Integrated Controls and Displays ..119

3.3.1.6 Medical Devices..119
3.3.1.6.1 IEEE 1073...119
3.3.1.6.2 POCT ..119
3.3.1.6.3 DICOM...119
3.3.1.6.4 TWAIN and PTP...120

3.3.1.7 Patient Record Repository..120
3.3.1.7.1 GEHR..120
3.3.1.7.2 HL7 CDA ..121
3.3.1.7.3 COAS/CIAS..121
3.3.1.7.4 CEN ENV 13606 ..121

3.3.1.8 Processing and Protocols ..121
3.3.1.8.1 Allow For Arbitrary Platform ...122
3.3.1.8.2 Specify A Single Approved Platform...122
3.3.1.8.3 Support A Suite Of Common Platforms ...122

3.3.1.9 Contexts ..122
3.3.1.9.1 .Net My Services...122
3.3.1.9.2 Liberty Alliance ..123
3.3.1.9.3 CCOW...123

3.3.1.10 External Communications Management ...123
3.3.1.11 Session Management...123
3.3.1.12 Patient Record Communications ...124

3.3.1.12.1 HL7 Approach...124

3.3.1.12.2 OMG Approach...124
3.3.1.12.3 GEHR Approach...124

3.3.1.13 Imagery Communications...125
3.3.1.13.1 DICOM ...125
3.3.1.13.2 CIAS..125
3.3.1.13.3 Other..125

3.3.1.14 Videoconferencing ..125
3.3.1.14.1 H.323...125
3.3.1.14.2 H.324...126
3.3.1.14.3 SIP...126

3.3.1.15 Email ...126
3.3.1.15.1 Post Office Protocol..126
3.3.1.15.2 Internet Message Access Protocol ..126
3.3.1.15.3 Simple Mail Transfer Protocol (SMTP) ...127
3.3.1.15.4 RFC 2822, MIME, and S/MIME..127

3.3.1.16 News Groups...127
3.3.1.17 Chat ...127

3.3.1.17.1 IRC..127
3.3.1.17.2 SIMPLE ..127

3.3.1.18 File Sharing ...128
3.3.1.18.1 File Transfer Protocol...128
3.3.1.18.2 IRC..128
3.3.1.18.3 T.127 ...128

3.3.1.19 Registry Server Interactions ..128
3.3.1.20 Dynamic Configuration...128

3.3.1.20.1 Open Software Description...129
3.3.1.20.2 HAVi Code Units..129

3.3.2 Recommendations ...129
3.3.2.1 Internal Communications ..131

3.3.2.1.1 Internal Communications Bus ...131
3.3.2.1.2 Device Buses...131
3.3.2.1.3 Station Middleware ...132

3.3.2.2 Internal Components...132
3.3.2.2.1 Station Registry...132

3.3.2.3 Patient Record Storage ..132
3.3.2.3.1 EMR Structure ..132
3.3.2.3.2 Record Storage Device Interfaces...132

3.3.2.4 Medical Devices..133
3.3.2.4.1 Medical Device Interfaces ..133
3.3.2.4.2 Medical Imaging Device Interfaces ..133
3.3.2.4.3 Standard Camera Interface..133

3.3.2.5 External Communications...133
3.3.2.5.1 Media ..133
3.3.2.5.2 Communications Manager ..133
3.3.2.5.3 External Communications Manager..133
3.3.2.5.4 Session Manager...134

3.3.2.5.5 Registry Server Protocols ...134
3.3.2.5.6 Session Management Protocols ..134
3.3.2.5.7 Med./POC Device Remote Monitoring & Control Protocols134
3.3.2.5.8 Imaging Device Protocols ...134
3.3.2.5.9 Videoconferencing Protocols ..134
3.3.2.5.10 Patient Record Exchange Protocols ..134
3.3.2.5.11 Dynamic Configuration Protocols ..134
3.3.2.5.12 Person-to-Person Protocols...134
3.3.2.5.13 Other Protocols ...135

3.3.2.6 User Interfaces ..135
3.3.2.6.1 Media ..135
3.3.2.6.2 User Interface Device Interfaces...135

3.3.2.7 Security ...135
3.3.2.7.1 User Authentication ..135
3.3.2.7.2 Access Control..135
3.3.2.7.3 Encryption and Data Authentication...135

3.3.2.8 System Intelligence ...136
3.3.2.8.1 Contexts ..136
3.3.2.8.2 Processing and Protocols ..136

3.3.2.9 Terminology ..136
3.3.2.9.1 Semantics and Syntax...136

4 Making Interoperability a Reality ... 137
4.1 Background ..137
4.2 Compliance ..137
4.3 Profiles ...139

4.3.1 Stand-alone Station ...141
4.3.2 Tele-monitoring Station ..141
4.3.3 Videoconferencing Station..142
4.3.4 Traveling Nurse Station ..143
4.3.5 Minimal Patient Station ..144
4.3.6 Minimal Caregiver Station ..145
4.3.7 Classic Patient Station...145
4.3.8 Classic Caregiver Station..146
4.3.9 Bedside Hub..147
4.3.10 Full Patient Station..148
4.3.11 Full Caregiver Station ...150
4.3.12 Record Server..151
4.3.13 Basic Patient Card Reader ...152
4.3.14 Net-ready Card Reader..152
4.3.15 Patient Record Browser ..153
4.3.16 Net-ready Device ..154
4.3.17 Protocol Server ..154

4.4 Moving Forward ..155
4.5 A Proposed Set of Specifications...156
4.6 Growing the Specifications ..157

4.6.1 Phase 1: Medical Device Operations ...158

4.6.1.1 Phase 1A: Standardized Medical Device Interfaces159
4.6.1.2 Phase 1B: Standardized Imaging Device Interfaces160
4.6.1.3 Phase 1C: Plug-and-Play Medical Device Interfaces160

4.6.2 Phase 2 – Station-to-Station Operation...161
4.6.2.1 Phase 2A: Station Exploration Interfaces ..162
4.6.2.2 Phase 2B: Remote Operation Interfaces ..162
4.6.2.3 Phase 2C: Videoconferencing Interfaces ...162
4.6.2.4 Phase 2D: Person-to-Person Communication Interfaces163

4.6.3 Phase 3 – Component-based User Interfaces & Processes163
4.6.3.1 Phase 3A: User Interface Application Interfaces164
4.6.3.2 Phase 3B: User Interface Devices ..164
4.6.3.3 Phase 3C: Processing Application Interfaces164

4.6.4 Phase 4 – Component-based Stations ...165
4.6.4.1 Phase 4A: Interna l Communications Bus ..165
4.6.4.2 Phase 4B: Protocols and Subscription Interfaces.................................166
4.6.4.3 Phase 4C: Distributed Plug-and-Play Station Operation166

4.6.5 Phase 5 – Patient Records ...167
4.6.5.1 Phase 5A: Native Patient Record Interfaces ..168
4.6.5.2 Phase 5B: Patient Record Devices...168
4.6.5.3 Phase 5C: Virtual Record Operations ..169
4.6.5.4 Phase 5D: Patient Record Protocol Negotiation169

4.6.6 Phase 6 -- Security ..170
4.6.6.1 Phase 6A: User Authentication and Access Control............................170
4.6.6.2 Phase 6B: Communications Security and QOS...................................171
4.6.6.3 Phase 6C: Station Security ...171

4.6.7 Phase 7 – Dynamic Configuration ..172
4.6.7.1 Phase 7A: Dynamic Station Configuration ..172
4.6.7.2 Phase 7B: Contexts ..173

4.6.8 Phase 8 – System Administration ...174
4.6.8.1 Phase 8A: Station Registration ..174
4.6.8.2 Phase 8B: Registry Network Operations ...174

4.6.9 Phase 9 – Multi-station Conferencing...175
4.7 Organizing to Reach The Goal...176
4.8 Finding a Home for The Specifications ...177

5 Final Thoughts... 179

List of Figures

Figure 1. Home Care System Block Diagram ..13
Figure 2. Easy to Replace Interface Components ...15
Figure 3. A Station with Multiple Interfaces ..15
Figure 4. Dedicated Connectors..17
Figure 5. Different Storage Topologies ..18
Figure 6. Storage Language vs. Data Exchange Language...19
Figure 7. Interchangeable Processing Components ..20
Figure 8. Distribution of Processing ...21
Figure 9. Hiding the Details of How a Device Works..22
Figure 10. Changing Allocations with Changing Needs ..23
Figure 11. Connecting the Components..23
Figure 12. Establishing Associations ..24
Figure 13. Securing the System..25
Figure 14. Connecting the Components..26
Figure 15. Same Function, Different Implementations ..26
Figure 16. Surveying Component Capabilities ...27
Figure 17. A Distributed Telemedicine System..27
Figure 18. Station Location Information ..28
Figure 19. Surveying Component Capabilities ...28
Figure 20. Acquiring a Resource ..29
Figure 21. Negotiating Quality of Service ..29
Figure 22. Three Sets of Interfaces ...33
Figure 23. Pattern for Plug-and-Play Devices ..34
Figure 24. Pattern for Interoperable Station ...34
Figure 25. Pattern for a Distributed Station..35
Figure 26. Distributed, Interoperable Station Supporting Plug-and-Play.........................35
Figure 27. Logical Station Architecture..36
Figure 28. Station-to-Station Interoperability Architecture..38
Figure 29. Self-Configuration Architecture..39
Figure 30. Registering Components ...40
Figure 31. Initiating a Protocol ...40
Figure 32. Connecting Components ...41
Figure 33. Enabling User Operation ...41
Figure 34. Using the Component ..42
Figure 35. Disabling User Operation and Disconnecting Components42
Figure 36. Vacating the Leases...43
Figure 37. Structure of the Generic Component...44
Figure 38. Announcing the Component’s Presence..45
Figure 39. Registering the Component’s Description...46
Figure 40. Removing a “Temporary” Component That Is Currently Leased...................46
Figure 41. A Component Requesting That Its Registration Be Terminated.....................47
Figure 42. Preparing to Remove a “Permanent” Component ...47
Figure 43. Leasing a Vacant Component..48

Figure 44. Requesting a Lease on an Already Leased Component49
Figure 45. Protocol Directing Establishment of a Subscription51
Figure 46. Protocol Directing Termination of a Subscription ..52
Figure 47. A Home Network ..62
Figure 48. Two Types of Network Access ...62
Figure 49. Component Interfaces to Internal Communications Bus63
Figure 50. Internal Communications Bus Architecture ..63
Figure 51. Protocol Acquiring a Channel ...64
Figure 52. Attaching a Component to a Channel..65
Figure 53. Devices and Proxies ..66
Figure 54. Adding a Device to A Bus ...67
Figure 55. Standardized Service Interfaces...68
Figure 56. Structure of the Medical Device Component ..69
Figure 57. Medical Device Portion of Station Architecture ...70
Figure 58. Notional Organization of the Patient Record Repository................................72
Figure 59. Structure of the Patient Record Component..73
Figure 60. Patient Record Repository Portion of Station Architecture74
Figure 61. Relationship Between Components, UI Devices, and UI Controls75
Figure 62. User Interface Architecture ...77
Figure 63. User Interface Portion of Station Architecture ..77
Figure 64. Interactions Between Channel Types ..80
Figure 65. Protocol Directing Establishment of a Session (with Connection)81
Figure 66. Protocol Directing Establishment of a Session (with Persistent Comms).......82
Figure 67. Station Accepting Request to Establish Session ...83
Figure 68. Station Accepting Request to Establish Session ...83
Figure 69. Use of Proxies in Remote Interactions ..84
Figure 70. Use of Proxies in Protocol and Format Translation ..84
Figure 71. Protocol Leasing Remote Component and Setting Up Channel85
Figure 72. Protocol Establishing Local and Remote Subscriptions..................................86
Figure 73. Station Accepting Request to Establish Session ...87
Figure 74. Points of Trust in Architecture ..94
Figure 75. Refusing the Addtion of A Device to a Station...97
Figure 76. UPnP Architecture ...110
Figure 77. UPnP Protocol Stack...111
Figure 78. The Salutation Architecture ...112
Figure 79. The HAVi Architecture ...114
Figure 80. Candidate Profiles ...140
Figure 81. Elements Addressed in Phase 1...159
Figure 82. Elements Addressed in Phase 2...161
Figure 83. Elements Addressed in Phase 3...163
Figure 84. Elements Addressed in Phase 4...165
Figure 85. Elements Addressed in Phase 5...167
Figure 86. Elements Addressed in Phase 6...170
Figure 87. Elements Addressed in Phase 7...172
Figure 88. Elements Addressed in Phase 8...174
Figure 89. Elements Addressed in Phase 9...175

Figure 90. A Suggested Organizational Structure ..176

 4

1 Introduction
In the opening page of their book, Telemedicine and the Reinvention of Healthcare, Marc
Ringel and Jeffrey Bauer state:

Telemedicine, one of the major forces shaping the future of healthcare, is
widely misunderstood. Its long-term impact on healthcare is obscured by
excessive concerns with short-term policy problems, a misleading focus
on narrow definitions, or utopian expectations of technology. People who
overreact to telemedicine’s early difficulties or underestimate its scope
will be surprised by its real power. Telemedicine will ultimately
revolutionize healthcare – restructuring virtually every relationship and
activity that define late twentieth century medicine.”

While they are very likely correct in their assertions, telemedicine is still a fledgling
industry. Before Ringel and Bauer’s prophecy can be fulfilled there is much clinical
research and technical work left to be done.

Today, a lot of the technical work done in the telemedicine industry entails vendors
integrating suites of components to create turnkey solutions for specific clinical settings
(“Our system allows you to regularly monitor a patient’s vital signs and glucose levels
without you having to see them in person.” “Our system let’s you capture a series of
images and send them off to a specialist for review.”). While some of the systems that
have been produced in this way have achieved stunning clinical successes, the industry
has not yet “arrived” – there is more that can be done from a technical viewpoint that is
worth pursuing.

Today, most systems are designed as turnkey solutions. Typically, it is difficult to get
systems developed by different manufacturers to exchange data with other. Company
A’s caregiver station can’t control the devices on Company B’s patient station and can’t
retrieve clinical data from it. Similarly, telemedicine systems often do not integrate
readily with the rest of a clinical organization’s information infrastructure. Also, the
nature of many current telemedicine system designs makes it difficult to extend them
with additional clinical capabilities. They do what they do, and will only do more if there
is a significant investment of time and money poured into engineering redesign. This
means that system users may be locked into single vendor solutions and are not free to
compose best of breed solutions.

Beyond these things, those vendors who make their living integrating these systems
cannot readily adapt to the introduction of new technologies because each new
technology may require a significant engineering investment to make it work in the
vendor’s existing systems. Suppose a vendor has already integrated an electronic
stethoscope into his system. If a new stethoscope comes along that has better features,
better performance characteristics, better pricing, etc. the vendor may not be able to
readily offer this device as part of his system because the way in which the device is
controlled and monitored is significantly different from the model that his currently uses
and integration would require costly reengineering of this part of his system. In an ideal
world, the vendor would be able simply plug the device into his system and those features
that he has already addressed in his system would work just the previous model without

 5

any reengineering. The only new work to be done would be aimed at addressing any new
features that the device introduced to the system.

Finally, because of the way most systems are built today, they are expensive. As a
consequence, organizations considering the use of telemedicine and those organizations
who would pay for this service must consider whether they can realistically recoup their
investments. In some cases the answer is a resounding “yes”; in others, it is much less
clear. If there was some way for the integrator to save on material and engineering costs,
a stronger case for ROI could be made and there would be a better chance of penetrating
larger markets.

1.1 Why This Paper
While a number of factors contribute to the state of affairs described above, the issue of
interoperability stands out as one that has the potential to positively impact many of the
industry’s current technical needs in a significant way. Even so, the question of working
towards agreement regarding standard ways of building telemedicine system components
is not without controversy. In an environment where some companies are struggling to
make the next payroll, the possibility of “standards” being developed can be threatening.
“What if the standards t hat are produced make my current systems ‘non-compliant’?”
“What if compliance with the standards requires an investment that I can’t afford to
make?” “Will the standards threaten my ability to differentiate myself in the
marketplace?” “Will they limit my ability to innovate or to adopt emerging technologies
that customers are asking that I address?”

Given these things, this paper is meant to be a vehicle for debate in the telemedicine
community regarding the development of industry-accepted interoperability
specifications. Because the establishment of these sorts of standards cannot succeed
without broad-based support from both vendors and users, this document is meant to be a
strawman – a starting point for discussion and not a final answer. It is expected that
over time, as the ideas contained in this paper are debated and the industry begins to
reach consensus, this paper will evolve into the architectural overview document for the
set of telemedicine system interoperability specification documents embraced by the
industry.

1.2 Organization of This Paper
The balance of this paper consists of three sections. The first section is a collection of
utilization scenarios and system diagrams intended to describe, from a user’s perspective,
the kinds of capabilities that a telemedicine system based on interoperable elements
might deliver and the kinds of components it might contain. This section also presents a
set of system features that telemedicine system interoperability specifications would need
to be able to address. The second section proposes a “straw man” telemedicine
interoperability architecture. This section describes the architecture’s logical
composition and organization, the system’s overall operation and the operation of its
constituent elements, and addresses the question of how each of these elements might
actually be implemented (e.g., what building blocks are available, how legacy features
can be used). The final section of this document proposes a path forward – a set of

 6

activities for the telemedicine community to pursue in exploring the issues related to
telemedicine system interoperability and in moving towards consensus.

 7

2 System Concepts
Telemedicine is about reengineering care delivery. The goal of this section of the
document is to present a number of utilization scenarios and system configurations as a
backdrop for considering how future telemedicine -based care delivery might operate in
an environment where interoperability is a central feature of the systems.

2.1 Utilization Scenarios

2.1.1 Tele-Home Care
Manny Garcia is a 42-year-old accountant who has just been diagnosed with diabetes.
As his family has a history of heart problems and he himself has had increasingly high
cholesterol levels, his doctor has told Manny that he needs to begin taking his health
more seriously. The doctor has recommended that Manny try to lose about 50 pounds
and that he work with his wife on changing their family’s diet. As part of this process,
Manny’s doctor has hooked him up with the Provident Universal Management Plan
(PUMP), a leader in the field of chronic disease management. In discussions with his
“health advocate” (the title that PUMP gives to its case managers), Manny is given a list
of equipment to procure that will he use with PUMP in managing his condition. These
items can be procured directly through Provident or at a number of businesses in his area.

The next day, Manny buys his net -ready glucometer and weight scale from the local
pharmacy, a combination pedometer / heart rate monitor from a sports equipment store,
and a blood pressure monitor and electronic home blood test kit from a medical
equipment supply company. Back at home, Manny successively pulls each of the devices
from its box and pushes their start buttons. For each, a status indicator on the devices
blinks while the device “auto-configures”. A few seconds later, Manny’s TV turns on
and displays a setup program that has been retrieved from the Internet. By asking Manny
a few simple questions, the program walks Manny through the process of integrating the
device into Manny’s home environment. Because Manny’s home is equipped with a
home gateway, home network, net -aware TV and videoconferencing camera, and
computing resources, the only pieces Manny needed to create his new telemedicine home
care system were the prescribed devices and the software that was automatically
downloaded to run them.

From the start, Manny is able to interact on-line with his caregivers. When he contacts
PUMP for the first time since setting up his system, his health advocate’s caregiver
station spends a little bit of time exploring the capabilities of Manny’s “station”. Since
PUMP frequently deals with devices from a range of vendors, its system is already
configured to handle all of the brands that Manny has procured. In contrast to this, when
Manny has his first tele-visit with the nurse at his doctor’s office, her system recognizes
that it does not know a couple of his devices and downloads from the vendor servers the
software needed to interact with Manny’s system.

2.1.2 Rural Clinic
The Fairfield Clinic has several treatment areas that are outfitted with telemedicine
stations. As a small town clinic, it cannot afford a regular staff of full-time doctors;

 8

therefore, it has established a relationship with a large urban hospital a couple hours drive
away. The hospital has its own network of telemedicine-ready caregivers stations
dispersed across its various units and specialists in each unit rotate through on-call status
for servicing these stations. In addition, it is not uncommon for individual caregivers to
carry their own access devices (palmtops and the like) that they can use to access the
telemedicine services on the hospital’s network. During off hours at the rural clinic, a
nurse practitioner triages cases that walk in the door, deciding whether or not to call in
the local staff doctor or to draw on the specialists at the urban facility. When the latter is
done, the nurse who manages incoming telemedicine calls for the hospital identifies the
needed specialists and pages them automatically from his telemedicine terminal. As a
specialist logs into his station or personal access devices, data from medical instruments,
images from scopes and cameras, and audio from the on-going conversations is
automatically piped to him. In cases where the access devices cannot handle a specific
medium (e.g., full frame rate, full resolution video), the devices are able to negotiate for
formats that they can handle. As needed, the patient’s records, which are stored at the
clinic, can be searched and reviewed by hospital staff. Once on-line, the specialists who
have been assembled can conference with each other and with the nurse practitioner and,
if needed, can request that an air ambulance be dispatched. If this is done, some of the
instruments (e.g., infusion pumps, vital signs monitor) will travel with the patient from
the clinic. All the while, data, imagery, and audio from these units (as well as units that
may be added in the ambulance) will all continue to be forwarded to the hospital.
Because the hospital supports a number of rural facilities in this way, its infrastructure
allows for multiple simultaneous conferencing sessions. When all is said and done, all
records generated by the encounter will be available to both the hospital staff and to the
staff of the clinic.

2.1.3 Traveling Nurse
Jane Cantrell, a community health nurse, carries what she calls her “modern black bag” –
a laptop and whatever medical instruments will be required for her day’s work. Based on
a knowledge of the kinds of patients that she will visit during the course of the day and on
pre-visit phone calls to find out if there is anything in particular that each of her day’s
patients is concerned about, the nurse assembles the suite of instruments most likely to
address the situations she will encounter. Because she is heading to places where she
may or may not have good communications connectivity, Jane downloads to her laptop
the records for each of her patients as well as identifier information for other patients that
she has seen in the areas where she is heading today (from experience, her group has
learned that you often see more patients than you had planned on these visits, so the
identifier information allows these caregivers to more quickly record unplanned
encounters). During her visits, Jane attaches and removes devices as required. The
laptop automatically recognizes their presence and presents her with the user interface
components needed to control these devices. As they are used, data from the devices is
automatically logged into the appropriate records. On occasion, an alert generated by
software agents vested with clinical expertise will appear on her screen offering an
observation that they have made about data mined out of the current patient’s record. As
much of her job involves educating the patients for whom she cares, her laptop is also
loaded with a range of video clips that address both the diseases of her clientele and the

 9

care of these diseases. Not infrequently she finds herself hooking the video port of her
laptop up to a patient’s TV set so that they can watch a clip or two. Using a portable
printer that she carries in her “black bag”, she is also able to print out handouts that
summarize for the patient what happened during the visit and what she is expecting them
to do for themselves until she drops by again. As she ends her day back at her office, she
connects her laptop to the office network. All records for the day are automatically
uploaded to the office’s central patient record server. Where applicable, a notice of key
findings is sent to a patient’s other caregivers (primary doctor, specialist, etc.).

2.1.4 Optimal Wellness
For Amy Tran, “excellence” is the watchword. In everything that she does, Amy gives
110%, and this includes watching her health. Even with the stress of starting her own
business, Amy works to make sure that she is eating right, exercising, and getting
adequate sleep and down time. Fortunately, Amy has found some help with this task in
the form of a “personal trainer” system that she bought at the local sports store. In
addition to an “intelligent” software package that helps her develop a whole life wellness
plan and to execute on this plan, the system contains a number of physiological monitors
aimed at the serious athlete along with a variety of devices that plug into Amy’s home
network in order to monitor her health habits. Under Amy’s supervision, the system
takes care of her menu planning and most of her grocery shopping (with groceries being
delivered at a time that the system picks from her on-line schedule information and that
Amy then approves). In addition to this, the system helps Amy think through the time
commitments involved in any task or appointment that she is considering accepting and
advises her when it appears that she is pushing herself too hard. As part of her exercise
regime, Amy is training for an “iron woman” competition. Besides the training schedule
that the system has helped her develop, Amy has access, through the system, to on-line
reference materials and to sports medicine professionals who can advise her on a variety
of topics from training techniques to care of injuries. On several occasions, Amy has
found herself in a videoconference with one of these trainers and her primary care doctor.
Recommendations from these sessions typically find their way back into Amy’s system
where they are used to modify training routines, sleep schedules, etc.

2.1.5 Visiting the Doctor from Home
Jim Ball is going to visit the doctor tomorrow, but for the first time in his life, he will not
see the doctor in person. Jim is going to visit a doctor from his own home. In
preparation for the visit, the doctor has asked Jim to log into the doctor’s web site via a
secure link the day before the visit. Once at the site, Jim enters some identifying
information and is taken a set of screens that ask him about his health history. Where Jim
is unclear on the question being asked, the system is able to provide more detail in the
form of text, graphics, audio, and video clips. Following the history, the site begins to
ask Jim about his current complaint. As Jim maintains his patient records at an on-line
records company, this part of the interview is shorter than it might have been because the
doctor’s web site discovered the records and asked Jim’s permission to extract history
data from them. In the next part of the interview, Jim indicates that he is concerned about
blotches that have appeared. Using more visuals aids, the web site leads Jim through a
series of questions that help him identify the nature of these blotches (“Where are they

 10

located?” “Do they look like any of these pictures?” “How long have you had them?”
etc.). The site then notes that it sees that Jim has a net-ready digital camera and asks Jim
if he would mind taking some snap shots of the blotches. As the site leads Jim through a
series of shots, Jim’s wife takes each picture for him. The web site then uploads each of
the pictures into its notes and runs an analysis program to assess the adequacy of the
shots. At the end of this process, Jim exits the site and is ready for the visit with the
doctor the next day.

2.1.6 More Time to Live
Since childhood, Kathy Spellman has had a propensity to grow moles. When one turned
up cancerous a few years ago, Kathy underwent a prolonged treatment regime. Since
then she has regularly used a special camera-like device that her doctor recommended.
Using multi-spectral imaging and highly sensitive range -finding techniques, the camera
allows Kathy and her husband to regularly create a map of Kathy’s skin. This handheld
device, which contains a compact inertial measurement system, is “flown” over Kathy’s
body. The data stream from the camera is fed into a specialized processing and display
unit that highlights a 3D human form on its display to indicate what parts of Kathy’s skin
have been surveyed. This guides Kathy’s husband, allowing him to achieve full
coverage. The processing unit, which maintains a map of the moles on Kathy’s body,
notes where new moles have appeared since the last recording session and where moles
have changed since the last mapping session. At times, the system may highlight spots,
using the 3D form on its display, where it wants a close-up shot. At these times, Kathy’s
husband brings the camera in close to the specified location and moves it around the area,
providing images from different positions and camera angles. When a session is
complete, rather than transmitting images of Kathy’s entire body, the system transmits an
updated list of all of the moles detected along with data that characterizes each of the
moles in the lists (e.g., size, geometry, coloration, texture). As needed, Kathy’s
dermatologist will call her in to look at moles that he questions. While this process is
sometimes obtrusive, Kathy and her husband both agree that it is a small price to pay for
more time to live.

2.1.7 Full Circle
When “scientific medicine”, with its hospitals and countless specialties and
subspecialties, emerged in the early half of the 1900’s, many caregivers lamented the
increasingly impersonal nature of interactions with patients. As managed care horror
stories were highlighted in the national news through the ‘80’s and ‘90’s and doctors and
patients, both unhappy with healthcare’s state of affairs, began to vocally demand their
“rights”, some in the healthcare community felt that it was time for a change. The
medical community, they reasoned, needed to rethink the practice of medicine.

One such person was Jim Lansing, the CEO of Mid-Mountain, the largest care delivery
provider in his region. In off -site brainstorming sessions with his key people, Larry
homed in on the idea of trying to significantly restructure his care delivery processes by
creating a new approach that was closer to chronic disease management in its structure
than traditional acute care. The centerpiece of this new system would be a new kind of
partnership between the patient and their primary care provider and between primary care

 11

staff and the hospital. Based on a telemedicine-like communications foundation, these
new partnerships would not simply erect a digital edifice that mimicked existing care
structures; rather, the whole “floor plan” would be reevaluated. Working for months with
his own staff and supporting researchers, Larry constantly asked why certain functions in
the organization were done where they done. Did a given function have to be done by
this group or this person? Who else could do it? Could any of the functions of the
primary care office be moved to the home? How about the various specialist functions –
could any of these be moved to the primary setting? What benefits would be realized by
making these adjustments? What risks might accompany each change? Throughout, his
goals were to help patients better care for themselves, to forge stronger partnerships
between patients and their doctors, and to do what he could to free the primary care staff
to focus primarily on delivering care.

When his plan was finally set, he took it on the road. After numerous meetings in which
he shared his vision with policy makers, insurers, medical instrument manufacturers, and
even some of the big information technology companies, he had money in hand to try out
his ideas, a team of clinical experts and engineers to help implement them, and number of
primary care providers and patients and specialists who would see if they could make his
ideas work.

Building on existing home networking and computing technologies, Larry added a broad
suite of diagnostic devices to patients’ home to create sophisticated “medical portals” that
allowed Mid-Mountain caregivers to do much more with “telemedicine” than just chronic
disease management. With the benefit of an expanded suite of diagnostic and therapeutic
instrumentation, decision support tools, “intelligent references”, and a new hospital-based
support organization to back up the staff in the primary care offices, the primary care
staffs found that they were able to see more patients than before and felt that they were
serving their patients better. Many of these caregivers naturally gravitated toward the
role of “health coach”. Because the system provided the primary care staff with access to
Mid-Mountain’s entire population of specialists and a mechanism for discovering who
was available for consultation at any given moment, Larry noticed the bonds between the
doctor’s growing stronger. They soon prided themselves on their newfound ability to
rapidly bring multi-discipline assessment and planning capabilities to the “hard” cases.
Of course, none of this would have been possible without the seamless infrastructure that
was put in place for person-to-person communications and information sharing.

Since the program’s start it has been written up several times in the local press. The word
in the community is that Mid-Mountain really cares about its patients and, as a result,
companies are starting to switch their plans to Mid-Mountain and are asking how they
can access Mid-Mountain’s new capabilities. The word among the caregivers is that
Mid-Mountain is a good place to work – “You have more freedom to do what you believe
is in the best interests of you patient.” Some of the doctors and nurses have started
calling their system the “Mayo of the mountains”. The nation is starting to notice as well.
Larry has hosted numerous management teams from other hospital systems. Policy
makers from the state and national levels are actively assessing Mid-Mountains approach.

 12

Insurers are happy as well – Mid-Mountain’s “whole life” approach is keeping their
clients healthier and that means less money for them to pay out.

2.2 The Difference
So how do the pictures that each of these scenarios paint differ from what we know today
in telemedicine? In the first scenario, one key difference is the plug-and-play nature of
the devices that Manny bought. Whereas in Manny’s case the devices were automatically
configured into the house once they were discovered, today we typically use
programmers to stitch these devices into our systems. Next, Manny wasn’t told to go buy
a specific device model from a specific company. He chose his devices based on
whatever criteria were important to him (cost, size, appearance, reputation, etc.) and this
was okay. Today, systems are often constructed with specific device brands and models
in mind and plugging in devices from another manufacturer at will is unheard of. Third,
some of the capabilities (e.g., blood analyzer) that Manny has in his home are found
today only in clinical settings. Others (e.g., pedometer), which will be used by
professional caregivers supporting Manny, are not normally considered to be part of the
clinician’s toolkit. A fourth difference is the use of resources (e.g., TV and home
network) that are already in t he home for other purposes to support telemedicine. A final
difference is the ability of nodes in a telemedicine system that have never before seen
each other to explore each other’s capabilities and to then seamlessly interoperate.

The rural clinic scenarios exists to talk to several system features of value to future
telemedicine systems. The first is the ability to establish multiple “nodes” within a given
care delivery location. In this case, the clinic’s telemedicine stations may be nothing
more than user interface and medical device capabilities along with some way of
associating the various resources at a station with one another. In all likelihood, in a
situation like this, patient record storage would be centralized on a server somewhere in
the clinic, as would the clinic’s wide -area communications and, potentially, its source of
clinical applications and reference materials. In this scenario, there is a need to
dynamically conference in users who may be using a range of devices to access the
conversation (e.g., one is a workstation, another is using a PDA, while a third is using
only a phone). The movement of instruments with the patient from clinic to ambulance
to hospital is meant to talk to the need to think of telemedicine “stations” as a collection
of resources that federate for a time to support some clinical task and that can change
their makeup (in this case, which communications they are using to talk to the hospital
systems) on the fly. The use of a shared communications infrastructure in the hospital as
well as the ability to simultaneously handle multiple remote clients speaks to the need for
security. The “applications” are resource-aware, knowing when the resources that they
have acquired can support the task at hand.

The traveling nurse scenario is meant to say that the platform is just a vehicle and that it
is the devices that give it personality or purpose. This scenario also points out that even
records are a “service” that can be accessed both locally (on the PC) and by other devices
(like the record server in the office). Telemedicine systems can also deliver clinical
intelligence.

 13

In the case of Amy Tran, the first point is that future “telemedicine” won’t just be for
acute and chronic care. Next, it is meant to say that, in the future, intelligent software
can act as both the patient’s and caregiver’s agent. Third, tomorrow’s systems will be
able to integrate with other, non-medical kinds of systems (e.g., ordering groceries). In
addition, in this environment, much of the education is geared toward the patient.
Finally, when Amy’s doctor looks at her records, there will be elements (such as her
fitness level figures) that are not typical for current medical records.

In the next scenario, the point is simply that some of the things that we assume that the
professional must do may be transferable to the patient if we provide the right support.
The Kathy Spellman scenario says the same thing. It also points out that our future
instruments might be quite intelligent.

In the final scenario, the point is that tomorrow’s telemedicine is about more than simply
copying existing care structures onto a technological foundation; rather, it is about
thinking through how we would like to deliver care and then determining if technology
can support it or not.

2.3 Features We Want Our Stations to Incorporate
Figure 1 is the functional block diagram for a typical telemedicine-based home care
system. The system’s patient station provides user interface components (camera,
display, microphone, speakers, controls, and status indicators) to support human-machine
interactions and person-to-person communications. It also provides instrumentation
(e.g., physiological sensors) that enables the caregiver to monitor the patient and,

Caregiver’s StationPatient Station

Camera

Display

Speakers

Status
Indicators

Controls

Microphone

Sensors
Record
Storage

Processing
Routines

Camera

Display

Speakers

Status
Indicators

Controls

Microphone

C
o
m
m
u
n
i
c
a
t
i
o
n
s

C
o
m
m
u
n
i
c
a
t
i
o
n
s

Platform Platform

Figure 1. Home Care System Block Diagram

 14

possibly, the patient’s environment (e.g., for temperature, allergen levels, etc.).
Communications components exist to allow the patient station to transfer data to and
from the caregiver’s station. Everything is tied together in the station by a computing
platform that provides both low-level services (e.g., moving data between the various
other resources in the station) and high-level services (e.g., control of the station
operation). On the caregiver station, the organization is largely the same; however, it
does not contain any sensors and adds two additional functions: record storage and
processing routines. The first exists to allow the caregiver to maintain on-going records
of a patient’s state of health. The second consists of those routines used by the station to
digest or transform the data that it collects (e.g., one such routine might be used to
determine if a given parameter is trending in a certain direction).

While the example shown is for a home care system, the services provided by the system
(user interface, instruments, communications, low- and high-level platform, record
storage, and processing) are common to many telemedicine -based care delivery systems.
The balance of this chapter addresses each of these services in more detail, looking
specifically at what we would like to be true of the components that make up each service
in order to deliver the kinds of operational capabilities described at the start of this
chapter.

2.3.1 User Interface
The user interface portion of the telemedicine system exists to allow a person to:

• receive clinical and other kinds of data,
• supply data to applications running on the system,
• control various aspects of the system’s operation, and
• monitor the operational status of the system and its constituent elements.

In building our next generation of telemedicine systems, there are several features that we
would like the interfaces to possess. In particular:

• it should be easy to replace interface components as the clinical needs or user
preference dictate

• our designs should allow for the user of multiple simultaneous interface devices
within the context of a single telemedicine “station”

• the interface functions of the system should be readily extensible

2.3.1.1 Easy to Replace
In most systems today, the user interface is tightly bound to the system. While a system
may offer multiple interfaces (e.g., a standard GUI and a web interface), the systems
generally lack the ability to swap out interface elements at will. Figure 2 is a notional
view of what we would like to be true instead. In this figure, the “rest of the telemedicine
system” is able to detect the presence of a new interface device, to explore its
capabilities, and to then deliver content in a format appropriate to the device. Ideally,
this process should occur as close to the time of use as possible. Doing this, when the
station containing the devices boots might be okay but “hot swapping” of devices would
be preferable. It should be noted that this ability to detect a “new interface device”
applies not only to new kinds of devices but also new occurrences of the same device

 15

(e.g., as when one doctor had been using a PDA with the system leaves and then a new
doctor with the same kind of PDA appears).

Rest of Telemedicine
System

OR OR

Figure 2. Easy to Replace Interface Components

2.3.1.2 Multiple Simultaneous Devices
In certain situations, it will make sense for a system to interact with a user through
multiple interface devices used all at once. Figure 3 shows this sort of situation. In this
example, a hospital bed is equipped with a wall-mounted speaker and high resolution

Bed

Caregiver
PDAs

Access
Point

Ceiling
Mounted

Microphone

Speaker

High
Resolution

Wall-Mounted
Display

Figure 3. A Station with Multiple Interfaces

 16

display. A microphone over the bed offers one means for both patient and caregiver to
issue commands to the system. An access point on a wall next to the bed allows portable
devices carried into the room to connect with the rest of the resources in the patient
station. One utilization scenario for this system might involve a doctor and resident
entering the room carrying their PDAs. The patient is watching a television show on the
display and the listening to its audio on the speaker. As the doctors enter the room, the
access point recognizes the presence of the PDAs and automatically uploads the patient’s
“summary sheet” to the PDAs. This sheet serves as a digest of the patient’s recent case
history and an index into the patient’s entire medical record. Pointing to an item on this
sheet, the doctor says out loud, “Computer, show series on the wall display.” The
command, which is picked up by the microphone, is combined with the current selection
on the PDA and immediately an x-ray series of the patient’s chest is displayed along side
the TV display. “Computer, enlarge number 6 and hide TV”. Image number 6 now fills
the screen. After some discussion, the doctor retrieves an electronic stethoscope that, as
with the PDAs, is recognized by the access point. With a few taps on his PDA’s screen,
the audio output from the stethoscope is routed to the speaker. “Computer, analyze
stethoscope output and show results on the wall display.” After a few moments, a
computer -looking form appears on the display with the findings of the analysis.

2.3.1.3 Readily Extensible
As a final objective, we would like for the user interfaces to be dynamically extensible.
When the need arises to view a new kind of data or to monitor and control a new feature
of the system, we should be able to install the necessary interface features on the fly. For
example, in the case of Manny Garcia, the addition of a new device (e.g., a glucometer)
means that the interface in Manny’s home (the TV) would display controls that Manny
can use to both operate the device and read the data that it generates.

2.3.2 Instruments
The instruments in a telemedicine suite exist to allow the suite’s users to acquire clinical
data or to deliver therapeutic treatment. While these instruments have traditionally been
medical instruments, it is very likely that future care delivery systems may extend this
model to include other non-traditional devices that somehow relate to a person’s health.
Examples of these sorts of devices might include those that provide insight into a
person’s sleep habits, dietary habits, or living environment (normal temperatures, noise
levels, air quality, etc.). Depending on the nature of the device, a user may need to be
able to configure the device, control its operation, and/or monitor its status. In addition,
in this future world:

• it must be easy to add and remove devices from a station,
• a station must be able to handle multiple simultaneous devices, and
• a station must be able to handle devices in a vendor-independent fashion.

2.3.2.1 Easy to Add and Remove Devices
In current telemedicine systems, it is common to find dedicated connectors for the
various devices that the systems host (e.g., “The pulse oximeter plugs in here; the blood
pressure cuff goes right here; and this connector is for the weight scale.”). Although
common, this approach is quite limiting. If a customer wants a different suite of

 17

instruments or additional instruments beyond those already supplied by the telemedicine
system, the new capabilities will not be added without a significant amount of
reengineering of the system. What would be preferable is some approach that allows for
the dynamic addition and removal of devices as needed to suit the system user’s own
unique situation.

Stethoscope
StethoscopePulse Oximeter

Pulse Oximeter

Camera
Camera

Blood Pressure

Blood Pressure

Figure 4. Dedicated Connectors

2.3.2.2 Multiple Simultaneous Devices
In certain situations, there will be a need to add multiple devices of a given kind to a
system. For each, during infusion therapy, there may be multiple infusion pumps at the
bedside. The telemedicine stations that we build should allow for this situation and
should make it simple for a remote user to distinguish between multiple instances of a
device when they exist a site that is being monitored and controlled.

2.3.2.3 Vendor Independence
While individual devices may vary in the specific suite of functions that they deliver to a
system, like devices ought to be able to deliver a core common set of data and respond to
a common set of commands. For example, if blood pressure cuffs from two different
vendors are to be used with a telemedicine system, they should both be able to respond to
“Start” and “Stop” commands and both be able to return systolic and diastolic pressures.
Even if they each have their own unique features (e.g., the ability to queue up many
readings or the ability to adjust the maximum inflation pressure of the cuff), at a
minimum, their core behaviors should be identical so that they can be readily used in
place of each other in a system.

2.3.3 Record Storage
In order for telemedicine to support a wide variety of disciplines and utilization concepts,
we need to be able to impose several specific requirements on the mechanisms that we
use in these systems to store and retrieve patient data. In particular,

• we must allow for a range of storage locations relative to their point of actual use,
• the records must accommodate a wide assortment of data types,
• the records must be extens ible in terms of the kinds of data that they can store,
• they should be media independent, and
• the record systems that we use should (ideally) be “multi-lingual”.

 18

2.3.3.1 A Range of Storage Locations
As shown in Figure 5, a telemedicine system can interact with record storage mechanisms
located in a variety of places. For traveling nurse or self-care scenarios, local storage is a

Telemedicine
System

Records

Telemedicine
System

RecordsNetwork

Telemedicine
System

Records
Network

Records

Records

Records

Local Remote

Distributed

Figure 5. Different Storage Topologies

reasonable choice. In others, the repository used may be remotely located. In still others,
the records for an individual may be scattered across multiple local and remote storage
locations. Irrespective, from the point of view of the other services in a telemedicine
station needing to access these records, the fact these different topologies are possible
should not affect how these resources perform their own functions. Finally, in some
situations, the question of which repositories are being used at any given moment will be
quite dynamic. For example, in a doctor’s office, the record that he sees for one patient
may be drawn both from his office’s own record server as well as from servers belonging
to other organizations. For the next patient, all of the records may be stored in the
office’s server and for the patient after that all of the records may be retrieved from
remote servers.

2.3.3.2 An Assortment of Data Types
In order to support a broad range of system capabilities, the record storage portion of a
system needs the ability to store a range of record types including, among other things,
text, numeric data, waveforms, still images, videos / cines, audio and voice, and solid
models.

 19

2.3.3.3 Extensible
Because one of our goals is to allow a system user to add new kinds of devices at will, it
needs to be easy to extend a telemedicine station’s patient record storage system to
handle the kinds of data generated by these new devices. Ideally, this could be done
dynamically, as the need presented itself. Once extended in this way, the record system
should make it easy for other resources to discover its ability to handle a new data type
and to both write and read data items of this type.

2.3.3.4 Media Independent
Patient record systems can be built on a number of different types of building blocks.
These include the physical storage media (hard drive, smart card, etc.), the “file systems”
used to control reading and writing from these media, and the databases and similar
mechanisms used to allow sophisticated approaches to storage and retrieval of
information. From the perspective of other services in a telemedicine station, the exact
means used to deliver record storage should be transparent. At the same time, when
certain key events occur (e.g., the storage device runs out of space or is removed from the
system), other services dependent on the storage service should be able to learn of these
events and to respond accordingly.

2.3.3.5 Multi-lingual
An old joke says that the nice thing about standards is that there are some many to choose
from. Nowhere in the telemedicine world is this more evident than in the area of patient
records and, for the foreseeable future, this is very likely to remain the case. Given this,

Records

Interface
X

Interface
Y

Interface
Z

Language X

Language Y

Language Z
Native

Language

Native
Language

Figure 6. Storage Language vs. Data Exchange Language

 20

it would be good if a system that we build had some means of detecting what medical
data exchange languages and protocols are employed by any given system with which
our system connects and to then be able to negotiate with the other system the specific
exchange mechanisms that will be employed while our system and the other are sharing
data with one another (Figure 6).

2.3.4 Processing
Whereas the service areas described so far all deal with the flow of “raw data” in and out
of a telemedicine station, many of the interesting things that can be done with these
systems depends on the ability of the system to be able to transform data. To this end,
processing components exist to deliver both mechanistic data transformation capabilities
(e.g., extracting the statistical profile of a set of data) and higher levels of intelligence
(e.g., assessing the suitability of a data set for diagnosis) to a telemedicine system. While
components belonging to this class may exist only as software (unlike the others
described so far which have a physical dimension as well), we will want our processing
components to share many of the same characteristics as components belonging to the
other service areas. In particular, we want them to be:

• dynamically configurable
• distributable

2.3.4.1 Dynamically Configurable
In certain settings, there is value in being able to select at the time of use the processing
approach to be employed for a given task. Given this, whatever approach is chosen for
building telemedicine systems should allow for the ability both to add and remove
processing components from a system and to select which component of a given type will
be used for the task at hand (Figure 7).

Raw
Data

Engine
A

Compressed
Data

Compression

Engine
B

Engine
C

Figure 7. Interchangeable Processing Components

 21

2.3.4.2 Distributable
As with record storage, it should be possible for a telemedicine station to draw on
processing resources that are local to the station and those that are remotely located. In
Figure 8, the Process M draws on Process N in order to do its job. From a functional
perspective, Process M should not care if Process N is local, is distributed out over some
part of the same local area network at itself, or is hosted by a third party service provider.

Distributed

Telemedicine
System

M NNetwork

Remote

Telemedicine
System

NetworkM N

Telemedicine
System

Local

M N

Figure 8. Distribution of Processing

2.3.5 Communications
If we call a collection of resources that function together as a whole in one location a
telemedicine station, then the communications resources that are part of this collection
exist to allow the station to interact with resources that reside outside of the station. In
this role, communications resources support both data transfer and person-to-person
communications. Attributes that we would like these resources to display include:

• the accommodation of a range of devices and formats
• the ability to shield the users of a station’s bandwidth from the details of how to

acquire and manage bandwidth from a device
• support for demand-driven allocation of bandwidth

2.3.5.1 A Range of Devices and Formats
In developing our telemedicine systems, one thing that we must not do is to tie ourselves
to specific technologies that are likely to be replaced over time by newer technologies. In
the world of communications this means that our designs should be able to support a
range of devices (POTS, ISDN, Cable Modem, etc.) and a range of protocols that run on
top of them for the purpose of moving data.

 22

2.3.5.2 Shielding Users from the Device Details
Any given communication device will very likely employ its own mechanisms for
controlling and monitoring its operation and, potentially, for inputting and outputting the
data that it exists to transport. To the degree possible, those resources within a
telemedicine station that use the station’s communication capabilities should not be
required to know the specifics of how these devices operate. As Figure 9 illustrates, the
station’s communication services should present these resources with a standard means of
acquiring channels to the outside world but should hide from these resources exactly how
this is done. Ideally, the Bandwidth Client has no idea what kinds of devices and how
many exist beneath the Bandwidth Manager.

Bandwidth Client

Bandwidth Manager

Communication Device
X

“Establish
Link”

“Link
Established”

“Init”

“Ready”

“Connect”

“Done”

Bandwidth Client

Bandwidth Manager

Communication Device
Y

“Establish
Link”

“Link
Established”

“Init &
Connect”

“Connected”

Figure 9. Hiding the Details of How a Device Works

2.3.5.3 Supporting Demand-driven Allocation
Because a given resource’s need for bandwidth will vary as a function of the clinical
operations that are underway at any given point in time, the communications resources in
the system should be able to dynamically specify how much bandwidth is available to
each bandwidth client at any given moment in time (Figure 10) and to allow clients to
know when demand exceeds supply.

2.3.6 Platform
In future telemedicine systems, the “platforms” which serve as the foundation for these
systems may be more virtual than physical. The platform exists in these systems to:

• provide connectivity between components belonging to the station’s various
service areas,

• to provide some means for these components to form an association, and
• to deliver or coordinate whatever services are required to ensure the secure

operation of the station.

 23

Total Available Bandwidth

Videoconference
Link

Clinical
Data

Videoconf.
Link

Clinical
Data

Clinical
Data

Uncommitted
Bandwidth

Figure 10. Changing Allocations with Changing Needs

As such, while a platform may be a single device (such as a personal computer), it may
also consist of multiple devices (e.g. , “dumb” and “intelligent” access points) and
network segments. For example, in tomorrow’s home, it will not be surprising to see a
platform that consists of a gateway device that connects multiple networks within the
home (e.g, the audio/video net, the computing net,…) with the outside world and that also
serves as a computing platform for the services that run on the home network.

2.3.6.1 Connectivity
The first function of the platform is to allow the various components that exist at the
station location to communicate with one another. This differs from communications just
discussed in that the focus here is on moving information between components that are
collocated within a station rather than components that located away from the station. In
networked designs, this connectivity may be achieved largely through the use of
hardware elements. In single platform designs, this “backplane” may consist almost
entirely of software. Depending on the nature of the components that are being
connected and on the function being performed by these federated components, this

Communication

User
Interface

Medical
Device

Patient
Record Processing

Link resources
within a node per
QOS contract

Figure 11. Connecting the Components

 24

backplane may need to be able to deliver to the components certain quality of service
guarantees (e.g., maximum latency, minimum bandwidth).

2.3.6.2 Association
As shown in Figure 12, it is possible for many telemedicine system components to exist
on the same local communications infrastructure and yet not be part of the same
“station”. In the figure, each exam room is equipped with a set of medical devices and
user interface mechanisms. In addition, the doctor’s office maintains its own patient
record server and application server (which hosts a number of clinical and administrative
software packages as well as on-line reference materials). The doctor keeps a terminal in
his private office that provides access to all of the data and applications maintained on
these servers. Finally, all communications between resources on the office’s local area
network and resources outside of the office are mediated by the communications interface
that serves as both a router and firewall of this network.

Admin Office

Exam Room 3Exam Room 2Exam Room 1

User
Interface

Medical
Device

User
Interface

Medical
Device

User
Interface

Medical
Device

Patient
Record

Processing

Doctor’s Office

User
Interface

Communication

Figure 12. Establishing Associations

In the environment shown, a telemedicine station will very likely consist of all of the
devices in a room (exam or doctor’s office) along with other resources needed to perform
the task at hand (e.g., a place to store data from the medical devices or processing
routines needed to analyze this data). It may even include resources located outside of
the doctor’s office (e.g., this would be true if the records for a patient being seen were
scattered across many servers or if the doctor subscribed to a service that maintained its
clinical applications on its own computers rather than installing them on the applications
on its client’s machines. Given this situation, one of the functions that the platform or
“backplane” must perform is to establish associations between system components so
that, for example, the doctor, in trying to use a medical device from Exam Room 2, does
not accidentally end up interacting with the same kinds of device contained in one of the
other exam rooms.

 25

2.3.6.3 Security
During the process of association of resources within a station, one of the key needs is
that this be done in a secure fashion. Among other things, this will mean ensuring that
the data flowing between station components cannot be viewed by unauthorized entities,
that system functions are controllable only by entities allowed to invoke these functions,
that even in storage the data cannot be stolen or lost, and that data is not corrupted as it
moves from component to component within the system.

Admin Office

Exam Room 3Exam Room 2Exam Room 1

User
Interface

Medical
Device

User
Interface

Medical
Device

User
Interface

Medical
Device

Patient
Record

Processing

Doctor’s Office

User
Interface

Communication

X

X X X X

X

Figure 13. Securing the System

2.3.7 Protocols
Finally, a telemedicine station needs some means of allowing its users to control how
various resources are marshaled in support of specific functions. Ideally, this would be
done on a user-specific basis and in a way that supports intelligent use of system
resources.

2.3.7.1 Control How Resources Are Marshaled
While the job of components belonging to most of the services described above is to
generate or accept information flows, something else is needed in order to tell these
components how to connect to each other for whatever clinical purpose is at hand. For
any given operation that is to be performed, there will be a need to acquire the needed
components, stitch them together, and then watch for key events (such as the removal of
a resources from the system) that will require that intervention. Once an operation has
run its course, the assembled components will need to be released back to the system for
reuse.

2.3.7.2 Allow for User-Unique Preferences
Just as in computing, where users will often customize their computing environment,
users of telemedicine stations may want to customize the ways in which they use their
systems. For example, while both configurations in Figure 15 allow their users to acquire

 26

Controls

User
Interface

Medical
Device

Patient
Record

Processing
Status

Raw Data

Digested
Data

Figure 14. Connecting the Components

a given kind of medical data, one returns only the digested data whereas the second
returns both raw and digested data (as reflected by the user interfaces). In addition, the
one user prefers to use one process to digest data, while the other prefers to use a
different process.

Controls

User
Interface B

Medical
Device

Patient
Record

Processing
XControls

Status
Raw Data

Digested
Data

User
Interface A

Medical
Device

Patient
Record

Processing
YStatus

Raw Data

Digested
Data

Figure 15. Same Function, Different Implementations

2.3.7.3 Intelligent Use of System Resources
Because systems of the sort described so far are not composed of fixed combinations of
resources, whenever a new operation is initiated, the system needs to determine whether
the resources needed to support the operation will deliver the desired performance
characteristics and, if not, whether there are acceptable fallback positions. For example
in Figure 16, the medical device produces uncompressed data at a rate of 60 megabytes
per second. While the user interface can handle the images produced, the
communications cannot support this throughput. As an alternative the system may
recommend buffering the data to the patient record (there is enough room for a little over
5 minutes) and then forwarding the data over the 10BaseT connection after the fact.

 27

User
Interface

Medical
Device

Patient
Record Communication

4832 MB free1024x1024x16
30 frames/sec

Workflow
Coordinator

XVGA 10BaseT

Figure 16. Surveying Component Capabilities

2.4 Features for the System to Incorporate
If Figure 1 typifies today’s telemedicine systems, then Figure 17 depicts what is likely to
be true of tomorrow’s. Rather than a closed network in which all services are contained
within the network’s stations, this system consists of a suite of services that are
distributed across a range of devices and locations. Just as devices within a station must
be able to locate and federate with each other, stations within a network should be able to
associate with each other to carry out clinical functions. To achieve this, the telemedicine
systems need to support:

• resource location,
• discovery,
• resource acquisition,
• conferencing,
• quality of service, and
• security.

Home Pediatrician’s

Office

Specialist’s
Office

Diagnostic
Services

Company

Record
Archival

Company

Reference
Services
Company

Record
Server

BP
Cuff

Otoscope

Infusion
Pump Stethoscope

Protocol
Server

Digital
Television

Handheld
Terminal

Internet
Gateway

LAN

Internet

Diagnostic
Server

Exam Room
Wall Terminal

Internet
Gateway

LAN

Patient Card
Reader

Desktop
Terminal

Internet
Gateway

LAN

Diagnostic
Server

Internet
Gateway

LAN

Internet
Gateway

LAN

Reference
Server

Internet
Gateway

LAN

Protocol
Server

Figure 17. A Distributed Telemedicine System

 28

2.4.1 Resource Location
Before stations can begin to interact, they first need to be able to find each other. In
particular, infrastructure services must exist that allow a station to locate a specific station
as well as to locate stations that provide certain kinds of services (Figure 18).

American EPR 115.201.135.254:6789

EPRs Unlimited 132.187.2.254:6789

Records-R-Us 15.36.219.254:6789

Record Warehouse 72.19.99.254:6789

S3 Records 253.129.204.254:6789

Twin Cities EPR 132.108.58.254:6789

Ultimate Storage 7.188.240.254:6789

Vanguard Records 23.18.74.254:6789

Record Storage
Smith, Dr. Able 205.221.179.254:6789

Smith, Dr. Ben 555-769-4521

Smith, Dr. Carolyn 15.36.219.254:6789

Smith, David 132.187.2.254:6789

Smith, Debby 555-312-7565

Smith, Dr. Ezra 555-880-8800

Smith, Francine 555-323-7593

Smith, Franklin 555-926-3910

Smith

Figure 18. Station Location Information

2.4.2 Discovery
Because we are trying to create systems that allow independently designed stations to
interact and because we want to allow these stations to be dynamically composed (i.e.,
end users can add and remove station capabilities), stations that locate one another need
the ability to explore each other’s capabilities (Figure 19). In addition, depending on the
nature of the stations, each station also needs the ability to decide on a case-by-case basis
which capabilities will be exposed and which will not.

Telemedicine
System

A

Telemedicine
System

B
“Tell me about yourself”

“I store patient records for
3 people. My schema is…
I have the following clinical
capabilities: … I can support
the following protocols: …

Figure 19. Surveying Component Capabilities

2.4.3 Resource Acquisition
Once a station knows what services another station offers, it may want to make use of
one or more of these services. In order to avoid conflict with other stations that may want
to access these services, the system must provide some means for allowing the requesting
station to reserve another station’s service for the duration of the time that it is required

 29

and to then release this service for other stations to use. In addition, in order to allow
dynamic configuration of stations, systems will need the ability to locate resources that
support a given device or function and to make these available to the stations that need
them (Figure 20).

Telemedicine
System

A

XYZ Corp.

Vendor of
the Model 2001

BP Monitor

“I need resources for a
BP Monitor, Model 2001
For OS XYZ”

“Here are user interface,
EPR schema, supporting
processing utilities”

Figure 20. Acquiring a Resource

2.4.4 Conferencing
In constituting our systems we also want the ability to support multi-party interactions in
which stations can be dynamically added to and removed from the conference. This
should include not only the ability to support audio and video conferencing between
individuals, but should also the formation of systems in which services are spread across
a number of stations (e.g., patient records are served from one, clinical data is acquired
from another, diagnostic routines on third, and everything is controlled from a fourth).

2.4.5 Quality Of Service
In certain applications, it is critical that the stations taking part in a transaction and the
networks that support them be able to negotiate quality of service guarantees.

Network

Telemedicine
System

A

“I need 384 Kbps with
no more than 1 bit error
per …”

“I can guarantee no better
than 7 bit errors per …”

Figure 21. Negotiating Quality of Service

2.4.6 Security
Finally, the kind of system being described here must also be able to address a range of
security concerns. Individual nodes must be able to ensure their own integrity and to
determine and react when they have been compromised. A station trying to establish a

 30

relationship with another station must have some means of determining whether that
station is trustworthy.

While a number of other requirements could be enumerated here, the most important to
note is the ability of stations to explore each others assurance capabilities and to negotiate
a joint security policy each time an association is established (this is in contrast to much
of what is happening today in the informatics world where organizations are establishing
fixed, point solutions to these kinds of problems).

2.5 Other Considerations
Before closing this chapter on what we want our systems to do for us, a few other issues
need to be noted. In particular, we want:

• our systems to be compact, rugged, affordable, and easy to use,
• to support a variety of care delivery system operational concepts,
• our solutions to be as technology neutral as possible,
• to avoid reinventing the wheel, and
• to create solutions that we can grow into.

2.5.1 Compact, Rugged, and Affordable
While modern medicine has a wide range of capabilities that it can bring to bear on
clinical problems, many of the mechanisms used to deliver these capabilities are geared
for use in traditional settings. As a consequence, these devices may be large, fragile and
expensive (as compared to consumer devices), and may require an expert to operate. If
telemedicine is to realize the promise of “anyone, anywhere, anytime”, then much
thought will have to be given to how these capabilities can be repackaged in ways that
allow them to be used outside the traditional clinical environment and that make these
devices accessible to a larger population of users.

2.5.2 Variety of Care Delivery System Operational Concepts
While the goal of this work is to standardize the approach taken to inter- and intra-station
interoperability, the specifications developed to support this should not (to the degree
possible) constrain the kinds of care delivery approaches that might be implemented. In
particular, the architecture should allow for:

• dynamic association of stations and patients
• dynamic association of stations and caregivers
• multiple patients per station and multiple stations per patient
• multiple caregivers per station and multiple stations per caregiver

2.5.3 Technology Neutral
To the extent possible, our solutions should not depend on the existence of specific
hardware or software technologies. Ideally, replacement of specific elements of a system
should be transparent to the rest of the system.

2.5.4 Avoid Reinventing the Wheel
In developing our architectural approach, we must do all that we can to make use of what
already exists whenever possible and to invent new things only when required. To this

 31

end, we should draw on the work of existing standards development and related
organizations as a basis for the solutions that we propose to deliver.

2.5.5 Solutions We Can Grow Into
There are already a lot of useful components out there for building telemedicine systems;
however, none will already support the full vision of what we want to achieve. Our
solutions should not force users and developers to scrap everything that is already in
place; rather, we should make it easy for these people to start where they are at and to
grow their systems to a point where they are compliant with the long-term
interoperability goals set by the telemedicine community.

 33

3 An Interoperability Architecture
The goal of this chapter is to propose a strawman architecture that supports the
capabilities described in the previous chapter and to identify options for implementing
this architecture. As we in the telemedicine community are in the very early stages of
discussing what interoperability might mean for us, it is not expected that this proposal
will be embraced as “the answer”; rather, it is intended as a starting point for allowing
various stakeholders to identify what they believe is right about the architectural
approach and what needs to be changed (or whether the suggested architectural approach
is even the right one to pursue at all).

The architecture presented addresses two levels of interoperability. The first level
discusses how nodes or “stations” within a telemedicine system can be composed and
how the resources within a station federate to deliver its functionality. The second level
considers how different stations in a system discover each other’s existence and then
begin transacting business. Within each of these levels are a number of features that
support different aspects of interoperability. As will be discussed in the next chapter, a
key goal in laying out this architecture is to ensure that vendors are able to move towards
full compliance in stages, as their business environment dictates, and are not constrained
to implement portions of the architecture that do not support their business objectives.

3.1 Overview
The proposed station-level architecture is built around three sets of interfaces (Figure 22).
The station-to-device interfaces include those interfaces that enable medical instruments,
patient record cards, user interface components, etc. to be added to and removed from the
station in plug-and-play fashion. The station-to-station interfaces include those
mechanisms used to allow remotely located stations to discover and interact with each
other. The station internal interfaces consist of those mechanisms needed to allow
various station components to interact with each other. The main reason for addressing
these station-internal interfaces explicitly (as opposed to leaving the details of these
interfaces to each station manufacturer) is to allow for the creation of telemedicine
stations from independently developed components, including those not originally
designed for use in telemedicine applications.

Station

Station-to-Station
Interfaces

Station-Internal
Interfaces

Station-to-Device
Interfaces

Figure 22. Three Sets of Interfaces

Using these three sets of interfaces, it is possible to create stations that support a variety
of telemedicine concepts. For example, Figure 23 is a monolithic, stand-alone station

 34

design that supports plug-and-play operation of some number of devices. Examples of
this kind of device might include a homecare unit that contains an integral display and
controls and that allows a patient using the device to plug in a blood pressure cuff, a
thermometer, etc. as needed. It could also be a PDA capable of local area wireless
communications (e.g., Bluetooth or infrared) that interacts with medical instruments that
are carried around by the PDA’s owner or that are dynamically discovered at each bed as
the caregiver moves from room to room. Note that in both of these cases, the station
developer has complete freedom with respect to how the station is implemented and is
bound only by the station-to-device interfaces for those devices that he cares to support.

Station

Station-to-Device
Interfaces

Figure 23. Pattern for Plug -and-Play Devices

Figure 24 is the pattern that would be used if the developer of a station cared only about
making sure that his station could interoperate with those of other vendors. As in the
previous example, a station of this sort could be implemented in anyway that the
developer wished just as long as those the design complies with those station-to-station
services that the station supports. This might include person-to-person communications
or it might not. It might include allowing remote stations to access locally stored records.
It might include enabling remote stations to “lease” and control local medical devices.
This design pattern allows for the use of proprietary station-to-device protocols and says
nothing about whether the station is rendered as a single monolithic unit or as a suite of
interacting components.

Station

Station-to-Station
Interfaces

Figure 24. Pattern for Interoperable Station

The final basic design pattern is the distributed station, as shown in Figure 25. In this
design, a station can be dynamically assembled from a suite of available components. In
a home environment, a station of this sort might consist of a “base station” to which some
number of medical devices are attached, a computer-enabled television, a network
storage device on which the family’s personal medical records are stored, and a home

 35

network that ties all of these components together. On the battlefield, one distributed
system of this sort might consist of the human interface device and computing employed
by a medic and the instrumentation, records, and computing resources integral to the
battle gear worn by the soldier that the medic is treating.

Station
Component

Station-Internal
Interface

Station
Component

Station-Internal
Interface

Station
Component

Station-Internal
Interface

Station
Component

Station-Internal
Interface

Figure 25. Pattern for a Distri buted Station

Combining these patterns in different ways yields other interesting combinations. For
example, the base station in the networked home care station just described might be
replaced with a base station that supports plug-and-play addition of medical instruments
and a “gateway” device that enables wide-area access might be added to enable this
station to now interact with others (Figure 26). This final level of interoperability show
be the ultimate goal of the telemedicine community in as much as it will enable a
tremendous amount of innovation and should remove many of the key technology
barriers related to guaranteeing “anywhere, anytime” access to healthcare. At the same
time, reaching this ultimate goal will take time with the exact path to follow necessarily
being driven by market needs and regulatory dictates.

Station
Component

Station-Internal
Interface

Station-to-Device
Interfaces

Station
Component

Station-Internal
Interface

Station-to-Station
Interfaces

Station
Component

Station-Internal
Interface

Figure 26. Distributed, Interoperable Station Supporting Plug-and-Play

Figure 27 presents a notional architecture for a telemedicine station that support plug-
and-play operation of the various components from which it is composed. As noted in
the last chapter, a central goal of this design is to allowed ad hoc assembly of systems.

At the heart of this design are an internal communications bus and a station registry.
Whereas most of the other components within the design are generators or consumers of
information, the internal communications bus represents those mechanisms within the

 36

station used to move this information between the components. Depending on the
interoperability objectives being pursued, this bus might implemented using:

• a local network that support device-to-device messaging
• an operating system that facilitates interprocess communication
• a monolithic software program whose various pieces communicate via “function

calls” and shared memory structures, or
• (most likely) some combination of the three.

A key feature of this bus is its ability to support quality of service requirements of the rest
of the components that make up the station (e.g., it can deliver data from a medical
device to a given user interface component in a specified amount of time). The station
registry is a collection of data and associated software that is used by the station to
catalog the list of components that the station can offer to support various clinical
functions.

User Interface
Proxy

Medical Device
Proxy

Patient Record
Proxy

Protocols

Channel

Processing

Communication
Manager

Internal Communications Bus

Station
Registry

Communication
Device

Device
Bus

Device
Bus

Device
Bus

Medical Device Patient Record
Device

User Interface
Device

Session
Manager

SoftwareSoftware

Hardware

Installation
Manager

Context
Proxy

Device
Bus

Context
Storage Device

External
Comms Manager

Figure 27. Logical Station Architecture

The components at the bottom of the diagram represent physical resources that may be
added to or removed from a station. These include user interface devices, medical
devices, patient record storage devices , context storage devices, and communication
devices. In the case of user interface devices, this can include things like:

• the input and display devices that are native to a computer on which some portion
of the station software runs

• an application running on a PDA
• a web-page running on an “enhanced TV”

Medical devices can include both traditional diagnostic and therapeutic instruments as
well as non-traditional elements (e.g., a load cell on a bed that tells how often a person is
getting up each night) that help provide a bigger picture of a patient’s well being. Patient
record storage devices are included in the design as pluggable components to

 37

accommodate the existence of patient cards, network-ready disk drives, etc.
Communication devices can include things like the modem or Ethernet card in a PC that
the station uses or a gateway device on a network that serves as the station’s internal bus.

For each of the first three devices types, Figure 27 shows the devices connect to the rest
of the station by means of a device bus . This part of the station exists to support “hot
plugging” of the devices into the station. The proxies that are shown between the internal
communications bus and the device buses exist to encapsulate vendor -specific device
communication behind standard interfaces that are understood by other system resources.

In order to shield station components from the details of what kinds of devices exist to
support external communications and how these devices are controlled, a
communications manager is provided. Upon request, this sof tware component
establishes channels through which a station’s components can connect to external
resources. An external communications manager provides a single point of contact for
mediating whether sessions will be established with remote stations. Session managers
provide a means for external systems to “lease” a station’s resources and, working with
the communications manager, also monitor the status of external communication
networks to ensure that quality of service requirements associated with interacting with
remote resources are being met.

Contexts store information regarding patient and caregiver preferences and are
responsible for configuring a station (or stations) in accordance with these preferences
whenever a user logs onto a station. Every station will have a standard configuration that
it uses in the absence of other configuration information. This is referred to as the
default context. Caregiver contexts and patient contexts can be introduced to the station
via some form of context storage device.

Most of a station’s higher level “intelligence will be vested in three groups of
components (one of which is the station’s contexts). The processing block in the
diagram represents the data transformation components and other specialized building
blocks (e.g., statistical analysis tools, “intelligent agents”, person-to-person
communication clients) that reside on the station. Protocols are components that are
responsible for intelligently acquiring resources needed to implement a clinical function,
instructing these resources on how they are to interoperate, and then monitoring the
operation of these resources for key events (e.g., a “leased” device being removed from
the station prematurely or the operation terminating under normal conditions).

Finally, in order to allow for automated downloading and installation of components onto
a station, the installation manager is included in the station architecture. This
component, working in conjunction with the device bus managers and the registry,
determines when a device that has just been added to station lacks the necessary
infrastructure (i.e., proxy, processing, protocol, patient record, and user interface
software) to function on that station and, when permitted by the station’s operator,
downloads from the web and installs the software that provides this infrastructure for the
device.

 38

Figure 28 depicts the notional system-level interoperability architecture. At this level, the
goal is to allow independently designed and implemented systems to locate each other,
explore each other’s capabilities (subject to each station’s access control rules), to
negotiate with each other and with the networks that they will use to determine how a
given session will be run (e.g., what QOS requirements will be levied and what resources
will be leased from each other), and to then conduct collaborative operations. Key
architectural components at this level include telemedicine stations, registry servers, and
networks. Stations are the collections of resources described in the first part of this
section. Registry servers are computer-based systems that allow stations to advertise
their location and, if desired, services and that allow stations to locate either specific
stations or stations that offer particular kinds of services. Networks consist of those
telecommunication components that carry information back and forth between stations in
a telemedicine system.

Registry
Server

Telemedicine
Station

A

Registration
Information

For Station A

Query to
Locate

Station A

Station
A’s InfoQuery About A’s Services

Description of A’s Services

Network

Telemedicine
Station

B

QOS
Request

QOS
Status QOS

Request QOS
Status

Resource Reservation, Service Requests

Status, Data

Session
Mgmt

Interface

Station
Registry
Interface

Station
Registry
Interface

Session
Mgmt

Interface

Figure 28. Station-to-Station Interoperability Architecture

At this level, stations present two interfaces to other stations. The station registry
interface provides a way for one station to explore the capabilities that another station
can provide. These capabilities can include any of the resources discussed in the station-
level architecture (medical devices, user interface devices, patient records, processing
components, and even protocols and communications). The session management
interface provides a means for stations to “lease’ these services for a period of time and
for the quality of service components in a network to negotiate a contract with a station
and to report, as needed, of the status of that contract.

 39

Figure 29 illustrates the final relationship within the overall system design – that part
used for automatic configuration of a station. When a new device registers with the
station, the registration event is passed to the installation manager which checks to see if
all of the software needed to support the new device is present. If not, the installation
manager queries the device (or external server) to learn where the supporting software is
stored. The answer is returned as a URL. Sending a request to this site, the installation
manager receives back a package of one or more components, which it unwraps and then
installs each of the constituent components on the station. On command from the
installation manager, each of the components then registers itself with the station and,
when this process is complete, the device is ready for use on the station. As a final step,
the package may indicate a given protocol for the installation manager to automatically
execute in order to support activities like running software or streaming videos that
demonstrate how to use the newly installed device.

Telemedicine
Station Package Request

Device Software Package

Device
Vendor

Software
Server

Station
Registry
Interface

Register

URL

Device

Installation
Manager
Interface

Figure 29. Self-Configuration Architecture

3.2 Architectural Details
Given this overview we now come to the question of how to make our systems function
in the way we have described. In proposing how to address this question, we will begin
by describing an example of how the various parts of a system operate. Using this
example as context for our discussion, we will look at the patterns that constitute the
foundation of this architecture and then examine how these patterns express themselves
in each of the various component types in the architecture.

3.2.1 An Example
As an illustration of how the architecture is to work, consider the simple system shown in
Figure 30. The user interface framework represents the top-level user interface
constructs (menus, main buttons, etc.) used to initiate functions in the system. The pulse
oximeter user interface module is a user interface component that is presented when a
user needs to control a pulse oximeter and to display the data generated by the pulse
oximeter. In this scenario, the pulse oximeter accepts start and stop commands and
outputs a continuous oxygen saturation waveform. The waveform statistical analyzer
accepts waveform data and generates a variety of statistics that characterize the waveform

 40

(e.g., average, max, min). The pulse oximeter operation button (and event handler)
represents that user interface control contained in the user interface framework that is
used to start and stop the operation of the pulse oximeter protocol. This protocol
contains instructions regarding the kinds of components that are needed to support the
protocol’s operation, the ways in which these components need to be interconnected, and
events that are to be monitored during the time that the protocol is active. The registry
exists to allow components to discover each other’s existence.

To start, assume tha t the three resources in the left of the diagram have just been added to
a station. Their first action is to register themselves with the station (Figure 30). Then,

Pulse Oximeter User Interface Module

Pulse Oximeter

Waveform
Statistical Analyzer

User Interface Framework

Registry

“Registered”

“Register”

“Registered”

“Registered”

Pulse Oximeter Operation Button
(and Event Handler)

Pulse Oximeter Protocol

1

2

2

2

Figure 30. Registering Components

Pulse Oximeter User Interface Module

Pulse Oximeter

Waveform
Statistical Analyzer

User Interface Framework

Registry

Pulse Oximeter Operation Button
(and Event Handler)

Pulse Oximeter Protocol

1

“Locate
Resources”

“Located”

“Lease
Resources”

“Leased”

“Prepare”

“Select”

3

2

4 5 6

Figure 31. Initiating a Protocol

 41

when the user selects the pulse oximeter operation from the user interface framework
(Figure 31), the associated event handler instructs the protocol to “prepare” itself by
leasing needed resources from the registry and instructing each of the leased components
to subscribe to specific services offered by other leased components (Figure 32). Once
done, the protocol notifies the event handler which instructs the UI framework to display
the pulse oximeter user interface module for the station’s operator (Figure 33).

System operation now proceeds with the user instructing the station to start (or to stop)
taking pulse oximeter readings. While it is operating, the pulse oximeter sends its
waveform data to its subscribing components (i.e., the pulse oximeter user interface

Pulse Oximeter User Interface Module

Pulse Oximeter

Waveform
Statistical Analyzer

User Interface Framework

Registry

Pulse Oximeter Operation Button
(and Event Handler)

Pulse Oximeter Protocol

1
“Connect”

“Connect”

“Connect”

“Connected”

2 2

3

4

56

7

Figure 32. Connecting Components

Pulse Oximeter User Interface Module

Pulse Oximeter

Waveform
Statistical Analyzer

User Interface Framework

Registry

Pulse Oximeter Operation Button
(and Event Handler)

Pulse Oximeter Protocol

3

“Prepared”

“Ready”

“Enable”

1

2

Figure 33. Enabling User Operation

 42

module and the waveform statistical analyzer) and the analyzer sends the data on to its
subscriber (Figure 34). If, during the operation of this network of components, any of
these components experience an event that compromises its ability to support the protocol
(e.g., the pulse oximeter is removed from the station), then the a ffected components
notify the protocol which must then decide how to handle this situation.

When finished with the pulse oximeter, the user may “deselect” the device on the user
interface framework, which results in the pulse oximeter user interface module being
disabled and the pulse oximeter protocol being told to terminate itself (Figure 35). In

Pulse Oximeter User Interface Module

Pulse Oximeter

Waveform
Statistical Analyzer

User Interface Framework

Registry

Pulse Oximeter Operation Button
(and Event Handler)

Pulse Oximeter Protocol
1

“Start”

“O2 Saturation
Waveform”

“Avg Sat
Max Sat
Min Sat”

“Event”
“Stop”

2

2

3

4

Figure 34. Using the Component

Pulse Oximeter User Interface Module

Pulse Oximeter

Waveform
Statistical Analyzer

User Interface Framework

Registry

Pulse Oximeter Operation Button
(and Event Handler)

Pulse Oximeter Protocol

1
“Disconnect”

“Disconnect”

“Disconnect”

“Deselect”

“End”

“Disable”

“Disconnected”

“Deselecting”

3

4

4

4

5

2
3

Figure 35. Disabling User Operation and Disconnecting Components

 43

turn, the protocol instructs each of the leased components to terminate its lease. The
protocol then notifies the registry that it is vacating its lease on these components and
tells the user interface event handler that it is ending (Figure 36). The event handler then
passes this fact on to the user interface framework that returns its interface to the same
state that it was in before the pulse oximeter was first selected.

Pulse Oximeter User Interface Module

Pulse Oximeter

Waveform
Statistical Analyzer

User Interface Framework

Registry

Pulse Oximeter Operation Button
(and Event Handler)

Pulse Oximeter Protocol

“Ended”

“Deselected”

1

2“Vacate”

“Vacated”

3

4

Figure 36. Vacating the Leases

3.2.2 The Heart of the Architecture
As illustrated in the previous example, the architecture is built on a core set of
capabilities and a handful of key component structures. The core capabilities supported
by components in the architecture are:

• registration,
• leasing, and
• subscription.

The key components are:
• the generic component,
• the registry,
• protocols,
• user and caregiver contexts,
• the internal communications bus, and
• device buses and factories and proxies.

Every component within a station presents the station with a set of services. These
services are accessed through interfaces that the component implements. These services
include both the core capabilities mentioned above (note that the “leasing” capability is
peculiar to the “protocol” components) and the component-unique capabilities that
constitute the component’s reason for being (e.g., those services that make the component

 44

a particular kind of medical device or a processing module or a user interface element).
In this sense, every component in the system is both like all of the others (in as much as it
implements a set of functions that are common to all devices in the architecture) and
different from all others (in as much as it implements a set of services unique to that
component’s type and function).

Component

Leasing
Interface

Subscription
Interface

Component
Description

Component
State

Subscription
List

Constituent
Component(s)

Service
Interface(s)

Registration
Interface

Figure 37. Structure of the Generic Component

Figure 37 presents a notional view of the generic component – the prototype from which
all other components are derived. In addition to the three core interfaces, a component
will contain three sets of data: the component description, the component state, and a
subscription list. The component description provides a component with a means of
characterizing itself for other components. The component state consists of those
variables reflecting the component’s internal state that can be monitored by other
components. The subscription list identifies external components that have subscribed to
messages generated by the service interface and by internal state changes. As a final
element of the component’s structure, a component may itself contain other components
(e.g., a defibrillator will contain both a cardiac monitor and a power discharge unit that
act both independently as self-contained entities and interdependently as a defibrillator
system). Depending on the nature of the component, these constituent components may
be treated as independent components or addressed through the “root” component.

3.2.2.1 Core Services

3.2.2.1.1 Registration
One of the first steps that a component takes when being added to a station is to register
itself with the station. This begins with the component broadcasting an announcement of
its existence to the rest of the components within the station. The broadcast

 45

announcement contains the component’s address (this may be fixed or may be assigned
dynamically each time the component is added to the station), which is then used by the
registry in all subsequent communications with the component. The announcement also
contains the component’s globally unique ID (a combination of manufacturer, model, and
serial number). In response to this broadcast announcement, the registry provides the
component with the registry’s address so that all subsequent communications can
continue in a directed fashion. It also provides a registry-unique ID to the component
that the component can use as a shorthand way of referring to itself when communicating
with the registry (Figure 38).

Component
Type A

Component
Type B

Registry Protocol

Register (Component Address, Globally Unique ID)

Registered (Registry Address, Registry Unique ID)

Figure 38. Announcing the Component’s Presence

Components that are added to a station can be “installed” in one of two ways:
“temporarily” or “permanently”. A component that installed temporarily is known by the
station only as long as it is attached to the station. For example, a stethoscope carried by
a doctor making his rounds will be installed by the station in each room that he enters and
will be available for use as part of that room’s station for as long as the doctor remains
there. When the doctor leaves a room and that room’s station is no longer able to
communicate with the stethoscope, the stethoscope information is removed from that
station’s registry and the station “forgets” about that device’s existence.

When a device is “permanently” installed on a station, all of the information about that
device that has been stored in the station’s registry is retained when the device is
physically disconnected from the station. This enables a remote station to determine that
a station being queried has the ability to support certain device-dependent operations
even when these devices are not attached to the station. For example, this would allow a
home care nurse conducting a tele -visit with a new patient to see that the patient’s station
is able to take a temperature even though a thermometer is not attached to the patient’s
station at the time that the exploration of station capabilities is being conducted.

When a device is temporarily installed (or a “permanent” device is being attached for the
first time), it goes through the registration process show in Figure 39. In this process, the
registry issues a sets of queries aimed at fully discovering the nature of the component.
This includes discovering more about the component itself (e.g., “Does it want to be
installed on a “permanent” or “temporary” basis component or “Does it have a “common
name” that a user would use to find it?”), about which interfaces the component supports,
about which elements of the component’s internal state can be monitored, and about the
existence of constituent components within the component.

 46

Component
Type A

Component
Type B

Registry Protocol

What services do you support?

I support …

What messages do you implement?

I implement …

What events and state changes do you report?

I report …

Describe yourself

I am …

What components do you contain?

I contain …

Figure 39. Registering the Component’s Description

Once a device is registered, it may be unregistered in several ways. First, if a component
has been installed on a temporary basis and is not currently “leased” (i.e., reserved for use
by other devices, as described below), then removing it from the station results in the
registry eliminating all information about that component. Second, if a temporary device
is removed while still leased by a “protocol” on that station, then the registry queries the
leasing protocol to determine if it is okay unregister the component (Figure 40). If the
leasing protocol vacates its lease, then the device description stored in the registry is
eliminated. If the protocol chooses to not vacate the lease, then the registry simply notes
that the device is not attached to the station. When the device is once more attached to
the station, it announces its presence (as described above) and the registry handles it like
a permanently attached device (i.e., notes its new address if one has been assigned and
then returns it a message that includes the registry location and the registry-unique ID
assigned to the component). If a leasing protocol that has indicated that it does not want
to vacate its lease later decides (before the device is reattached) that it wants to vacate the

Component
Type A

Component
Type B

Registry Protocol

Device Removed

Vacate?

Vacated (or Not Vacated)

Figure 40. Removing a “Temporary” Component That Is Currently Leased

 47

lease, it sends a message to this effect to the registry which then clears the device
description from the registry.

If a permanently attached component that is not currently leased is removed from a
station, the station’s registry notes that the device is no longer present but does not delete
the device’s description. If the component is currently leased when the removal occurs,
then the registry queries the leasing protocol to determine if the protocol wishes to vacate
its lease. If so, then the registry notes that the lease has been vacated and that the device
is no longer attached. If not, then the registry simply notes that the device is no longer
present. In both cases, the device description remains intact.

Finally, when it is necessary to remove the description of a component that is
permanently installed on a station, either of two methods will be supported. In the first,
the component itself can request that its registration be terminated (Figure 41).

Component
Type A

Component
Type B

Registry Protocol

Unregister (Registry Unique ID)

Unregistered (Registry Unique ID)

Figure 41. A Component Requesting That Its Registration Be Terminated

Alternatively, each station will provide a suite of utilities used to administer the station.
Among other operations supported, these utilities will allow an operator to inspect the
internals of station’s registry and to either remove from the registry a given permanent
device description or change the “persistence” attribute of a given device from
“permanent” to “temporary” and vice versa (Figure 42).

Component
Type A

Component
Type B

Registry Protocol

Release Device

Figure 42. Preparing to Remove a “Permanent” Component

3.2.2.1.2 Leasing
Once registered, components are available for leasing by protocols. In establishing a
lease, a protocol is given the right to control certain aspects of a leased component’s
operation, such as specifying to which other components the leased component is to
attach itself for the purposes of sending and receiving data and commands. The goal of
leasing is to provide a clean way of dealing with resource contentions in environments in
which station resources (devices, medical records, etc.) might be shared among multiple
protocols or even among multiple stations. Of particular concern here is avoiding

 48

situations in which components are “fighting” to control a given resource’s operation or
in which the nature of data being generated by a given component becomes confused due
to multiple components trying to “write” to the same data storage location in a
component. Depending on the nature of the particular component element being leased, a
lease may be “exclusive” (i.e., only one protocol may establish a lease at a given time) or
“shared” (i.e., more than one protocol may establish a lease on the specified element at
the same time). In the case of shared leases, the number of leases that can be established
may be “unlimited” or “fixed”, as specified by the component in question.

To establish a lease, a protocol sends either of two types of queries to the registry (Figure
43). In the first, the protocol requests that it be allowed to lease services from a specific
component. In the second, it requests the opportunity to lease services from a specific
type of component. In response, the registry returns the ID(s) of the component(s)
matching the query along with the associated lease status(es) of the requested services on
the selected component(s) . If needed, the protocol can explore one or more of the
components in more detail to determine whether any of them meet its requirements.
When satisfied, the protocol then selects a component that currently has leasable
resources of the type desired. It then passes a request to lease these resources to the
registry. In turn, the registry notes within its component description which resources
have been leased and by which protocol. At this point, the leased resources are ready for
use by the protocol.

Component
Type A

Component
Type B

Registry Protocol

Find component (by type)

Component List

What services…?

Services …

What messages…?

Messages …

What events & states …?

Events and states…

Lease

Leased

Figure 43. Leasing a Vacant Component

At times, it may be that the components and associated resources that a protocol wishes
to lease are already claimed by other protocols. In this case, the protocol can direct the
registry to query the other leaseholders to see if any of them are willing to vacate their
leases. If one or more are willing, the registry returns a list of component IDs and lease

 49

statuses as before and the protocol then establishes leases with the desired component
(Figure 44). If none of the protocols are willing to vacate the needed leases, then the
requesting protocol can direct the registry to terminate the leases held on a specified
component and resources. While this action still may not result in vacation of the
specified lease (in which case the protocol notifies the user of its inability to execute due
to its inability to acquire certain resources), the most likely results of this directive (as
this will most likely be done under user control) will be the early but orderly termination
of whichever protocol has leased the terminated resource. The protocol sequence used to
achieve this will be essentially the same as that shown in Figure 44 and will differ only in
the fact that the request to vacate that is sent to protocols leasing the desired resources
applicable components is replaced with a directive to vacate that is sent to a specific
protocol.

Component
Type B

Registry Protocol
A

Find component

Component List

Request Vacate

Vacate?

Protocol
B

Vacated

Component List

Lease

Leased

What services…?

Services …

What messages…?

Messages …

What events & states …?

Events and states…

Figure 44. Requesting a Lease on an Already Leased Component

Under normal circumstances, when a protocol has run its course or is externally
terminated, it releases the component resources that it has leased back to the registry for
reuse by other protocols. It does this by sending one or more “vacated” message to the
registry (depending on how many components and resources it has leased).

In leasing and vacating resources, a protocol may pursue either of two strategies. In the
first, it may seek to acquire all of the resources that it will need in the course of it
operation and then not release these resources until it is ready to terminate its operation.

 50

Alternatively, a protocol may acquire and retain only those resources that it needs for the
moment. If multiple resources are required sequentially (rather than simultaneously)
during the course of the protocol’s operation, it may go through several iterations of
acquiring, using, and then releasing resources. For example, a protocol might be created
that exists to take vital signs readings. It starts out by acquiring the blood pressure
monitor, uses this device, and then releases it back to the station. Next, it acquires, uses,
and releases a thermometer, and so on.

In leasing a component, the use of “persistence” in the registry (i.e., marking some
devices as “temporary” and some as “permanent”) means that even though a given
component is listed as available for leasing, it may not currently be attached to the
station. In these cases, the leasing protocol must be able to direct the user to attach the
specified resource to the station and to then, working in conjunction with the registry, to
determine that this has occurred.

Finally, it should be noted that, during leasing, a protocol will acquire two broad classes
of resources: those that generate or consume data and those that are used to transport data
between the generators and consumers. In leasing the first class of component, one of the
concerns that a protocol must address is the volume of data that the generators will
produce when configured as desired and the ability of the consumers to absorb this data.
In addition, the managing protocol must also ensure that the communication “channels”
that it acquires for interconnecting the consumers and generators can support the required
data rates of these components and services.

3.2.2.1.3 Subscription
Once leased, a component in the system has the potential to generate some number of
messages either in response to messages that it has itself received or in response to
changes in the component’s internal state. Each such message can be sent to one or more
other components in the system. The list of “subscribers” to which a given message is to
be sent is established by components sending subscription requests to the component that
generates the message, asking that they be added to the list of components that receive
the message. Each such subscription remains in effect until canceled by the subscribing
component or until the lease on the component is vacated (in which case all active
subscriptions are terminated by the leased component).

Once a protocol has established leases on a component’s resources, it is free to begin
connecting those resources to the resources of other components that it has leased. This
subscription process proceeds with the protocol issuing a series of commands to each of
the leased components instructing them to subscribe to specific messages generated by
specific components and to use specific communication resources in support of each
subscription (Figure 45). As shown in the figure, Component A is instructed to subscribe
to a specific message generated by Component B. In response, Component B registers
this subscription in its list of subscribers and responds with an acknowledgement to
Component A. Component A then notifies the controlling protocol that it has
successfully established a subscription. Using the subscription ID returned from
Component A, the protocol then instructs Components A & B to use a specific channel
on the internal communications bus when sending and receiving the message associated

 51

with the subscription (see description of the Internal Communications Bus for
information on how channels are acquired and released).

Component
Type A

Component
Type B

Channel Protocol

Attach to …

Subscribed to …

Subscribe to …

Subscribe

Subscribed

Attached to …

Attach to …

Attached to …

Figure 45. Protocol Directing Establishment of a Subscription

In establishing subscriptions, a protocol can act like any other component by itself
subscribing to messages generated by the components that it has leased. This allows the
protocol to then watch for key events, such as an operator configuring a device from its
front panel, which might require intervention by the protocol.

While it was implied earlier, it is worth stating more directly that one of the goals of the
reference architecture is to allow for the creation of “virtual” stations using components
physically attached to different stations. While this will typically be used for allowing a
given station to subscribe to the medical instruments on a remote station, it is also the
mechanism that will be used for allowing protocols running on a remote station to be
accessed from a local station and used to control the resources on the local station (e.g.,
to allow a caregiver to carry his “work environment” with him). In support of this, the
architecture supports an extended addressing scheme that allows for components to be
identified using both their registry ID (the unique ID used within a station to refer to a
registered component) and the ID of the station of which they are a part. As with intra-
station subscriptions, the ability to subscribe to a remote component’s messages presumes
that the protocol has been able to acquire an adequate communications channel to the
external component in order to support this subscription.

As a protocol terminates, it instruct each leased components to cancel all of the
subscriptions that have been placed with it. In like fashion, the protocol instructs any
channels associated with these subscriptions to terminate their attachments. As
components clear their list of subscribers and channels clear their list of attachments, they
notify the protocol of this fact (Figure 46).

 52

Component
Type A

Component
Type B

Channel Protocol

Terminate Subscriptions

Subscriptions Terminated

Terminate Attachments

Attachments Terminated

Figure 46. Protocol Directing Termination of a Subscription

3.2.2.2 Key Components
Given these core interactions, the next question to address is structure of the components
that make up the Telemedicine Reference Architecture. As with the interactions, this
section provides an overview of the topic.

3.2.2.2.1 The Generic Component
The generic component is meant to be a pattern/template from which all other types of
components in the architecture are derived. Specific component types, such as medical
devices, which are discussed later will implement the features described here and extend
these features with their own component-specific features.

The generic component stores three sets of data and, possibly, one or more constituent
components, which themselves contain the same kind of structures as the generic
component. The data sets are the “component description”, the “component state”, and
the “subscriber list”. In the descriptions below , items contained in braces (e.g., ({XYZ})
indicates a variable length list of items of type XYZ.

Component Description

Registry Component ID Unique ID assigned by registry
Registry Location Address of the registry
Component Type = Class + Type

Class Identifies component’s general type
Type Uniquely identifies component’s function

Component ID = Device Manufacturer + Model + Serial #
Device Manufacturer Uniquely identifies the device’s manufacturer
Model Unique within the manufacturer’s product line
Serial Number Unique within products of a given model

User-assigned Name Plain-text name assigned by owner/admin
Component Location “Base address” of the device
Component Persistence Indicates if should be treated as “permanent”
Constituent Component List = {Constituent Address}

Constituent Address Relative address for constituent component
Security-related Parameters Tree listing component’s security capabilities
Service List ={Service Type+Service Location+Msg List}

 53

Service Type Specific set of capabilities component offers
Service Location Address of this set of capabilities
Message List ={Msg ID+Direction+Content+Encoding+Prot}

Message ID Unique within scope of component
Direction Indicates if message is sent or received
Content Variable/parameters contained in message
Encoding Structure of specific fields & entire message
Protocol Indicates protocol used to communicate
Message Location Used to override Service Location, if desired
Lease Type Indicates “exclusive” or “shared” lease
Share Count If “shared”, gives number of shares allowed

Each component will have a set of state variables that reflect the internal status of the
component or that can be used to control the operation of the component. As appropriate,
messages can be sent to a component to set certain of these variables. Likewise, for those
variables that reflect component status, the component can generate status messages to
subscribers when the values stored in these variables change.

Component State

Connection Status Indicates if device is attached to station or not
Registration Status Indicates progress to registration with station
Subscriber Count How many subscriptions are currently set
Operating Mode Operation | Administration | Calibration
Configuration Data Device-unique configuration state data
Operating Parameters Device-unique operating parameters
Alarms Device-unique alarm parameters
Errors Indicate device operation failures

Subscribers to a component can include components that want to interact with specific
parts of the component’s normal service interfaces as well as those tha t wish to receive
status messages when the specific aspects of the component’s internal state change.

Subscriber List

Subscription ID Unique for all subscriptions & all components
Subscriber = Station ID + Registry Component ID

Station ID Universally unique identifier for station
Registry Component ID Unique ID assigned to subscriber by registry

Service Type Specific set of capabilities of interest
Message ID Specific message of interest within this set

3.2.2.2.2 The Registry
As with the generic component, the registry contains data elements, internal state, and
services. Because the registry exists to support leasing of components within a system
(and, secondarily, to provide persistent knowledge of a component’s membership in a
station) much of the data contained in the components is also stored in the registry.

 54

Registry Description

Station ID Universally unique ID for station
Station Name “Common name” given to the station
Station Type Type of platform on which station is hosted
Registry Network Location The registry’s global network address
Other (TBD) Other information used by registry servers

Internal state variables in the registry relate to key events in the registry’s lifecycle.
These include:

Registry State

Registry Availability Changes if registry becomes (un)available
Component Registration Marks another device being added to registry
Registration Modification Marks when device registration data changes
Termination of Registration Indicates removal of component from registry

Like other components, the registry maintains a subscriber list for tracking all of the
components that subscribe to the various messages that the registry publishes. As with
the generic component, each subscription contained in this list is characterized by the
following data elements:

Subscriber List

Subscription ID Unique for all subscriptions & all components
Subscriber = Station ID + Registry Component ID

Station ID Universally unique identifier for station
Registry Component ID Unique ID assigned to subscriber by registry

Service Type Specific set of capabilities of interest
Message ID Specific message of interest within this set

Each component registered will have its own component description which largely
mirrors the data stored in the component itself.

Component Description

Registry Component ID Unique ID assigned by registry
Registry Location Address of the registry
Component Type = Class + Type

Class Identifies component’s general type
Type Uniquely identifies component’s function

Component ID = Device Manufacturer + Model + Serial #
Device Manufacturer Uniquely identifies the device’s manufacturer
Model Unique within the manufacturer’s product line
Serial Number Unique within a products of a given model

User-assigned Name Plain-text name assigned by owner/admin
Parent Component Registry Component ID for containing device

 55

Component Location “Base address” of the device
Component Persistence Indicates if should be treated as “permanent”
Component Presence If “permanent”, indicates if attached to station
Constituent Component List = {Registry Component ID of Constituent}

Constituent Component ID ID for constituent component
Security-related Parameters Tree listing component security capabilities
Service List ={Service Type+Service Location+Msg List}

Service Type Specific set of capabilities component offers
Service Location Address of this set of capabilities
Message List ={Msg ID+Direction+Content+Encoding+Prot}

Message ID Unique within scope of component
Direction Indicates if message is sent or received
Content Variable/parameters contained in message
Encoding Structure of specific fields & entire message
Protocol Indicates protocol used to communicate
Message Location Used to override Service Location, if desired
Lease Type Indicates “exclusive” or “shared” lease
Share Count If “shared”, gives number of shares allowed

Leases established by various protocols are recorded using the following structure:

Component Leases

Lease ID Unique for all leases on station
Lessee = Station ID + Registry Component ID

Station ID Universally unique identifier for station
Registry Component ID Unique ID assigned to protocol by registry

Lease Description
Station ID Universally unique identifier for station
Registry Component ID Unique ID assigned to leased component
Service Type Specific set of capabilities of interest
Message ID Specific message of interest within this set

The following set of messages is used by a component wanting to determine to which
station it belongs, by the registry to answer these queries, and by internal and external
entities involved in establishing a station’s identity:

Station Messages

SetStationID Assigns station universally unique ID
SetStationName Station’s common (human readable) name
GetStationName Sent to registry to retrieve naming parameters
StationName Returned in response to GetStationName

Notification messages generated for each of the various registry events include:

Registry Event Messages

 56

RegistryAvailable Indicates registry has come online
RegistryUnavailable Indicates registry has shut itself down
ComponentTypeAdded Indicates given type of component registered
SpecificComponentAdded Indicates particular component added
SpecificComponentChanged Indicates change in given device description
SpecificComponentRemoved Indicates given registry entry removed

3.2.2.2.3 Protocols
While each component in a station provides interfaces that allow it to connect with other
components, components do not decide on their own to initiate connection to other
components; rather, the logic for deciding what kinds of components are needed for a
given clinical function, for locating and leasing these components, and for telling these
leased components how to connect to one another is the responsibility of a station’s
protocols. While a protocol exists to manage the execution of a clinical function, it
accomplishes this by acquiring the services of other components and then configuring
them in a way that satisfies the protocol’s clinical objectives. Given this, a protocol will
possess knowledge of the kinds of components and services that can be used for these
purposes. It can also be programmed with knowledge about acceptable “fall back”
positions that can be pursued if its standard approach cannot be supported. For example,
suppose that a protocol exists to control the collection of images from a high-resolution
digital scope of some sort and to transfer the data generated by this scope to the display
and storage of some remote station designated by the local operator. The protocol’s
default operation may be to acquire the scope specified by the operator (if there is more
than one installed on the station), a local display component, a local control component,
and display and storage components for the designated remote station. In addition, the
protocol would need to establish a communications channel to the remote station so that
data from the scope could be fed “live” to the remote station for viewing and archiving.
Now suppose that, in the process of surveying the available resources, the protocol
decides that it cannot establish a communications channel capable of supporting the
bandwidth that the scope is capable of producing. Rather than simply giving up and
declaring to the operator that the function cannot be executed, the protocol now begins to
look for alternative solutions to offer to the local operator. Depending on the nature of
the components that populate the local station and the clinical requirements, these might
include things like instructing the scope to operate at a lower resolution or frame rate,
using local storage capabilities to buffer the difference between the scopes higher data
rate and the communication channel’s lower rate, or simply storing the data to local
record space and then forwarding it to the remote station once the operation is complete.

One important point to note is that, because one of the chief goals of this architectural
approach is to allow mix-and-match composition of stations and systems from
independently developed components, some of the questions asked today by engineers
who integrate components into systems will be asked by the protocols in tomorrow’s
systems. In addition, some of the information contained on “spec sheets” today that the
engineer uses in figuring out if different components can be interconnected will have to
be contained tomorrow in the components themselves. In this way a protocol can
dynamically inspect the characteristics of components that it may want to lease and

 57

determine which of the components in a system are usable together and under what
circumstances.

In as much as protocols are themselves components, they support each of the core
interfaces discussed so far. They can register themselves with a station on which they are
installed. They drive the subscription of components that they release and can
themselves subscribe to messages published by other components (including other
protocols). As already described, they interact with registries for the purpose of
acquiring resources needed to support the functions that they exist to manage.

As with other core components, a protocol maintains internal data sets that describe the
protocol or that serve as internal “scratchpads” for recording information relevant to the
protocol’s operations and also provides service interfaces that are unique to the operation
of the protocol. In particular, a protocol contains a list of options for implementing the
protocol’s function (i.e., a list of what kinds of components are needed and how they can
be stitched together to deliver the functionality), a list of the specific components that the
protocol has actually leased, a list of the state variables for which the protocol will
publish notifications when changes in the variables occur, a list subscribers to events
published by the protocol, a service interface that is standard across all protocols and one
that is unique to the individual protocol.

The first data set – the protocol description – parallels the structure of the general
component’s description with a few differences. Fields in this description include:

Protocol Description

Registry Component ID Unique ID assigned by registry
Registry Location Address of the registry
Component Type = Class + Type

Class In this case “PROTOCOL”
Type Uniquely identifies component’s function

Component ID = Device Manufacturer + Model + Serial #
Device Manufacturer Uniquely identifies the device’s manufacturer
Model Unique within the manufacturer’s product line
Serial Number Unique within a products of a given model

User-assigned Name Plain-text name assigned by owner/admin
Component Location “Base address” of the device
Component Description Description of protocol for use by other tools
Component Persistence Indicates if should be treated as “permanent”
Security-related Parameters Tree listing protocol’s security capabilities
Service List ={Service Type+Service Location+Msg List}

Service Type Specific set of capabilities component offers
Service Location Address of this set of capabilities
Message List ={Msg ID+Direction+Content+Encoding+Prot}

Message ID Unique within scope of component
Direction Indicates if message is sent or received
Content Variable/parameters contained in message

 58

Encoding Structure of specific fields & entire message
Protocol Indicates protocol used to communicate
Message Location Used to override Service Location, if desired
Lease Type Indicates “exclusive” or “shared” lease
Share Count If “shared”, gives number of shares allowed

The second data set stored by the protocol is its “Protocol State”, a subset of the state
information discussed in the Generic Component.

Protocol State

Registration Status Indicates whether protocol is registered
Subscriber Count How many subscriptions are established

Next comes the list of other protocols which have subscribed to the protocol:

Subscriber List

Subscription ID Unique for all subscriptions & all components
Subscriber = Station ID + Registry Component ID

Station ID Universally unique identifier for station
Registry Component ID Unique ID assigned to subscriber by registry

Service Type Specific set of capabilities of interest
Message ID Specific message of interest within this set

The fourth data set stored by the protocol is the “Implementation Descriptions List”.
Each “Implementation” that populates this list is a specification that describes a list of
component types and the list of component interconnections and supporting channels that
can be used to satisfy the protocol’s function. In this sense, a “component” in the first list
is a role that some real-world component will need to fulfill once leased by the protocol
and stitched together with other components by means of subscriptions. Implementations
are listed in order of preference with “Implementation 1” being the preferred approach to
delivering the protocol’s function and the last implementation being the approach of last
resort. Implementations are described by the following fields:

Implementation Descriptions List

Implementation ID Identifies an allowable protocol implementation
Implementation Description Describes nature of this implementation
Component List Identifies components needed for implementation

Protocol Component ID Identifies a role in the implementation
Component Type Identifies type of component needed in this role

Class Describes the general type of component
Type Describes the unique characteristics of component

Channels List Identifies channels used to support connections
Channel ID Uniquely identifies a given channel role
Channel Type Specifies “synchronous” or “asynchronous”

Interconnections List Maps components, messages, and channels

 59

Connection ID Identifies logical connection in the implementation
Source Role component from which message flows
Sink Role component to which message flows
Service Type Interface with which message is associated
Message ID Message which is to flow.
Channel Logical channel that will supports the flow

The next data set – the leased components list – tracks which implementation the protocol
has selected, which components have been leased to fill each role in that
implementation’s component list, and which connections have been successfully
established. Fields in this data set include:

Leased Components List

Leased Components List of which leased components fill which role
Protocol Component ID Identifies the role being filled
Station ID Identifies station of leased component
Registry Component ID Station-unique ID of leased component

Connections List of connections implemented for protocol
Connection ID Identifies connection role being implemented
Subscription Status Identifies whether subscription established
Source Attachment Status Identifies if source has attached to channel
Sink Attachment Status Identifies if sink has attached to channel

At a minimum, every protocol provides a service interface that responds to two messages:

Protocol Control Messages

StartProtocol Sent to protocol to start its operation
EndProtocol Sent to protocol to terminate its operation

A protocol’s subscriber list is no different than the list described for the generic
component. Protocol event messages to which another component (typically user
interface components) might subscribe include:

Protocol Event Messages

ProtocolReady Sent to subscribers when interconnections done
ProtocolInterrupted Sent to subscribers when protocol stalls internally
ProtocolAborted Sent to subscribers when protocol cannot finish
ProtocolTerminated Sent to subscribers when protocol vacates leases

Like other components, a protocol will also present to other components a protocol-
specific set of messages that allows these components to make use of the services that
uniquely define the protocol and, possibly, to dynamically alter some of the static choices
embedded in the protocol’s “implementations”. For example, a pulse oximeter protocol
might include a set of commands focused on device control (“start”, “stop”, “calibrate”),
a set of commands related to the user interface (“display/hide SpO2 waveform”), and a

 60

set of commands related to a limited degree of rewiring of subscriptions (“(do not) route
average saturation to current patient record”).

3.2.2.2.4 Contexts
While it is possible to create stations that offer the same fixed set of services to all station
users, more often than not, the ability to customize the station for each user is a desirable
thing. For example, a patient visiting the doctor may want to make all of her patient
record data available to the doctor and to have any records generated during this
encounter added to this same global record. It would be nice to have an easy way to tell
the doctor’s station where the patient’s records are stored. Likewise, a caregiver making
rounds in a hospital may want continuous access to his own set of “tools” (analytic
software, protocols, etc.) as he moves from room to room. Finding an easy way of
allowing this on-the-fly customization of stations to occur would quite beneficial.

To address these needs, the architecture provides for the notion of a context. This “root”
component specifies which other components will be employed on a station whenever a
given person is interacting with that station. This includes identifying, among other
things, which user interface elements will be enabled, which protocols will be used, how
these components (i.e., the user interface elements and protocols) are to map to each
other to form the station’s core, and which repositories are to be used for recording
transactions in which the person is involved.

Three kinds of contexts are defined by this architecture. The station’s default context
specifies how the station is to be organized under most circumstances. The caregiver
context specifies how a given clinician prefers to operate. When introduced to a station,
this context can extend the station’s default capabilities by causing new components to be
added to the station (note that this may occur by downloading to the local station or by
establishing links to remote components) and integrated with existing components or may
result in a partial replacement of station components. Introducing a patient context to a
given station provides that station the information it needs to access and interact with as
much of the patient’s record base as the patient allows and, in certain situations, to create
on the fly a station that supports a patient’s unique needs.

In a very real sense, a station’s default context and its registry constitute the heart of the
station. When the registry boots up, the default context, being one of the registry’s
standing subscribers, is notified of this event. In response, the default context, which
functions like a protocol, goes looking for a user interface framework, user interface
components, and protocols that it will lease and then knit together through the process of
subscription. Once established, these interconnected components form the core of the
station and enable the operation of its default capabilities.

When a caregiver context is introduced to the station, the default context is notified of
this event. Using the data stored in the caregiver context, the default context revisits the
station organization question once again. If new (i.e., unlike any handled in the default
context) user interface components or protocols are specified, then these components are
leased and then stitched into the station’s infrastructure. If given components or
protocols are specified for which similar existing elements have already been activated,

 61

then the existing components and protocols are removed from active service and replaced
with those preferred by the caregiver. If the caregiver context specifies a repository for
recording patient records, then records will be routed to the particular components
specified by the context. Note that this does not replace any standing recording to default
locations and is only meant as means of allowing a caregiver to retain their own personal
copies of records generated by patient encounters.

In like fashion, a patient context allows the patient to carry their own user environment
with them both for their own use and for the use of caregivers who are tending to them.
For instance, a patient sitting down at a “do it yourself” blood pressure monitor in the
grocery store could introduce his context to the machine and have readings automatically
forwarded to one or more patient record repositories (e.g., his own personal repository
and his doctor’s). Similarly, a patient checking into a hotel on business travel might use
an intelligent “access point” to connect a suite of medical devices that the traveler owns
to a collection of resources (e.g., HAVI-enabled television and Internet access) found in
the hotel room. Once attached to the access point, the patient’s context would be used to
find needed resources and to then connect external resources, such as processing
resources, protocols, or patient records that the patient uses (e.g., during exercise).

When a context is removed from a station, the default context on that station once again
reviews the station organization. Components and protocols unique to the removed
context are disconnected and released and components and protocols that had been
released to support customization are once more restored.

3.2.2.2.5 The Internal Communications Bus
As was discussed above, a telemedicine station may be a tightly integrated, monolithic
platform or it may be a distributed collection of components that federate as needed to
accomplish some clinical task. Whereas the first approach is likely to rely on operating
system mechanisms to achieve inter-component communications, the second will rely on
some sort of network. It is this second approach that is the subject of this section.

In a distributed, network-based station design, the network itself can be viewed as a
compound (i.e., multi-part) component that we will refer to here as the station’s internal
communications bus. This bus is treated as being divided into two main parts: the media
and transceivers used to move bits between components and a set of logical connections
or “channels” that are dynamically established for a time between different components
within a station.

In practice, the physical elements of the bus may not be a single network but may consist
of several different interconnected network segments that are based on different
technologies (Figure 47). For example, in a home network, a “home gateway” might
connect to the Internet via external cable modem or DSL (phone line) modem and to
internal Ethernets running over phone lines to support home computing needs, to internal
fiber optic “Firewire” buses that support the home’s audiovisual components, and to a
power line network that is used to support home automation. In this configuration, even
though the home’s internal network consists of three different network segments and

 62

three different kinds of media, the home gateway bridges the segments to allow for
communication between devices irrespective of location.

InternetHome
Gateway

Phone Lines

Power Lines

Firewire LAN

Figure 47. A Home Network

Station components connecting to a network segment will do so in one of two ways:
directly or by means of a network access point (Figure 48). In the first case, the device
supports the network segment physical layer as well as the networking protocols used to
move bits between the device and other network nodes. In the second case, a specialized
box is used to translate between the native communication capabilities of one or more
devices and the more general communications format of the network segment. One
example of this would be a device that allows components that communicate using an
infrared link to become nodes on a wired Ethernet network.

On the logical side, the bandwidth available for component-to-component
communications is divided between a persistent channel that supports all “administrative”
traffic within the system and some number of other channels that are dynamically created

InternetEthernet
Switch

Figure 48. Two Types of Network Access

when needed and destroyed when no longer needed. With the exception of the
administrative channel, all communications within a station are built on one-way
communication links. In this approach, a single data source passes data to a channel that
terminates in one or more data sinks. From the perspective of a component, the logical
communication entities with which it deals are as shown in Figure 49. Each channel with
which a component must interact is instantiated via a proxy that moves messages onto

 63

and off of the underlying media. As shown in Figure 50, the movement between the
channel and a specific physical medium is supervised by a media manager that exists to
hide the differences related to various media that might be used in a station.

Media

Component 1

Administrative
Channel

Channel
A

(Source)

Channel
M

(Sink)

Component 2

Administrative
Channel

Channel
A

(Sink)

Channel
M

(Source)

Figure 49. Component Interfaces to Internal Communications Bus

The motivation for using channels as described in this section is that communications
within a telemedicine station fall into two broad categories: asynchronous and
synchronous. Asynchronous communication delivers data in “chunks” on an as-needed
basis. Synchronous communication is used in situations where data needs to be
continuously streamed from a source to one or more sinks. Examples of the first type
include individual commands or status messages sent between components (e.g., “Start”
or “Operation completed”). Examples of the second include continuous waveforms (e.g.,
data from an ECG lead or the audio signal from a stethoscope) and video data (e.g., from
a videoconferencing link). Whereas the first can be delivered “eventually” (within
reason), the second can levy strict requirements on the performance of the station’s

Physical Medium A

Media Manager A

Other Channels

Component

Administrative Channel

Physical Medium B

Media Manager B

Sink Source
Bus Manager ProtocolRegistry

Figure 50. Internal Communications Bus Architecture

 64

communication system (e.g., delays and irregular timing of delivery in voice
communications can make person-to-person interactions awkward and uncertain
performance of a remotely operated scalpel might be fatal). Given this, for synchronous
communications, the station’s communication bus must be able to provide certain quality
of service guarantees. In the internal communications bus architecture, this responsibility
falls to the media manager. In addition, depending on how components are distributed, it
may necessary to secure certain communication links within a station and between
stations. Channels provide a mechanism for delivering fine-grained control over secure
communications within a station.

In preparing to use the bus, a protocol will first interact with the station’s bus manager,
requesting that a channel with specific characteristics be established (e.g., synchronous,
of a specified bandwidth, connecting specific components that have been registered with
the station). Based on the address information associated with each component, the bus
manager identifies which network segments within the station are involved in the
protocol’s request. Requests to establish a new channel (which is named by the bus
manager) are sent to all of the media managers associated with these segments. Each
media manager decides if it can honor the request and, if so, reserves the resources
needed to create the channel.

Component Media
Manager

Bus
Manager

Protocol

Create Channel

Open Channel

Channel Created

Channel Opened

Figure 51. Protocol Acquiring a Channel

If the resources needed to support the requested channel are lacking, then the bus
manager notifies the protocol of this fact. As with other components, the protocol may
request that the bus manager tender to other channels a request for vacation of bandwidth.
If adequate offers are returned, then one or more offering channels are closed down or
altered (e.g., a channel’s bandwidth is reduced) and a new one created for the requesting
protocol. If the offers are inadequate, then the protocol is notified of this fact. In
response, the protocol may mandate the establishment of the channel (this may or may
not be honored) or may simply inform the station user that the resources needed to
support the operation are not currently available.

In the event that a protocol’s request to create a channel involves one or more
“permanent” components that are not currently attached to the station, the bus manager
will notify the protocol that the request cannot be honored until the missing components
 are attached (ideally, a well-formed protocol would have known of this problem and

 65

Channel
(Proxy)

Media
Manager

Component Protocol

Attach to …

Get Channel

Attached to …

Channel

Attach to Medium

Attached to Medium

Attach to Message

Attached to Message

Create Proxy

Proxy Created

Figure 52. Attaching a Component to a Channel

rectified it before ever making the request). If a leased component is removed from the
station once a channel has been established and the leasing protocol (informed by the
registry of this event) decides not to vacate the lease, then the protocol directs the
appropriate media managers to destroy the channel that has been associated with the
removed component (in practice, this may be multiple channels). When the component is
reattached to the station and its new address is known, the protocol once again works
with the bus manager to create a new channel(s) needed to support communications.
Finally, if the network segment supporting a channel fails, the associated media managers
will notify the bus manager, which, in turn, will alert the affected protocols.

3.2.2.2.6 Device Buses and Factories and Proxies
As discussed above, not all devices will attach directly to the network segments that
make up a station’s internal communications bus. Even if a station employs a monolithic
design, devices may not plug directly into the station itself. In both cases, device buses
may be used to enable plug-and-play devices to be easily attached to and removed from a
station. Common device buses in use today include Universal Serial Bus (USB), IEEE-
1394 (“Firewire”), the IrDA (the infrared ports used on many computing devices), and
Bluetooth (an RF-based proximity networking standard).

The key feature of a device bus is its ability to dynamically detect the presence of a new
component or the absence of a component that had been present. When a device is
attached to this sort of bus, there is usually a period of negotiation on the bus in which the
bus assigns the new device a bus-unique address and interacts with the device to
determine something about the nature of the device that has been added to the bus. Once
this is done, the “device drivers” that monitor the bus on the network access point (or on
the computing platform) announce the presence of a new device to the rest of the system

 66

to which the bus is attached. This allows the system to then launch whatever software is
needed to interact with the newly installed device.

While one might hope that an interoperability architecture like that being described in
this document would eventually lead to the development of devices that are fully
compliant with the architecture’s specification, the reality is that full compliance for all
devices will probably never be achieved. There will always be devices that employ their
own proprietary interfaces. Even so, if dynamic composition of a telemedicine station
from plug-and-play components is ever to become a reality, devices of a given type must
present a standardized interface to other components within a system. To handle this
disparity, the architecture introduces the notion of a device proxy – a piece of software
that on its station-internal side presents a standardized interface to the rest of the station’s
components and that on its device side presents an interface capable of handling device-
specific interactions. In between, this body of software translates between the two
interfaces. The effect is to “wrap” non-standard devices in ways that make them appear
to the rest of the station to be standard-compliant devices.

As shown in Figure 53, devices will come in a range of capabilities. In an ideal world, a
device that attaches to a station would be able to plug directly into a station’s internal
communications bus, would support all of the standardized service interfaces defined for
that type of device, would be able to uniquely identify itself, and could describe itself to
other devices when queried. By comparison, “intelligent devices” might do all of these
things with the exception of being able to plug directly into the station’s internal
communications bus. For these devices, connection would be by means of a device bus
and a “light proxy” that could route the device’s communications between the device bus
and the internal communications bus. At the next step down the ladder of device
intelligence, the “self -aware device” is able to publish its unique device identifier but
knows nothing of its own capabilities. To make up for this deficit, its proxy embodies all
of the self-descriptive capabilities needed by a device wanting to register with a station.
The proxy may also translate between device-specific services and the standardized
service interfaces established for that particular kind of device. At the bottom step of the

Ideal
Device

Light Proxy

Heavy Proxy

Intelligent
Device

Dumb
Device

Medium Proxy

Self-aware
Device

Figure 53. Devices and Proxies

 67

ladder is the “dumb device”. This component knows nothing about itself including its
identity. All that the device can do is to accept and respond to commands – most likely
using its own proprietary protocol. It is simply an engine that provides some clinical
functionality. All of the higher-level intelligence that makes it look like an architecture-
compliant device is vested in its “heavy proxy”. While all four types of devices might be
used in the kinds of telemedicine stations that we are trying to produce using this
architecture, the first three types of devices (because of their ability to self-identify, as
discussed below) are better suited for use in this environment and, of these, the first two
are preferred.

When taken together, the device bus and proxy mechanisms work as shown in Figure 54.
Attaching a device to a device bus causes a bus event that leads the drivers that control
the bus to determine what has just been attached to the bus and to reconfigure the bus as
required. The drivers then notify a factory component of the new device’s existence on
the bus at a given bus address. The factory then creates a proxy component that begins to
explore the device (or some other information source) to harvest the device details
needed by the proxy. Once these details have been collected, the proxy begins the
process of registering the new “device” (which is a combination of the physical device
and the proxy) on the station.

3.2.3 Notes on Specific Component Types
While the structures and interactions that have been discussed so far constitute the core of
the architecture, they are still nothing more than infrastructure. The real clinical

Device Bus Factory Proxy

Description:…

Describe yourself

I’m here

Who are you?

I’m a …

New Device: Type …

Create Proxy: Type …

Figure 54. Adding a Device to A Bus

functionality delivered by a telemedicine system is vested in four kinds of components:
medical devices, patient records, user interface components, and processing components.
For this reason, the architecture specification must also include application-level interface
specifications for each of the service interfaces provided by individual component types
belonging to each of these component classes.

 68

For any given service interface, there will be at least two different component types
belonging to different component classes that will implement the interface. For example,
in Figure 55, the “Pulse Oximeter Control Interface” defines a set of messages that relate
to controlling a pulse oximeter and monitoring its operation. These messages are
embodied in both the pulse oximeter component and the pulse oximeter user interface
component. For example, the user interface component might know how to generate a
“start” message while the pulse oximeter component knows how to process that message.
Also, as is implied by the “Waveform Data Interface”, “implementing” an interface
means that the component knows how to generate or process a given set of messages;
however, it does not meant that each component implementing a given interfaces
necessarily handles the interface’s messages in a uniform fashion. In the case of the user
interface component, receiving a waveform data message results in the waveform being
displayed. In the statistics component, it results in the waveform being analyzed and key
features being extracted. In the patient record component, receipt of the message results
in the data from the message being stored to the “current record”.

Controls

Pulse Oximeter User Interface Component

Pulse Oximeter Component Patient Record Component

Waveform Statistics Component

Status
Min Saturation
Avg Saturation
Max Saturation

Sp02 Waveform

Pulse Oximeter
Control Interface

Waveform Data
Interface

Statistical Data
Interface

Pulse Oximeter
Control Interface

Waveform Data
Interface

Waveform Data
Interface

Waveform Data
Interface

Statistical Data
Interface

Sp02 Waveform

Figure 55. Standardized Service Interfaces

3.2.3.1 Medical Devices
In reading through the work that has been done on medical device standardization, it
becomes clear that the general device pattern above will need to be extended to include
service interfaces for device management (to include inventory management and
calibration), device configuration, device control, and data acquisition (Figure 56).

 69

A survey of the telemedicine field shows several classes of medical devices currently in
common use today. These include:

• Various kinds of scopes and cameras
• Certain types of radiographic devices
• Stethoscopes
• Vital signs devices
• Point of care test devices
• Other diagnostic devices
• Certain therapeutic devices

In addition, as telemedicine matures and we are able to do more things at a distance, we
are likely to see telemedicine-based remote monitoring move from simple monitoring of
the patient to monitoring of both the patient and the patient’s environment. If a doctor
deals with allergy sufferers, it is not hard to imagine a future in which the doctor is able
to remotely assess the types and levels of allergens present in his patients’ homes.

Medical Device

Subscription
Interface

Component
Description

Component
State

Subscription
List

Constituent
Component(s)

Device
Management

Registration
Interface

Device
Configuration

Device
Control

Data
Acquisition

Figure 56. Structure of the Medical Device Component

All of these devices can be grouped into categories based on the kinds of data that they
produce, as shown in the following table:

Still Imagery Devices Digital camera, portable x-ray unit
Moving Imagery Devices Video camera, otoscope, ultrasound unit
Audio Device Stethoscope
Waveform Devices ECG, pulse oximeter
Scalar Data Devices Glucose meter, blood pressure monitor, weight scale

Given the diversity of data types represented, it is clear that a one-size-fits-all solution
probably won’t satisfy all needs. In addition, in as much as certain medical device

 70

standards already have significant constituencies, it is likely to be incumbent on the
telemedicine community to make our architecture fit the existing standards and not the
other way around. For these reasons, it is likely that telemedicine station architectural
patterns applied to the medical devices will look something like Figure 57.

Device buses 1 and 2 represent different bus technologies (e.g., Firewire and BlueTooth).
Each bus has its own manager that hides the details of device location and bus
organization from the rest of the station. When a device is added to the bus, the
associated factory creates a matching device proxy on the station. If the device is only
“self-aware” (as described earlier), then the proxy then queries the device that it
represents and fills its own internal structures (per Figure 56) with the data harvested
from the device. If it is “dumb”, then the proxy may end up filling its internal structures
from a file stored on the station using data entered during an earlier device configuration
session. In the case of intelligent devices, the proxy initialization may entail no more
than establishing the correct mapping of station-internal addressing to device bus
addressing.

Device Proxy A

Administrative
Channel

Channel
X

(Sink)

Device Bus 1
Manager

Device Bus 1

Medical
Device A

Medical
Device B

Device Proxy B

Proxy
Factories

Administrative
Channel

Device Proxy C

Administrative
Channel

Channel
X

(Source)

Device Bus 2
Manager

Device Bus 2

Medical
Device C

Proxy
Factories

Figure 57. Medical Device Portion of Station Architecture

In the process of establishing this addressing, either of two scenarios is possible. In the
first, the device that is hosting these proxies already has its own address that it somehow

 71

extends to provide each proxy its own unique network location (e.g., the host device
might have a fixed IP address and dynamically assign ports to each of the proxies that is
launched in its computing space). Alternatively, each of the proxies might request and
receive its own address at the time of its creation (e.g., through the use of Dynamic Host
Configuration Protocol).

Once a proxy has been fully configured, it announces the device’s presence to the station.
This begins the registration process described earlier in the chapter.

3.2.3.2 Patient Record Repositories
Because of the wide variety of employment scenarios that telemedicine -based care
delivery enables, telemedicine systems must be able to implement a range of patient
record storage and retrieval schemes. As noted earlier, these include local storage of
records (e.g., in a patient station in order to allow readings to be queued up and
periodically harvested by a caregiver station), remote storage (e.g., as in the case of a
caregiver visiting patients in a hospital and wanting to have all encounters recorded in the
record server in his office), and distributed storage (where all records regarding an
individual, even though maintained by different organizations, appear as a single
coherent record to a station querying the records). The patient record repository structure
in this architecture must handle both the writing and reading of records. Also, because of
the desire to handle a variety of media (disk-based records, patient card records, etc.), the
architecture needs to address both the logical structure of the patient record system and
the media on which this system resides.

The architecture’s patient record repository structure must support a number of
requirements. First, it must allow for the possibility of records related to multiple
patients being stored in the same repository. Next, it must allow for multiple ways of
indexing the data stored in the record. These should include both encounter-oriented
indexing (i.e., these readings and this information were collected during a given session)
and topic-oriented indexing (i.e., here are all of the readings of a given type collected for
this patient and this is when they were collected). For each kind of reading collected by
the patient record, the patient record interface implemented for this purpose should look
no different than that of any other component that could make use of the same reading
(e.g., the interface on a user interface component or on a processing component). Also,
as new kinds of medical devices are added to a station, it should be easy to automatically
add the associated record elements to the patient record repository structure. Finally, the
architecture must also be able to handle multiple repositories on one station (as in when a
patient card containing a patient record is attached to a station that maintains its own
repository on disk).

Given these requirements, the record repository structure depicted in Figure 58 is
proposed. The core structure is shown in the narrow columns on the diagram. In this
structure, the repository is a single physical container that holds records for some number
of patients. Patients who have records in this repository are listed in the patient index – a
structure that points to the location of the various patient records stored in the repository.
A patient record is a container for all information in the repository related to a given

 72

Virtual
Encounter Index

Virtual
Patient RecordPatient Record

Encounter Index

Virtual
Patient Index

Virtual
Repository

Encounter Record

Readings / Other Data

Repository A

Patient Index

Patient Record

Encounter Index

Repository B

Patient Index

Encounter Record

Readings / Other Data

Figure 58. Notional Organization of the Patient Record Repository

patient. The information in a patient record is further divided into encounters and the
encounters are all cataloged in an encounter index. The encounter index provides
information on the location of each encounter record in the repository associated with a
given patient. In turn, the encounter record will contain one or more readings (e.g.,
blood pressure, ECG trace) and other kinds of data (e.g., voice recordings or textual
data), as appropriate.

To handle the case where a station hosts multiple repositories or the station provides a
unified interface to multiple distributed repositories, a virtual repository structure may be
used as the top-level container for all patient data managed by the station (alternatively,
each repository in this space can also be presented independently to a station user with a
view to allowing the user to explicitly specify which particular respository(-ies) and
subordinates structures are to be used in the current activity). Drawing on the patient
indexes for each of the constituent repositories, the virtual repository creates a unified
virtual patient index. Similarly, the various patient records for a given patient that are
spread across the different repositories are now treated as a single virtual patient record
and all of the various encounters contained in these records are now organized using a
common virtual encounter index. Once selected from this index, encounter records and
the data they store are accessed directly in the physical repositories in which they are
stored.

Accordingly, the patient record component (Figure 59) provides three service interfaces
to external components. The media management interface is used to handle issues
associated with the media on which the records are stored. Issues such as available
storage space, the size of a record, and clearing records from the repository are handled

 73

through this interface. The record navigation interface allows client components (e.g., a
record browser user interface component) to navigate through the various repositories to
which the station has access and to establish one or more records as the “focus” of
subsequent operations that are to be conducted using the record manipulation interface.
The record manipulation interface allows other components to create, delete, write to, and
read from various structures in the repository. In the case of creating a structure,
previous record navigation operations would have set the focus of operations on the next
higher-level entity in the repository structure (e.g., creating a new encounter would
require first selecting a specific patient’s records as the current focus).

Repositories, like medical devices, can possess different levels of sophistication. Some
repositories that are accessed by a station will be nothing more than structured sets of
data and will lack the “intelligence” to deliver the services of a typical component (e.g.,
this will be true with many patient card-based repositories). Others will be quite
sophisticated, delivering all of the capabilities defined for patient record repository
components. Whereas the latter can function as regular components within a
telemedicine station, the former cannot. In these cases, a mechanism like that used to
create proxies for some medical devices will be used to create a patient record repository
proxy that, using the data sets, will provide the services of a regular physical repository.
Finally, in as much as some patient record repositories will be introduced to a station via
removable media (e.g., patient record cards or a repository on a PDA), the station needs
the ability to detect when a repository has been added to or removed from the station.

Patient Record

Subscription
Interface

Component
Description

Component
State

Subscription
List

Constituent
Component(s)

Media
Management

Registration
Interface

Record
Navigation

Record
Manipulation

Figure 59. Structure of the Patient Record Component

Given these things, it is likely that telemedicine station architectural patterns applied to
the patient record repositories will look something like Figure 60. Repository A

 74

Repository A

Administrative
Channel

Channel
Z

(Source)

Device Bus 1
Manager

Device Bus 1

Repository
B

Repository (Proxy) B

Proxy
Factories

Administrative
Channel

Repository (Proxy) C

Administrative
Channel

Media Interface
Manager

Media Interface

Record
Media

Proxy
Factories

Channel
Y

(Sink)

Figure 60. Patient Record Repository Portion of Station Architecture

represents the patient record analog of the “ideal device” discussed in the previous
section. It is fully functional as a repository and attaches directly to the station’s internal
communications bus. Repository B is also fully functional but attaches to the station by
means of a device bus. In as much as bus -level addressing consideration must be
addressed, a proxy located on the station side of the bus routes all communications
between the repository and its client components (note that a similar arrangement that
vested the proxy with more intelligence can be used to accommodate a repository that
does not natively support the standard telemedicine station patient record interfaces).
Repository C represents the situation in which the underlying patient record system is
nothing more than data stored on some sort of removable media (e.g., a smart card or
touch memory). In this case the device is attached to the station by means of some sort of
reader. As with device buses, this reader is monitored by a manager component. When
the media is detected, the appropriate factory is notified, a proxy is created, and the data
from the media is harvested to populate the repository. From this point on, all repository
operations, with the exception of writing and deleting, are carried on exclusively with the
proxy. Even in the case of writing and deleting, the proxy may control when these
operations actually occur (e.g., certain kinds of media may indicate that buffered
operations and bulk writes are the preferred method of interacting with the physical
media).

 75

Finally, it is important to note that a tremendous amount of effort has been invested for a
number of years now in the area of standards for electronic patient records (EPRs) and
the results of this work are quite substantial. In addition, the larger patient record market
is populated by a number of vendors, several of them quite large. Given this, the intent in
proposing the structure described above is not to define yet another standard for EPRs but
to provide a reference model for the storage and retrieval of data within the context of an
individual telemedicine station or network of stations. While this model, in whatever its
final form will be, might become the “native” storage format used in telemedicine
systems, given the criticism that telemedicine systems generally do not integrate with
other hospital information systems, it is vitally important that bridges be built between
this structure and other EPR structures and protocols in common use. This is discussed in
more detail below in the section on patient record communications.

3.2.3.3 User Interface Devices
There are a number of goals for the user interface aspects of a station’s design. As with
other devices, it should be possible to add and remove interface resources in plug-and-
play fashion. To the extent that different physical user interface devices support it, it
should be possible to freely switch which devices are used for controlling and monitoring
a given function and for reviewing data generated or stored within the station. It should
also be possible to use multiple interface elements for a given purpose (e.g., it should be
possible to start a given protocol both by selecting an element on a screen and by using a
voice command). Interface controls will come in a variety of forms. They may be
integral to the device that they are control, such as a physical start and stop button on a
blood pressure monitor, or they may be separate from the device, such as an interface on
PDA that is used to control a range of wireless medical devices.

Figure 61 illustrates several of the elements found in the user interface portion of a
telemedicine station. At the bottom of the figure is the device that is being controlled and

Thermometer Graphical Control

Touch Screen Display Headset

Start_Button_Pushed “Take Temperature”

TextBox1: 98º Say: “98 degrees”

TakeTemperature

Temperature: 98

Thermometer Audio Control

Thermometer

Thermometer User Interface Controls

Audio In

Audio Out

Touch Coordinates

Pixel Activations

Figure 61. Relationship Between Components, UI Devices, and UI Controls

 76

monitored using the interface elements shown. At the top are the physical devices with
which the user interacts. These devices generate and accept a limited set of signals, the
exact interpretation of which is dependent on their immediate context. In this case, the
devices used are a touch screen system capable of graphic display and a headset
containing headphones and a microphone. In the layer below this, a graphical control for
the thermometer embodies the various buttons and display elements needed to interact
visually with the thermometer. Working in concert with the operating system on which
this software runs, the graphical control translates the touch coordinates from the display
into events that relate to the elements in the control (in this case, they represent the “start”
button in the control being selected). In similar fashion, the spoken audio signals picked
up by the headset’s microphone are decoded as the verbal command, “Take
Temperature”. Both of these events are translated by the thermometer user interface
control into the same command (TakeTemperature) that is sent to the thermometer. The
result of this command is data output from the thermometer that is passed back to the
thermometer user interface control where it is translated into commands that each of the
respective controls can handle. In the case of the graphical control, the instruction is
given to update TextBox1 to display the character string “98°”. Similarly, the audio
control is told to speak the phrase “98 degrees”. The result is that the user both sees the
temperature reading on the display and hears it spoken through the headphones.

In order to accomplish the goals set for the user interface, both levels of control need to
be addressed. While the approach shown in Figure 61, which centralizes all “event
handling” related to a component is fairly common, it also makes the goal of creating
plug-and-play user interface components harder to realize. As an alternative, the lower
control layer (the thermometer user interface control) could be split into two parts
corresponding to each of the device-specific controls. Then these controls could be
treated as components and readily added to and deleted from a station. While the two-
layered organization delivers some flexibility to the user interface design (e.g. “Say: ‘98
degrees’” could easily be replaced with “Say: ‘Temperature normal’” through a change in
a configuration file), treating layer pairs as a single component means that developers are
free to render the interface components as monolithic entities.

In addition to user interface controls, three other components are central to the user
interface portion of the telemedicine station architecture. These are contexts, user
interface frameworks, and protocols (Figure 62). The user interface framework is a
specialized component that provides access to the “top-level” protocols and/or top-level
controls that an operator uses to interact with the system. For example, from the
framework, a user might invoke a specific protocol or cause a specific control to be
displayed (that, in turn, would invoke particular protocols). As described earlier,
invoking a context causes this aggregation of user interface components to be assembled
in a way that is tailored to the needs of the context’s owner. As with other components,
the assembling is achieved by directing all of the components involved to subscribe to
one another’s services in a particular way (note that in the figure, the channels that would
be used to support these subscriptions are not shown).

 77

Administrative Channel

Context

Protocol

UI Framework UI Control

Figure 62. User Interface Architecture

In considering how to support plug-and-play on the user interface, three approaches seem
attractive. In the first, an external device (e.g., a pocket computer) runs one or more
interface applications. Once attached to a station (by wired or wireless connection), the
component registration process reveals the presence of the user interface components.
The user’s context then binds the station-hosted protocols to the appropriate interface
elements on the handheld and the user can select and control station operations from this

User Interface (Proxy) A

Administrative
Channel

Device Bus 1
Manager

Device Bus 1

Full Interface
Component

User Interface B

Proxy
Factories

Administrative
Channel

Figure 63. User Interface Portion of Station Architecture

 78

device. In the second approach, an user interface framework that is native to the station
is capable of accepting new user interface “plug-ins” that extend the framework’s
capabilities. As needed, new user interface components can be loaded onto the station,
installed in the framework, and then, as required by the governing context, mapped to
specific protocols. In the third approach, user interface components are downloaded to
the station at the moment of need, used for a period of time, and then released (rather
than being permanently installed). This last approach is seen in many web-based
applications.

Figure 63 depicts the two patterns implicit in these three approaches. In the case of the
PDA, the device hosting the user interface components would access the station through a
device bus. Because of the addressing issues entailed, a proxy to this device would be
spawned on the station to route messages between the user interface components and
other components on the station. Note that this approach might also be used to
implement a standard user interface for compound devices that possess only proprietary
controls. In the latter two cases, the interface elements would be installed as local
components (even if for just a short period of time) and would interact with other
components in the standard way.

3.2.3.4 Processing
In most cases, processing elements will be software entities that can register with a
station and present themselves to the rest of the station as standard components. At the
same time, it is also possible to render a processing capability as a specialized piece of
hardware. For example, it is easy to imagine a signal-processing unit that plugs into the
station’s internal network or that attaches to the station via a device bus and that delivers
data transformation capabilities for specific clinical applications, such as the detection of
certain types of artifacts in a given kind of data set. As with other devices, these
hardware-based components might communicate using standard compliant interfaces or
proprietary interfaces. As with the other components discussed so far, the approach taken
by the architecture is to proxy the device when required for message routing and when
required for the purpose of translating between standard and proprietary protocols.

3.2.4 Station-to-Station Operations
Given the station architecture described above, the next question to address is how to
design telemedicine systems to allow stations that have never before interacted with one
another to discover each other and to begin to make use of each other’s capabilities.

3.2.4.1 Communication-Related Components
As with station-internal operations, station-to-station operations are built on a few key
building blocks that are elaborated in different ways to handle the range of station-
external communication needs found in telemedicine. These building blocks are the
station’s communication devices, the communication managers associated with each of
these devices, the channels that route data between internal and external components and
that transform these data as required, an external communications manager that
provides the station’s “dial tone” to external stations, and session managers that
moderate all requests for service by external stations.

 79

3.2.4.1.1 Communication Devices
The foundation of this section of the station’s architecture consists of the devices that are
used by the station to move bits into and out of the station. These may be standard
modems, wired Ethernet transceivers, radios, or any number of other devices capable of
supporting point-to-point or networked connectivity. Like many of the devices discussed
so far, these components can typically be controlled by a proprietary protocol or one that
is standard within their industry (such as the AT command set used in modems). One of
the key concerns in this area is hiding from station-internal components the fact that
different classes of devices will function in different ways. For example, communicating
using a standard modem involves a phase in which the desired circuit is established and,
after use, one in which it is torn down. With other technologies, such as cable modems,
the connection to the outside world is persistent.

Most telemedicine stations in use today provide a single communications device for
establishing external communications. In as much as most current station designs are
monolithic, the device is tightly integrated into the station. With the component-based
approach advocated in this document, this need not be the case. If desired, it should be
possible for a station to employ multiple devices simultaneously and to even share
devices across multiple stations. While this might eventually include allowing multiple
stations to simultaneous employ the communication resources of a given external
communications device, the current thinking here is that a given external device might be
used by any station in a cluster of stations but only by one station in the cluster at a time.

3.2.4.1.2 Communications Manager
In order to shield station components from the details of what kinds of devices exist to
support external communications and how these devices are controlled, the architecture
includes the communications manager. On its station side, this component provides a
standard set of services that are used by other components (primarily protocols) to access
and control communication resources. On its device side, each communication manager
provides the interfaces needed to control the operation of the device for which it is
responsible. The job of each communications manager is to translate standardized
station-side transactions into device-specific operations and to translate device-specific
events into standardized state event messages usable by other components in a station.

As with the media managers on the station’s internal communications bus, one of the
services provided by the communication managers is the establishment of channels that
can be used for external communications. In addition to negotiating for bandwidth to be
allocated to a given communications link, this process of establishing a channel involves
specifying the protocols to be used on the communications link, the quality of service
required, and the security mechanisms to be used during communications.

3.2.4.1.3 Channels
As in station-internal communications, external communication channels are
instantiated as station components that route messages and data streams between the
underlying communications media (in this case, the data interfaces of the communication

 80

devices) and other components within the station. As shown in Figure 64, this typically
involves the use of an internal communications channel to make the connection.

Channel X (on Internal Communications Bus)

Patient
Record

Communication
Channel

Figure 64. Interactions Between Channel Types

Whereas station internal communications are meant to be format-neutral, differentiating
only between those messages that levy some sort of quality of service requirement and
those that do not, the same is not true of external communications. The intent in the
design of the external channels is to allow them to also be able to perform format and
protocol conversions as needed to support interoperation with external systems.

3.2.4.1.4 External Communications Manager
Just as the internal communication bus maintains bus manager that governs top-level bus
operations, stations that support station-to-station communications will employ an
external communications manager. This component exists to control whether or not a
session will be established between the station to which this component belongs and one
or more remote stations. When other stations come knocking, it is the external
communications manager that answers the door. If a session is to be established, then it
is the external communications manager that causes a session manager to be created to
govern communications during this session.

3.2.4.1.5 Session Manager
During a session with a remote station, a station’s session manager proxies leasing and
subscription services offered on the remote station. In the case that multiple stations wish
to access a given station at the same time, the station launches a session manager for each
of the querying stations and these managers collaborate throughout the sessions to
balance needs of all of the client stations. When remote resources are leased, the session
manager is responsible for ensuring that proxies needed for these resources are
instantiated on both its own station and on the remote station. In establishing secured
operations, the session manager serves as the focal point for session negotiation and
access controls. Likewise, when quality of service must be maintained with the network,
it is the session manager that negotiates and secures QOS agreements from the
underlying network and that monitors status reports from this network throughout the
session, renegotiating with both the network and the station-internal components as
needed to ensure continuity of operation. In the case that more bandwidth is required
than the station can support, the session manager works with the components involved
and other session managers on the station to negotiate vacation of bandwidth or, at the
least, new quality of service regimes.

 81

3.2.4.2 Operation of Station External Communications
In supporting external communications, a station must be able to handle variations in
both the kind of connection being made to a remote station and in origin of the
connections. Specifically, the station must be able to:

• initiate a connection (when persistent connections are not used or usable),
• accept an invitation to initiate a connection,
• initiate a session with a remote station, and
• accept an invitation from a remote station to participate in a session .

In addition, as a station begins the process of subscribing to remote services or supporting
services leased by a remote station, it must be able to instantiate channels that
encapsulate specific station-to-station protocols and that translate between these external
communication mechanisms and those used internal to the station and to tear these
channels down when they are no longer needed.

3.2.4.2.1 Initiating a Connection and Starting a Session
Connection to a remote station is initiated by a station-internal component (typically a
protocol) passing the remote station’s ID to the station’s external communications
manager and asking the external communications manager to initiate a session with the
remote station. In response, the external communications manager directs the appropriate
factory to create a new session manager component. Once this has been created, the
external communication manager directs the session manager to initiate a session with the
specified remote station. The session manger then checks the station’s address book to

Session
Manager

Address
Book

Comm.
Manager

Protocol

Configure Comms

Create Session …

Contact Info?

Contact Info

Comms Configured

Attempt Connection

Attempt Successful

Session Started …

External
Comms Mgr

Start Session

Factory

Create Manager

Manager Created

Session Created

Session Request

Request Accepted

Figure 65. Protocol Directing Establishment of a Session (with Connection)

 82

determine the kinds of connections supported by the remote station. In the case that
persistent connections are not available on the remote station, the session manager
retrieves all of the relevant communication parameters (e.g., phone number or radio ID,
encoding schemes) from the station’s address book and instructs the communication
manager for the requisite communications device to configure its device. After
configuration is completed, the session manager directs the communications manager to
attempt to establish a connection with the remote station. If the remote connection is
successfully established, the communications manager notifies the session manager,
which, in turn, notifies the external communications manager. Finally, the external
communication manager answers the original request to start a new session by returning
to the requesting component a handle to the session manager created to run this session.

For stations employing persistent communications, the interaction diagram degenerates to
the following figure.

Session
Manager

Address
Book

Comm.
Manager

Protocol

Create Session …

Contact Info?

Contact Info

Session Started …

External
Comms Mgr

Start Session

Factory

Create Manager

Manager Created

Session Created

Session Request

Request Accepted

Figure 66. Protocol Directing Establishment of a Session (with Persistent Comms)

3.2.4.2.2 Accepting An Invitation To Connect and Start a Session
While all of this is happening on the initiating end of the session, the remote station is
responding to the request to participate in the session. The first activity seen by the
remote station is a “ring” received by the remote station’s communications device
selected by the initiating station. The communications device automatically answers the
incoming call and negotiates with the initiating station the details of how low-level
communications will be carried out. Once this is settled and the stations are able to
exchange messages, the initiating station transmits a request to establish a session, which
is received by the remote station’s associated communication manager. This request is
forwarded to the station’s external communications manager, which then directs a factory
to instantiate a session manager component to manage all subsequent interactions. When
this has been completed, the external communications manager returns, via the

 83

communications manager, a message to the initiating station indicating the remote
station’s station acceptance of the request to establish a session.

External
Comm. Mgr. Factory Session

Manager
Initiating
Station

Session Request

Create Manager

Comm.
Device

Ring

Comm.
Manager

Answer

Negotiation

Session Request

Manager Created

Request Accepted

Request Accepted

Figure 67. Station Accepting Request to Establish Session

When persistent connections are used on the remote station, the interaction diagram
degenerates to the following.

External
Comm. Mgr. Factory

Session
Manager

Initiating
Station

Session Request

Create Manager

Comm.
Device

Comm.
Manager

Session Request

Manager Created

Request Accepted

Request Accepted

Figure 68. Station Accepting Request to Establish Session

3.2.4.2.3 Launching An External Communications Service
At this point, the stations can begin to explore and/or employ each other’s services. In
the case that the session was established in response to the processing of a caregiver or
patient context, the initiating station will attempt to connect to one or more specified
resources on the remote station. This is accomplished by first establishing on one or both
stations software components needed to proxy interactions between remote components

 84

Remote StationInitiating Station Patient
Record
Control
Proxy

Patient
Record
Proxy

Media
Management

Control

Record
Navigation

Control

Record
Manipulation

Control

Media
Management
Monitoring

Record
Navigation

Status

Record
Manipulation

Status

Patient Record

Media
Management
Monitoring

Record
Navigation

Status

Record
Manipulation

Status

Patient Record
Control

Media
Management

Control

Record
Navigation

Control

Record
Manipulation

Control

Figure 69. Use of Proxies in Remote Interactions

and then establishing the appropriate subscriptions between these proxies and
components residing on both stations.

For example, consider the case that the initiating station wishes to interact with a medical
record repository on the remote station. The use of a repository implies the use of two
complementary sets of controls – the controls embedded in the repository itself and the
controls embedded in the components that manipulate the repository. In the figure,
proxies of each type appear on each platform as a means of encapsulating
communications needed to allow remote interactions. In other words, a proxy exists to
allow components on a station to interact with remote components as though they were
local.

While this may seem like an overly complex way of dealing with remote interaction, this
pattern allows for more complex system interactions than implied by Figure 69. For
example, assume that the initiating station has some way of determining that the medical

Remote StationInitiating Station Patient
Record
Proxy

Media
Management
Monitoring

Record
Navigation

Status

Record
Manipulation

Status

Patient Record

Media
Management
Monitoring

Record
Navigation

Status

Record
Manipulation

Status

Patient Record
Control

Media
Management

Control

Record
Navigation

Control

Record
Manipulation

Control

TSIA
Compliant

Non-TSIA
Compliant

Figure 70. Use of Proxies in Protocol and Format Translation

 85

record repository on the remote station operates according to a set of interfaces other than
those standardized in this architecture by the telemedicine community. The use of
proxies provides a way for converting between this other format and protocol and that
used internal to the telemedicine station (Figure 70).

To establish proxies for a specified resource on a remote station, the initiating station
pursues the interactions shown in Figure 71 and Figure 72. The protocol controlling this
operation first queries the remote station’s registry. This is accomplished by using the
channel set up through the session managers on each station. When the lease is
established, the protocol then directs the local session manager to establish a channel to
the leased resource. Working in concert with the session manager on the remote station,
proxies are established on each station and interconnected to form the requested channel.
In like fashion, the protocol is able to establish communication channels on both the local
and remote station’s internal communication buses.
Once all of the needed resources have been secured, the protocol knits them together
using the standard subscription mechanisms. As with leasing of remote resources, all
subscription communications between the local protocol and remote resources are
mediated via the session management channel (although this mediation is not shown in
the figure below). When this subscription process has been completed, components send
and receive messages as normal, irrespective of where they are located relative to one
another.

Remote
Registry

Remote
Session Mgr

Remote
FactoryProtocol

Create Proxy

Local
Session Mgr

Lease (by name)

Local
Factory

Leased

Complete Channel

Proxy Created

Channel Completed

Create Channel

Create Proxy

Proxy Created

Channel Created

Lease (by name)

Leased

Lease (by name)

Leased

Figure 71. Protocol Leasing Remote Component and Setting Up Channel

 86

Local
Proxy

Remote
Component

Remote
Internal
Channel

Protocol Local
Component

Subscribe to …

Local
Internal
Channel

Subscribe

Remote
Proxy

Subscribed

Subscribed to …

Subscribe to …

Subscribe

Subscribed

Subscribed to …

Attach to …

Attached to …

Attach to …

Attached to …

Attach to …

Attached to …

Attach to …

Attached to …

Figure 72. Protocol Establishing Local and Remote Subscriptions

3.2.4.2.4 Exploring Services On A Remote Station
As noted earlier in the document, one of the goals of this architecture is to allow stations
that have never before interacted to discover each other and to then explore and employ
each other’s resources. In order to do this, an initiating station must be able to do with
the remote station’s components many of the same things that it does with its own
components. In particular, it must be able to query the remote station’s registry to
determine what resources are available, to lease components on the remote station, and to
cause local and remote leased components to subscribe to one another as needed to
support associated protocol operations (Figure 73). As with the remote leasing and
subscription interactions described above, all interactions shown in the figure below are
mediated by the session management proxies established when the stations first made
contact with one another.

Finally, before moving on to a discussions of specific types of external communication
services, it should be noted that, while the interactions discussed above were all couched
in terms of an initiating and remote stations, there is nothing to say that many of the
interactions could not be initiated by the remote station. For example, while a nurse
could certainly “call” a patient’s station and end up leasing and controlling devices on

 87

this remote station, the patient station could just as easily initiate the call. In this case, it
would be the “remote station” that ends up exploring and leasing capabilities on the
initiating station. Similarly, it is easy to imagine scenarios in which control of resources
local to one station is shared by components both on that local station and on the remote
station.

3.2.4.3 Notes on Specific Communication-Related Services
Given these general patterns for managing external communications, there are a number
of services that need to be implemented based on these patterns.

3.2.4.3.1 Registry Server Operations
While each station could (and will) maintain its own address book that it would use when
needing to contact another station, a more general solution for locating the network
addresses of other stations is needed. To this end, the architecture proposes the
establishment of a network of registry servers that will serve as a means of finding
specific stations or just stations of a given type.

Local
Protocol

Remote
Registry

Find component (by type)

Component List

What services…?

Services …

What messages…?

Messages …

What events & states …?

Events and states…

Lease

Leased

Figure 73. Station Accepting Request to Establish Session

When a station first wants to join a telemedicine network, it makes contact with a registry
server through the use of a well-known network address. The station is then put in
contact with an appropriate registry server in the registry network and a secure
communication session is established between the server and the station. The station
then passes identifier information (e.g. , station owner, the station’s common name, where
the station is physically located, etc.) to the registry server, which stores this in the station
record that it has created in its database. The server then returns the “station ID”, a
globally unique identifier that is then stored by the station in its registry. After the

 88

session is completed, the registry server begins propagating the new station data through
the registry server network.

If a station that has already been registered moves to another location on the global
network (i.e., its network address changes), then the station will notify a registry server of
the fact via a secured message. Once accepted, the change propagates through the server
network.

When another station wishes to find another station, it passes a query to a registry server
and, if the station is found, receives back a network address for the station. This query
can be based on the station ID of the target station or on a combination of fields in the
server database that uniquely describe the station of interest. Alternatively, if the
querying station is interested in finding a given type of station (e.g., all home health
agencies), then a query containing the search criteria is passed to a registry server and the
network address of all stations meeting the qualifications are returned.

A station wishing to withdraw its registration sends a secure message stating this to a
registry server. Once authenticated, the server notifies the requesting station and then
begins propaga ting the change through the server network with the end result being that
the station’s record is expunged from the databases of all registry servers.

3.2.4.3.2 User Authentication and Credentialing
Before remotely located users can access a station’s services, they may be required to
prove their identity to the station. Likewise, before remotely located users begin to
transact business, they want to know the “credentials” of remotely located users. For
example, patients may want to know that they are dealing with a given kind of doctor and
one who is licensed to provide care. Caregivers may want to know whether the patient
with whom they are dealing are insured and by whom and for what. Given these things,
the protocols that make up this interface will provide mechanisms for transferring the
information needed to support both kinds of operations.

3.2.4.3.3 Session Management Operations
This interface deals with the ability of stations to contact and explore one another and to
negotiate how sessions will be conducted. Just as other components in a station must be
able to self-describe, session management requires that the station’s communication
resources be able to describe their capabilities to the communication resources on other
stations.

This interface also embodies the mechanisms used by the station to interact with the
networks to which it is attached for the purpose of establishing and monitoring quality of
service agreements.

3.2.4.3.4 Medical/POCT Device Operations
In support of employing medical devices attached to a remotely located station, the
telemedicine system architecture must enable both monitoring of the data being generated
by a device and controlling the device’s configuration and operation. In the case of
monitoring, the key concern (after secure communications) is how to establish the

 89

contextual data related to the readings (e.g., whether the person was standing, sitting, or
lying down when the blood pressure measurement was taken).

In the case of remotely controlling, things can become much more complex. In time
sensitive control situations, quality of service guarantees are critical. In many devices,
the ability of someone to hack into a device and harmfully reconfigure it is a major
concern.

3.2.4.3.5 Clinical Imaging Device Communications
Just as the station must provide for the remote monitoring and control of medical and
point of care instruments, it must be able to remotely monitor and control the operation of
clinical imaging devices.

3.2.4.3.6 Person-to-Person Communications
Protocols that must be implemented in this portion of the station-to-station interface
include those that support videoconferencing (to include audio and data sharing services),
email, and chat / instant messaging.

3.2.4.3.7 Patient Record Communications
Once a station has discovered that a remote station that it is exploring contains patient
records, it has the ability to both read from and write to some or all of these records
(depending on the authorizations enforced by the station).

3.2.4.3.8 Dynamic Configuration Communications
If the full potential of this plug and play architecture is to be realized, it must be possible
for normal people to assemble telemedicine stations by simply snapping together the set
of hardware components that support their particular needs. In assembling such a system,
software configuration has the potential of being complex enough to keep us from
realizing this goal. Given this, the station itself must be able to determine what software
it needs and to automatically find and retrieve this software if it does not exist locally.
Controlling this process is the job of the station’s installation manager.

When a device is added to a station whose type is unknown to the station, the device bus
manager for the bus to which the device was attached notifies the installation manager of
this fact. The installation manager then begins the process of finding and retrieving all of
the software components needed to support this device by first locating where the
supporting software components can be found. This can be done in either of two ways.
In the first, the new device stores the network address of the location at which its
supporting software can be found. In the second, the ID of the device is passed in a query
to a server network (possibly the registry servers) that returns the network address of the
location from which the software can be downloaded.

Software components stored at the identified location(s) will be in the form of an archive.
To retrieve the archive, the installation manager passes a request containing the device ID
to a serve r, which, in turn, returns the corresponding archive to the station. Once the
archive is in the station, the installation manager verifies the security attributes of the
file(s) and then begins the process of opening the archive. The components stored in the

 90

archive are extracted, loaded into the station, and then activated such that they announce
their presence and begin the registration process.

Based on a standing subscription that the device bus manager has with the registry, the
device bus manager is alerted when the device’s factory has been loaded onto the station
and, in response, it triggers the factory to generate a proxy for the device. As with all
such proxies, once it is created, it harvests the needed information from the device that it
represents and then registers itself with the station.

3.2.5 Terminologies and Concept Representation
The exact details of which vocabularies to use and which representations will necessarily
be delayed until other aspects of the architecture are settled out. At t he same, it is worth
noting that two different strategies might be employed here. The first is to standardize on
a telemedicine-specific “native” language and encoding for station-internal operations
and to translate between this native format and other s tandards when needed. The second
is to try to come up with a spanning terminology set that is drawn from the requirements
imposed by the different component standards embraced in the ultimate version of the
specification.

3.2.6 Assuring Station and System Operations
In the world assumed by this architecture, a number of key security and safety issues will
need to be addressed. While the specific details of how to secure an individual station
and a system of stations will be dependent on the specific technologies finally chosen for
the implementation of the architecture, an number of things can be said at this point about
the kinds of concerns that must be addressed and about potential approaches to
addressing these needs.

3.2.6.1 Assurance Concerns
As distributed computing systems, telemedicine systems and the stations of which they
are composed face many of the same problems as distributed systems used in other
applications. As medical systems, they must address the same kinds of issues faced by
other kinds of clinical devices. Among these are:

• control of patient data,
• control of access to system services,
• dependability of services,
• auditability of services, and
• issues related to operational context.

3.2.6.1.1 Control of Patient Data
Control of patient data falls into three broad categories: enforcing privacy requirements,
guaranteeing its accuracy, and ensuring its availability when needed. With respect to
privacy, the “bare” architecture discussed so far in this document presents a number of
concerns. First, data stored in repositories on a station might be read directly from the
records if no access controls are in place. Likewise, the files in which the repository data
is stored might be copied. The media (e.g., patient cards) on which these files reside
might be taken and read directly if not somehow protected.

 91

Data moving along the various communication links within a system are also open to
unintended disclosure. Eavesdroppers can intercept communications between stations.
Traffic flowing between components within a station can be picked up by unauthorized
users, especially in environments in which multiple stations exist and share resources
from a common pool of components. Even communication between stations and
“peripherals” (e.g., a medical device or a user interface on a PDA) are vulnerable to
interception, such as when RF links are used to connect the communicating devices.

A more subtle concern is persistent storage of information in components used by a
community. If, for example, a user interface component caches data sent to it by the rest
of the station, it might be possible for data generated in one user’s “session” to be
available to the person using the component in the subsequent session.

An even more subtle issue is the use of inferencing to learn things about a person that are
otherwise safeguarded against disclosure. One example of this would be tracking who is
talking to whom. While the observer may not be able to directly read any of the traffic
between a patient and his caregiver, mapping calls or network connections might be
enough to infer what kinds of health issues the patient is facing. In the discussion that
follows below regarding a security architecture, this issue will not be addressed. One
way of approaching this in the future is through the use of trusted intermediaries that
proxy users to outside entities.

Even in cases where a given individual or group is granted access to data handled within
a system, there will be times when this “authorization” may need to be limited to only a
subset of the data within the system. For example, a patient might be authorized to read
his “official” encounter records contained in his caregivers’ records but not the
“personal” notes maintained by the caregivers. In addition, access to a record given to an
individual in some circumstances may need to be restricted in others. A nurse may have
access to a patient’s chart during work hours and while at the hospital but not be
permitted access outside of hours or from off-site.

As with privacy, the integrity of patient data must be addressed on several fronts. In
communication in its various forms within a station or system, data elements can be
corrupted. If the threat is passive (e.g., noisy or unreliable communications), then simple
mechanisms for detection and correction are appropriate. If the threat is active, then
more advanced (e.g., cryptographic) techniques are needed. In storage, data can be
corrupted at each of the levels described earlier. Individual records can be corrupted.
Files can be altered independent of the mechanisms used to deal with records internal to
these files. The media on which the files reside can fail. In the case of the first, in as
much as medical documents are signed for the purposes of attribution and attestation of
veracity, steps must be taken to ensure that “signed” records in a repository can only be
amended according to rules of accountability.

Finally, control of patient data implies that those users with a legitimate need to access
patient records must have assured and timely access to this data. In addition to

 92

redundancy mechanisms (such as backup and restoration of records or replication across
multiple repositories), this means that it must be easy to locate and rapidly retrieve
relevant information. In some cases, this may mean providing mechanisms for allowing
certain users of the data to override default access control mechanisms when the
timeliness of access is exceptionally critical.

3.2.6.1.2 Control of Access to System Services
The ability to control how and when system and station services are accessed and by
whom has implications for both security and safety. As a starting point, it is necessary to
control how “authorized” users employ a system’s resources. Not all functions are
appropriate for all users. Certain clinical functions (especially those that are safety
critical) may need to be off-limits to patients being treated with the devices that deliver
these functions. Likewise, certain maintenance functions, such as device calibration, may
need to be restricted to personnel trained in these functions.

In telemedicine systems, it is entirely possible that a device’s functions may be accessible
both remotely (i.e., controllable by some remote device) and locally (e.g., through a front
panel on the device). In these cases, it may be desirable –even necessary – to allow the
device to be configured to preclude the use of one method of control or the other. In
these sorts of cases, care needs to be taken to ensure that access control cannot be
subverted simply through replacing one component with another (e.g., by replacing one
interface device that has been configured to enforce interface function access controls on
a station with another like device that has not been configured in this way).

In some cases, it will be important that a station’s configuration remain inviolate. In
these cases, all actions having to do with station configuration, such as addition of new
devices, must be rejected by appropriate station elements, such as the registry.

Even when remotely generated commands are encrypted or simply cryptographically
signed, steps must be taken to guard against “replay attacks”. In these attacks, valid
commands are recorded by a “man in the middle” and then replayed to and acted upon by
the target device that sees the commands as valid.

3.2.6.1.3 Dependable Services
If clinicians and patients are to use telemedicine systems to carry out healthcare
transactions, they must be able to trust that these systems will act faithfully and
predictably on their behalf. Of primary concern will be the correct operation of remote
devices and their correct employment. It is easy to imagine devices from a range of
manufacturers delivering a given agreed upon body of functionality at different levels of
fidelity. In addition, certain kinds of devices require periodic calibration and
maintenance. In both cases, caregivers employing these remote devices will want to
know the degree to which the data from these devices can be trusted for the clinical task
at hand. Related to this issue is the question of whether or not the person manipulating
the device at the patient’s location is operating it correctly. For instance, correct
interpretation of EKG traces depends on the leads having been correctly emplaced. In
cases of remote operation, a caregiver may be hard pressed to know with certainty that
this has been done. While certain technical approaches might be used to address this last

 93

issue, the central issue is operator expertise and reliability and no attempt will be made in
this document to suggest how this problem might be solved.

Much of telemedicine is about reengineering of care delivery structures – changing where
things are done and by whom. In order for this sort of restructuring to be effective,
devices made for remote operation must be designed for use by lesser-trained caregivers
or by non-clinicians. This may necessitate incorporating safeguards into such devices
that all but eliminate the possibility of the devices being used incorrectly or that limit the
damage that can occur from such misuse. Once again, how this is to be accomplished
will be addressed in this paper.

Because telemedicine systems are often employed in less than ideal settings,
communications reliability can be a significant issue. Consequently, systems intended
for use in these environments must ensure fail-safe operation in the face of
communication system interruptions. In addition, in performance critical operations, it
must be possible for the stations involved to gain a sense of whether or not the associated
infrastructure can guarantee certain responses before the stations commit to a given
course of action.

Another key issue in the area of dependable services is the question of system
composition. One of the goals of the architecture is permit ad hoc, plug-and-play
composition of stations from components produced by a range of developers and to allow
systems to be composed of stations that have never before interoperated. Whereas
current systems are certified by organizations like the FDA as turnkey capabilities,
mandating this approach to certification of future telemedicine systems would gut the
benefits to be realized by a component-based station architecture. Some other means of
ensuring that arbitrarily composed stations and systems are safe must be found. Related
to this is the question of how a station knows that it can trust the software that is
downloaded into its space when it is automatically configured to support a new device.

3.2.6.1.4 Auditable Operations
Much of what has been discussed so far in this section is predicated on the ability to
strongly authenticate all parties and system elements to one another. In remote
operations, caregivers must know who is on the other end of a link. They must have a
sense that any data generated by a remote station during a session or actions taken by that
station are associated with the person that they believe to be on the other end of the link.
Likewise, when patients “visit” a remote caregiver, they want to be able to identify the
individuals with whom they are dealing.

In many cases there will be a need to log what operations were done using a given station
configuration, when these operations occurred, who performed the operations, on whom
they were performed and with what resources. In addition to the obvious connection to
patient records, this audit log feature may be required for, among other things, tracking
down erroneous data generated by a faulty component or for identifying operator
problems that need to be reme diated in some way.

 94

3.2.6.1.5 Issues Related to Operational Context
A variety of assurance measures are available to designers of sure components and
systems but not all measures are appropriate to all uses. Likewise, different countries
have different laws regarding what kinds of mechanisms can be used for a given need.
As a result, it may be difficult for the telemedicine community to dictate a specific suite
of mechanisms for use in safeguarding stations and systems. For this reason, it will very
likely be necessary for stations to explore each other’s assurance capabilities and to
negotiate an assurance “policy” that dictates what needs to be secured and how during the
course of a session conducted by these stations.

Finally, even though much of what is discussed in this document focuses on interactions
between two stations, nothing precludes multiple stations interacting with one another at
the same time. One example of this would be a three-way conversation between a
patient, his caregiver, and a consulting specialist. Given this, solutions chosen for
securing station-to-station interactions should be capable of networked operation and not
just point-to-point operation.

3.2.6.2 The Trust Model
In securing a system, the chief question is always “In what are you placing your trust?”
Note that in security, as in most things in life, there is no silver bullet that can solve all
problems; therefore, when we say that we are trusting some portion of the system, the
salient question is “For what are you trusting it?” Figure 74 highlights those parts of the
system architecture in which it is proposed that trust be placed for some aspect of
security.

Station

External
Comms

Remote
Station

Registry
Server

Vendor
Server

Access
Point

Passthru
Device

Station
Core

Storage
Device

Figure 74. Points of Trust in Architecture

In brief, here are the roles that each portion of the station and system play in maintaining
ensuring secure system operation.

3.2.6.2.1 Humans
Human operators can play any or all of four roles: station user, administrator, maintainer,
or auditor. Station users perform all of the operations described earlier in this document
(adding, removing, and operating devices and employing other station functions).
Administrators establish authorizations for all other users, specifying what they can and
cannot do on a given station under specific conditions. Under certain circumstances, they
manage the configuration of stations and devices, controlling what kinds of devices or

 95

which specific devices can be added to a given station and establishing specific settings
for both. Maintainers have responsibility for ensuring that equipment is operating
correctly. In some cases, this will entail employing device functions unique to this role
and configuring certain aspects of device operation. Finally, auditors manage audit logs
maintained by stations. This management includes setting authorization for reviewing,
editing, archiving, and deleting audit logs. The goal in separating auditing from
administration and maintenance is to allow for independent review in environments
where this level of oversight is required. Note that, in this discussion, roles and
individuals are not the same thing and that any one operator in a telemedicine system
may be empowered to play more than one role, up to and including all roles. How the
assignments are made will depend on the security concerns associated with each station’s
and system’s operating environment.

From a trust perspective, the system security architecture relies on all four user types to
protect their user authentication mechanisms (e.g., passwords or security tokens). Except
where independent auditing is employed, it also relies on each authorized user to safely
and securely use the capabilities to which they have been given access (e.g., to not
employ devices in ways that would harm a patient or to access records only on a need-to-
know basis). Administrators are trusted to correctly implement authorizations for all
system users. Auditors are trusted to regularly review and analyze audit logs to assure
that authorized personne l are behaving as they should and that unauthorized users are not
accessing a system’s services.

3.2.6.2.2 Pass-through Devices
These are those devices in the system that exist to move data between the cyber and
physical worlds (e.g., medical devices, user interfaces devices). These devices will come
in two flavors: untrusted and trusted. Untrusted are those suitable for use in
environments in which access to stations is controlled and in which the devices may be
added to or removed from a station only by authorized personnel. In these environments,
it is also assumed that all device bus communications are protected by the environment
(i.e., no one can eavesdrop on private data streams or spoof either the devices with bogus
commands or those elements that would use the devices with bogus data that appears to
come from the device in question). Note that these assumptions are being made today in
prominent medical device standards, such as IEEE 1073 and the POCCIC lab device
interoperability specifications.

Trusted pass-through devices are those meant for use in inherently untrustworthy
environments in which access to stations is not tightly controlled and in which the device
buses may be accessible to unauthorized parties (e.g., when RF communications are
used). At a minimum, trusted devices are assumed to maintain a universally unique ID
and to provide a cryptographically secure means of ensuring private and authentic
communications. At a minimum, these secure communications protect the data flowing
across the associated device bus. Ideally, they would support negotiation and
implementation of both encrypted and cryptographically authenticated data
communications between the device and other components within a station, such as the
registry, authorized protocols, and end components that subscribe to the device and to
which the device subscribes. These devices are also assumed to not rely on a proxy for

 96

implementation of their security capabilities and, instead, implement these functions
internal to themselves. Ideally, these devices also carry some sort of tamper indicating
mechanisms that make undetected alteration of their internals difficult to achieve.

3.2.6.2.3 Storage Devices
This category includes both those devices used to store medical records and those used to
store patient context information. If the medium on which files and other data items are
stored can be physically protected, then only access controls on the underlying file
services and on the overriding record services are required to ensure the privacy of these
records. If the medium can be removed, then additional requirement of data encryption
may be levied on the device to ensure that data is protected when the medium has been
removed from a station. Also, in both cases, some form of data authentication may be
required to ensure that data, once stored, cannot be corrupted without detection. Lastly,
storage devices and, therefore, the data that they support are always vulnerable to single
point failures. For this reason, some sort of redundancy in storage is always
recommended, whether this be through periodic backup of files, shadowing of files, error
correcting mechanisms that allow partially corrupted files to be reconstituted, or some
combination of the above.

3.2.6.2.4 Access Points
As drawn in the figure, “access points” are communication platforms that might be used
in distributed station designs and that serve as bridges between device buses and a
station’s internal communications bus. A component of this type would typically contain
one or more device bus managers (depending on the type and number of bus transceivers
that the component incorporates), proxy factories for each kind of device that the device
buses might host in a station, device proxies, and whatever “channels” are established to
allow other communication devices to interact with proxies that have been launched on
the component. From a communication security perspective, these components can
operate in either of two ways: unsecured and secured.

In the unsecured mode, these components pass unaltered all traffic flowing on both the
component’s device buses that they host and on their connections to the internal
communications bus. This mode may be used in environments in which physical security
measures are assumed to provide adequate protection to a station’s internal
communications or in environments in which trust relationships are established between
the devices hosted by the component and devices located elsewhere in the station. The
first case, the component is routing unencrypted traffic; in the second, the traffic that it
carries is encrypted.

In the secured mode, the component manages the encryption and decryption of traffic
moving onto and off of the internal communications bus to which it is attached. This
mode allows for creation of stations in which station resources, such as a medical record
repository or an external communications gateway, may be situated at a different location
than the medical and user interface devices attached to the component collocated with the
station user. While the device bus communications may be considered to be secure based
on constraints placed on its physical environment, the larger internal communications bus
is not.

 97

Beyond encryption, an access point may be trusted to support certain aspects of access
control. In particular, the process of registration and subscription described earlier in this
chapter did not address the question of who was adding or removing components from a
station. In a station that implements access control for each of its services, it must
possible for the station to be configured to only accept devices being installed by a
specific station user, to only accept specific devices (i.e., devices having specific unique
IDs), to only accept specific kinds of devices, or some combination of the three. In the
case of an access point to which the device is being attached, this means that the
interactions shown in Figure 54 and Figure 38 now function together as shown in Figure
75. Once the registry has refused to add a device to a station, the proxy for that device is
terminated.

3.2.6.2.5 Station Core
The station core shown in Figure 74, represents the station’s central building blocks – in
particular, the registry, the default context, the internal communications bus’ bus
manager, the external communications manager, and the installation manager. Taken
together, these components will have central responsibility for governing access to station
resources

Device Bus Factory Registry

Description:…

Describe yourself

I’m here

Who are you?

I’m a …

New Device: Type …

Create Proxy: Type …

Proxy

Register (Address, ID)

Registration Rejected

Figure 75. Refusing the Addtion of A Device to a Station

The station core is also trusted to support secure station-internal communications
(encrypted and/or authenticated) where needed. As with the other components given this
responsibility, implementation is achieved via mechanisms built into the channels that the
station core employs.

Next, the station core has primary responsibility for logging safety- and security-critical
events along with other events of interest identified by the station’s auditor(s) and
administrator(s). The station core is trusted to ensure that these records are kept private

 98

(i.e., divulged only to those users with proper authorization) and available (i.e., like other
storage requirements, protected against single point failure of the underlying storage
medium). Note that this auditing requirement implies the presence of audit-enabled
services in the station’s other components.

3.2.6.2.6 External Communications
The station is involved in three sets of external communications: communications with
other stations, communications with registry servers, and communications with software
servers. In each of these, the external communications channels are trusted to ensure, as
required, privacy and/or authenticity of data crossing these links. As with station-internal
communications, this trust is vested in the mechanisms that implement the “channels” set
up in support of external communications.

Both to support auditing and to ensure the integrity of medical records, stations may
require the use of a trusted external time source. Depending on the approach used to
implement this requirement (i.e., either synchronizing internal clocks with the external or
retrieving time stamps from the external source) the external communications will be
trusted to ensure accurate synchronization with the external source or to support
generation of cryptographically-provable binding of station-internal records to externally-
generated time stamps.

3.2.6.2.7 Remote Station
As the access point for remotely located users wishing to employ the local station’s
resources, remote stations are trusted to enforce authentication of all users of those
stations.

3.2.6.2.8 Registry Server
In station-to-registry server communications, both the station core and the registry sever
must provide mechanisms that ensure that only the station can ever present itself to the
registry server as that station. This implies that once a server assigns a unique ID to a
station in that station’s initial registration process, the registry server (and all of the other
servers in the network) are trusted to never again issue that same ID and to protect the
integrity of registration data.

If secure time-stamping is used, the registry servers are logical candidates for providing
the external time source data. This would mean that the server network would trusted to
ensure the integrity of time-stamp data that it provides.

3.2.6.2.9 Vendor Server
In station-to-vendor server interactions, the device vendor is trusted to have secured the
downloadable software in a way that allows the station’s installation manager to verify
the authenticity of the software package’s source and the integrity of its contents. The
vendor is also trusted to have ensured the integrity of the code prior to its packaging for
distribution.

 99

3.2.6.3 A Security Architecture
Given the system assurance needs and the trust model elements described above, the
following security elements are proposed for the telemedicine system architecture.

3.2.6.3.1 Trusted Platform
The foundation of the station’s security is the ability of the platforms that host the various
station processes to ensure that these processes cannot be corrupted, either when running
in program memory or when in longer term storage (e.g., disk or ROM). In as much as
one of the architecture’s goals is to allow for code mobility, so that processes can be run
from the “right” place in a given system, this foundational element requires that the code
modules carry signatures that allow their trustworthiness to be examined before being
loaded in to program memory.

3.2.6.3.2 Secure Station-Internal Communications
Assuming that the processes running on a given station platform are secure, the next
element required in the security architecture is a means of knitting together processes
scattered across independent platforms. For example, a user of a home system may have
a set of external communication processes that run on a home gateway, the registry and
other core station processes as well as data storage processes that run on a network-
attached general purpose computing platform, device-specific processes that run on a
network access point, and user interface processes that run on a net-ready palmtop PC. In
instantiating a station, each of these components may need to be securely connected to
one or more of the other components at some point in a session.

Establishing secure, station-internal communications is a two-phase process. In the first
phase, preliminary information needed for eventually establishing a secure link is created
and positioned where required. This can occur in either of two ways. In the event that a
system’s composition is essentially static (e.g., as in the components that might be found
in a home care setting), then the initial “installation” process that is followed when a
device is added to the station for the very first time will include a step in which all
devices already attached to the system and the new device are all told that it is okay to
trust each other. Depending on the particular approach ultimately selected by the
telemedicine community, this may result in the sharing of some common secret (e.g., like
the “base” number used in Diffie-Hellman exchanges). In the event that a station’s
composition is quite dynamic (as in the case of a doctor’s PDA moving from room to
room during rounds or equipment on a ward that is taken from the supply closet and
placed in rooms as conditions dictate), then an alternative mechanism (such as the
creation and registration of certificates) is used.

Either way, once the initialization has been completed, devices are ready to establish
secure communications whenever required. Whereas, in other applications, this might
entail the entities that want to interact first exploring each others capabilities and then
jointly agreeing on a policy to be pursued for the session, in this architecture, each
entity’s capabilities will have been part of the information harvested from the entities
when they first registered with the station and the problem of deciding what capabilities
to employ will fall to the protocols that lease these entities. Given this, all that remains

 100

for the entities is to establish the secured session in whatever fashion has been dictated to
them using the information established during initialization as the starting point for this
task.

3.2.6.3.3 Secure External Communications
Because a key goal of the architecture is to allow stations that have never before
interacted to discover each other and to then begin transacting business, independent
stations will employ certification (e.g. public key infrastructure) approaches as the basis
for bootstrapping trusted communications. Because a given station can host multiple
simultaneous communication sessions, with each possibly having its own approach to
assurance, implementation of each security mechanisms will be embedded in the external
communication channels set up to support these sessions. While more complex than
some other approaches that might be taken, this allows the station the greatest flexibility
in supporting existing standards that may have already selected their own (potentially
disparate) approaches to securing their protocols. As with station internal
communications, the security policy used for a given session (e.g., “We will use
encryption algorithm X with key of length Y established using key exchange algorithm Z
and we will use counter-based anti-replay starting with counter value A.”) may be
established dynamically based on negotiation following a period of mutual exploration of
each other’s capabilities.

To address quality of service issues, the telemedicine community will need to select a
suite of protocols that allow individual stations to interact with the communications
infrastructure to which they are attached with a view to negotiating quality of service
guarantees from this infrastructure. Similarly, protocols will need to be in place that
allow the stations to monitor network status and to be alerted when the network believes
that it will not be able to support the existing QOS agreement. While much work is going
on in this area in the networking community, much of this work is still nascent and the
telemedicine community may need to wait a while before committing specific protocols
that address these needs.

3.2.6.3.4 User Authentication
Authentication of users will be handled in two ways, depending on where a user is
relative to the station of interest. For a user logging into a local station, the station will
provide a “trusted path” between the interface mechanism used to present user
identification and authentication (I&A) data (e.g., user name and passwords or token-
based data) and the processes in the station core that handle validation of this data. In
situations in which the user interface devices are integral to the platform on which the
core elements are running, this trusted path may be provided by the core services and/or
the foundation (e.g., operating system) on which they rely. In the case of peripherals
(e.g., a PDA or security token attached to a network access point, this path may consist
both of secured processes running on the trusted station platforms and secure
communications established from the interface point back to the station core. In either
case, it is the core that accepts or rejects the data presented and that notifies the access
control processes in the core when a user has been logged onto the station.

 101

When the user accessing the station is remote, several different approaches are possible
depending on how the telemedicine community wants to handle this issue. In the first,
each station handles remote users in much the same way as local users (i.e., with
authorization tables and I&A data being stored by the station). In this case, the I&A data
might be passed from the remote station over a secure link established by the remote and
local stations. Alternatively, a one-time password mechanism might be used in lieu of a
secure channel as a means of protecting against passwords being captured.

In the second approach, a global certification system that allows any user to be identified
and authenticated to any other user is established and users are able to make authorization
decisions regarding what services (e.g., access to patient records or the ability to monitor
and/or control devices on the station) if any to expose to given remote users either on a
session-by-session basis or using standing authorizations as is suggested in the first
approach. .

The third approach uses either the global certification scheme of the second or the
station-centric approach of the first but uses role-based controls rather specific identity-
based controls to mediate access. In this approach, a station grants privileges to classes
of users who can prove that they belong to a given authorized class.

Of these approaches, station-centric methods are the least favored. in that they only work
well for small, closed communities whose user populations do not change much or often.
Of the remaining two, role -based allows some degree of simplification in administration
and identity-based provides the potential for finer -grained controls.

3.2.6.3.5 User Credentialing
Related to the question of user authentication is that of credentialing. In an environment
where interactions may be conducted only over the wire, some means of establishing
what a person is capable of doing and authorized to do. In the case of caregivers, this can
include, among other things, the ability to pass to remote users information about
licensing and board certification. In the case of patients, this might include information
regarding insurance.

Addressing this need involves the use of certification of participants in a session and
external certification servers. In particular, when user stations establish a session, they
can pass requests to each other for credentials. In response, certificate containing the
credentials are exchanged. Embedded in the certificates will be an indication of where
the receiving station can go on the Internet to ascertain the authenticity of the certificate.
In typical PKI fashion, this chain can be followed as far as required to reach a certifying
authority that the interacting stations share in common.

3.2.6.3.6 Access Control
As discussed above, access control expresses itself in at least three ways in the proposed
telemedic ine station architecture:

• control over how much a station’s capabilities a given user is made aware of,
• control over which information and services a given user can access, and

 102

• control of a station’s configuration.

In the first case, the principle pursued is one of “least privilege” – a user accessing a
station either locally or remotely will only the minimum essential set of services and
information implied by the authorizations established for that user. For instance, a
normal station user who has no administrative privileges will not only not be given access
to administrative functions, such as establishment of user authorizations, but he will also
not even be told by the station that these services exist. The user interface mechanisms
that enable control of these functions will be completely hidden from view, as will all of
the infrastructure (e.g., files, active processes, etc.) that support these functions. If means
exist that would allow the user to attempt to activate these services (e.g., a command line
interpreter facility), the station will respond to such attempts in exactly the same manner
as it would respond to employ completely non-existent functions.

In the second case, each service (including those related to read and writing patient
record data) mediates all user transactions through access control mechanisms associated
with the service. For example, if a station user has the right to read a given set of records,
the station will allow the user to navigate through the associated record index to specific
records and to then open these records for review. At each step along the way, the
service will examine any new entities being engaged and, based on the user’s
authorization settings, decide which actions related to those entities can be offered to the
user.

In the final case, any given station can establish constraints on how the station can be
configured in the presence of a given user. The effect is to set bounds on what degree of
customization can be done either through the use of a user’s context or through manual
configuration of the station (e.g., addition of new devices) by that user. An example of
the first would be a station rejecting a context-driven directive to stitch a given external
processing capability into the station or to use a given set of externally hosted protocols
to drive station operation. An example of the second would be the station refusing to
accept the attachment of a lab instrument that the user is not certified by the station’s
owning organization to operate.

As noted earlier, in all cases, decisions regarding what to allow and what to reject are
centralized in the station’s core but enforcement may be carried out in other places. One
example of this would be an access point refusing to establish a proxy for a device that
has been attached to its device bus.

3.2.6.3.7 Authorization
Processes in the station’s core own authorization information established by a system
administrator. Specifically how this information is safeguarded is dependent on the
nature of the platform itself (e.g., an embedded implementation might store the data as
encrypted records written to non-volatile memory whereas a PC-based implementation
might use the default mechanisms resident in the computer’s operating system).

 103

Given the wind range of settings and ways in which users may want to use telemedicine
systems, it is suggested that the telemedicine community not constrain the kinds of
criteria that can be used in determining whether a given user is authorized to access a
given resource. Indeed, some in the general healthcare informatics community have
advanced authorization schemes that are quite sophisticated (e.g., “User X can access
these services during this time of day during these days of the week but only if these
attempts to access are being made from these particular locations or this particular
station.”). At the same time, since one of the goals is to enable wholly uninitiated users
to assemble and operate their own stations, it is suggested that mechanisms be put in
place to ensure that certain minimum “default” authorization requirements are established
by the user (e.g., no a priori access is granted to remote user and access is granted in real-
time on a case-by-case basis by the station’s owner) or an agent of that user.

3.2.6.3.8 Device Certification
One of the questions that caregivers employing remote devices must ask is, “Why do I
believe that I can trust the data being generated by a given remote device?” In “normal”
clinical settings, much of the trust that a clinician places in a device is based on the ability
to physically inspect the device (“It looks to be in good shape – not banged up at all”), on
an on-going history with the device (“we used it with every patient that has walked in
here today”), and on established quality assurance processes (“The sticker shows that the
techs calibrated it just last week”). In current approaches to telemedicine, these same
mechanisms are generally still in effect (i.e., the “local” clinician is able to attest to the
remote caregiver that these things are so); however, in situations in which these
approaches to developing trust cannot be employed, something else is required.

To address this need, the following either of two approaches is recommended. In the first
approach, devices are de signed from the start with non-traditional settings in mind.
Jostling of the device, splashing with liquids, use in dust-prone areas, and storage in hot
or cold places are all accounted for in the design processes such that the devices continue
to operate as required even in the face of these adverse conditions. This approach is then
coupled with periodic mandatory maintenance that includes testing and recalibration, if
required. As part of this activity, the maintainer interacts with the device so as to install
in the device a certificate that, at a minimum, indicates when the device was serviced and
by whom, and that, ideally, characterizes the device’s performance in a way that allows
processing routines on a remote station to inspect the performance data and use it, if
required, to properly interpret readings generated by the device. In the alternative
approach, devices are capable of thorough self -test. In this case, devices report on their
own operating characteristics and able to determine when they are no longer able to
support their intended functions.

3.2.6.3.9 Secure Time Stamp
To support the need for accurate time stamping of patient records data and audit log
information, a telemedicine station will rely on a trusted external time source and a clock
function that is part of the station core. Through the use of the appropriate protocols, the
station synchronizes its internal clock with the trusted external reference. In the process,
the station tracks its own accuracy (i.e., by how much the station’s clock had to be

 104

adjusted) and uses this information to develop a schedule for updating its clock such that
the deviation from actual time is never outside of some specified tolerance.

3.2.6.3.10 Secure Configuration
In downloading to a station new software components that support a given device, two
key concerns must be addressed. First, its supplier must have produced the software in a
trustworthy fashion. Second, it must not have been corrupted since its creation. While
the telemedicine community certainly has an interest in the first, the question of software
trustworthiness is an exceedingly difficult problem that has yet to be adequately
addressed by anyone. All acceptable approaches used today are manpower-intensive and,
therefore, expensive; and even the best of these approaches cannot assure a flawless
product. For this reason, it is strongly recommended that the telemedicine community
not “punch this tar baby”.

By contrast, the second concern can be addressed by available technologies. In
particular, a body of software to be downloaded to a station should contain a manifest
that lists the contents of whatever package is being downloaded and that cryptographic
authentication mechanisms be used to bind the contents and the manifest to each other
and to a certificate identifying the vendor. Packages of this sort received by a station as
the result of a request from the station can be authenticated using the vendor’s public key
drawn from the public key infrastructure used by the telemedicine system. Once
authenticated, individual software elements can be extracted and installed by the station’s
installation manager and then activated such that the components that they support are
registered with the station.

In serving up packages to requesting stations, a vendor server may operate in either of
two ways. In the first, it simply returns packages that have been packaged well in
advance of a request for the package. In the second, the server creates a package once a
request has been received. The advantage of this latter approach is that it allows the
telemedicine community to choose a protocol in which the station describes its operating
environment and the vendor server is able to create packages that meet the unique needs
of the station. From a security perspective, this latter approach is more challenging
inasmuch as it requires that the vendor server be free from invulnerable to compromise.
The concern here is that an adversary who is able to subvert the server will be able to
install malicious code into a package and that the station, trusting the digital signatures
used to seal the package will install the corrupted code without questioning its
trustworthiness. By contrast, the first approach allows for off-line creation of trusted
packages, leaving the server to do nothing more than select and return the right package
for a given request.

3.2.6.3.11 Secure Registration
As described earlier, when a station first wants to join a telemedicine network, it makes
contact with a registry server through the use of a well-known network address and is
then put in contact with an appropriate registry server in the registry network. To enable
the establishment of secure communications, public key-related information is stored in
the station’s core by its developer at the time of manufacture. Once the station and server
have established a secure communication session. Identifier information (e.g., station

 105

owner, the station’s common name, where the station is physically located, etc.) passed
from the station to the registry server is digitally signed using the station-specific private
key embedded in the core by the manufacturer. In like fashion the “station ID” (a
globally unique identifier) returned to the station by the server, is signed using the
server’s private key and, once authenticated, is stored securely in the station’s registry.

In the same way, all other communications within the registry server network will rely on
authenticated communications in transferring information between nodes in the network.

3.2.6.3.12 System Security Administration
Implied in the discussions of a number of the above topics is the idea that a station
maintains a set configuration data along with a list of individuals or types of individuals
authorized to use the station. Managing these things falls to the station’s administrators.

With respect to station configuration, the centerpiece is the default context discussed
earlier in this document. While this may simply be a single description of what
components are needed and how they are to be assembled to create the root station
capabilities, station administrators are also free to establish user-specific contexts that
describe what is to be done as a matter of course when a given individual or particular
type of user logs into the station. In addition to stating what is allowed, this configuration
information can also include statements of what is to be prohibited (e.g., a given user is
never to be allowed to configure certain aspects of a station in a given way).

That this can be done implies that the administrator is able to enter into the station a list
of known users or user types. This required facility will be embedded in the station’s
core.

In addition to describing what each such user can do regarding station configuration, the
system is administrator is also responsible for establishing the authorizations described
above.

Finally, there will be times that human operators will need to interact directly with a
station’s registry (e.g., to reset a field or to change a device’s installation status from
“permanent” to “temporary”). These tasks also fall to the administrator.

System administration may be done locally or remotely. In the latter case, the
establishment of secure communications is presumed.

System administrator functions are embedded in the station’s core. As with user
authentication, interactions with the core are conducted through a “trusted path” to the
user interface devices on the station from which the administrator is operating.

3.2.6.3.13 Auditing
Implementation of auditing is established through the use of subscriptions. As a station
component, the audit log (part of the station’s core) is able to subscribe to messages
associated with other components’ internal state. Certain messages that a device can
generate will be marked as auditable. Whenever a device is added to a station, the audit

 106

log automatically subscribes to some or all auditable messages assuming that no other
configuration changes are made to the station. Through the use of administration and
auditing protocols, these subscriptions can be altered such that whenever a specific kind
of device is added to a station, the audit log will subscribe to a particular set of messages
for that device (i.e., the defaults are overridden and some defaults may be ignored and
some message not normally audited will be recorded). The implication in all of this, of
course, is that the telemedicine community, in establishing its standard device interface,
also establishes which device communications and which internal state changes constitute
the default auditable events.

Users assigned the auditor role for a station are able to review and delete audit logs
entries as desired. As with other station functions, auditor-related functions can be
accessed by authorized users operating locally or located on a remote station. In the case
of remote operations, mechanisms for encrypting and authenticating communications in
both ways are required. While there does not seem a compelling reason for the
telemedicine community to specify them, it is expected that developers will provide tools
that aid auditors in filtering audit records according to certain criteria (e.g., events
occurring when a given operator was using the station or records related to a particular
station component).

Like the system administrator functions, auditor functions are embedded in the station’s
core and interactions with the core are conducted through a “trusted path” to the user
interface devices on the station from which the auditor is operating

3.3 Implementation Options
Having addressed the logical organization and operation of the proposed architecture, the
next question to consider is exactly how to render this architecture. To this end, this
section is divided into two parts, the first of which discusses a range of technologies that
could be used in implementing the architecture and the second of which presents
strawman suite of recommendations as a starting point for debate in the telemedicine
community. This latter section also notes areas where recommendations should be
established but which are not addressed in the strawman suite of recommendations.

It should be noted that the list of options that follows is not complete and is simply meant
as a starting point for discussion within the telemedicine community regarding which
options are available for the kinds of purposes identified in this document. Likewise, the
recommendation of specific products from this list of options does not imply
endorsement or a certification of their fitness for use in telemedicine environments and is
only meant to foster debate within the telemedicine community.

3.3.1 Candidate Technologies and Standards
Because of the multidimensional nature of the architecture (i.e., we’re not talking just
about medical devices or just about patient records but a broad range of functions), no
one technology will meet the needs of every part of the overall architecture. Instead, to
answer our question regarding which options are available to us, we need to divide the

 107

problem into smaller problems (i.e, “What options do we have for this part of the
architecture?”).

3.3.1.1 Distribution of Station Components
In order to allow a station be implemented as a distributed collection of plug-and-play
components developed by independent vendors, the mechanism used for implementing
the station’s core protocols (i.e., registration, leasing, and subscription) need to be
standardized. Among the range of options available for the latter need this are:

• CORBA
• The Java Family (specifically, Java Beans, Jini, and Enterprise Java)
• .NET
• Generic Web Services
• Universal Plug-and-Play
• Salutation

3.3.1.1.1 The Common Object Request Broker Architecture
CORBA is the Object Management Group’s answer to the question of how to support
distributed software solutions that span a variety of platforms. Using a set of interfaces
that serve as proxies for remote software components, an “Object Request Broker” that
handles the details of how to translate local interactions with the proxies into messages to
which the associated remote components can respond and then conveying these responses
back to the local components that are interacting with the proxies, and a variety of
“services”, a programmer can create software systems that deliver the kinds of
distributed, plug-and-play capabilities that we have described.

Services of use in implementing the architecture described in this document include the
“naming service” and “trader service” make it possible to deliver the kinds of “find by
name” and “find by attributes” features that we want in the registry and the “event
service” that facilitates the “publish and subscribe” model of component interactions that
we have described. In addition, using CORBA’s “lifecycle service”, CORBA
applications have the ability to instantiate objects on remote platforms. Similarly, with
CORBA’s “externalization service”, objects that have been “serialized” can be copied to
remote platforms and reinstantiated. Both approaches offer a potential basis for the
dynamic configuration capabilities described in our architecture.

3.3.1.1.2 The Java Family
Beginning as a approach for “write once, run anywhere” programming, the world of Java
has grow to include the capabilities needed for implementing flexible software solutions
in a range of application environments. While representing only a small portion of the
Java family, three members of the family are described here because of the close match
between their features and those described in this architecture. They are Java Beans, Jini,
and Enterprise Java.

Java Beans are the Java world’s answer to “components” (i.e., software building blocks
that enable the creation of software applications through the knitting together of robust
functional blocks). Java Beans support “introspection”, which is foundational to a

 108

component’s ability to describe itself to others. As building blocks for the kinds of
systems that we are discussing, the Java Beans “event” model allows one or more Beans
to dynamically subscribe to a specific event message published by a given Bean. Finally,
the mechanisms that exist to allow Beans to be retrieved from remote sites on a network
and then executed locally are well suited to the dynamic configuration capabilities that
we hope to include in our stations.

Jini is an architectural approach that couches everything in a cyber world as a “service”.
Jini provides programming interfaces that enable components offering these services to
advertise their services and that enable other services to lease these services. Built on
Java’s Remote Method Invocation (RMI) approach to object distribution, Jini allows a
component offering a service to present this service as a Java object that can be
dynamically loaded onto a client component in order to proxy interactions between this
client and the service that the object represents. As this proxying hides the details of the
interactions between the interface object and its service, the Jini architecture supports the
use of proprietary protocols (a nice feature in our world where it may be a long time
before we see architecture-compliant devices that can be plugged into our systems). As
with Universal Plug and Play (described below), Jini presumes the presence of a capable
IP-based network.

Enterprise Java (“J2EE”) exists, as its name implies, to service the needs typical of large
organizations. In this sense, it is Java’s approach “N-tier” architecture where “legacy”
applications and databases are linked to user interface components through layers of
generic middleware and enterprise-specific “business logic”. Included in this architecture
are approaches for integrating user presentation and logic elements of a system and, as
such, may provide a reasonable foundation for addressing needs in our architecture like
the ability to configure a station’s user interface on a user-by-user basis, the ability to
present processes in standardized ways (e.g., through “enterprise Java Beans”), and the
ability to dynamically map protocols as new user and patent contexts are established. In
addition, use of J2EE approaches may help address the desire to integrate telemedicine
stations with other information systems in a care delivery environment.

3.3.1.1.3 .NET
A direct competitor to Java’s J2EE, .NET is Microsoft’s new approach to distributed
object programming. Found in Windows XP and related products, .NET is also intended
to address the need for the kind of “write once, run anywhere” programming popularized
by Java, to support the implementation of enterprise-scale systems, and to facilitate the
creation of web service-enabled applications. With respect to the first point, .NET
incorporates a “Common Language Runtime” that functions much like Virtual Machine
in Java but with one twist – it can support programs written in any .NET-compliant
language (which is just about everything except Java). With the inclusion of Universal
Plug and Play (described below) in the .NET strategy, Microsoft’s solution offers a
mechanism for supporting our architectures “publish and subscribe” approach to
component interconnection. .NET’s context management capabilities may serve as a
reasonable foundation for the contexts contained in our architecture. The web service
support looks like a good candidate for implementing many of the station-to-station
interactions.

 109

3.3.1.1.4 Generic Web Services
Spurred by the desire to support effective business-to-business e-commerce, the World
Wide Web Consortium is pursuing the development of an XML-based set of protocols
that allow a entity to discover and employ the services offered by remotely located
entities. Using HTTP as their transport mechanism, these web services facilitate both
unicast and multicast communication of messages from one entity to one or more
recipients. These messages can be used as simply that – messages – or can be used to
form more sophisticated mechanisms, such as remote procedure calls.

As things currently stand, there seems to be general agreement among all of the major
vendors on the underlying mechanisms used to deliver these services. In particular, basic
messages exchanged in web services are encoded using XML and transported using the
Simple Object Access Protocol (SOAP). Because SOAP typically runs over HTTP – the
central protocol of the World Wide Web – it can generally reach anywhere the web can
reach, even through firewalls that might normally block similar kinds of protocols. Web
services offered by an organization are advertised in web-based registries and discovered
using the suites of services defined by the Universal Description, Discovery, and
Integration specification (UDDI). Services published in this way are described using the
Web Services Description Language (WSDL) – a relatively flexible mechanism that
allows for the definition of both the abstract functions offered by a given service and the
protocol mechanisms used to support these funct ions.

While these components provide a reasonable foundation for vendor-independent
delivery of services, by themselves, their capabilities fall short of what is needed by
certain applications. To meet this need, efforts like ebXML (a business to business web
service approach) are being supported by different business sectors (e.g., ebXML is being
actively pursued by the HL7 community).

3.3.1.1.5 Universal Plug-and-Play
A consortium of approximately 200 vendors led by Microsoft is responsible for this
specification. The goal of this group’s efforts is to create an interoperability approach for
net-aware peripherals that is based on a collection of open protocols. The key idea
behind this specification is to allow devices on a network to dynamically discover each
other’s existence and to explore and subscribe to the services that different devices offer.
Aimed allowing the formation of ad hoc peer relationships within a network, UPnP offers
a lightweight way of connecting devices that join the network.

The UPnP architecture defines three key concepts: devices, control points, and services
(Figure 76). Devices provide services and can also contain other devices (e.g., a vital
signs monitor might contain several devices as well as offer certain services that apply to
the entire monitor, such as “reset” or “self test”). Control points are consumers of the
services offered by devices. They do their job by directly controlling a given service, by
“subscribing” to “events” that services may publish, or both. Services consist of those
atomic actions that a given device will perform. In addition, each service will typically

 110

expose some portion of its internal “state” in such a way that allow control points to
monitor changes in the service’s state and to respond accordingly. When commands are
received from a control point, a service will execute it and return a response. Often, this
action will result in a change in the service’s internal state and, if any subscribers exist
for this sort of change, they will be notified.

As shown in Figure 77, UPnP assumes the presence of an IP network. UPnP devices
joining a network start off by trying to establish an IP address for themselves (using the
device to learn more about its services and its composition (i.e., whether the device
DHCP or “Auto IP”). Once connected at this level, a device will then announce its
presence to the network by means of a Simple Service Discovery Protocol (SSDP)
broadcast message. Control points interested in the device can then communicate
withitself contains any other devices. If it desires, a control point can then send a control
message to one of the device’s services. This message is formatted in XML and
conveyed using the SOAP protocol. In response, the service will return its own SOAP
message containing status, faults, etc. As each service also publishes a list of variables
that models its internal state, control points can also choose to subscribe to event
messages that are published using the General Event Notification Architecture (GENA)
protocol (a simple publish and subscribe mechanism).

UPnP Enabled Device

Root Device
Embedded Device

Service 1 Service 2 Service

Service Control
Server

Event
Server

State
Table

UPnP Enabled Device

Device

Service 1 Service 2

UPnP Enabled Device

Device

ServiceControl
Point

Control
Point

Figure 76. UPnP Architecture

Before moving on to Salutation, there are a couple more things worth noting. Everything
described so far is true of every UPnP device and are realized in the layers marked “UPnP
Device Architecture Defined” and below in Figure 77 (i.e., the capabilities in these layers
are part of every UPnP device). It is above this point that UPnP devices begin to

 111

UDP

HTTPMU
(Discovery)

HTTPU
(Discovery)

SOAP
(Control)

HTTP
(Description)

SSDPGENASSDP HTTP
GENA

TCP

UPnP Device Architecture Defined

IP

UPnP Forum Working Committee Defined

UPnP Vendor Defined

Figure 77. UPnP Protocol Stack

differentiate themselves from one another. The second layer down in the stack represents
a ser ies of service-specific interfaces that are being standardized by the UPnP Forum.

These interfaces define the minimal set of actions and state variables that any given kind
of service must expose. This approach ensures that a control point wanting to utilize a
particular type of service can do so with any manufacturer’s device. At the same time,
because the Forum recognizes that vendors may want to add their own features to a given
kind of device, the protocol stack includes a top layer that accommodates vendor specific
extensions to a device. By implication, the vendor would also need to supply a control

 112

point (or a way of extending “standard” control points) to accommodate these extra
features.

Finally, even though the UPnP specification has remained relatively stable and has
garnered a certain degree of support, a modified specification should soon be released
that moves UPnP more towards the web services model and that adds certain features,
such as authentication and encryption, that had been lacking in the original specification.

3.3.1.1.6 Salutation
Created by a consortium formed in the mid ‘90s, Salutation is intended to address the
problem of how to allow devices to dynamically associate with other components (e.g.,
how to let a PDA discover and employ a printer). Using a “Salutation Manager”, a
compliant device is able to advertise its services, discover the services offered by other
devices, determine the availability of a service offered by another device, and establish
sessions with other devices in which messages flow back and forth between devices. All
interactions of this involving Salutation Manager to Salutation Manager communications
are based on Sun’s Remote Procedure Call mechanism. Communications between
servers and clients in this architecture can be done completely “native” with the
Salutation Manager being used only to establish session connections, can be Salutation-
based with every aspect of the communications being provided by a Salutation-specified
approach, or can be accomplished using some combination of the two approaches.
Salutation does not specify a particular transport mechanism and, as such, defines the
Transport Interface as a means of keeping the Salutation Manager and servers and clients
transport neutral.

Server
Salutation
Manager

API

Client Client Server Client

Salutation
Manager

Transport
Manager

Salutation
Manager
Transport
Interface

Salutation
Manager

Transport
Manager

Transport
Manager

Salutation
Manager

Transport
Manager

Transport Transport Transport Transport

Salutation
Manager
Protocol

Figure 78. The Salutation Architecture

3.3.1.2 Internal Communications Bus
In addition to standardizing the approach to implementing the architecture’s core
protocols, the mechanisms for implementing the internal communications bus must also

 113

be standardized if the plug-and-play operation of distributed system components is to be
achieved. Technologies and standards of use in this section of the architecture include:

• IP-based home networks and LANs with QOS protocols
• Firewire
• HAVI

3.3.1.2.1 IP-Based Local Area Networks
Whereas not too many years ago it looked as though IP-based networking might soon be
replaced by other “more capable” approaches, the penetration of 100 megabit Ethernet
over the last few years and the appearance of off-the-shelf gigabit solutions bode well for
IP networking’s staying power. In addition, in the wireless and home networking
markets, Ethernet solutions for computer connectivity seem to being prevailing (with
802.11b seeming to win in the wireless sector and HomePNA doing well in the homes).
As noted in the discussions above, a number of the distributed object schemes assume the
presence of IP infrastructures. Given these things, IP-based networking has to be
considered a contender for the kinds of station-internal communications defined in our
architecture.

3.3.1.2.2 Firewire
Originally intended as a serial bus for peer-to-peer interconnection of devices located in
close proximity to one another, Firewire (a.k.a., IEEE 1394 or i.Link) was been strongly
embraced by the audio-visual device community, largely because of its ability to deliver
high bandwidth, on-demand connectivity between devices. Unlike IP -based systems that
employ “best effort” approaches to delivering data between devices on a network,
Firewire’s “isochronous” channels provide guaranteed data rates for those applications
that need them.

Because of distance limitations in Firewire’s original twisted pair cabling, Firewire was
never seen as a viable medium for local area networking; however, the most recently
released version of the IEEE 1394 specification accommodates fiber optic
communications (note to mentioned gigabit data rates) which significantly extend the
reach of this communications medium. When combined with the fact that IP networking
over Firewire has already been demonstrated, Firewire is also a strong candidate for our
architecture’s internal communications bus.

3.3.1.2.3 Home Audio Video Interconnect
While it is an architecture rather than a communications medium, Home Audio Video
Interconnect (HAVi) is included in this section because the most important aspect of this
architecture is how it handles communications (Figure 79). Developed cooperatively by
eight of the world’s leading consumer electronics manufacturers , this specification’s goal
is to allow for true plug and play operation of home entertainment products. Devices on
a HAVi network are able to readily share resources with one another (e.g., a television in
one room can host a user interface used to control a DVD player located in another
room). Because of its ability to deliver high bandwidth, isochronous communications,
Firewire is the underlying data transport medium employed in HAVi.

 114

As shown in the figure, HAVi consists largely of a set of software elements that bridge
the gap between custom software applications and vendor specific platforms intended to
host the applications. The 1394 Communications Media Manager exists to provide the
raw asynchronous and isochronous communication services on which HAVi is built. The
Messaging System manages the asynchronous messaging that occurs between HAVi
components. The Registy in HAVi serves essentially the same function as the one
described in our architecture. Using the Messaging System, the Event Manager supports
the passing of events between components. The Stream Manager handles real-time data
connectivity for those devices that require continuously flowing data. As currently
defined, this mechanism allows for “typing” of streams that allows things like required
bandwidth and data encoding to be standardized for different kinds of isochronous
connections. The Resource Manager exists to handle resource contentions and
scheduling of future resource utilization. The DCM Manager handles the adding and
removing (much like the proxies in our architecture) of Device Control Modules
(DCMs), the software components responsible for presenting each device’s APIs to all

1394 Communication Media Manager1394 Communication Media Manager

Messaging SystemMessaging System

Vendor Specific PlatformVendor Specific Platform

R
eg

is
tr

y
R

eg
is

tr
y

E
ve

nt
M

an
ag

er
E

ve
nt

M
an

ag
er

S
tr

ea
m

M
an

ag
er

S
tr

ea
m

M
an

ag
er

R
es

ou
rc

e
M

an
ag

er

R
es

ou
rc

e
M

an
ag

er

D
C

M
M

an
ag

er

D
C

M
M

an
ag

er

DCMDCM

DCMDCM

DCMDCM

ApplicationApplication
ApplicationApplication HavletHavlet

HavletHavlet

HavletHavlet

Platform Specific API

Interoperability API

Figure 79. The HAVi Architecture

 115

other devices on the network. Like “services” in Jini, Functional Control Modules
(FCMs) contained within DCMs provide interfaces for each controllable function within
a device. While DCMs typically front-end home entertainment devices, the architecture
supports the notion of DCMs acting as bridges to services (such as the Web) that are
external to the HAVi network. Havlets are Java applications that can be used to provide
user interfaces for various devices. Applications are platform-independent software
components that make use of the various services provided in a HAVi network to provide
various services wanted by end users.

Finally, the HAVi architecture supports the uploading of HAVi “code units” to a HAVi
network. Code units are Java JAR files that are packaged with several other security
oriented files used to established the code unit’s authenticity

3.3.1.3 Device Buses
As noted earlier, device buses exist in the architecture as a means of supporting the low-
level connectivity functions needed in order to support plug and play operation of
devices. Device bus candidates include:

• IrDA
• Bluetooth
• USB
• Firewire
• The PCMCIA Family

3.3.1.3.1 IrDA
The IrDa specification, published by the Infrared Data Association, governs the infrared
communications technology used in most laptops and PDAs. Capable of transfer rates of
up to 16 megabits/second but generally used at much lower data rates, this standard is
typically used in environments where low power wireless connections are a plus. The
IrDA family of specifications allows for IrDA’s use both as a cable replacement (i.e., in
point-to-point mode) and in IP-networking mode.

3.3.1.3.2 Bluetooth
An emerging wireless alternative to IrDA, this RF-based communications standard
enjoys the support of a very large industry group. As with IrDA, Bluetooth can be used
in both point to point and multipoint modes. Slow time to market and some compatibility
issues with 802.11b networking devices have caused some people to question Bluetooth’s
long term viability, especially in light of the fact that the order of magnitude price
differentials in favor of Bluetooth over 802.11b devices have yet to materialize.

3.3.1.3.3 USB
Designed as a replacement for simple serial interfaces on the personal computer, the
Universal Serial Bus (USB) is much like IEEE 1394 (Firewire) in its operation. USB
allows multiple low-speed devices to be attached to the bus in plug-and-play fashion and
for buses to be chained together to allow a relatively large number of devices to be
attached to a PC via a single connector on the PC. Originally designed to run at 12
megabits per second, the most recent revision of the specification bumps the speed into

 116

the 100s of megabits range – fast enough to support video devices. As with Firewire,
USB supports isochronous communications, a feature that is key to applications that
demand a guaranteed data transfer rate. Unlike Firewire that allows “equality” among all
nodes, USB differentiates between the host platform and the rest of the nodes that exist
on the bus.

3.3.1.3.4 Firewire
While recent changes to Firewire have positioned it for local area networking in certain
application environments, Firewire’s first calling was as a high speed serial bus. More
capable than USB, it is also less prevalent, with the latter being incorporated in almost all
new PCs.

3.3.1.3.5 The PCMCIA Family
Originated in the early ’90s as means of extending the capabilities of portables, PC cards
have moved from 8 and 16 bit implementations used at a time when the ISA bus was the
document internal bus in PCs to the 32 bit “CardBus” standard designed for use with PCs
built around the PCI bus. Now the Personal Computer Memory Card Industry
Association (PCMCIA) is in the process of fielding a new standard called “CardBay” that
addresses the needs of modern mobile computing devices. By marrying a physical card
socket format that maintains compatibility with existing PC card technologies with a
USB interface between this socket and the PC’s internal components, CardBay provides
add-in cards with a high-speed interconnect to the host platform. With a power source of
card internal operations and card detect and query mechanisms, CardBay may be well
suited to supporting plug-and-play operation of certain power-intensive device classes.

3.3.1.4 External Communications Media
Whether the telemedicine sta tion is composed of a group of distributed components
interconnected by a local network or consists of a monolithic base station that hosts
integrated or detachable peripherals, the station will present a set of external interfaces to
the outside world. Given this, the telemedicine community must decide which wide-area
communication methods it needs to support. Depending on the utilization concept, a
number of possibilities exist. Among these are:

• Analog phone
• ISDN
• Traditional Ethernets
• Wireless

3.3.1.4.1 Analog Phone
Often referred to as “POTS” (“Plain Old Telephone System”), the strength of this
approach is in the pervasiveness of the medium. Compared to digital cable that has
penetrated just under 25% of the U.S. consumer market and its accompanying cable
modems that are used in a little under 9% of U.S. homes) and the telephone companies’
broadband offering, DSL, which exists in a little under 4% of these homes, phone
connectivity is pervasive, being found in 96% of U.S. homes. Internationally, the total
number of wired phones is somewhere around 1 billion. While currently exceeding most

 117

current wireless capabilities, analog phones provide relatively low bandwidths (nominally
56 kilobits/second per International Telecommunications Union standards).

3.3.1.4.2 ISDN
Introduced a number of years ago, the Integrated Services Digital Network phone system
provides higher bandwidths that POTS, with 128 kilobits/second available in the Basic
Rate Interface and 1.544 megabits/second in the Primary Rate Interface (more commonly
found in business environments than in the home). As with DSL, ISDN support
simultaneous voice and data services. Techniques also exist in the ISDN world for using
multiple phone lines to deliver additional increments of bandwidth.

3.3.1.4.3 Traditional Ethernets
In campus- or building-internal environments in which all stations in the system share a
common infrastructure, traditional twisted pair (10BaseT/100BaseT) Ethernet is a good
candidate for interconnection of stations. The same can be said of wireless Ethernets
(802.11b or 802.11a) designed to support local area networking. In home environments,
cable modems, digital subscriber line (DSL) modems, and other home gateways that
support a variety of external communications also provide support for Internet access.
Current DLS offerings typically run in the 100’s of kilobits/second range for symmetric
operations and can reach up into the of megabits/second for asymmetric depending on the
flavor of DSL and a variety of physical factors, such as the distance between the DSL
modem and the supporting equipment at the phone company’s switching center. Cable
modems typically exceed this figure.

3.3.1.4.4 Wireless
There appear to be a number of key developments in this area that are all extensions of
Global Services for Mobile Communications (GSM) – the dominant approach to voice
and data communications in the mobile world. Included in this are General Packet Radio
Service (GPRS) – an enhancement to GSM that allows for persistent Internet connectivity
and faster data communications – and Enhanced Data for GSM Evolution (EDGE) – a
body of work focused on extending current GSM network to enable them to deliver high
bandwidth content (e.g., video delivered at speeds up to 384 kilobits/second). 3GSM –
an umbrella effort by the 3rd Generation Partnership Program (3GPP) that will support
third generation mobile multimedia services – will ultimately replace these intermediate
measures with a new of set of capabilities offering mutli-megabit video, audio, and data
networking.

3.3.1.5 User Interfaces
A number of options are available for controlling telemedicine station functions and for
extracting information from these devices. These include:

• a common look and feel and shared context
• a common, custom framework
• browser-based interfaces (to inc lude WML apps)
• voice I/O systems
• integrated controls and displays

 118

3.3.1.5.1 A Common Look and Feel and Shared Interface Context
Rather than trying to integrate all station user interface capabilities into a common
software-based interface, the telemedicine community could decide to create suites of
stand-alone applications that can be launched and terminated independently of one
another and yet operate in a coordinated fashion through the use of a shared interface
context. For example, the patient record system available to a station could be viewed
and controlled by one applications while each of the devices in the station are controlled
by their own or by applications that implement sophisticated multi-device protocols. As
key context elements change on the station (e.g., which patient is being serviced or which
user is operating the station), the various user interface applications would be notified so
that they could respond in a unified fashion to these changes.

To contribute to the sense that all of these individual applications are part of the same
station, the telemedicine community could establish rules regarding the look and feel of
compliant applications. This would control how interface screens are organized, rules
regarding when to use various elements of the screen, restrictions on which terms and
icons to use, etc. If used, there are a number of style -guides of this sort available today
that could be adapted for use by the community.

3.3.1.5.2 Common, Custom Framework
A second software-based approach is to crea te a common graphical interface based on
standards interface technology (e.g., the Windows interface) that can be extended through
the use of add-ons. In this context, the custom user interface “applets” used to deliver
display and control for each station capability would install themselves in the framework
through some sort of interface registration process. This process would cause the
appropriate controls to be installed in the framework and would establish the rules for
when these controls are to be presented to users and what to do when the controls are
triggered. The applets launched by these controls would then operate within the context
of the common framework, either using resources (e.g., screen real estate) provided by
the framework or operating as “child windows” to the framework.

3.3.1.5.3 Browser-based Interfaces
Like the previous approach, browser-based interfaces provide a common framework in
which a number of applications can operate as one. Unlike the custom framework, this
approach has the advantage of drawing on the power of a large body already available in
the Internet world. Whereas the previous two approaches assume that the standardized
user interface application interfaces (i.e., those service interfaces that these components
present to the rest of a telemedicine station) are bound to the applications or applets
running on interface computer, the browser-based approach also allows for these
interfaces to be run on “server” side of a system and user interfaces to be implemented as
complete ly standard (e.g., HTML or WML) web interfaces.

3.3.1.5.4 Voice I/O Systems
While still somewhat immature, voice technology is emerging as a useful tool in certain
application settings. Beyond simply supplementing the keyboard (i.e., entering a
command or data verbally rather than typing it in), technologies are emerging that
promise to allow wholesale replacement of traditional user interface mechanisms. One

 119

such technology is VoiceXML, a markup language for voice I/O applications
(www.vxml.org). Related World Wide Web Consortium efforts in this area point to a
solid future for “voice browsing”.

3.3.1.5.5 Integrated Controls and Displays
In some situations, it will be desirable for interface controls and displays to be integrated
directly into various station components. For instance, in medical instruments, controls
(e.g., start/stop buttons and status lights) that allow their users to operate independently
from the station’s centralized user interface support smoother, more natural interactions.

3.3.1.6 Medical Devices
In the case of medical devices, the choice will not be which approach is the approach but
which is right for a given need. Options to consider include:

• IEEE 1073
• POCT
• DICOM (note relationship to certain non-imaging devices)
• TWAIN and EXIF

3.3.1.6.1 IEEE 1073
Known as the “Medical Information Bus” or “MIB”, the historical focus of this
specification was on plug-and-play operation of devices common to the bedside in
hospital environments (e.g., vital signs monitors, infusion pumps, defibrillators). The
IEEE 1073 family of specifications standardizes the logical models for various medical
devices, the application level protocols needed to allow these devices to talk with
“bedside controllers”, and the lower level protocols used to transport these application
level messages. While early implementations of the standard relied on proprietary
connectors and transport mechanisms, recent years have seen 1073 begin to embrace the
use of industry standard lower level protocols. In addition, whereas 1073’s historical
focus has been on bedside monitoring in hospital environment, members of the 1073
committee have expressed a growing interest in additional utilization scenarios, including
those related to the needs of the telemedicine world.

3.3.1.6.2 POCT
The Point Of Care Test (POCT) specification is the product of the Point Of Care
Communications Interoperability Consortium (POCCIC), a short-term effort by a
coalition of manufacturers point of care analytical devices. Drawing on the lower layers
work of the 1073 committee and upper layer concepts from HL7, the POCCIC drafted a
specification that allows point of care devices to connect in wired or wireless fashion to a
network and to interoperate with remote “data manager” software processes, irrespective
of where these data managers may be located on the network. Given the POCT focus on
lab functionality, the list of devices addressed by this group complements those handled
by the 1073 committee.

3.3.1.6.3 DICOM
As the premier medical imaging interoperability specification, the Digital Imaging and
Communications in Medicine standard defines the information storage formats and

 120

protocols needed for handling of digital clinical imagery. As such, the standard provides
for computer-to-computer and computer-to-device (e.g. , various acquisition systems or
printers) communications across a broad range of imaging modalities. Beyond pure
imaging applications, DICOM also provides for the management of certain other types of
data, such as waveforms and the contextual information needed to annotate individual
images or sets of images.

3.3.1.6.4 TWAIN and PTP
While designed for use in the PC environment, digital cameras and scanners have found
their way into common use in the telemedicine community where they enable local
caregivers to capture clinical images. These devices can employ a variety of physical
media (including wired, wireless, and storage device). Depending on the nature of the
device, it may support the TWAIN (“Tool Without An Important Name”) interface or, in
the case of digital cameras, the “Picture Transfer Protocol”. The TWAIN specification is
the older of the two. It specifies both a three-layer architecture that allows a compliant
software application to access the services of one or more raster devices without having
to know the unique details of each such device. By comparison, PTP focuses primarily
on the communication of images from and to “digital still photography devices” (DSPDs)
and, secondarily, on allowing external devices to control the operation of a DSPD (e.g.,
to configure a camera or to tell it to snap a picture). Designed to be independent of the
underlying data transport mechanism, PTP can be made to run over a variety of media.
The companion EXIF and TIFF/EP file format specifications (that also handle audio
recordings generated by cameras) and the Design Rule for Camera File System (DCF)
specification that standardizes on-camera file system structure and behavior round out
this specification’s family.

3.3.1.7 Patient Record Repository
In specifying how to implement the repository itself, several on-going efforts are
potentials candidates. These include:

• The Good European Health Record (GEHR),
• HL7’s Clinical Document Architecture (CDA),
• OMG’s Clinical Observation Access Service (COAS) and Clinical Image Access

Service (CIAS) and their supporting specifications, and
• CEN ENV 13606

3.3.1.7.1 GEHR
Originally developed in Europe, work to extend this patient record architecture is now
underway in Australia as well. Based on two key elements – a “reference object model”
(ROM) and an “archetypes model” – GEHR strives to overcome many of the problems
introduced by approaches that attempt to create the “mother of all medical records”.
Where as the ROM provides a limited set of building blocks from which many things can
be constructed, the archetypes constrain the aggregation of these building blocks to
meaningful constructs. Given this, GEHR appears to provide ways for disparate
electronic medical record systems to interact (e.g., GEHR information talks to interacting
with each of the other repository approaches discussed in this section).

 121

3.3.1.7.2 HL7 CDA
HL7’s Clinical Document Architecture (CDA) is a markup standard for use in
exchanging clinical document. As such it specifies both the structure and semantics of
these documents. CDA has been accepted by ANSI and is likely to gain in stature over
time. As part of HL7’s move toward XML, one of the goals for this specification was the
creation of documents that can be both read by humans and parsed by computers. The
plans for CDA include the ability to support three levels of markup

3.3.1.7.3 COAS/CIAS
COAS is the OMG’s Healthcare Domain Task Force (HDTF) approach to storing and
retrieving clinical data. Inspired by the original GEHR work, the COAS specification
defines a structure for storing and retrieving clinical observations that is independent
from the specific content being stored using these mechanisms. While this structure may
be the actual structure used by the patient record software, COAS may also be nothing
more than a “wrapper” used on a legacy record structure that provides the legacy
structure with a standard way of presenting its contents to the outside world.

CIAS is the HDTF analog to COAS that is used for retrieving and managing clinical
imagery for servers and for translating certain formats (such as DICOM’s) into Internet-
standard image formats. Not meant to be a replacement to DICOM, CIAS provides a
means of exchanging images when the in environments where the full capabilities of
DICOM are not required. The CIAS specification also provides a means of encapsulating
both DICOM and non-DICOM image stores behind a uniform service interface such that
clients of a server need know only one image retrieval mechanism.

3.3.1.7.4 CEN ENV 13606
A European standard for health records, ENV13606 define the content and structure of
electronic health records that are communicated between institutions as well as means of
specifying access control rules for these records and protocols for exchanging these
records. Much of its inspiration was drawn from the early GEHR work

3.3.1.8 Processing and Protocols
The station’s intelligence, as embodied in its processing and protocol components, can
take the form of either hardware or software and, in the case of the latter, may be
compiled or interpreted modules. In both cases, a component of this sort may be
collocated with the rest of the station it supports (e.g., a piece of software purchased by
its users) or may be remotely located (e.g., a web-based service that front-ends
specialized capabilities leased from a company on an as-needed or subscription basis). In
specifying the form of software modules, the telemedicine community might take any of
three approaches:

• allow for arbitrary platform
• specify a single approved platform
• support a suite of common platforms

 122

3.3.1.8.1 Allow For Arbitrary Platform
In this approach, the community decides that all that matters is the interface mechanism
used to present the services that these components provide to the rest of components in a
station. In this approach, vendors can target specific common platforms (e.g., Windows,
Linux, or a Java Virtual Machine running on any number of underlying platforms) that
support their business strategy or can even develop components that are installed on
custom platforms.

3.3.1.8.2 Specify A Single Approved Platform
At the other end of the spectrum, the community could choose a single platform, as the
HAVi community has done with the Java modules that run on JVMs embedded in HAVi
devices. The advantage of this approach is that any vendor’s processing components will
work on any other vendor’s platforms.

3.3.1.8.3 Support A Suite Of Common Platforms
In this third approach, the telemedicine community would agree to the suite of platforms
that they want to support and vendors would then offer, for each of the pluggable
processing components that they produced, versions that run on each of the platforms in
the suite. Some technologies supporting this option include:

3.3.1.9 Contexts
While Microsoft’s .Net My Services building blocks with their Passport security services
used to be the only game in town, recent months have seen the emergence of the Liberty
Alliance as a potential contender for maintenance of net-based user context information.
On a localized level, the CCOW work within HL7 provides some of the capabilities
needed for contexts in telemedicine systems.

3.3.1.9.1 .Net My Services
An on-line, XML-based approach to centralizing information about individuals, My
Services (formerly called “Hailstorm”) are a central pillar in Microsoft’s vision of net-
centric computing. By storing their information in a single place on the Internet, any
application needing access to this sort of information can retrieve it (subject to the
person’s approval), thereby allowing the person to avoid repeatedly entering the same
information into different services. The list of initial services proposed by Microsoft
include:
§ .NET Profile. Name, nickname, special dates, picture, address.
§ .NET Contacts. Electronic relationships/address book.
§ .NET Locations. Electronic and geographical location and rendezvous.
§ .NET Alerts. Alert subscription, management, and routing.
§ .NET Presence. Online, offline, busy, free, which device(s) to send alerts to.
§ .NET Inbox. Inbox items like e-mail and voice mail, including existing mail

systems.
§ .NET Calendar. Time and task management.
§ .NET Documents. Raw document storage.
§ .NET ApplicationSettings. Application settings.
§ .NET FavoriteWebSites. Favorite URLs and other Web identifiers.

 123

§ .NET Wallet. Receipts, payment instruments, coupons, and other transaction
records.

§ .NET Devices. Device settings, capabilities.
§ .NET services. Services provided for an identity.
§ .NET Lists. General purpose lists.
§ .NET Categories. A way to group lists.

3.3.1.9.2 Liberty Alliance
Initially snubbed by Microsoft, the Liberty Alliance Project has gained significant
momentum in recent months with the addition of key players, such as Mastercard, Visa,
and AOL, to their membership roles. While still immature (specifications are not
publicly available whereas Microsoft’s product is up and running today), this “federated
identity” alternative to Microsoft’s “store it all in one place” appears likely to emerge
victorious now that Microsoft has begun to make noises about ensuring the ability of its
My Services offerings to interact with the consortium’s products.

3.3.1.9.3 CCOW
Unlike My Services and the Liberty Alliance, where the focus is on establishing a user’s
identity on-line, the Clinical Context Object Workgroup (CCOW) specification allows
multiple applications from different vendors to share a common context (e.g., which
patient is currently being handled by the caregiver or which encounter is being
addressed). In as much as CCOW has been adopted by HL7, is being incorporated into
many major HIS applications, and allows a user to carry their “work space” with them,
the specification should be considered as a candidate.

3.3.1.10 External Communications Management
To support the dynamic communications environment described in this document,
mechanisms are needed to manage all available bandwidth as a pool, to monitor and
reconfigure channels (addresses, protocols, etc.) on the fly, and to ensure certain quality
of service guarantees. Both the IETF and ITU have on-going work in this area and, as
noted earlier in this paper, much of this quite nascent. Given this, the author chooses to
leave suggestions to readers who care to advance a position stating why H.245 or RSVP
or some other approach should be considered.

3.3.1.11 Session Management
In setting up station-to-station interactions, there is a need for an client station to inquire
about the capabilities of the server station. This will include, once each other’s identities
have been authenticated, allowing for discovery of services offered, and then leasing of
these services. Because this information is intimately associated the overall architectural
approach being advocated in this document, the protocol used to support this capability
will be specific to whatever interoperability architecture is eventually chosen by the
telemedicine community. Even so, the community can draw on existing work as a
foundation for development of this protocol. Among others, candidates can include the
containment tree work of ISO (used today by IEEE 1073 and XML document
technologies.

 124

3.3.1.12 Patient Record Communications
For each of the patient record repository approaches described above, the owning
organizations also define mechanisms for allowing data stored in these repositories to be
shared between using entities.

3.3.1.12.1 HL7 Approach
As HL7 will tell you, the “7” in the name stands for “layer 7” in the ISO network
protocol stack. This the “application layer protocol” used by two applications to
communicate with one another independent of the underlying means used to
communicate the data contained in this protocol. Not surprisingly then, most of the work
done to date in HL7 has focused on how to communicate healthcare related data between
healthcare enclaves (e.g., hospital to hospital or hospital to payer). While the existing
approved standard, HL7 version 2.3, specifies a set of text-based, delimited strings used
for accomplishing various data exchanges, a tremendous amount of work on version 3.0
has focused on the development of formalized models that can be automatically and
unambiguously translated into a variety of message formats.

3.3.1.12.2 OMG Approach
Both COAS and CIAS support the notion of distributed storage of medical records. To
fully exploit their power, the OMG HDTF has defined a number of other companion
capabilities. These include PIDS, TQS, HILS, and RAD.

The Patient Identification Service (PIDS) addresses the problem of how to handle the
variety of identification schemes that are likely to be used across disparate patient record
systems. In queries across widely distributed, yet federated, systems, PIDS handles the
problem of resolving identifiers such that the querying entity need know only one
identifier for each patient of interest in the query.

The Terminology Query Server (TQS) exists to translate between the various coding
schemes used in different patient record systems. As with PIDS, TQS allows a querying
entity to formulate queries in its own “native tongue” and then translates these queries
and the associated responses as needed to accommodate the needs of each platform
involved in supporting the query.

The Heterogeneous Information Locator Service (HILS) allows a querying entity to
determine the location of all repositories that might contain information of interest to a
given query.

The Resource Access Decision (RAD) specification defines a flexible, object-oriented
approach to implementing access control policies for healthcare information.

3.3.1.12.3 GEHR Approach
As described earlier, GEHR’s primary function is to provide for communication of data
between potentially different types of record stores. As such, the GEHR kernel (a
software entity being developed in the Australian GEHR work in order to prove out the
specification) provides for the ability to translate between various archetypes representing

 125

messages formats from different exchange protocols and for translation in and out of
native storage formats.

3.3.1.13 Imagery Communications
In as much as telemedicine stations will be able to store still and moving imagery, means
for discovering the existence of these files on remote stations and transferring them
between stations are required. A few of the options for this include:

• DICOM
• CIAS
• Other

3.3.1.13.1 DICOM
As the primary interoperability specification in the digital radiology community, the
Digital Imaging and Communications in Medicine (DICOM) standard is an expansive
specification that defines the structure of data to be stored in a variety of radiology
applications along with the messages used to convey this information between various
components of a digital radiology network. Much emphasis in the standard is placed on
the conformance mechanisms needed to ensure users that different components are
capable of interoperation. The standard allows for communication to radiology data over
standard IP network, over point-to-point links, and via removable media.

3.3.1.13.2 CIAS
As noted above, CIAS was designed to allow for standardized communication of clinical
images of various types, including those generated by DICOM systems.

3.3.1.13.3 Other
While DICOM and CIAS provide a clinical “context” for exchange of clinical images, it
is entirely possible to use other file transfer mechanisms (such as FTP described below)
to enable searching and downloading of files from “folders” on remote machines.

3.3.1.14 Videoconferencing
In the videoconferencing world, a number of standards have been established
corresponding to different media over which the conference is to be conducted or to the
organizations responsible for their generations. Among these are:

• H.323
• H.324
• SIP

3.3.1.14.1 H.323
Developed by the International Telecommunications Union (ITU) as the standard for
packet-based multimedia communications, H.323 provides means for conducting audio,
video, and data-conferencing over networks in which quality of service is not guaranteed
by the network. Based on a suite of other specifications, H.323 enables both point-to-
point and multi-point conferencing. For conferencing over IP networks, it is currently the
most mature of the competing standards and has been implemented by a wide range of
vendors. As an open standard, it allows for vendor independence in construction of

 126

conferencing networks. Through the use of H.323-compliant gateways, it allows for
integration with other kinds of conferencing “terminals”, such as ISDN-based
videophones or simple analog telephones (i.e., POTS). H.323 has built-in quality of
service mechanisms that enable bandwidth within a network to be managed both by
limiting the number of calls running at any given point in time on the network and by
limiting the amount of bandwidth available to any given call.

3.3.1.14.2 H.324
Another ITU specification, H.324 addresses conferencing over analog phones networks.

3.3.1.14.3 SIP
While lagging behind H.323 in terms of introduction, the Internet Engineering Task
Force’s Session Initiation Protocol (SIP) is an interesting technology that promises to
complete with the ITU’s H.32x family of specifications. Even though the SIP approach
to conferencing is still immature, it is gaining acceptance in some portions of the vendor
community, most notably the 3rd Generation Partnership Program (3GPP), a consortium
aimed at the development of specifications for the next generation of mobile
communications. As an IETF specification, SIP has the feel of other Internet protocols
and offers some capabilities drawn from this domain not found in the ITU specifications.
At the same time, SIP lacks some of the key capabilities found in H.323. In particular,
quality of service issues are not handled by SIP at this time. Like H.323, SIP allows for
interaction with public switched telephone networks.

3.3.1.15 Email
A number of standard protocols and message formats exist for sharing of email messages.
These include:
• Post Office Protocol (POP)
• Internet Message Access Protocol (IMAP)
• Simple Mail Transfer Protocol (SMTP)
• MIME (& S/MIME)

3.3.1.15.1 Post Office Protocol
One of the two most popular email “client” protocols, POP exists to allow for
downloading of email messages from a mail server to a user’s computer. Unlike IMAP,
which can operate with messages stored on a remote message store, POP’s standard
approach is “offline” operation in which messages are retrieved from the store and then
deleted from this server.

3.3.1.15.2 Internet Message Access Protocol
A more recent entry into the email protocol market, IMAP is suited to environments in
which a user may wish to read his messages from different computers. Messages handled
by an IMAP client can be handled in place on the message store that contains them so
that messages do not end up being scattered across multiple machines (as might happen if
only POP were used). The protocol also allows for management of server -based
mailboxes, for server-based parsing of email messages, and for filtering of message

 127

traffic between the server and the client (including selective retrieval of messages and
message elements).

3.3.1.15.3 Simple Mail Transfer Protocol (SMTP)
As the “basic protocol for Internet electronic mail transport”, SMTP specifies the set of
messages used both to transfer email from a client located on an end user’s machine and
to transfer messages between the “mail transfer agents” that make up the Internet email
delivery infrastructure.

3.3.1.15.4 RFC 2822, MIME, and S/MIME
RFC 2822 (“Internet Message Format”) specifies the structure of text-only email
messages. The Multipurpose Internet Mail Extensions (MIME) specifications extend this
RFC to allow for the transmission of a broader range of data types (e.g., audio, images)
via email. S/MIME provides a standard mechanism for providing for privacy,
authenticity, and non-repudiation in MIME-based messages.

3.3.1.16 News Groups
The standard protocols for newsgroups is the Network News Transfer Protocol (NNTP).
This form of communication is analogous to a bulletin board (i.e., you pull information
toward you rather than having pushed, as in email) and allows for threaded discussions
(i.e., you see who said what when and what everyone said in response to that and then
what people said about the responses and …).

3.3.1.17 Chat
In low bandwidth situations, “chat” mechanisms that allow interactive text -based
communications are of use. Protocols supporting this capability include:
• Internet Relay Chat (IRC)
• SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE)

3.3.1.17.1 IRC
Internet Relay Chat is relatively old protocol used originally in the BBS arena to allow
text-based, interactive communication between users of a bulletin board and is widely
deployed today. In using IRC, an IRC client attaches to a specified IRC server that, in
turn, can maintain connections with a number of IRC servers, thereby forming an IRC
network. In addition to using “channels “ to allow multiple (potentially thousands) of
clients to share a common conversation, IRC provides mechanisms that allow direct
client-to-client interactions that bypass the IRC servers

3.3.1.17.2 SIMPLE
SIMPLE is a relatively new initiative of the IETF that proposes to standardize services
for:
• “instant messaging” – the ability to conduct interactive, text-based communications

between two or more parties, and
• “presence” – the ability to determine when a person with whom you might like to

interact is on-line.

 128

Based on IETF’s Session Initiation Protocol (SIP) – a mechanism for allowing a user’s
networked devices to discover the location of other users’ devices and to establish user-
to-user communication sessions (text, voice, video) – this family of protocols appear to
be poised to move onto center stage as a core element for establishing interactive person-
to-person communications in future networked environments.

3.3.1.18 File Sharing
Several protocols exist for transferring files between stations and for interactively sharing
files. Among others, these include:
• File Transfer Protocol (FTP)
• IRC
• T.127

3.3.1.18.1 File Transfer Protocol
File Transfer Protocol (FTP) is an old protocol for exchange of files between two
computers. By abstracting the directory structures of both the client and server
computers involved in the exchange, files can be downloaded from server to client or
uploaded from client to server. In certain cases, a client located on a third machine can
mediate this exchange. Recent updates to the protocol address its operation in IPv6
networks and describe how FTP can be extended with additional commands and how
clients can explore which extended commands a given server supports.

3.3.1.18.2 IRC
In addition to supporting group-oriented and person-to-person text-based communication,
IRC provides client -to-client file transfer mechanisms.

3.3.1.18.3 T.127
Part of the ITU’s T. 120 family of protocols for data conferencing, T.127 builds on
T.12x’s multi-point communication services to allow for sharing of data files between
two or more computers. Which participants in a conference receive transmitted files can
be established dynamically.

3.3.1.19 Registry Server Interactions
To date, ebXML’s registry work looks like the most extensively defined. As noted
above, the current favorites here are the UDDI and WSDL elements of generic web
services. ebXML is moving toward richer mechanisms, of which registries are a central
part, for facilitating business to business interactions. It should be noted that, to date,
public registries based on these capabilities have been slow to gain a constituency, due in
large part to a lack of control over the registries and associated security concerns. The
move toward privately run registries may address these issues.

3.3.1.20 Dynamic Configuration
A number of examples of how to package and download software from vendor sites exist
today. Two of relevance to this issue are:

• Open Software Description (from Microsoft) and
• HAVi’s code units.

 129

While they each address different aspects of the software download problem, together
they can be used to address the need for dynamic configuration (at least in the context of
Java-based applications). Note that in both cases, a construct like the manufacturer’s
URL feature of Universal Plug-and-Plug can be used by a station’s installation manager
to find the web site for a device’s vendor. Alternatively, vendors (or other sites hosting
device-specific software) could be cataloged in the registry server network and located by
query to the servers. Finally, it is interesting to note that using these techniques, it is
possible to send to a server a description of the environment into which the software is to
be installed and to have the server assemble the right package in real-time.

3.3.1.20.1 Open Software Description
OSD was a Microsoft proposal to the W3C for standardized descriptions of the context of
software packages and of how these contents relate one another. While it is not clear
where the specification has gone in the W3C community, OSD is still used actively by
Microsoft. In OSD, a “software package” is described with respect to the kind of
environment (operating system, user’s language, etc.) in which its associated software is
intended to run. The components to which the OSD description refers are format-
independent (e.g., could refer to Java code or to a Windows DLL or to application binary
for a particular Unix variant running on a particular kind of processor). OSD is also quite
flexible in describing where (on disk, on the net, etc.) a given software component in its
description might be found.

3.3.1.20.2 HAVi Code Units
Where the emphasis of OSD is on generic software package structure, the thrust of HAVi
is on a way of delivering trusted Java code for use in intelligent audio -visual equipment.
An approach for ensuring that downloaded packages are both authentic and uncorrupted
is a centerpiece of this portion of the HAVi specification.

3.3.2 Recommendations
As we have noted several times already, the goal of this document is to foster discussion
within the telemedicine community regarding how we want to build interoperability into
our system. To this end, this chapter has proposed an abstract architecture for the
construction of future systems and has provided an overview of current and emerging
technologies that might be used to implement these systems. Given this background, we
use the balance of this chapter to editorialize, making recommendations for specific
interfaces that we believe need to agreed upon by the community and technologies for
implementing these interfaces.

In making these recommendations, the following were used as guiding principles:
• Proprietary products should be avoided
• Present or likely market penetration is important
• Telemedicine systems should readily integrate with other systems used in healthcare

environments

Note that several of the recommended technologies are still immature. While other, more
stable, alternatives might be specified, the inclusion of these newer technologies should

 130

be taken as a statement that these seem to be the coming technologies in their respective
area.

Internal Communications
Internal Communications Bus • Internet Protocol (without regard to underlying

media)
Device Buses • IEEE 1394 / Firewire (for wired)

• IrDA (for wireless)
Station Middleware • Universal Plug-and-Play
Internal Components
Station Registry • TIA1-developed based on XML
Patient Record Storage
EMR Structure • GEHR
Record Storage Device
Interfaces

• TIA-developed

Medical Devices
Medical Device Interfaces • IEEE 1073 for feature-rich devices

• POCCIC for “lightweight” devices
Medical Imaging Devices
Interfaces

• DICOM

Standard Camera Interfaces • PTP
External Communications
Media • POTS phone line

• Wired Ethernet (10/100BaseT)
• GSM (and successors) for wide-area wireless

Communications Manager • TIA-developed
External Comms Manager • TIA-developed
Session Manager • TIA-developed
Registry Server Protocols • TIA-developed based on web services
Session Management Protocols • TBD
Medical/POC Device Remote
Monitoring and Control
Protocols

• TIA-developed (joint with IEEE 1073)

Imaging Device Protocols • DICOM
Videoconferencing Protocols • H.323 (for networked environments)

• H.324 (for PSTN environments)
Patient Record Exchange • HL7
Dynamic Configuration
Protocols

• OSD

Person-to-Person Protocols • SMTP (for mail transmission)

1 TIA – Telemedicine Interoperability Alliance

 131

• POP3 and IMAP4 (for mail retrieval)
• RFC 2822, MIME and S/MIME (for mail

encoding)
• SIMPLE (for interactive text messaging)

Other Protocols • T.127 for file sharing
User Interfaces
Media • Visual: Independent but coordinated based on

CCOW
• Voice: VoiceXML

User Interface Device
Interfaces

• TIA-developed

Security
User Authentication • Kerberos
Access Control • RAD
Encryption • TBD
Data Authentication • TBD
System Intelligence
Contexts • TIA-developed extensions to Liberty Alliance

approach
Processing and Protocols • Java
Terminology
Semantics and syntax • TIA-compiled synthesis/harmonization driven by

content of other standards (e.g., DICOM, POCT,
1073)

3.3.2.1 Internal Communications

3.3.2.1.1 Internal Communications Bus
IP has become the lingua franca of the digital communications world. Most emerging
standards in this domain presume IP as the underlying protocol and while standards, like
IEEE 1394, may gain a foothold in certain large markets, such as the home, even these
standards typically have had work done to allow them to support an IP layer. Assuming
that most of the station-external protocols will run over IP, having IP as the base internal
protocol minimizes the amount of translation that needs to be done in moving from inside
the station to outside and also makes its easier to implement virtual stations comprised of
components that are widely distributed.

3.3.2.1.2 Device Buses
The choice here does not seem clear cut; however, of the two logical choices for wired
connectivity – IEEE 1394 and USB – USB looked like the right choice up until the last
year or so. With delays in UWB 2.0, 1394 has gained ground and is appearing more
commonly in computers. 1394 is also pervasive in the audio-visual industry. While both
bus specifications were originally meant of connecting collocated components, new

 132

extensions to the 1394 standard promise to make it usable as local area network and not
just as a peripheral bus hanging off of a computer. The bandwidth of the most recent
1394 specification is significantly higher than that offered by the Whereas USB requires
a root node to host the bus, 1394 allows for a peer arrangement in which any device
capable of mastering the bus is allowed to do so. Given this, the vote went to 1394.

3.3.2.1.3 Station Middleware
UPnP is recommended for communication between collocated components. The fact that
it focuses on movement of data between peer components and does not constrain how
these components are implemented allows significant flexibility for developers. In
addition, as part of Microsoft’s newest operating system, it is likely to enjoy a growing
market presence (as opposed to some of its competing technologies, like Jini). At the
same time, in as much as Microsoft has made the specifications for UPnP public,
developers will not be locked into a proprietary solution set. While designed for ad hoc
networking in which clients autonomously discover needed servers on the local network,
the structure of UPnP allows for registry-style systems to be created. Finally, use of
UPnP for certain functions does not preclude the use of other protocols (e.g., once UPnP
is used to associate two components on a station, these components are free to interact
using other protocols where doing so would be beneficial, as in bandwidth-intensive
communications).

3.3.2.2 Internal Components

3.3.2.2.1 Station Registry
As the heart of the architecture, the station’s registry will have much that is unique to
this application domain; therefore, it is recommended that the telemedicine community
develop the registry specification on its own using XML document technology as the
underlying mechanism for encoding registry data.

3.3.2.3 Patient Record Storage

3.3.2.3.1 EMR Structure
The choice here is really between committing completely to HL7 and XML by choosing
CDA or gaining greater flexibility through the user of GEHR. Because the focus of this
particular recommendation is on a technology for developing the internal structure of an
electronic medical record, buying into the power of GEHR in this realm seems the right
choice, especially inasmuch as repository structures may vary widely with system
employment concept.

3.3.2.3.2 Record Storage Device Interfaces
It is not clear if any standards exists for allowing both the media and the repository
systems into which medical records are to be placed to announce themselves to a system
upon their installation and to then describe themselves. Given this, the current
recommendation for this portion of the station is that the TIA develop these
specifications.

 133

3.3.2.4 Medical Devices

3.3.2.4.1 Medical Device Interfaces
In the non-imaging medical device world, the IEEE 1073 and POCCIC specifications
already have a significant constituency and standard development organizations
committed to their growth and maintenance. 1073 is recommended for the kinds of
heavyweight devices that its already targets. POCCIC is recommended for use in
“lightweight” devices where the overhead of 1073 would be prohibitive. Note that in
both cases, the telemedicine community may end up developing, in cooperation with the
applicable SDOs, the new device-specific application protocols for devices not yet
addressed by these standards.

3.3.2.4.2 Medical Imaging Device Interfaces
In the medical imaging device world, there is only one game in town – DICOM. Even
with the variety of issues that the DICOM-community must face (e.g., achieving real
plug-and-play assembly of imaging systems), proposing to go in a different direction
would bring nothing but pain.

3.3.2.4.3 Standard Camera Interface
With the explosive growth of digital photography over the last few years, a whole
industry is springing up to service the needs of cyber shutterbugs. PTP appears to be the
central protocol enabling many of these capabilities and, therefore, is recommended as
the camera interface standard for the telemedicine community.

3.3.2.5 External Communications

3.3.2.5.1 Media
Three media are recommended as the basis for station-external communications. For the
foreseeable future, standard wired phone lines will be the one universal constant in areas
where phone service has long existed. In areas where it has not, GSM (and its
successors) are poised to capture the wireless market. In high-bandwidth wired
communications environments, irrespective of the mechanism used to access the Internet
(e.g., router, DSL modem, or cable modem), the user side of these devices will continue
to offer Ethernet connectivity (10/100 BaseT).

3.3.2.5.2 Communications Manager
The set of services that the communication managers present to other components in the
station are TIA-specific given that it is not clear that a standardized, message-oriented
interface for this set of services exists yet in industry.

3.3.2.5.3 External Communications Manager
Given the telemedicine station-specific nature of this component’s operations, the
recommendation is for this component is that its specifications be TIA-developed.

 134

3.3.2.5.4 Session Manager
As with the external communications manager, this component is intimately identified
with the telemedicine station and should be specified by the TIA (with use being made
of IETF QOS work when this is deemed mature enough).

3.3.2.5.5 Registry Server Protocols
Because the application protocols associated with interacting with the registry server will
be unique to the telemedicine community, it is recommended that this community
develop them. Given the closeness of this work to ongoing activities in the XML and
web services world, using web service capabilities (e.g., SOAP, UDDI) wherever
possible is recommended in order to enable telemedicine to exploit, if possible, the
infrastructure that is likely to develop to support web commerce.

3.3.2.5.6 Session Management Protocols
For the reasons outlined above in the discussion on session management options, no
specific recommendation is being made here.

3.3.2.5.7 Med./POC Device Remote Monitoring & Control Protocols
There is relatively little that has been done in this area and the telemedicine community
may be as experience as anyone in this arena. Since IEEE 1073 is beginning to address
these issues, pursuing development of these specifications jointly seems like the most
reasonable course of action.

3.3.2.5.8 Imaging Device Protocols
Once again: DICOM rules, why fight it?

3.3.2.5.9 Videoconferencing Protocols
This choice is much less clear. The Internet -based work of the IETF looks like it may, in
time, carry the day simply because it is riding a wave of burgeoning Internet technologies
and because the vision of computer-mediated communication services is quite
compelling. Even so, the IETF work is still in its early stages – a point where the
promise of what might be can differ significantly from what is actually developed. Given
these things, it seems prudent to stick with the ITU specifications – H.3232 for networked
environments and H.324 for PSTN – which, by the way, are by no means stagnant.

3.3.2.5.10 Patient Record Exchange Protocols
As DICOM is for imaging, HL7 is for patient record exchange. Its constituency is so
large that it is hard to imagine anything threatening its dominance in the foreseeable
future.

3.3.2.5.11 Dynamic Configuration Protocols
Microsoft’s OSD is recommended as the mechanism for packaging downloadable
software because of its generality (i.e., it’s not language specific) and flexibility.

3.3.2.5.12 Person-to-Person Protocols
For email messaging, the dominant standards are SMTP for mail transmission, POP3 and
IMAP4 for mail retrieval and MIME and S/MIME for mail encoding. In the area of text

 135

message, the choice is not completely clear, but given that a number of instant messaging
activities are embracing it, SIMPLE seems like the right choice.

3.3.2.5.13 Other Protocols
Since the ITU standards for videoconferencing are being recommended, T.127 (which is
part of the H.32x family) is the obvious choice for sharing of data files.

3.3.2.6 User Interfaces

3.3.2.6.1 Media
For the reasons discussed above in the section of user interface components, it is not
recommended that a specific user interface medium be established as the standard for the
telemedicine community. At the same time, when visual (GUI-based) components are
being incorporated into the station (especially as part of stand-alone applications that run
in parallel with other applications on the station), CCOW capabilities also be
implemented in order to allow for synchronization of context between independent
applications. When voice-based interfaces are being built into a station, compliance
with VoiceXML is recommended.

3.3.2.6.2 User Interface Device Interfaces
Inasmuch as it is not clear whether a standard, device-independent mechanism exists for
allowing a user interface to announce its presence and to describe its capabilities to a
station, it is recommended that the TIA develop this specification.

3.3.2.7 Security

3.3.2.7.1 User Authentication
Kerberos is recommended as the mechanism for distributed user authentication. The
assumption underlying this recommendation is that Internet -based authentication
services (e.g., Microsoft’s Passport service and those that will be compliant with Liberty
Alliance specs) that appear to be emerging today (and that rely on this protocol) will
succeed and become the standard mechanism for allowing unfamiliar parties to
successfully identify each other.

3.3.2.7.2 Access Control
One of the very good ideas to emerge from the CORBA community’s healthcare work is
the RAD specification. It is recommended because it allows for the creation of very
sophisticated access control policies on any (software-based) resource in a system.

3.3.2.7.3 Encryption and Data Authentication
Both the approaches that you choose for encrypting data links and the approaches that
are chosen for data authentication are closely tied to the specific protocols chosen for
other aspects of the station and system architecture. For instance, choosing HL7 means
that you also choose to implement S/MIME for secure transmission of HL7 messages.
Similarly, a commitment to IP -based communications will probably mean, in time, a
commitment to IPSEC-based assurance. Given this, recommendations in this area are
TBD.

 136

3.3.2.8 System Intelligence

3.3.2.8.1 Contexts
Although it is always hard to tell with Microsoft, it looks like the Liberty Alliance
approach to serving user-specific data may gain support from Redmond. Given its more
generic approach and ability to support decentralized implementations, Liberty seems
like a preferred approach and a reasonable base for building the telemedicine-centric
contexts.

3.3.2.8.2 Processing and Protocols
The primary motivation for recommending Java as the basis for developing processes
and protocols is the desire to easily move code between platforms in a distributed station
implementation and the body of capabilities that have been built up in the web and
mobile worlds to accomplish just that.

3.3.2.9 Terminology

3.3.2.9.1 Semantics and Syntax
Making recommendations at this point would be a case of the tail wagging the dog. Just
as with the encryption and authentication approaches discussed above, what you will
choose is highly correlated with the other standards that you pick (e.g., if you adopt
IEEE 1073, you have automatically bought into a large vocabulary related to vital signs
monitoring, a specific way of encoding the elements of this vocabulary, and a way of
communicating these concepts). Once “the rest” has been decided, this area will require
work on the part of the telemedicine community to synthesize and harmonize the various
concept sets and their representations.

 137

4 Making Interoperability a Reality
This section proposes a path forward in the effort to make vendor -independent plug-and-
play composition of distributed telemedicine systems a reality. It is one thing for one
organization to propose an approach to achieve the kinds of goals described in this
document; it is another thing altogether to achieve agreement within an industry
regarding which approach is right for the industry. Reaching agreement within the
telemedicine industry will take time. The ideas presented in this document must be
studied and challenged. Partnerships must be established with other groups who share
common interests. Demonstration systems must be built and “plugfests” held to flesh out
and prove out the concepts described here. Mechanisms must be established for
maintaining and evolving the “standards” that emerge from this work. Marketing efforts
must be pursued to raise awareness and promote acceptance for the products of all of
these efforts.

4.1 Background
In March 1999, Sandia National Laboratories proposed to its Army program managers,
the U.S. Army Telemedicine and Advanced Technologies Research Center (TATRC),
that work be done to pursue the development of interoperability specifications for
telemedicine stations. Planned as a three phase effort, the first product of this effort was
delivered for clinical evaluation in the Fall of 2000. The focus of this “Build 1” device
was on the infrastructure needed within a single station to support distributed system
operation and on the mechanisms needed to support plug-and-play operation of medical
devices. Build 2 in this plan was to focus on the issues associated with distributed, multi-
station operation and Build 3 on replacing monolithic stations with distributed collections
of components (such as might be found in a home networking environment). When
funding for the final two phases of this effort were not forthcoming, TATRC provided
enough funding to document the architecture concept (i.e., to produce this document that
you are reading) and to begin socializing it in the community.

While the architecture presented in this document is based on the design patterns
employed in the Build 1 design, there are differences between the two. In particular, this
architecture attempts to address the requirements associated with systems in which
stations are created completely from ad hoc collections of components (whereas the Build
1 design depended on a number of proprietary component interface specifications). In
addition, Sandia’s Build 1 system was built on CORBA and Java (although its design
incorporated an “abstraction layer” that would allow for the replacement of CORBA with
other middleware technologies), a feature that might or might not prove acceptable to the
larger telemedicine community. For these reasons, while the majority of the concepts
presented in this document are proven, implementation specifics still need to be
hammered out through the development of prototypes that implement the proposed
specification.

4.2 Compliance
The architectural approach proposed in this document is meant to enable the dynamic
creation of telemedicine stations and systems (of stations) from distributed, plug-and-play
components and is meant to provide for a variety of services that might be used in a

 138

telemedicine environment. As such, this document identifie s a number of different
interfaces that must be implemented if a system is to support all of the features specified.
At the same time, nothing constrains a system developer to implement all aspects of this
specification. As business needs dictate, vendors should be able to implement those
interfaces that are useful to them and to forgo implementation of those parts that are not.
To this end, the telemedicine community will need to establish “profiles” (see next
section) that indicate which parts of the architecture must be implemented for a given
utilization concept. Mechanisms that allow vendors to evaluate their conformance with
given profiles should also be established.

In the broadest terms, the specification can be viewed as containing three sets of
interfaces: station-to-device, station-to-station, and station-internal. The goal of the first
interface – station-to-device communications – is to support vendor-independent, plug-
and-play operation of devices (medical instrument, patient record, and user interface) that
attach to a station. As the focus is on device interactions, at this level of interoperability,
the implementer is not constrained in the way that his station is built other than to include
whichever device bus approach(es) have been accepted by the telemedicine community
and to support the application-level protocols defined for each of these devices. How the
vendor’s stations communicate with other stations or whether they communicate at all is
entirely up to the vendor.

In the station-to-station communications interface, the focus is on creating stations that
are capable of locating and contacting stations created by other vendors, on enabling
stations to exchange information regarding the capabilities that they support, and on
allowing stations to lease and control each other’s resources. As with station-to-device
communications, this level of interoperability levies no constraints on how developers
build their stations. Whether the station is a monolithic design with a fixed set of
resources or a fully distributed design with hot plugging resources is transparent to
devices outside of the station itself. The intent of this design is to allow the telemedicine
community to establish “open” networks with a minimum level of reengineering of
existing systems. Because this set of interfaces allows for the control and monitoring of
devices on remote stations, implementation of this set of interfaces implies the
implementation of the application level protocols used interact with devices in the
station-to-device communications.

The final set of interfaces address the station-internal communications (i.e., the way that
the various components that make up at station communicate with one another). As such,
these interfaces exist to allow for the ad hoc creation of stations using a variety of
individual components, especially those scattered around a network. While it is likely
that vendors implementing this set of interfaces will be creating systems that implement
all three set of interfaces, there is nothing that requires that this be so. For example, it is
easy to imagine a home-based care system that employs a self-contained suite of
instruments (i.e., one in which the medical devices are all tightly integrated into single
box), a patient record stored on a PC, and a user interface device (e.g., a computer-
enabled TV) that are all interconnected by means of a home network. While this system
would implement this final set of station-internal interfaces that would allow the different

 139

resources on the network to discover each other and to federate to form a station, it is
conceivable (though unlikely) that such a station would be operated as a stand-alone
station (i.e., would not communicate with external stations), thereby obviating the need to
implement all three interfaces.

4.3 Profiles
While vendors need the freedom to choose which parts of the architecture they wish to
implement, allowing for complete freedom introduces a number of problems. In as much
as the goal is to allow components and stations developed independently by different
vendors to interact, a telemedicine product developer needs some sense of exactly what
must be done in order to ensure that his products will function properly in a given
operational setting. Likewise, consumers faced with a variety of product offerings will
want to know which products from which vendors can be used together and for what
purposes. It was for this very reason that, several years ago, the Technology Special
Interest Group of the American Telemedicine Association identified telemedicine system
“component labeling” as a key issue that needed to be addressed by the telemedicine
community.

To address these needs, we suggest that a series of profiles be established that represent
the various operational concepts that the telemedicine community would like to see
supported and that specify which parts of the architecture and its associated specifications
must be implemented in order for a vendor to assert that his product is “compliant”. As a
starting point for discussions, we will use six areas and the associated list of attributes
shown in Figure 80 to characterize a station within a telemedicine system:
As used in the figure, the attributes are understood as follows:

• A station may support person-to-person communications. If it does, the
methods employed can include interactive communications (e.g.,
teleconferencing/videoconferencing), store-and-forward communications (email,
voice messaging), or both.

• Stations that host medical devices may employ devices that are integrally bound
to the station, devices that attach in plug-and-play fashion, or both. If the station
allows other stations to access these devices remotely, it is assumed that this
remote access includes remote reading of data produced by the devices. It may
or may not include remote control of these devices by the other stations.
Accordingly, a station accessing a remote station that hosts one or more medical
devices may read the data generated by the devices , may remotely control the
devices, or both.

• If a station incorporates patient record data storage, this storage can be dedicated
to one user at a given time or may be available to multiple users simultaneously.
In addition, data in a station’s repository may be stored on fixed media (e.g.,
hard drives embedded in the station) or on removable media. If the station
allows other stations to read from and write to its patient record repositories, this
may be done in real-time (e.g., for data streaming from a medical device) or in
off-line/store-and-forward mode.

 140

Protocol Server X

X

X

Net-ready Device X
 X

X

Patient Record Browser

 X
 X
 X

Net-ready Card Reader X
 X

X

X
 X

Basic Patient Card Reader X
 X
 X

Patient Record Server X

X
 X

X
 X
 X

Full Caregiver Station

X

X
 X

X
 X

X
 X

X

X
 X

X

X

Full Patient Station

X

X

X

X

X

X
 X

X

X

X

X

X

X

X

X

X

Bedside Hub X

X

X
 X

X

X

Classic Caregiver Station

X
 X
 X

X
 X

X

X

Classic Patient Station

X
 X
 X
 X
 X
 X
 X

Minimal Caregiver Station
X

 X
 X

Minimal Patient Station
X

 X

X
 X

Traveling Nurse Station X
 X

X
 X
 X

Videoconferencing Station

X
 X

Tele-monitoring Station X
 X
 X
 X
 X

Stand-alone Station X
 X
 X
 X

In
te

ra
ct

iv
e

St
or

e-
an

d-
fo

rw
ar

d

In
te

gr
al

Pl
ug

-a
nd

-P
la

y

E
xt

er
na

l C
om

m
un

ic
at

io
ns

R
em

ot
e

C
on

tro
l

Si
ng

le
 U

se
r

M
ul

ti-
us

er

Fi
xe

d
M

ed
ia

R
em

ov
ab

le
 M

ed
ia

St
or

e-
an

d-
fo

rw
ar

d

R
ea

l-t
im

e

In
te

gr
al

Pl
ug

-a
nd

-P
la

y

Pl
at

fo
rm

U
se

r E
nv

ir
on

m
en

t

R
eg

is
tr

at
io

n

Pe
rs

on
-to

-p
er

so
n

C
om

m
un

ic
at

io
ns

M
ed

ic
al

 D
ev

ic
es

Pa
tie

nt
 R

ec
or

d

U
se

r I
nt

er
fa

ce

D
yn

am
ic

C

on
fi

gu
ra

tio
n

A
dd

re
ss

in
g

Fi
gu

re
 8

0.
 C

an
di

da
te

 P
ro

fil
es

 141

• A station may or may not incorporate a user interface. If it requires a user
interface, it may have one that is integral to the station, one that is added
dynamically (e.g., via a PDA), or both.

• In terms of station configuration, a station may be static with respect to the
functions that it delivers or may be dynamically configurable. Likewise, the
operating environment that it presents to its users may be fixed or may change
dynamically as different users access its capabilities. For these reasons, this
architecture allows for the existence of servers that provide on demand access to
dynamically loadable processes, protocols, and contexts.

• Finally, a station may work through direct addressing (e.g., external stations
interact with it by specifying its URI or a corresponding alias) or through
advertising its existence and discovering the existence of other stations through
the use of registry servers.

4.3.1 Stand-alone Station
Description: Stations in this profile are characterized by a “platform” that

hosts one or more plug-and-play medical devices, an integral
user interface, and (potentially limited) patient record storage
intended for a single user.

Utilization Concepts: 1. A patient monitors his own progress at prescribed
intervals using the various devices supported by the
station. Readings collected in this way are archived in the
station. Periodically, a caregiver contacts the person by
phone and the data contained in the station is retrieved
reading-by-reading and conveyed verbally to the
caregiver who transcribes this data into the person’s
medical record.

2. Same as above with the exception that a traveling
caregiver periodically visits the person and retrieves the
data directly from the station and transcribes the data into
the patient’s record.

Examples: 1. Palm Pilot / PocketPC with wireless spirometer
2. Bedside “alarm clock” with IR connection to glucose

monitor and blood pressure monitor that, in addition to
functioning as a regular clock, displays and stores
readings gathered from these devices

Basis of Compliance: 1. Use of TIA-supported device bus
2. Use of TIA-compliant interfaces for whatever medical

devices (including imaging devices and general purpose
cameras) the station is designed to support

4.3.2 Tele-monitoring Station
Description: Stations in this profile are characterized by a “platform” that

hosts one or more integral medical devices, an integral user
interface, and (potentially limited) patient record storage
intended for a single user. They also provide for retrieval by
a remote station of readings logged into the station’s patient

 142

a remote station of readings logged into the station’s patient
record.

Utilization Concepts: 1. A patient monitors his own progress at prescribed
intervals using the various devices supported by the
station. Readings collected in this way are archived in the
station. Periodically, a caregiver contacts the pa tient
station and, after proper user authentication, uploads from
the patient station all readings generated since the last
upload.

Examples: 1. Dedicated platform with integral display to which devices
attach and which attaches to phone line and to phone (in
answering machine fashion)

2. System based on video game unit (e.g., Sony Playstation
or Microsoft Xbox) that attaches to a TV’s display and to
medical devices and that accesses the Internet via a cable
modem connection

Basis of Compliance: 1. Support for TIA external communications manager
2. Support for TIA registry communications
3. Support for TIA session management protocols
4. Use of TIA-compliant user authentication mechanisms
5. Use of TIA-compliant patient record exchange protocols

(and associated data authentication and encryption
protocols)

4.3.3 Videoconferencing Station
Description: Stations in this profile are characterized by a platform that

incorporates a dedicated user interface (display, camera,
microphone, etc.) and provides for interactive video
communications with a remote station.

Utilization Concepts: 1. A specialist on contract to a rural clinic interacts with the
clinic’s staff via videoconference link. Using a PDA-like
device equipped with a wireless transceiver, the specialist
is always available at a moment’s notice to support a
“curbside consult”.

2. A fitness coach on staff at the HMO uses
videoconferencing to make his weekly visits with his
various lifestyle management groups.

Examples: 1. Typical videoconferencing box that connects to dedicated
external monitor, cameras, microphone, speakers, and
control unit and that can support a range of
communications media (phone, dedicated line, etc.)

2. Touch-interface, wireless, tablet computer with integrated
interface components

Basis of Compliance: 1. Support for TIA external communications manager
2. Support for TIA registry communications
3. Support for TIA session management protocols

 143

4. Use of TIA-compliant videoconferencing protocols (and
associated data authentication and encryption protocols)

4.3.4 Traveling Nurse Station
Description: Stations in this profile are characterized by a compact

platform capable of hosting a range of portable, plug-and-
play medical devices, an integral user interface, and patient
record storage intended for multiple patients. Clinical
operations performed with the device are done in stand-alone
mode (i.e., the station is not connected to other stations while
be used for clinical functions). As needed, the station can be
connected to remote stations for the purpose of synchronizing
medical records on the nurse station and the remote station.

Utilization Concepts: 1. A nurse going to service a community downloads from
the office server to the nurse station both the records for
those patients scheduled to be seen and the master patient
index for the patient record system. During the course of
the day, records are opened and closed as needed and
readings from devices and notes (text or voice) added by
the nurse are entered into the currently selected record. If
required, the nurse creates skeletal records for new
patients and adds readings and notes to these records. At
the end of the day, the nurse station is attached to the
office network and the office record server is updated
with the information generated by the nurse station.

2. A nurse carries a minimal nurse station into homes
already equipped with medical devices and record
storage. Once powered on, the station identifies the other
devices in the house, synchronizes records as needed, and
then leases the devices in the home for use during the
visit. Recordings generated by these devices during the
session are logged both to the local storage and to the
traveling nurse station’s patient record.

Examples: 1. Laptop PC with external “hub” that hosts various medical
devices, keyboard-/mouse-driven graphical user interface,
hard drive-based record storage, and PC Card-based
wireless LAN connectivity.

2. Wearable PC with microphone and earpieces, wireless
connection to medical devices, medical devices with
integral “start/stop” controls, voice-driven command
interface, solid-state data storage, and wireless connection
to local area networks.

Basis of Compliance: 1. Use of TIA-supported device bus
2. Use of TIA-compliant interfaces for whatever medical

devices (including imaging devices and general purpose
cameras) the station is designed to support

 144

3. Use of TIA-compliant user authentication mechanisms
4. Support for TIA external communications manager
5. Support for TIA registry communications
6. Support for TIA session management protocols
7. Use of TIA-compliant patient record exchange protocols

(and associated data authentication and encryption
protocols)

4.3.5 Minimal Patient Station
Description: Stations in this profile are characterized by a platform that

hosts one or more integral medical devices that can be
monitored in real-time by a remote station, an integral user
interface, and interactive, person-to-person communications.
Intended for real-time use, this station does not provide for
patient record storage.

Utilization Concepts: 1. A caregiver in a rural clinic examines patients with a suite
of instruments that attach (by wire and by wireless link)
to a base station mounted on the exam room wall.
Integral to this station are a digital display, a camera,
microphone, and speakers. The display is used both for
display of digital data generated by the various
instruments and for video-conferencing with remotely
located specialists. Data collected by the station can be
selectively forwarded to a remote specialist for real-time
viewing.

2. A patient under the supervision of a home care agency
receives periodic televisits from one of the agency’s
nurses. In additional to monitoring vital signs and other
selected physiologic parameters, sessions usually involve
some degree of discussion between the nurse and the
patient regarding overall emotional state and other aspects
of well-being.

3. A paramedic unit equipped with a portable version of this
sort of station often carries the station with them to the
accident scene. Live connection, including video feed
from a sub-palm-sized video camera, to a supervising ER
allows the ER docs to coach the paramedics through
difficult cases.

Examples: 1. Videophone with external interface for medical devices.
2. Custom box containing tightly integrated flat panel

display, camera, microphone, and speakers and integral,
cable-connected blood pressure monitor, thermometer,
weight scale, ECG, and built-in modem.

Basis of Compliance: 1. Use of TIA-supported device bus
2. Use of TIA-compliant interfaces for whatever medical

devices (including imaging devices and general purpose

 145

cameras) the station is designed to support
3. Use of TIA-compliant user authentication mechanisms
4. Support for TIA external communications manager
5. Support for TIA registry communications
6. Support for TIA session management protocols
7. Use of TIA-compliant medical device remote monitoring

protocols (and associated data authentication and
encryption protocols)

8. Use of TIA-compliant videoconferencing protocols (and
associated data authentication and encryption protocols)

4.3.6 Minimal Caregiver Station
Description: Stations in this profile are characterized by a platform that

permits remote monitoring of data coming from one or more
medical devices on a remote station and includes an integral
user interface and interactive, person-to-person
communications.

Utilization Concepts: 1. An on-call specialist is able to receive a “call” from a
nurse in a critical care unit and, using the caregiver
station, to remotely monitor the information being
generated from a range of instruments at the bedside
where the nurse is working and to interact with the nurse
by audio and/or video link throughout this process.

2. Same as 1. but for remotely located paramedic unit.
Examples: 1. PocketPC with “high-bandwidth” wireless Internet

connection and videoconferencing add-in card
2. HAVi-enabled television with videoconferencing-

compliant cable modem
Basis of Compliance: 1. Use of TIA-compliant user authentication mechanisms

2. Support for TIA external communications manager
3. Support for TIA registry communications
4. Support for TIA session management protocols
5. Use of TIA-compliant medical device remote monitoring

protocols (and associated data authentication and
encryption protocols)

6. Use of TIA-compliant videoconferencing protocols (and
associated data authentication and encryption protocols)

4.3.7 Classic Patient Station
Description: Stations in this profile are meant to address the features of

patient stations are they are typically built today. Stations
fitting this profile are characterized by a platform that hosts
one or more integral medical devices that can be remotely
monitored in real-time by remote stations, an integral user
interface, interactive person-to-person communications, and
patient record storage intended for a single user that can be

 146

accessed for reading by remote stations.
Utilization Concepts: 1. A patient monitors his own progress at prescribed

intervals using the various devices supported by the
station. Readings collected in this way are archived in the
station. Periodically, a caregiver contacts the patient
station and, after proper user authentication, uploads from
the patient station all readings generated since the last
upload. An interactive session consisting of both patient-
caregiver interaction and interactive collection of various
readings follows.

Examples: 1. Custom box containing tightly integrated flat panel
display, camera, microphone, and speakers and integral,
cable-connected blood pressure monitor, thermometer,
weight scale, ECG, built-in modem, and hard drive-based
data storage.

Basis of Compliance: 1. Use of TIA-compliant user authentication mechanisms
2. Support for TIA external communications manager
3. Support for TIA registry communications
4. Support for TIA session management protocols
5. Use of TIA-compliant medical device remote monitoring

protocols (and associated data authentication and
encryption protocols)

6. Use of TIA-compliant videoconferencing protocols (and
associated data authentication and encryption protocols)

7. Use of TIA-compliant patient record exchange protocols
(and associated data authentication and encryption
protocols)

4.3.8 Classic Caregiver Station
Description: Stations in this profile are meant to address the features of

caregiver stations as they are typically built today. Stations
fitting this profile are characterized by support for interactive
person-to-person communications, the ability to monitor in
real-time data generated by instruments on a remotely located
station, an integral user interface, and patient record storage
for multiple patients, and the ability to interact with (browse
and upload) patient records stored on remote stations.

Utilization Concepts: 1. A home care nurse spends the day “visiting” a number of
patients in her charge. As she places a call and it is
answered, her station checks with the remote station to
determine if any new readings have been generated since
the last encounter and, if so, uploads these to the nurse’s
patient record database. After reviewing the data and
talking with the patient, she directs the patient to use one
or more of the devices shown to be available at the
patient’s location. Data generated by these actions are

 147

automatically displayed on the nurse’s station and
simultaneously loaded into the patient’s records on the
station. Where appropriate, data can be analyzed in real-
time (e.g., to detect trends in blood pressure) using
processes local to the nurse’s station.

Examples 1. A desktop PC with an add-in video conferencing card and
custom software

Basis of Compliance: 1. Use of TIA-compliant user authentication mechanisms
2. Support for TIA external communications manager
3. Support for TIA registry communications
4. Support for TIA session management protocols
5. Use of TIA-compliant medical device remote monitoring

protocols (and associated data authentication and
encryption protocols)

6. Use of TIA-compliant videoconferencing protocols (and
associated data authentication and encryption protocols)

7. Use of TIA-compliant patient record exchange protocols
(and associated data authentication and encryption
protocols)

4.3.9 Bedside Hub
Description: Stations in this profile are characterized by a barebones

platform that is augmented in plug-and-play fashion with user
interface components and medical devices and that is capable
of dynamic configuration of both its operating environment
(e.g., software used to control attached devices) and its user
environment (e.g., the protocols implemented in support of a
given user and the external patient record repositories to
which the station connects while a given user is present).

Utilization Concepts: 1. A CCU bed contains an integral platform that presents a
suite of standardized device interfaces to the external
world as well as a standardized way of connecting to a
local area network. The bed constantly monitors its
environment for the presence of devices to which it can
connect. Under user supervision, the bed establishes
associations with specified medical devices and user
interface devices, in the process retrieving software
components that it needs in order to support the devices
with which is has established associations. Subject to
context information retrieved about users that are present,
the bed is able to configure itself with the users’ protocols
of choice and to establish connections to external
repositories and external processing resources.

Examples: 1. Custom box with wireless and wired interface ports for
medical device and user interface communications and
PCMCIA slot that can host interfaces cards for various

 148

types of wired and wireless network.
2. OEM board with fixed device and network interface

connections that can be integrated into other products,
such as hospital beds or wall-mount units.

Basis of Compliance: 1. Use of TIA-supported device bus
2. Use of TIA-compliant interfaces for whatever medical

devices (including imaging devices and general purpose
cameras) the station is designed to support

3. Use of TIA-compliant user interface device interfaces
4. Use of TIA-compliant user authentication mechanisms
5. Support for TIA external communications manager
6. Support for TIA registry communications
7. Support for TIA session management protocols
8. Use of TIA-compliant medical device remote monitoring

protocols (and associated data authentication and
encryption protocols)

9. Use of TIA-compliant medical device remote control
protocols (and associated data authentication and
encryption protocols)

10. Use of TIA-compliant dynamic configuration protocols
(and associated data authentication and encryption
protocols)

4.3.10 Full Patient Station
Description: Stations in this profile incorporate most of the capabilities

defined in this architecture. These include:
• both interactive (video- and audio-conferencing) and

store-and-forward (email, voicemail, videomail) person-
to-person communications

• the possibility for both integral and plug-and-play
medical devices which can be monitored as well as
controlled by remote stations

• local, multi-person patient record storage that can be
browsed or bulk uploaded from remote stations and the
ability to read from and write to patient record cards

• the use of integral user interface capabilities, of
dynamically added interfaces, or both

• the ability to dynamically load new software components
into the station to handle changing device suites

• the ability to dynamically load new protocols and
establish external connections to support changing user
and patient populations

• registration of the station with registry servers to allow
other stations to discover the station’s advertised
capabilities and network address

Utilization Concepts: 1. A cart carrying both the patient station and a wide range

 149

of medical instruments is rolled where needed in the
nursing home. Once in the room, the station establishes
contact with the room’s network access point and based
on context information in the access point establishes
external connections to the proper patient record in the
nursing home’s patient record server and displays this
record automatically on the station’s screen. As the
nurses attach devices to the station, the software
components needed to control the instruments are
dynamically loaded in to the station. Reading generated
by the station are displayed on its screen and
automatically forwarded to the patient record server. As
needed, the nurses can place a video call to the resident
physician who is able monitor their operations in real-
time and, if required, can remotely configure and operate
the devices.

2. In the home, a well-equipped patient station acts as a
medical “portal” allowing a person to interact with a
variety of caregivers. As needed the station’s capabilities
can be extended with devices purchased by the person or
rented as needed from medical supply houses.

Examples: 1. PC-based system with built-in device bus interfaces,
network interface, integral videoconferencing
components (camera, speakers, etc.), and card reader.

2. Home network-based system using TV for interface, local
computing resources for processing and storage, home
gateway for Internet communications, network access
points medical device communications, and net-ready
“medical peripherals”.

Basis of Compliance: 1. Use of TIA-supported device bus
2. Use of TIA-supported interna l communications bus
3. Use of TIA-compliant interfaces for whatever medical

devices (including imaging devices and general purpose
cameras) the station is designed to support

4. Use of TIA-compliant user interface device interfaces
5. Use of TIA-compliant record storage device interfaces
6. Use of TIA-compliant user authentication mechanisms
7. Support for TIA external communications manager
8. Support for TIA registry communications
9. Support for TIA session management protocols
10. Use of TIA-compliant medical device remote monitoring

protocols (and associated data authentication and
encryption protocols)

11. Use of TIA-compliant videoconferencing protocols (and
associated data authentication and encryption protocols)

12. Use of TIA-compliant person-to-person communication
protocols (and associated data authentication and

 150

protocols (and associated data authentication and
encryption protocols)

13. Use of TIA-compliant patient record exchange protocols
(and associated data authentication and encryption
protocols)

14. Use of TIA-compliant dynamic configuration protocols
(and associated data authentication and encryption
protocols)

15. Use of TIA-compliant registry server protocols

4.3.11 Full Caregiver Station
Description: Stations in this profile incorporate most of the capabilities

defined in this architecture and differ from the full patient
station only in the lack of medical devices at the caregiver
station.

Utilization Concepts: 1. A patient looking for a new doctor searches the
telemedicine registry servers to find one that meets
certain criteria. After “dialing” the doctor, the patient is
connected with a nurse practitioner whose station scans
the patient’s station to discover what capabilities are local
to the station and to learn where to locate the patient’s
records. Creating a new record for the patient at her
station, the nurse links the existing records into hers.
Local processing routines analyze the record, flagging
items of interest and creating a summary for her review.
After a short discussion, she then begins the balance of
the encounter, moving into current complaints and, as
needed, controlling devices on the patient’s station to
collect current readings.

Examples: 1. Network computer with distributed computing resources.
Basis of Compliance: 1. Use of TIA-compliant user authentication mechanisms

2. Support for TIA external communications manager
3. Support for TIA registry communications
4. Support for TIA session management protocols
5. Use of TIA-compliant medical device remote monitoring

protocols (and associated data authentication and
encryption protocols)

6. Use of TIA-compliant videoconferencing protocols (and
associated data authentication and encryption protocols)

7. Use of TIA-compliant person-to-person communication
protocols (and associated data authentication and
encryption protocols)

8. Use of TIA-compliant patient record exchange protocols
(and associated data authentication and encryption
protocols)

9. Use of TIA-compliant dynamic configuration protocols

 151

(and associated data authentication and encryption
protocols)

10. Use of TIA-compliant registry server protocols

4.3.12 Record Server
Description: Stations in this profile are characterized by a platform that

permits remote storage and retrieval of records for multiple
patients. As needed, the platform can download new
components needed for handling data types that are new to the
server and for handling different data exchange protocols used
to move data between the server and a range of external
devices.

Utilization Concepts: 1. A clinic stores all of their records on a single, high
reliability server maintained at the clinic. Doctors doing
rounds at area hospitals are able to automatically forward
data from all encounters to their records in the clinic’s
server. In like fashion, clinic staff away from the clinic
are able to remotely review records stored on the server.

2. A patient subscribing to a medical record service provides
the service with the names of all doctors and institutions
with which they have been associated. In turn, the service
provides the patient with a record card that contains the
patient’s context, including the patient’s account number
with the service. The service then contacts each of the
noted providers and gains access rights to the patient’s
records on each of these servers. When the patient visits
a caregiver, the context information read from the patient
record card directs the caregiver or patient station to a
single server that acts as the “front-end” for all of the
other servers that store the patient’s information. To the
querying station, it appears at first blush that all records
for the patient are stored on this single station. As
needed, the user at the querying station can search further
to determine the actual source of each record in the virtual
record presented by the record server.

3. All records for a family are stored on a record server
device located on the family’s network. As with
commercial systems, this repository serves records for
multiple patients. Whenever a family member visits a
caregiver from home, the local server maintains a record
of the transaction. When the family members visit a
caregiver in person, the context on the patient card that
they present directs the caregiver’s station to send a copy
of the encounter record to the family’s personal record
server.

Examples: 1. Server-class PC running dedicated database software

 152

2. Distributed database running across distributed machines
front-ended by multiple, load-balancing gateway
machines, presenting a record server interface to the
outside world.

3. Net-ready database “appliance” that can be added to a
home network in “plug-and-play” fashion.

Basis of Compliance: 1. Use of TIA-compliant user authentication mechanisms
2. Support for TIA external communications manager
3. Support for TIA registry communications
4. Support for TIA session management protocols
5. Use of TIA-compliant patient record exchange protocols

(and associated data authentication and encryption
protocols)

6. Use of TIA-compliant dynamic configuration protocols
(and associated data authentication and encryption
protocols)

7. Use of TIA-compliant registry server protocols

4.3.13 Basic Patient Card Reader
Description: Stations in this profile are characterized by a platform that

permits browsing and editing of records contained on a patient
record card. These devices are self -contained, having their
own native user interfaces and no connections to the outside
world.

Utilization Concepts: 1. A hand-held device with wireless card reader with text
and audio user interface elements is used by battlefield
medics to read the “electronic dog tags” of injured
personnel and to annotate the record before the personnel
are evacuated.

2. Paramedics use a card reader to review critical
information contained on a “medic alert” bracelet worn
by certain patients.

Examples: 1. PDA with built-in reader
Basis of Compliance: 1. Use of TIA-supported device bus

2. Use of TIA-compliant record storage device interfaces

4.3.14 Net-ready Card Reader
Description: Stations in this profile are characterized by a platform that

permits remote stations to browse and edit records contained
on a patient record card. As needed, these devices can
download software components needed for reading record
types that are not native to the reader.

Utilization Concepts: 1. A wall-mounted reader in an examine room provides
other station components in the room with access to the
records contained on the patient’s record card. When a
protocol leasing the reader identifies the need for a new

 153

record type (i.e., one not known by the reader), the reader
can be directed to download the software components
needed to support operations with this new record type.

Examples: 1. Custom box with interface to local area network.
Basis of Compliance: 1. Use of TIA-supported internal communications bus

2. Use of TIA-compliant record storage device interfaces
3. Use of TIA-compliant user authentication mechanisms
4. Support for TIA external communications manager
5. Support for TIA registry communications
6. Support for TIA session management protocols
7. Use of TIA-compliant patient record exchange protocols

(and associated data authentication and encryption
protocols)

8. Use of TIA-compliant dynamic configuration protocols
(and associated data authentication and encryption
protocols)

4.3.15 Patient Record Browser
Description: Stations in this profile are characterized by a platform that

permits browsing and editing of remotely stored patient
records. As with other patient record devices, when needed,
these devices can download software components needed for
reading and writing new record types. Depending on the
platform, the browser can also output various readings in
different formats (e.g., text can be converted to audio).

Utilization Concepts: 1. At the end of each day, a doctor reviews the records for
each of the day’s encounters, annotating them as needed.
While she usually does this at the desk in her office, she
can also do this from her computer at home and, to a
more limited extent, from her palmtop computer using a
wireless Internet connection.

2. A patient subscribing to a patient record service uses
software provided by the service that allows his virtual
record to be viewed in a variety of different ways
(chronologically, by type of problem, by providing
organization, etc.) and that permits him to print reports
corresponding to any of these views.

Examples: 1. PC with custom patient record software.
2. PC with standard web browser
3. Cell phone with audio “browser” interface that supports

quick access to “hot” data or fuller browsing of the full
record.

Basis of Compliance: 1. Use of TIA-compliant user authentication mechanisms
2. Support for TIA external communications manager
3. Support for TIA registry communications
4. Support for TIA session management protocols

 154

5. Use of TIA-compliant patient record exchange protocols
(and associated data authentication and encryption
protocols)

6. Use of TIA-compliant dynamic configuration protocols
(and associated data authentication and encryption
protocols)

4.3.16 Net-ready Device
Description: Devices in this profile consist of medical instruments designed

to connect directly to a local area network. These devices
may be monitored locally and/or remotely and controlled in
the same way.

Utilization Concepts: 1. A weight scale with integral controls and display reports
its results over the local network to a patient station that is
also attached to the net.

2. A band-aid style sensor applied to a patient’s forehead
reports temperature and various chemistries to an
associated network transceiver that powers the sensor by
periodically bathing it in RF radiation.

Examples: 1. A thermometer that communicates via IR link to a
network access point that bridges the IR link to a
network.

2. A digital video camera with a built-in IP networking
capability that allows it to be addressed directly by other
network devices.

Basis of Compliance: 1. Use of TIA-supported internal communications bus
2. Use of TIA-compliant device interfaces for whatever

class the device belongs to

4.3.17 Protocol Server
Description: Devices in this profile consist of a platform capable of

downloading protocols and processes to requesting stations, of
locally executing protocols and processes on behalf of a
remote station, or both.

Utilization Concepts: 1. A remote station requests a protocol to support a given
kind of medical device that has been added to the station.
Based on these criteria, the server identifies three possible
candidates and returns to the station descriptions of each.
When the station selects one, that protocol is downloaded
to the station.

2. A remote patient station that hosts an ultrasound probe
leases image-processing services from a company that
whose research has yielded the most powerful analytical
tools of their kind. As data from the probe is streamed to
the company’s server, it is run through various processes
according to parameters established by the lease and the

 155

results returned in real-time to the station.
Examples: 1. Server-class PC with Internet connectivity.

2. Server-class PC operating on a local area network
providing specialized services to local stations operating
on the same network.

Basis of Compliance: 1. Use of TIA-compliant user authentication mechanisms
2. Support for TIA external communications manager
3. Support for TIA registry communications
4. Support for TIA session management protocols
5. Use of TIA-compliant dynamic configuration protocols

(and associated data authentication and encryption
protocols)

6. Use of TIA-compliant registry server protocols

4.4 Moving Forward
Given this document as a starting point, we propose the following steps be taken towards
the establishment of community-accepted specifications:

• Circulate the document within the community for initial comment and then
incorporate suggestions where possible and compile a list of issues where points
of disagreement need to be worked out.

• Convene a “summit” of groups interested in working on the advancement of
specifications that support the concepts described in this document. The goal of
the summit will be to discuss the issues raised during the comment period and to
lay plans for doing prototype implementations of the specification. One of the
key products of this meeting should be the establishment of a task force that will
shepherd this work to its completion.

• Conduct a series of development/demonstration cycles in which various parts of
the architecture are specified, proven out, and revised as needed to address issues
found in the specifications.

• Release to the general telemedicine community the first proven set of
specifications. This will include both the revised version of the document that
you are reading as well as a number of companion specifications that address
specific interfaces within the station (e.g., how a blood pressure monitor interacts
with the rest of a station).

In the course of pursuing the various development/demonstration cycles, a key concern
will be the rights to intellectual property generated by these efforts. Given this, the
summit should focus on reaching agreement regarding the approach to be taken in
addressing this issue. One reasonable approach would be to agree that everyone
contributing to the development effort will make available to the rest of the developers
that portion of the code that they develop that relates to the implementation of the
interfaces within the specification. This code might be freely shared among all such
participants or licensed to members within the development group on a “value of
contribution” basis.

 156

As noted earlier in this document, one of the goals of this effort is to avoid reinventing
the wheel. Much has already been done within the medical standards arena that is of
value to the telemedicine community. To this end, as the groups that are to carry this
work forward are assembled, it is vitally important that the groups ow ning these related
standards be engaged. Among others, these include ACR/NEMA for the DICOM
standard, IEEE 1073 for medical device interactions (including the POCCIC work of
which they are stewards), and HL7 for its work in medical data exchange standards.

4.5 A Proposed Set of Specifications
While this document provides the overview for the architecture and proposes its essential
structure, a collection of more narrowly focused documents that address specific portions
of this specification is needed in order to make this a usable interoperability architecture.
For example, while this document proposes the general pattern that is to be used in
connecting a medical device to the rest of the station, it says nothing about how a specific
type of device, such as a blood pressure monitor, will be handled. For this, a
specification that identifies the device-unique messaging structure of blood pressure
monitors needs to be created (note “creating” that this might be nothing more than
specifying how another existing specification will be employed in this architecture).

Given the scope of the architecture as addressed in this document, the following set of
constituent specifications is proposed.

1. General Documents

These documents provide an overview of the system architecture and contain
information that spans each of the other functional areas within a station. In
addition to the Concept Description and Architecture Overview Document, this
set of documents will contain detailed specifications for station internals (e.g.,
structure and protocols for the registry, internal communications bus, contexts,)
and will address things like vocabulary and common services (e.g., security).

2. Device Bus Documents
These documents address the low-level communication mechanisms used within a
station (or its constituent components) to support plug-and-play operation of
certain devices, such as medical instruments, patient record storage media, and
certain user interface devices

3. Medical Device-Oriented Documents
These documents describe the application-level interfaces for the various medical
devices (e.g., glucose meters, cameras and scopes) that are supported by the
telemedicine architecture

4. Communications-Oriented Documents
These documents focus on the application-level interfaces for the various types of
channels (corresponding to each of the station-to-station protocols supported) and
communication managers (corresponding to each of the communication devices
supported) and for the session manager (corresponding the different securit y and
quality of service mechanisms supported).

5. Patient Record Documents

 157

These documents capture the application-level interfaces for the “native” patient
record structure supported by the architecture, for the distributed patient record
systems, and for the mapping between external data exchange protocols (e.g.,
HL7) and the native application interface. The documents also address the
interface between plug-and-play patient record media and a station.

6. Processing-Oriented Documents
These documents specify the interfaces for various process components that can
support architecture-compliant telemedicine stations. Among other things, these
can include statistical processing (e.g., trending in data), compression functions,
and person-to-person communications (e.g., email, voicemail) functions.

7. Protocol-Oriented Documents
These documents specify the interfaces for various process components that can
support architecture-compliant telemedicine stations. Among other things, these
can include statistical processing (e.g., trending in data), compression functions,
and person-to-person communications (e.g., email, voicemail) functions

8. User Interface-Oriented Documents
These documents deal with the application interfaces that various user interface
components present to the other components within a station. It also addresses
various sorts of user interface frameworks that support on-the-fly customization
of the user interface.

9. Infrastructure Documents
These documents address the application interfaces for those service elements that
a required to make a collection of telemedicine stations function as a seamless
network (registry servers, public key infrastructure elements, trusted time sources,
and vendor software services).

4.6 Growing the Specifications
In growing and proving out the specifications, a number of capabilities need to be
demonstrated. As these cannot all be done at once, we suggest the following plan:

Phase 1
Work on those aspects of the architecture that relate to the local operation of medical
devices

A. Prove out the application interfaces for a representative set of medical devices,
excluding imaging devices

B. Demonstrate the application interfaces for a representative set of imaging devices
C. Demonstrate plug-and-play operation of all of these devices

Phase 2
Work on basic station-to-station operations

A. Demonstrate the ability to explore the capabilities of a remote station
B. Demonstrate the leasing, operating, and vacating of medical device capabilities of

a remote station
C. Add videoconferencing
D. Add other person-to-person communications

Phase 3
Work on the user interface and processing aspects of the architecture

 158

A. Prove out the application interfaces for user interface components created to date
B. Demonstrate plug-and-play operation of selected user interface devices and web

presentation of user interfaces
C. Prove out the application interfaces for processing components created to date

Phase 4
Move towards component-based station implementations

A. Demonstrate operation of internal communications bus
B. Prove out the use of protocols and subscription interfaces to handle the

interconnection of resources within a station
C. Demonstrate a distributed station implementation in which station components are

capable of announcing their presence and being added dynamically to the sta tion
under the control of protocols

Phase 5
Add patient record capabilities to the stations

A. Prove out the native application-level interfaces for the patient record repository
B. Demonstrate plug-and-play operation of patient record devices
C. Demonstrate the ability to employ patient record services provided by one or

more remote stations
D. Demonstrate the ability to negotiate and support a range of patient record

exchange protocols (e.g., COAS, HL7, DICOM)
Phase 6
Incorporate security mechanisms into the stations

A. Demonstrate the ability to identify and authenticate a user attempting to access a
station either locally or remotely and to selectively grant or deny access to
services and data based on this information

B. Demonstrate the ability to negotiate and secure station-to-station communications
and to negotiate and support station-to-station quality of service

C. Demonstrate the ability to negotiate and secure station-internal communications
and to negotiate and support station-internal quality of service

Phase 7
Work on advanced station configuration capabilities

A. Demonstrate the ability to temporarily and permanently retrieve and install
software components needed to support the operation of other components on a
station

B. Demonstrate the ability to dynamically configure a station’s operation based on
patient and caregiver context data

Phase 8
Add station administration functions to system

A. Demonstrate the ability of a station to add itself to or remove itself from a registry
B. Demonstrate the use a network of registry servers to provide the ability to locate

stations by name and by station attributes
Phase 9
Demonstrate the ability to operate in a multi-station (i.e., 3 or more simultaneously) mode
and to dynamically add and remove stations from multi-station conferences

 159

4.6.1 Phase 1: Medical Device Operations
This phase of the work addresses those aspects of the architecture that relate to the local
operation of plug-and-play medical devices (i.e., remote control of devices is not part of
this phase). Figure 81 identifies which elements of the architecture are the focus of this
phase concentrates. The plan for this phase is:

• Prove out the application interfaces for a representative set of medical devices,
excluding imaging devices

• Demonstrate the application interfaces for a representative set of imaging devices
• Demonstrate plug-and-play operation of all of these devices

When complete it should be possible to plug devices from a number of medical device
vendors into telemedicine stations from a number of different telemedicine system
vendors.

User Interface
Proxy

Protocols

Channel

Processing

Communication
Manager

Internal Communications Bus

Station
Registry

Communication
Device

Device
Bus

Medical Device Patient Record
Device

User Interface
Device

Session
Manager

SoftwareSoftware

Hardware

Installation
Manager

Context
Proxy

Device
Bus

Context
Storage Device

External
Comms Manager

Medical Device
Proxy

Patient Record
Proxy

Device
Bus

Device
Bus

1B. Imaging Device
Interfaces Proven

1A. Medical and
Point of Care Device

Interfaces Proven

1C. Plug and Play
Operation of

Devices Shown

Figure 81. Elements Addressed in Phase 1

4.6.1.1 Phase 1A: Standardized Medical Device Interfaces
Goal: Prove out the application interfaces for a representative set of

medical devices, excluding imaging devices.
Approach: • This phase shows the operation of a number of medical devices

and telemedicine platforms
• Choose candidate platforms to represent the kinds of platforms

that are likely to be encountered in near-term implementations.
These include traditional telemedicine stations from one or
more vendors, a standard PC (desktop or portable), one or
more PDAs (having both PalmOS and PocketPC versions
would be preferable), and a BCC (bedside monitoring unit) per
the work done by the IEEE 1073 committee.

• Choose candidate devices based on kinds of outputs (e.g.,

 160

single scalar value, continuous waveform, etc.) generated and
kinds of devices currently found in telemedicine applications,
and in light of the availability of applicable standards that can
be used as is or as models for the application-level interfaces
for these devices.

• Match specific devices with specific platforms.
• Platform developers enlisted for this work implement medical

device proxies that implement these interfaces and whatever
user interface software is needed to demonstrate the operation
of the devices.

• Device manufacturers implement devices capable of at least
minimal intelligence (i.e., “self-aware devices” per Figure 53)
if not “ideal devices”. Ideally, there would be at least two
different devices for each device type implemented (e.g., pulse
oximeters from two different manufacturers that both
implement the same application-level interface). At this point
in the process, the devices may (but are assumed not to) be
built on device bus technology.

• Evaluate the implementation of these interfaces using tests that
pair each platform with its associated devices.

Product: A proven set of application-level medical device interfaces
Rationale: This step is a necessary foundation for the development of both

plug-and-play operation of medical devices and for the leasing and
control of medical devices by remote stations (as addressed in
Phase 2)

4.6.1.2 Phase 1B: Standardized Imaging Device Interfaces
Goal: Demonstrate the application interfaces for a representative set of imaging

devices.
Approach: • Enlist a handful of platform developers for implementation of the

medical device proxies that will host these interfaces and of any
processing and user interface components needed to demonstrate the
operation of these devices. Developers should represent a range of
platform types (e.g., custom, off -the-shelf PC, PDA, video game box).

• Enlist manufacturers of the selected devices (ideally, at least two for
each device type) to implement the application-level interfaces in their
devices. At this point in the process, the devices may (but are assumed
not to) be built on device bus technology.

• Evaluate the implementation of these interfaces tests that pair platform
and device vendors

Product: A proven set of application-level medical device interfaces
Rationale: This step is a necessary foundation for the development of plug-and-play

operation and for leasing and control by remote stations

4.6.1.3 Phase 1C: Plug-and-Play Medical Device Interfaces
Goal: Demonstrate plug-and-play operation of the medical and imaging devices.

 161

Approach: • Using the platform and device developers from Phase 1, incorporate
selected device bus interfaces (preferably wired and wireless) into the
platforms and devices

• As appropriate, share device-specific interface software between
platform developers to allow each platform to support multiple devices

• Evaluate the platform and device implementations using a plug-fest
approach in which medical devices are swapped at will between each of
the platforms

Product: A proven set of plug-and-play medical device interfaces
Rationale: This step completes the medical device interface work for a limited subset

of devices. Given this foundation, the telemedicine community can move
forward in several related areas, including development of a richer suite of
plug-and-play devices (i.e., expanding the number of devices that
telemedicine systems can support) and production of devices that are
cheaper and suited for use in a broader range of settings.

4.6.2 Phase 2 – Station-to-Station Operation
This phase of the work addresses those aspects of the architecture that relate to basic
station-to-station interactions. Figure 82 identifies which elements of the architecture are
addressed in this phase. The plan for this phase is:

• Demonstrate the ability to explore the capabilities of a remote station
• Demonstrate the leasing, operating, and vacating of medical device capabilities of

a remote station
• Add videoconferencing
• Add other person-to-person communications

User Interface
Proxy

Protocols

Channel

Processing

Communication
Manager

Internal Communications Bus

Station
Registry

Communication
Device

Device
Bus

Medical Device Patient Record
Device

User Interface
Device

Session
Manager

SoftwareSoftware

Hardware

Installation
Manager

Context
Proxy

Device
Bus

Context
Storage Device

External
Comms Manager

Medical Device
Proxy

Patient Record
Proxy

Device
Bus

Device
Bus

2B. Lease, Operate,
And Vacate Devices
On Remote Station

2A. Explore Remote
Station Capabilities

2C. Demonstrate
Videoconferencing

(and associated
QOS capabilities)

2D. Demonstrate
Person-to-Person
Communications

Figure 82. Elements Addressed in Phase 2

 162

When complete it should be possible to allow stations from different vendors to explore
each other’s services, to remotely control each other’s medical devices, and to enable
remotely located users to communicate both interactively and in store-and-forward
fashion.

4.6.2.1 Phase 2A: Station Exploration Interfaces
Goal: Demonstrate the ability to explore the capabilities of a remote station

Approach: • Using the capabilities developed in Phase 1, incorporate registry
capabilities in each platform along with implementations of IP -based
channels, the associated communications manager, the external
communications manager, and a session manager

• Implement the basic station exploration services needed for medical
devices

• As required, implement the additional user interface capabilities needed
to support these operations

• Evaluate the implementations using platform-to-platform pairings
Product: A proven subset of the registry, channel, communication manager, external

communications manager, and station-to-station interfaces
Rationale: This step delivers the first instantiations of the key structures needed for

station-to-station communications

4.6.2.2 Phase 2B: Remote Operation Interfaces
Goal: Demonstrate the leasing, operating, and vacating of medical device

capabilities of a remote station
Approach: • Building on Phase 2A implement the leasing, and remote operation

services needed for medical devices
• As required, implement the additional user interface features needed to

support these operations (some of this may be done by sharing of
components between collaborating vendors)

• Evaluate the implementations using platform-to-platform pairings
Product: A proven set of interfaces for monitoring and control of remote medical and

imaging devices
Rationale: This step moves us toward vendor independence by making it possible to

use any vendor’s station to remotely control and monitor medical devices
located on any other vendor’s station.

4.6.2.3 Phase 2C: Videoconferencing Interfaces
Goal: Demonstrate the ability to conduct a videoconference with a remote station

Approach: • Using the capabilities developed in Phase 2A, implement channels that
support the protocols needed for audio- and video-based
communications. Implement telephony-based communications.
Implement dynamic bandwidth management so that channel capacity
allocation can be changed on user command.

• As required, implement the additional user interface and processing
components needed to support these operations

• Evaluate the implementations using platform-to-platform pairings

 163

Product: A proven set of videoconferencing and quality of service interfaces
Rationale: Current approaches to telemedicine rely heavily on interaction between

caregiver and patient or caregiver and caregiver. Delivering the ability to
videoconference is key to allowing vendors to recast their systems in a
manner compliant with this architecture.

4.6.2.4 Phase 2D: Person-to-Person Communication Interfaces
Goal: Demonstrate the ability to support communication between remotely

located individuals using means other than audio- and videoconferencing
Approach: • Using the capabilities developed in Phase 2A and 2C, implement

channels that support the protocols needed for email, chat, instant
messaging, and file sharing.

• As required, implement the additional user interface and processing
components needed to support these operations

• Evaluate the implementations using platform-to-platform pairings
Product: A proven set of text-/data-focused communication interfaces

Rationale: Some approaches to telemedicine rely on text-based messaging and file
sharing between caregiver and patient or caregiver and caregiver.
Delivering the ability to communicate in these ways (when added to the
interactive mechanisms of Phase 2C) provides vendor with the set of tools
needed to support virtually any desired approach to human interactions.

4.6.3 Phase 3 – Component-based User Interfaces & Processes
This phase of the work formalizes (as standard components) the user interface and
processing elements created to date for the station. Figure 83 identifies those elements on
which this phase of the architecture concentrates. The plan for this phase is:

User Interface
Proxy

Protocols

Channel

Processing

Communication
Manager

Internal Communications Bus

Station
Registry

Communication
Device

Device
Bus

Medical Device Patient Record
Device

User Interface
Device

Session
Manager

SoftwareSoftware

Hardware

Installation
Manager

Context
Proxy

Device
Bus

Context
Storage Device

External
Comms Manager

Medical Device
Proxy

Patient Record
Proxy

Device
Bus

Device
Bus

3A. User Interface
Application Interfaces

Proven

3B. Plug And Play
Device And Web
Operation Shown

3C. Process
Application Interfaces

Proven

Figure 83. Elements Addressed in Phase 3

 164

• Prove out the application interfaces for user interface components created to date
• Demonstrate plug-and-play operation of selected user interface devices and web

presentation of user interfaces
• Prove out the application interfaces for processing components created to date

When complete, it will be possible to use external devices (e.g., PDAs) as user interface
elements of a station and to swap processing routines that supply the same functionality.
In addition, all of the necessary groundwork will have been laid to move towards full
component-based station designs.

4.6.3.1 Phase 3A: User Interface Application Interfaces
Goal: Prove out the use of protocols and subscription interfaces to handle the

interconnection of resources within a station
Approach: • As needed, partition all of the user interfacing functionality built to date

into user interface components that present standardized interfaces to
the other station components with which they interact.

• Evaluate these “normalized” implementations both in stand-alone and
station-to-station modes

Product: Proven application-level user interface specifications
Rationale: This step lays the groundwork needed for Phase 4 by “cleaning up” the user

interface and processing components created so far

4.6.3.2 Phase 3B: User Interface Devices
Goal: Demonstrate plug-and-play operation of selected user interface devices and

web presentation of user interface.
Approach: • Building on the work of Phase 1C, incorporate the ability for selected

interface devices (e.g., PDAs) to present themselves to the platform via
the device bus interfaces selected for the platform

• Evaluate the platform and device implementations using a plug-fest
approach in which medical devices are swapped at will between each of
the platforms

Product: A proven set of plug-and-play user interface device interfaces
Rationale: This step, when coupled with Phase 3A, makes it possible for a user to

move from station to station and to dynamically access the station’s
capabilities.

4.6.3.3 Phase 3C: Processing Application Interfaces
Goal: Prove out the application interfaces for processing components created to

date
Approach: • As needed, partition all of the processing functionality built to date into

processing components that present standardized interfaces to the other
station components with which they interact.

• Evaluate these “normalized” implementations both in stand-alone and
station-to-station modes

Product: Proven application-level user interface and processing interface
specifications

Rationale: This step lays the groundwork needed for Phase 6 by “cleaning up” the user

 165

interface and processing components created so far

4.6.4 Phase 4 – Component-based Stations
This phase of the work addresses those aspects of the architecture that relate to basic
station-to-station interactions. Figure 84 identifies which elements of the architecture are
addressed by this phase. The plan for this phase is:

• Demonstrate operation of internal communications bus
• Prove out the use of protocols and subscription interfaces to handle the

interconnection of resources within a station
• Demonstrate a distributed station implementation in which station components are

capable of announcing their presence and being added dynamically to the station
under the control of protocols

When complete it should be possible to build stations from distributed collections of
station components developed by different vendors.

User Interface
Proxy

Protocols

Channel

Processing

Communication
Manager

Internal Communications Bus

Station
Registry

Communication
Device

Device
Bus

Medical Device Patient Record
Device

User Interface
Device

Session
Manager

SoftwareSoftware

Hardware

Installation
Manager

Context
Proxy

Device
Bus

Context
Storage Device

External
Comms Manager

Medical Device
Proxy

Patient Record
Proxy

Device
Bus

Device
Bus

4B. Prove Out Use
of Protocols and

Subscriptions and
Leasing

4A. Demonstrate
Operation of Internal
Communications Bus

4C. Demonstrate
Distributed Station

Operation

Figure 84. Elements Addressed in Phase 4

4.6.4.1 Phase 4A: Internal Communications Bus
Goal: Demonstrate operation of internal communications bus

Approach: • Render the bus manager, the media manager for a selected IP-based
medium, the administrative channel, and synchronous and asynchronous
channel capabilities.

• Rework existing station internals to make use of these bus capabilities
• As required, implement the additional user interface capabilities needed

to support these operations
• Evaluate the implementations using platform-to-platform pairings

Product: A proven set of plug-and-play medical device interfaces
Rationale: The internal communications bus is the necessary foundation for

 166

distribution of station components and the creation of virtual stations. This
step reworks proprietary internal communication approaches by allowing
the architecture-compliant components developed in the earlier phases to
interact with one another over the internal communications bus. At the end
of this step, interconnections will be “hard-wired” only to the extent that
protocols have not yet been implemented to enable for dynamic association
through leasing and subscription; however, registration will be enabled (i.e.,
a medical instrument or user interface attaching to the station will
communicate with the registry over the internal communications bus to
allow the device to be registered with the station.

4.6.4.2 Phase 4B: Protocols and Subscription Interfaces
Goal: Prove out the use of protocols and subscription interfaces to handle the

interconnection of resources within a station
Approach: • As needed, extend all of the components built to date (registry,

communications manager, session manager, channels, medical device
proxies, processing components, and user interface components) to
ensure that they support the registration and subscription model.

• Create protocols that specify how components are to subscribe to one
another in support of the various operational capabilities implemented
to date

• As required, implement the additional user interface capabilities needed
to support these operations

• Evaluate the implementations both in stand-alone and station-to-station
modes

Product: Proven protocol and subscriptions interface specifications
Rationale: Given solid starts on the two major external interfaces for current

telemedicine systems (station-to-station communications and station-to-
device communications), the goal is to now (before adding any other
capabilities to the station) lay a foundation for the internal interfaces that
allow for distributed, component-based design of stations. The motivation
for doing this at this point in the evolution of the architecture is to strike a
balance between two key needs. One the one hand, while we could enforce
these interfaces from the very start, a goal of the previous phases is to allow
vendors with current products to slowly morph those products to a point
where they are able to support medical devices from any vendor and can
interact with stations from any other vendor. One the other hand, while we
could wait later in the evolution to address the station-internal interfaces, it
might make the task of retrofitting components overwhelming.

4.6.4.3 Phase 4C: Distributed Plug-and-Play Station Operation
Goal: Demonstrate a distributed station implementation in which station

components are capable of announcing their presence and being added
dynamically to the station under the control of protocols

Approach: • Using the capabilities developed so far, distribute the components
across a number of special purpose platforms (e.g., a home gateway that

 167

hosts the registry, the channels and associated communications
components; “access points” that host medical devices; networked
computers that host protocols and processes; and various user interface
devices) around a local network. To demonstrate the power of dynamic
protocols, multiple instances of each kind of resource should be
included in this network..

• Building of Phase 4A, implement the media manager for a second
internal communications bus medium.

• Implement any internal communications bus interfaces that might be
lacking in order to allow over-the-network (i.e., station-internal)
interactions between components residing on separate media on the
internal bus.

• Increase the intelligence of the existing protocols to handle dynamic
selection of resources

• As required, implement the additional user interface needed to support
these operations

• Evaluate the distributed implementation both as stand-alone and station-
to-station modes.

Product: A proven set of station-internal component communication interfaces,
mechanisms for handling heterogeneous internal communications media,
and the ability to select among multiple devices of a given type available on
the bus.

Rationale: This step is foundational to establishing component-based telemedicine
stations that can be assembled in mix-and-match fashion using components
from different component vendors (telemedicine and otherwise).

4.6.5 Phase 5 – Patient Records

User Interface
Proxy

Protocols Processing

Communication
Manager

Internal Communications Bus

Station
Registry

Communication
Device

Device
Bus

Medical Device Patient Record
Device

User Interface
Device

Session
Manager

SoftwareSoftware

Hardware

Installation
Manager

Context
Proxy

Device
Bus

Context
Storage Device

External
Comms Manager

Medical Device
Proxy

Patient Record
Proxy

Device
Bus

Device
Bus

5B. Plug-And-Play
Operation of Patient

Record Devices
Shown

5A. Native
Application Interfaces

Proven

Channel

5D. Range of
Exchange Protocols

Supported
5C. Use Of

Remote Repositories
Demonstrated

Figure 85. Elements Addressed in Phase 5

 168

This phase of the work addresses those aspects of the architecture that relate to the local
management of patient records and the exchange of these records between remote
stations. Figure 85 identifies the elements on which this phase of the architecture
concentrates. The plan for this phase is:

• Prove out the native application-level interfaces for the patient record repository
• Demonstrate plug-and-play operation of patient record devices
• Demonstrate the ability to employ patient record services provided by one or

more remote stations
• Demonstrate the ability to negotiate and support a range of patient record

exchange protocols (e.g., COAS, HL7, DICOM)
When complete it should be possible to read and write patient record cards, to allow a
station to access a repository anywhere on the telemedicine network, to treat multiple
repositories as a single virtual repository, and to allow records to be exchanged with
remotely located record servers employed in hospitals, clinics, etc.

4.6.5.1 Phase 5A: Native Patient Record Interfaces
Goal: Prove out the native application-level interfaces for the patient record

repository
Approach: • For each of the platforms used to date, build the repository

infrastructure and application level interfaces for each of the medical
and imaging devices addressed to date

• Build the application level interfaces needed to handle text and audio
record entries generated by users

• Extend protocols to make them patient record-aware
• Implement the additional user interface elements needed to support

navigation and review of a repository and its records
• Evaluate the implementations on each platform

Product: A proven “native” application-level patient record interface
Rationale: Patient records represent the final major capability seen in current systems.

Implementing this capability gives vendors the wherewithal to render their
existing capabilities in a way that is fully architecture-compliant.

4.6.5.2 Phase 5B: Patient Record Devices
Goal: Demonstrate plug-and-play operation of patient record devices.

Approach: • Building on the work of Phase 1C and 3B, incorporate the ability for
each class of patient record devices to be added in plug-and-play
fashion to whatever device buses have been selected for each type of
platform

• For both these pluggable devices and the fixed repository devices (used
in Phase 5A), implement the interfaces related to exploring and
managing these devices (e.g., determining device characteristics,
acquiring or releasing storage space, etc.)

• Extend the existing protocols to make use of the services provided by
these new interfaces

• Implement the additional user interface elements needed to support
these services

 169

• Evaluate the record media implementations using a plug-fest approach
where appropriate

Product: A proven set of plug-and-play patient record device interfaces and
interfaces related to media

Rationale: This step allows for the integration of devices, such as the Army’s Personal
Information Carrier, into telemedicine systems and for the incorporation of
intelligence into protocols such that they can decide whether a user-
specified operation is viable and, if not, what acceptable alternatives would
be.

4.6.5.3 Phase 5C: Virtual Record Operations
Goal: Demonstrate the ability to employ patient record services provided by one

or more remote stations
Approach: • Implement the interfaces needed to integrate multiple local repositories

leased by a station into a single virtual repository
• Implement the interfaces needed to integrate multiple distributed

repositories (i.e., both local and/or remote) leased by a station into a
single virtual repository (the assumption here is that accessing remote
repositories will entail implementing a new channel for external
communications that supports the native repository interfaces of Phases
5A and 5B).

• Extend the protocols to make use of these virtual repository interfaces,
• Implement the additiona l user interface capabilities needed to support

virtual repository operations
• Evaluate the implementations by allowing each platform implemented

to date to access the repositories associated with any or all of the other
platforms.

Product: A proven distributed patient record interface
Rationale: This step moves us toward vendor independence by making it possible to

use any vendor’s station to remotely access a patient’s records even if they
are scattered across repositories on a number other compliant telemedicine
stations.

4.6.5.4 Phase 5D: Patient Record Protocol Negotiation
Goal: Demonstrate the ability to negotiate and support a range of patient record

exchange protocols (e.g., COAS, HL7, DICOM)
Approach: • For each platform used to date, implement external communication

channels that support the protocols needed for interaction with external
record servers and give each of these channels the ability to map
between external protocols constructs and the architecture’s “native”
repository constructs.

• Implement the protocol required for exploring the patient record
exchange protocols supported by a remote station and for allowing two
stations to negotiate which mutually-supported protocol(s) will be used
in a given session.

• As required, extend the patient record-related portions of the user

 170

interface to accommodate navigation and review of remotely-located
non-native repositories

• For each platform, evaluate the ability to access remote, non-native
repositories

Product: A proven set of interfaces for interoperation with devices supporting other
patient record data exchange standards

Rationale: This completes the patient record needs by making it possible for a
telemedicine station to access not only repositories stored on other
architecture-compliant telemedicine stations but also those on other
industry standard record servers.

4.6.6 Phase 6 -- Security
This phase of the work addresses those aspects of the architecture that relate to basic
station-to-station interactions. Figure 86 identifies the elements that are the focus of this
phase the architecture’s evolution. The plan for this phase is:

• Demonstrate the ability to identify and authenticate a user attempting to access a
station either locally or remotely and to selectively grant or deny access to
services and data based on this information

• Demonstrate the ability to negotiate and secure station-to-station communications
and to negotiate and support station-to-station quality of service

• Demonstrate the ability to negotiate and secure station-internal communications
and to negotiate and support station-internal quality of service

When complete it should be possible to allow stations from different vendors to explore
each other’s services and to remotely control each other’s devices.

User Interface
Proxy

Protocols Processing

Communication
Manager

Internal Communications Bus

Communication
Device

Device
Bus

Medical Device Patient Record
Device

User Interface
Device

Session
Manager

SoftwareSoftware

Hardware

Installation
Manager

Context
Proxy

Device
Bus

Context
Storage Device

External
Comms Manager

Medical Device
Proxy

Patient Record
Proxy

Device
Bus

Device
Bus

6A. User Identification
And Authentication

Demonstrated

6C. Secure
Intra-Station

Communications
Supported

Channel

Station
Registry

6B. Secure
Inter-Station

Communications
Implemented

Figure 86. Elements Addressed in Phase 6

 171

4.6.6.1 Phase 6A: User Authentication and Access Control
Goal: Demonstrate the ability to identify and authenticate a user attempting to

access a station either locally or remotely and to selectively grant or deny
access to services and data based on this information

Approach: • Retrofit existing platforms with a range of mechanisms that support user
identification and authentication (e.g., passwords, tokens, biometrics)

• Implement the access control decision mechanisms needed by a station
to determine with data and services on that station can be accessed by a
given user

• Implement the security extensions needed in the infrastructure for each
station component to enforce access control decisions

• Implement the additional user interface features needed to support these
operations

• Evaluate the implementations with both local and remote users
attempting to log in and use controlled station services

Product: A proven set of user I&A and access control interfaces
Rationale: This is a needed building block if vendors are to move from closed systems

characteristic of today’s telemedicine networks to open systems.

4.6.6.2 Phase 6B: Communications Security and QOS
Goal: Demonstrate the ability to negotiate and secure station-to-station

communications and to negotiate and support station-to-station quality of
service

Approach: • To the extent that this has not already been done, for each of the
protocols implemented so far that support station-to-station
communications, implement on each platform the mechanisms needed
to secure these protocols

• Implement the protocol required for exploring the security mechanisms
supported by a remote station and for allowing two stations to negotiate
which mutually supported mechanisms will be used in a given session.

• Implement any additional required QOS protocols not implemented in
Phase 2.

• As required, implement the additional user interface elements needed to
support these operations

• Evaluate the implementations using platform-to-platform pairings
Product: A proven set of protocols for securing station-to-station communications

Rationale: This is a needed building block if vendors are to move from closed systems
characteristic of today’s telemedicine networks to open systems.

4.6.6.3 Phase 6C: Station Security
Goal: Demonstrate the ability to negotiate and secure station-internal

communications and to negotiate and support station-internal quality of
service

Approach: • Implement on each platform the mechanisms needed to secure internal
communications bus communications

 172

• Implement the protocol required for exploring the security mechanisms
supported by station components and for allowing station components
to negotiate which mutually supported mechanisms will be used in a
given session.

• Extend protocols with these capabilities.
• Implement any additional required QOS protocols not implemented in

Phase 4.
• As required, implement the additional user interface elements needed to

support these operations
• Evaluate the implementations by creating systems from the various

distributed platform elements.
Product: A proven set of protocols for securing station-to-station communications.

Rationale: This step delivers the final building block required for securing operation of
distributed stations and systems.

4.6.7 Phase 7 – Dynamic Configuration
This phase of the work addresses those aspects of the architecture that relate to basic
station-to-station interactions. Figure 87 identifies which elements of the architecture this
phase addresses. The plan for this phase is:

• Demonstrate the ability to temporarily and permanently retrieve and install
components needed to support the operation of other components on a station

• Demonstrate the ability to dynamically configure a station’s operation based on
patient and caregiver context data

When complete it should be possible to allow stations from different vendors to explore
each other’s services and to remotely control each other’s devices.

User Interface
Proxy

Protocols Processing

Communication
Manager

Internal Communications Bus

Communication
Device

Device
Bus

Medical Device Patient Record
Device

User Interface
Device

Session
Manager

SoftwareSoftware

Hardware

Installation
Manager

Context
Proxy

Device
Bus

Context
Storage Device

External
Comms Manager

Medical Device
Proxy

Patient Record
Proxy

Device
Bus

Device
Bus

Channel

Station
Registry

7A. Dynamic
Station Configuration

Proven

7B. Patient And
Caregiver Contexts

Implemented

Figure 87. Elements Addressed in Phase 7

 173

4.6.7.1 Phase 7A: Dynamic Station Configuration
Goal: Demonstrate the ability to temporarily and permanently retrieve and install

components needed to support the operation of other components on a
station

Approach: • For each of the platforms implement the protocol needed to identify to a
vendor server the software packages required by the station and to
download these packages from the station

• For each platform, implement an installation manager capable of
verifying the authenticity and integrity of a software package and of
installing on the station the components it contains

• Implement a vendor server station and install on the station packages for
each of the platforms that will be used when each kind of pluggable
device addressed to date in the development of this architecture

• As required, implement the additional user interface capabilities needed
to support these operations

• Evaluate the implementations on each platform by clearing the
platforms of all knowledge of the pluggable devices and then plugging
each device into each platform and having the platform retrieve the
appropriate software packages from the vendor server

Product: A proven set of interfaces for requesting, downloading, and dynamically
installing software packages from vendor servers.

Rationale: This step makes it possible for vendors to create systems that require little
more of station users than plugging a base station into external
communications and then plugging devices into the base station.

4.6.7.2 Phase 7B: Contexts
Goal: Demonstrate the ability to dynamically configure a station’s operation

based on patient and caregiver context data
Approach: • For each platform type, implement the default context capability

• If required, extend all applicable protocols developed to date to support
leasing and subscription by a context

• For each station, implement the processing of patient and caregiver
contexts

• Incorporate the ability for context storage devices to present themselves
to the platform via the device bus interfaces selected for each platform

• As required, implement the additional user interface components needed
to support these operations

• Evaluate the implementations by editing each platform’s default context
and proving that it bootstraps itself into a base configuration consistent
with the context. Next introduce patient and caregiver contexts to each
platform by each mechanism supported by each platform and prove that
the station properly reconfigures itself in accordance with these contexts

Product: A proven subset of the registry, channel, communication manager, and
station-to-station interfaces

Rationale: This step allows vendors to implement user-specific dynamic customization
of stations.

 174

4.6.8 Phase 8 – System Adm inistration
This phase of the work addresses those aspects of the architecture that relate to basic
station-to-station interactions. Figure 88 identifies the architecture elements addressed in
this phase. The plan for this phase is:

• Demonstrate the ability of a station to add itself to or remove itself from a registry
• Demonstrate the use a network of registry servers to provide the ability to locate

stations by name and by station attributes
When complete it should be possible to allow independent stations to locate one another
without knowing specific addresses in advance.

User Interface
Proxy

Protocols Processing

Communication
Manager

Internal Communications Bus

Communication
Device

Device
Bus

Medical Device Patient Record
Device

User Interface
Device

Session
Manager

SoftwareSoftware

Hardware

Installation
Manager

Context
Proxy

Device
Bus

Context
Storage Device

External
Comms Manager

Medical Device
Proxy

Patient Record
Proxy

Device
Bus

Device
Bus

Channel

Station
Registry

8A. Station
Registration

8B. Registry
Network Operation

Figure 88. Elements Addressed in Phase 8

4.6.8.1 Phase 8A: Station Registration
Goal: Demonstrate the ability of a station to add itself to or remove itself from a

registry
Approach: • For each of the platforms, implement the protocol needed to allow a

station to register itself with a registry server
• Implement a registry server
• Implement the additional user interface capabilities needed to support

these operations
• Evaluate the implementations on each platform by registering each

station with the server
Product: A proven set of registry service interfaces

Rationale: This is the final step in making stations fully plug-and-play.

4.6.8.2 Phase 8B: Registry Network Operations
Goal: Demonstrate the use a network of registry servers to provide the ability to

locate stations by name and by station attributes

 175

Approach: • Extend the registry server to allow for operation as pa rt of a server
network

• Deploy a limited network of registry servers
• Evaluate the implementations on each platform by registering different

stations both with a common server and with different servers and using
each station’s new interface capabilities to search for the other stations
by name and by attributes

Product: A proven registry server design
Rationale: A distributed registry server network will be foundational to the creation of

open telemedicine networks. This step provides the architectural design
needed for the creation of servers that will populate this network.

4.6.9 Phase 9 – Multi-station Conferencing
This phase of the work addresses operations in which more than two stations are involved
in a given session. Figure 89 identifies on which elements of the architecture this phase
concentrates. When complete it should be possible to dynamically add and delete
multiple stations to and from a session.

User Interface
Proxy

Protocols Processing

Communication
Manager

Internal Communications Bus

Communication
Device

Device
Bus

Medical Device Patient Record
Device

User Interface
Device

Session
Manager

SoftwareSoftware

Hardware

Installation
Manager

Context
Proxy

Device
Bus

Context
Storage Device

External
Comms Manager

Medical Device
Proxy

Patient Record
Proxy

Device
Bus

Device
Bus

Channel

Station
Registry

9. Multi-station
Conferencing

Figure 89. Ele ments Addressed in Phase 9

Goal: Demonstrate the ability to operate in a multi-station (i.e., 3 or more
simultaneously) mode and to dynamically add and remove stations from
multi-station conferences

Approach: • For each of the platforms, extend the relevant channel specifications to
include the ability to handle conferencing in which the stations involved
in the conference decide among themselves which station will act as
host for the conference (the point through which all communications are
routed)

 176

• Evaluate through different mixes of platforms with different stations
being dynamically added and removed from conferences

Product: A proven set of protocols for use in conference-oriented operations
Rationale: This step enables vendors to move beyond standard two-party operations.

4.7 Organizing to Reach The Goal
As has been said a number of times throughout this document, if this effort is ever to
mean anything, it will be because the telemedicine community has decided to come
together for the purpose establishing a common approach to technical interoperability.
That the ideas in the document are advanced is far less important than whatever ideas are
ultimately agreed upon enjoy a broad base of support from both vendors and users of
systems and components. In the end, this is likely to occur only if the telemedicine
community organizes itself for this purpose.

One structure for doing this is shown in Figure 90. The heart of the organization consists
of a management council that exists to establish and manage needed relationships with
external organizations, review progress of the technical teams, and set priorities for these
teams as the overall effort is carried forward, and the system engineering team that
oversees all technical development work.

Working Groups

Management
Council

System
Engineering

Team

Devices

Patient
Record

Platform Comms

Human
Interfaces Applications

External Organizations

Industry

Federal
Agencies

International SDOs

DoD

Figure 90. A Suggested Organizational Structure

The technical work of the team is divided among the seven groups shown. Management
of the overall architectural framework and resolution of interface issues between teams is

 177

the responsibility of the system engineering team. The working group on devices worries
about interface specifications for all devices to be supported telemedicine systems and
about the device bus specifications. The communications working group handles both
internal communications bus issues and standardization of external communications
interfaces. The platform working group handles the standardization issues related to the
registry, contexts, the installation manager, registry servers, and vendor servers, and all
security services not related to communications (including the audit log), and addresses
questions related to underlying hardware and software environments on which the
stations might be built. The patient record group addresses standardization of the medical
repository services and the internal structure of the records that they contain. This group
also has primary responsibility for all terminology and encoding issues related to the
station. The human interfaces group defines all of the service interfaces that human
interface components present to the rest of the components in a station and addresses how
various interface devices are to be handled by the architecture. The applications working
group is responsible for standardizing interfaces for the various kinds of software
processing modules (e.g., statistical, medical logic) than might be employed within the
context of a telemedicine station. This group also has responsibility for standardizing the
structure of protocols and services associated with their processing.

4.8 Finding a Home for The Specifications
Once the job of hammering out an initial set of community-accepted specifications has
been accomplished, it will be important that a long-term home be found for the
specifications. As system developers and users embrace the specifications, it is inevitable
that problems will be found that did not surface in the earlier work and that extensions to
the specification will be requested. While the telemedicine community might want to
form its own group for managing these sorts of issues, a better alternative is to try to find
a home for the specification in a well established “standards development organization”
that already has in place the organizational structure and procedures needed to manage
the evolution of specifications.

 179

5 Final Thoughts
As Bauer and Ringel have said, it is very likely that “telemedicine will ultimately
revolutionize healthcare -- restructuring virtually every relationship and activity that
define late twentieth century medicine.” As the Internet becomes more pervasive, nano-
technology allows us to create diminutive devices that are just as capable as their
hospital-based predecessors, and intelligent software makes specialized clinical
knowledge accessible to less skilled clinicians and even patients, change in our care
delivery structures and practices is inevitable.

At the same time, this change won’t come easily or even quickly. In their article, “Will
Disruptive Innovations Cure Health Care?” (Harvard Business Review, September-
October 2000, pp 102-112), Clayton Christensen, Richard Bohmer, and John Kenagy
write:

“…the vast majority of research funding from the National Institutes of
Health is aimed at learning to cure diseases that historically have been
incurable. Much less is being spent on learning how to provide the health
care that most of us need most of the time in a way that is simpler, more
convenient, and less costly.”

Change won’t come quickly or easily because is not our current priority. Yet, as they
note later in their article, it is at exactly at this point – the reengineering of care delivery
structures – that our nation is likely to realize the greatest improvements in health care.

In order for change to be effected a number of technology-related barriers must be
overcome, including the lack of a rich suite of devices suitable for use in non-hospital
settings, the high cost of current telemedicine systems, and the inability to communicate
universally between all telemedicine stations. While not a silver bullet that addresses all
of these needs, the existence of generally accepted interoperability specifications is
foundational to overcoming these barriers and others. Without these sorts of
specifications, system integration will continue to be labor-intensive and, therefore, the
cost of systems will remain high and it will be difficult to develop a mass market for
these sorts of systems. Without industry-accepted interoperability spe cifications, we will
not see the development of a robust device market that delivers to us both a wider variety
of device types and lower cost devices. Finally, without these specifications, the whole
telemedicine equipment market itself will be slower to develop as customers, unable to
simply buy off the shelf and have their systems work with those owned by other
organizations, are reluctant to commit to one vendor’s solution over another’s.

While some parts of the specifications proposed in this document are based on ideas
proven out in prototype systems, some parts are not and need to be evaluated. As such,
this document is simply a starting point for a larger effort that must be pursued by the
telemedicine community, and this is as it should be. In as much as the point of this
specification is interoperability, it will only succeed as it is proven trustworthy and as it
gains a base of broad support within the telemedicine community. Even if the final
specification looks nothing like what is proposed in this initial strawman, as long as the
final specification is embraced by the community at large, the telemedicine community
will have achieved its goal in this key area.

