
ASN.1 and its use for e-health standards
by John Larmouth
(ASN.1 Rapporteur in ITU-T SG17)
Summary of main points

The main thrust of this paper is to assert the availability and value of the ASN.1 type definition notation as a means of defining the content of e-health messages, whether they are to be encoded in a compact binary form or in XML (eXtensible Markup Language). XML is today a popular syntax for encoding messages. ASN.1 provides a means of defining and validating such syntaxes or encodings. There are, however, other syntaxes and encodings that can be used with ASN.1 (including binary encodings), and these are alternatives to use of XML in particular environments. However, use of ASN.1 itself for the definition of the content of messages does not prejudge the message syntax (encoding) to be employed, but does enable a designer to concentrate on the message content and e-health issues without undue concern with encoding matters.

There are a number of features of ASN.1 that could be advantageous in certain situations:

· ASN.1 is "syntax independent": in ASN.1 there is a clear separation of definition of message content from syntactic issues of encoding.

· Modern ASN.1 binary encoding results in message sizes that can be 100 times smaller than the size of XML encodings. Such reductions in message sizes (for the same content) could be of great interest for wireless applications, or where transaction rates are expected to be high.

· ASN.1 supports the ability to constrain or subtype elements, for example, to specify that a certain element can only be an integer between 0 and 127. It is even possible to specify a "normal" constraint, which can by dynamically overridden in any particular message. This feature is important for very compact binary encodings.

· ASN.1 has well-defined and proven mechanisms to ensure extensibility, that is, the ability for a version 1 system to successfully process messages from a system conforming to a version 2 specification in which additions have been made.

· ASN.1 has well-proven and widely-implemented mechanisms to ensure security. These could be of particular interest for e-health applications with confidentiality implications. Binary encodings (which can be achieved with ASN.1) carry less redundancy than character-based encodings and are thus more resistant to malicious security attacks.

Contents

1
Historical perspective

1.1
Introduction to ASN.1

1.2
Protocol specification and message exchange

1.3
Binary versus character exchanges

1.3.1
Notations for binary message exchanges

1.3.2
Notations for character-based message exchanges

1.4
A short history of ASN.1

2
Examples of use of ASN.1 for defining XML messages

2.1
A simple invoice - comparison with XSD

2.2
The base-ball card - C data structure

2.3
The personnel record - encoding comparisons

2.4
A security example - use of XCN coloring

3
Some technical points

3.1
Content and syntax

3.2
Determinants

3.2.1
Length determination

3.2.2
Optionality determination.

3.2.3
Choice determination

3.3
Deterministic content

3.4
Constraints and subtyping

3.5
Extensibility

3.6
Open types and object identifiers

3.7
Bandwidth discussions

3.8
Security discussions

3.8.1
Canonical encodings

3.8.2
Non-disclosure functions

Bibliography

1
Historical perspective

1.1 Introduction to ASN.1

ASN.1 came out of the "how to define protocols for computer to computer interaction", and more than that, came out of the "binary-encodings are best" camp.

	NOTE: Today, ASN.1 thoroughly embraces the use of XML - character-based - encodings, along-side binary encodings. The above remark is simply history!

The ASN.1 notation was first developed in the early 1980s by CCITT (now ITU-T) to support the OSI (Open Systems Interconnection) X.400 (e-mail) protocol, and was then widely used in many other OSI protocols - not a parentage that would commend it today! (See http://www.btinternet.com/~j.larmouth/tutorials/hist/lineage.ppt)

But ASN.1 broke away from that OSI background, and is today very heavily used in many telecommunications applications, and in such diverse fields as control of nuclear plants, tracking parcels, air traffic control, intelligent transportation systems, biometrics (and other smart card applications), and in multimedia protocols such as those used in Microsoft NetMeeting.

The link http://www.btinternet.com/~j.larmouth/tutorials/hist/shortHist.ppt gives a "short history of protocol definition". This goes back to the earliest developments, 1.5 billion years (whoops - seconds!) ago, and describes the civil war between the Montagues (believers in binary encodings) and the Capulets (believers in character-based encodings). It ends with the marriage of ASN.1 and XML - the marriage of Romeo and Juliet!

Today binary and character-based (XML) notations for protocol (message) specification (or schema definition) are converging, with the convergence led by ASN.1 initiatives.

The focus of ASN.1 is very much on the information content of a message or document. A distinction is drawn between whether changes in the actual representation of a message or document affect its meaning (and hence its effect on a receiving system), or are just variations of encoding that carry the same information. Thus, for an XML encoding, the use of an XML attribute rather than a child element does not affect the information content. Nor does the use of a space-separated list rather than repetition of an element. At a more gross level, the use of a TLV-style binary encoding, an XML encoding, or a compact binary encoding does not affect the information content. All are capable of carrying the same information. The choice of encoding depends largely on the environment in which the messages are to be used, and is independent of the definition of the message content. Today it is often felt that having a range of encodings available for use in different environments (for example, high-bandwidth LANs versus mobile-phone networks, or low transaction rate systems versus heavily-loaded systems).

ASN.1 tools provide a static mapping of an ASN.1 definition to structures in commonly-used programming languages such as C, C++ and Java, with highly efficient encode/decode routines to convert between values of these structures and the information content of the document or message. By contrast, most other tools supporting use of XML encodings are more interpretive in nature and produce higher CPU demands in the final implementation, whilst use of ad hoc binary encodings generally gives much less support for rapid implementation.

ASN.1 started, essentially, as a notation for formally describing a TLV (Type, Length, Value) style of binary encoding at a high-level of abstraction - roughly, at the level of abstraction provided by data-structure definition in programming languages such as C, C++ and Java.

However, ASN.1 - Abstract Syntax Notation One - tried to provide a clear separation of the information content of messages or documents from the encoding or representation of those documents.

It is, perhaps, surprising, that twenty years after the first standardisation of ASN.1, this remains its major strength as a notation for specifying e-messages.

The extension of ASN.1 to provide XML encodings (use of it as an XML schema notation) as well as binary encodings retains this fundamental separation. The background of ASN.1 in binary encodings (and the clear separation of abstract definition of information content from encoding representation) means that the use of ASN.1 automatically provides both an XML representation of data and an efficient binary representation of the same information. (The ASN.1 binary representation is much more efficient – and much more mature! – than current binary XSD proposals.)

ASN.1 tools can provide relays between incoming messages in compact binary and outgoing messages in strict XML format, and vice-versa, provided the basic definition is done using ASN.1 as the schema notation.
The bibliography provides links to the ASN.1 specifications [ASN.1] . These are common text between ITU-T and ISO, and are available free from ITU-T. The days when ITU-T Recommendations and ISO Standards cost an-arm-and-a-leg to acquire are long-since gone.

There is also an introduction to ASN.1 [INTRO] for those unfamiliar with it, and a description of some of the uses of ASN.1 [USES] . Two books [LARMOUIH] and [DUBUISSON] are available free on the Web, and are also available in hard-copy. There is also the original French version [DUB-FR] of [DUBUISSON] available in hard-copy.

Links are also available to a variety of other ASN.1 tools and resources [LINKS].

1.2
Protocol specification and message exchange

The term "protocol" is generally seen as encompassing both the definition of the messages to be exchanged between computer systems and the rules of procedure and sequence of those messages. If these are both formally defined, then the generation of test sequences and the use of generic tools becomes possible, making for fewer bugs in implementations and in a shorter time-to-market.

In the 1980s, there was almost equal emphasis on procedural aspects of protocol specification and on the definition of the messages themselves. Today there is more emphasis in electronic communications work on the actual messages to be exchanged (henceforth referred to as "information content"), and particularly on the use of an XML format for such messages. The role of ASN.1 was and is in the definition of the content and syntax of the messages to be exchanged (the syntax of the messages is henceforth referred to as "encodings"). It becomes involved with procedural and test generation aspects only through its links with and use within SDL (System Description Language) and TTCN (Tree and Tabular Combined Notation).

NOTE – SDL and UML (Universal Modelling Language) are functionally very similar, and many efforts are underway to align these two technologies. As part of those efforts, tools that support the use of ASN.1 within UML definitions in the same way as it is used within SDL definitions are beginning to emerge.

The term "protocol" will not be used further in this paper, and we concentrate instead on the means of defining the content and encoding of messages to be exchanged between computer systems (or between humans and computers) in support of some application, and particularly in support of e-health. There is already a history of the use of EDI in e-health message interchange (and in some cases of ASN.1). Historically, use of EDI took account of the need for regional and national variation in the information content and form of messages, and of the need for variation based on whether the exchange is between different nations or regions, or within a nation or region. The alternative approach of a single international standard used in all regions, and both within and between regions, has historically not found favour. This issue will no doubt recur in the definition of e-health standards today, as medical practices and administrative requirements in different countries remain very diverse.

1.3
Binary versus character exchanges

Computers were developed at the end of the 1940s, but computer communication only really began in the early 1960s.

From the very beginnings of computer message exchange there was an almost religious war between those who believed in the specification and use of binary encodings to represent the information in the message, and those who believed in the use of strings of characters (character-based encodings) to represent the information in the message.

NOTE – The Baltimore presentation will describe this as the civil feud between the Montagues and Capulets, resulting in the deaths of Romeo and Juliet. See below for the alternative happy ending!

Until the most recent times, notations suitable for the definition of messages with binary encodings were unsuitable for the definition of messages with character-based (and today XML character-based) encodings, whilst notations for the definition of character-based encodings were unsuitable for the definition of binary-based encodings.

This was largely due to the failure of workers in both camps to clearly distinguish between the information content of messages and the encoding used to represent that content. ASN.1 was the first (and is still perhaps the only) notation to provide a clear separation of information content (obscurely named "abstract syntax definition") from the means of representing that content (even more obscurely named "transfer syntax", but usually referred to as "encodings").

Work on OSI was the first to recognise that there could be multiple standardised encodings for the same content, and that negotiation of the encoding to be used in an instance of communication might be a "good idea". However, this never really took off, and today we would generally expect a single encoding (character or binary) to be used in particular circumstances, or between particular communicating partners, but this may be different depending on the circumstances (mobile (wireless) to fixed (land-based) or fixed to fixed) or on the actual partners.

The need for many applications to support message formats and other application objects (such as public key or attribute certificates) that can be stored on smart-cards or transmitted over limited bandwidth radio carriers (for example to mobile phones), as well as being transmitted over high bandwidth lines, is leading to an increasing recognition today of the importance of "syntax independence", and the availability of multiple standardised encodings for any given application message.

At the same time, we are today seeing a much greater emphasis on the definition of information content using technologies such as UML (Universal Modelling Language). We will see later in this paper, however, that there has to be concern with a number of aspects often seen as encoding-related in any such high-level design if good message exchange is to be possible.

One of the major developments today is the addition of XML Encoding Rules to the ASN.1 suite of encoding rules, enabling a single notation to be used for message definition, with transfers of those messages using either XML character-based encodings or efficient binary encodings.

NOTE – The presentation will describe this as the marriage of Romeo and Juliet (see above), providing the alternative happy ending to the play of that name by William Shakespeare.

1.2.1
Notations for binary message exchanges

[image: image1.wmf]

The first notations of this form were simply "bits and bytes" diagrams, of which a typical example is the specification of the IPv4 messages. (See figure 1).

These notations were very ad hoc. Tool support was generally not possible, and fields that provided length and choice determination (see the technical section below) were not clearly distinguished from those that carried application semantics. "Extensibility" support relied on the inclusion of reserved fields or reserved values for some fields, often as an accident arising from a desire for octet or word alignment, rather than as a planned provision.

NOTE – ASN.1 has recently been extended by the addition of an Encoding Control Notation (ECN). ECN is designed to address existing (binary) protocol definitions. The fields carrying semantics in the legacy protocol are identified and expressed in ASN.1 notation. The encoding of those fields and the addition of length and choice (and optionality) determinants (see later) is specified in a separate Encoding Definition Module, separating the two aspects. The resulting bits-on-the-line from the ASN.1+ECN are the same as those of the original specification. This work is largely irrelevant to the expected readership of this paper, however, as there are likely to be few legacy protocols with which compatability has to be maintained in new work on e-health.

An important step forward in the 1970s was the introduction of the "TLV" concept, and of a tabular notation for defining the messages. An example of tabular notation for a binary protocol is given in Figure 2.

NOTE – Although character-based, the ANSI X12 specification of EDI messages were essentially in a tabular form (see Figure 3). A table lists the basic elements present in a message, their optionality, and limits on their repetitions. An attempt was made to formalise this in a graphical syntax (the EDIFACT Graphical Syntax) during the EDIFACT standardisation in ISO.

In the TLV approach, all elements had an unambiguous (in some context) type field T, and a length field L, followed by the encoding of their value V. In most applications of this technique, aggregations of elements (and in particular repetitions of elements) were enclosed in a TL wrapper, providing easy support for not just variable length elements but also for variable numbers of repetitions.

[image: image2.jpg]AMERICAN NATIONAL STANDARD X12.1-1986

Table 2
Data Segment Sequence for the Detail Area
Require-
ment Loop ID/

Segment Desig- Max Repeat Explanatory
[dentifier Title nator Use Count Comments

POI Baseline Item Data M l At least one occurrence of loop
CUR Currency O I PO1 is required.

SLN Subline Item Detail O 100

J2X Item Description @) 1000

PO3 Additional Item Detail O 25

CTP Pricing/ Discounting Information @) 25

PO4 Item Physical Details O l

PER Administrative Communications Contact O 3

SSS Special Services O 25

ITA Allowance or Charge O 10 PO1/10,000

IT8 Conditions of Sale O l

I'TD Terms of Sale/Deferred Terms of Sale O 2

TAX Tax Reference O l

N1 Name O 1 Loop N1 is optional, but, if used,
N2 Additional Name O 2 segment N1 is mandatory.

N3 Street Address O 2 NI/200

N4 City/State O 1

REF Reference Numbers 0] 12 |

PER Administrative Communications Contact O 3

DTM Date/ Time Reference O 10

SCH Line Item Schedule O 104 The SCH segment is used to speci-
FOB F.O.B. Related Instructions O I fy various quantities of items
TDI Carrier Details (Quantity & Weight) O l ordered that are to be sched-
TD?2 Carrier Details (Routing) O 12 uled. When this segment is
TD3 Carrier Details (Equipment) @) 12 used, the unit of measurement
TD4 Carrier Details code (SCHO02) should always be

(Special Handling/ Hazardous Material) @) 5 identical to the unit of mea-

MAN Marks and Numbers O 10 surement code in the associated

POI segment (PO103), and the
sum of the values of quantity
(SCHO1) should always equal
the quantity ordered (PO102) in
the POI segment.

[image: image3.jpg]Connect Message format

Parameter ID__| Length Optionality Semantics
Tersion Tocket Mandatory Seepara 142
Priority Tociet Optional (defalt0) | Seepara 145
Called adiress Variable Mandatory Seepara 144
Calling adress Variable Mandatory Seepara 145
‘Additional information | Variahle Optional Secpara 145

 The T field was very similar to the use of an XML start tag, and its use with the L field gives equivalent functionality to an XML start and end-tag. The L field was always present, even for fixed length fields, and the T field was always present even if the next element was known.

This produced increased verbosity over a more ad hoc bits and bytes approach, but had three very real advantages, which are also claimed today for XML-based documents:

–
Optionality and a choice of elements is easily resolved provided the T part is sufficiently unique;

–
Variable length elements and repetitions are easily accommodated, as all elements have length delimiters;

–
Addition of new elements in a "version 2" of the message can be detected.

The latter is what ASN.1 calls "extensibility". Extensibility depends on having elements which can easily be skipped (they have a T and L field) by version 1 systems if the T is unknown or unexpected in some context. However, it also depends on having defined parts of the messages in which version 1 systems should skip inserted material. In the absence of the latter, error checking is seriously prejudiced. The basic TLV approach did not support such specification, and it was only in the early 1990s that the ability to specify those parts of messages where future insertions might occur was added to ASN.1.

NOTE – XML is often described as "extensible" in this sense (although the X in the name originally meant only that it supported arbitrary tag names compared to HTML), but there is nothing in current XML schema notations (apart from ASN.1) that clearly identifies when unknown tags should be ignored and when errors should be diagnosed for unknown tags. Support for extensibility in the above sense by current XML tools is largely lacking, and is certainly not formalised.

The final major development for binary message definition was the emergence of ASN.1 in the early 1980s. This produced for the first time a machine-readable definition of the content of messages, independent of the message syntax, and of any programming platform. It enabled tools to be developed to map the definition of the content into data-structures in a wide range of languages (notably C, C++ and - later - Java). This allowed library routines provided by the tool vendors to be used for encoding and decoding. These libraries became increasingly efficient and well tested over the years, making possible quick and efficient implementation of ASN.1-defined protocols possible.

Although ASN.1 had its roots in the definition of binary message exchanges, it is again referred to in the following discussion on the definition of character-based message exchanges, and today supports both equally.

1.3.2
Notations for character-based message exchanges

Character-based message exchanges were originally based on a fairly ad hoc specification of a "command-line-style" syntax, with each message starting with a three or four character mnemonic, followed by some parameters separated by commas. (A typical example was the Telnet or FTP protocols defined for the Arpanet.)

The equivalent of a TLV type of approach was to have the comma-separated parameters replaced by a "keyword = value" parameter, the keyword playing the role of the T in TLV. Later, some notations allowed sub-parameters within a parameter, equivalent to nested TLVs in binary protocols.

A big break-through occurred when message-definers recognised that the Backus-Naur form (originally developed to define the syntax of the programming language Algol 60) might be a good way to define the syntax of messages exchanged between computers.

Many (usually free) tools were developed to support the automatic validation of syntax defined using BNF (of which there were many variants).

In 1996 ISO produced a standard for EBNF (ISO/IEC 14977). The main contribution of this was to make it easier to specify sizes of elements and numbers of iterations (constraints in ASN.1 terms) in a formal way, and to avoid some problems with specifying syntaxes that used symbols that were terminal symbols in the meta-notation.

In 1997 IETF produced RFC 2234 for Augmented BNF (ABNF). The main contribution of this standard was to treat all characters as simply instances of an integer (all with equal status), with no special treatment for white space or any other character.

All these character-based approaches were focussing almost entirely on what was an allowed syntax for an encoded message. This was the biggest problem (and still is today) with most notations for character-based encodings.

Defining the syntax enables validation of the syntax and the production of parse trees, but thereafter inspection and processing of the contents of a message tends to be largely an interpretive process. This is true also of most current XML-based processors such as DOM (Document Object Model) and SAX (Simple API for XML). Despite its use of "API" in the acronym, SAX is primarily a low-level interface for obtaining XML start tags, content, end-tags from an input stream, with any further analysis to be done by the application.

Character-based encoding technology came of age with the introduction of XML, which is currently sweeping the world as the preferred syntax for message exchange in many environments.

However, the earlier concentration on (only) what is legal syntax still has its repercussions. There is some recognition of the need to define content rather than just valid syntax, but the primary focus for many XML tools is on validating the incoming syntax against a notation such as XSD or RELAX NG that defines the valid syntax of messages, not on the extraction of the information content from the encoding.

ASN.1, prior to 1998, had been concerned entirely with defining message content with binary encoding rules applied. There had been some non-standardised use of the ASN.1 value notation to provide textual encodings (sometimes called Text Encoding Rules - TER) for ASN.1, but this work was never standardised, nor seen as mainstream ASN.1 development.

In 1998, a work-item was approved for the development of encoding rules that would be character-based, and would, indeed, produce a well-formed XML document. These were called XML Encoding Rules (XER) for ASN.1.

That work matured in 2001, making ASN.1 now a serious candidate notation for the definition of XML-based messages.

In this role, ASN.1 offers some significant advantages over other notations. These are described in the technical part of this paper. The advantages arise from:

–
The association of ASN.1 with efficient binary encodings, which allows mappings between XML formatted messages and binary messages.

–
The clear definition of content separated from syntax issues (for example, child elements versus attributes) produces simplicity of definition as well as a well-defined mapping to data-structures in C, C++ and Java for easy and efficient implementation.

–
Concern (arising from the desire to be able to handle efficient binary encodings) with the definition of constraints (ranges of integers, limits of iterations) has led to a very powerful notation for subtyping.

–
Concern with "extensibility", and the need to identify where in an encoding version 1 systems should expect foreign material when receiving version 2 messages provides safety and richness in this area.

1.4
A short history of ASN.1

ASN.1 was "invented" (most people say by Jim White) in the Xerox Courier specification in the late 1970s. It was introduced into ITU-T and into ISO as part of the Open Systems Interconnection (OSI) work in the early 1980s.

At that time, it was widely seen as a major contribution to the task of defining message formats, and was widely adopted for all OSI work in both ITU-T and in ISO.

Its use later spread to many other applications, particularly in telecommunications switching and control in ITU-T, and in industries such as parcel delivery and tracking, power control, control of nuclear installations and news reporting. It has been used extensively in standards for banking, security message formats, and multi-media applications. It is being used today in new standards for intelligent traffic systems and for exchange of messages containing biometric data.

ASN.1's major academic contribution was the clear separation of definition of message content from syntactic issues of encoding, but this was not well understood in the early 1980s.

In the 1980s, the only standardised encoding for ASN.1 was the binary TLV encoding called Basic Encoding Rules (BER). Many papers in the 1980s failed to recognise the distinction between the notation for message content (abstract syntax) definition - ASN.1 - and encodings that might be used to convey that content in a message across a network. Similarly today, people often confuse discussion of "XML" as a message syntax with notations that define the from and content of XML messages (XML Schema notations, which includes ASN.1.)

ASN.1 and the binary BER TLV were often seen as synonymous, and that attitude still persists today with some people. ASN.1 is actually about defining the contents of messages, and is independent of whether an XML or a binary syntax is used to carry that content. But it is also important to recognise that, because of ASN.1 Encoding Rule standards (BER, PER, XER), the use of ASN.1 also fully specifies (with no further work needed) the message syntax in a variety of formats, including XML syntax (XER) and a very compact binary syntax (PER).

In the late 1980s, two other encoding rules - Distinguished Encoding Rules (DER) and Canonical Encoding Rules (CER) were introduced. These were intended for the rather specialised security work, and go beyond the scope of this paper. It is, however, important to note that the experience gained in the production of canonical encodings that were binary (BER and PER) based made it easy for ASN.1 to produce canonical encodings for XML-based messages in the Canonical XER (CXER) specification. This is being widely discussed as providing the equivalent of DER for those secure applications that need or wish to use XML formats. The Distinguished Encoding Rules (DER) are the encoding used for X.509 "Certificates" – one of the main planks for secure exchanges of data today, and supported by all Web browsers, and used in at least one Internet Banking application.

A major development in the early 1990s was the introduction of the so-called Packed Encoding Rules (PER). The major academic contribution here was to recognise that the verbose TLV-style of encoding was not necessary in order to provide extensibility. It suffices to delimit inserted version 2 material, retaining efficient encodings similar to those produced by earlier "bits and bytes" work for version 1 material. (Of course, the introduction of version 3 and version 4 etc later complicates the issue, but this discussion again takes us beyond the scope of this paper.)

PER provides for the transfer of message content that is typically half the size of BER encodings, and can be a hundredth or two-hundredths the size of XML encodings. This impacts not only on communications bandwidth, but also on transaction processing rates and storage (smart-card) requirements.

The ability to switch easily between XML formats and compact PER formats (without loss of information) is one of the major strengths of ASN.1 today.

PER is not a TLV-based encoding. As a consequence, the opportunity was taken to remove the requirement in the ASN.1 notation to specify values for the T part of encodings (ASN.1 tags). This resulted in a considerable improvement in the readability, simplicity, and learnability of the basic ASN.1 notation, compared with what was available in the 1980s. ASN.1 made the final step to defining only message content, not features concerned with syntax/representation/encoding, in its base notation.

In the late 1990s work began on support for XML formats for ASN.1-defined messages.

This work concentrated on production of XML formats (encodings) for message instances (values) defined and validated using the (unchanged) ASN.1 notation for defining message content.

As a result, issues of XML formatting such as use of attributes rather than child elements was not provided in the use of ASN.1 to define XML messages. The result is a clearer and simpler (and less verbose) notation for the specification and validation of XML messages than notations such as the XML Schema Definition (XSD) notation. It is also a notation that can be readily mapped to C, C++ and Java data-structures, where there is no concept of a distinction between an attribute and a child element.

Arguments over the use of attributes in XML are again an almost religious war within the XML world, but it was clear that ASN.1 did need to support the specification of which parts of message content should be carried as attributes and which as child elements. This resulted in the addition of XER Encoding Instructions to ASN.1, and the production of "EXTENDED-XER". A detailed treatment of this is, however, beyond the scope of this paper.

ASN.1 tools supporting XML are available today from four separate vendors with others likely to follow. Tools providing freestanding validation of XML syntax (defined using ASN.1+XER) will shortly be available. This will enable implementers to use these tools as validators to a DOM or SAX interface, or to use validation and decoding to a C, C++ or Java data structure in the traditional ASN.1 way. This gives maximum choice of implementation strategy.

Some would describe the XML support in ASN.1 as a reaction to the increasing recognition of XML as the transfer-syntax-of-choice. Others would describe it as ASN.1 coming-of-age, and a maturing of the options and techniques available for communication between computer systems.

2
Examples of use of ASN.1 for defining XML messages

The examples in this section are kept as small and simple as possible, but should be sufficient to illustrate the use of ASN.1 for defining message content and the XML syntax resulting from such definitions. (The emphasis on XML encodings reflects the intense interest in using XML today, but it should not be forgotten that ASN.1 also supports compact binary encodings from the same application specification.)

2.1
A simple invoice - comparison with XSD

Consider the following ASN.1 specification:

Invoice ::= SEQUENCE {

number INTEGER,

name UTF8String,

details SEQUENCE OF line-item LineItemPairs,

charge REAL,

authenticator BIT STRING}

LineItemPairs ::= SEQUENCE {

part-no INTEGER,

quantity INTEGER }

An instance of this message in the XML syntax defined by the above ASN.1 specification might be:

 <Invoice>

 <number>32950</number>

 <name>funny-name with <</name>

 <details>

 <line-item>

 <part-no>296</part-no>

 <quantity>2</quantity>

 </line-item>

 <line-item>

 <part-no>4793</part-no>

 <quantity>74</quantity>

 </line-item>

 </details>

 <charge>397.65</charge>

 <authenticator form="hex">

 EFF8 E976 5403 629F

 </authenticator>

 </Invoice>

The XSD specification for "LineItemPairs" would be:

 <xsd:complexType name="LineItemPairs">

 <xsd:sequence>

 <xsd:element

 name="part-no" type="xsd:number"/>

 <xsd:element

 name="quantity" type="xsd:number"/>

 </xsd:sequence>

 </xsd:complexType>

Whilst perceptions of simplicity and verbosity are often much affected by what someone is used to, the reader is invited to compare this with the ASN.1 definition of LineItemPairs given above.

2.2
The base-ball card - C data structure

Here is another ASN.1 definition for the content of a baseball card:

BBCard ::= SEQUENCE {

name IA5String (SIZE (1..60)),

team IA5String (SIZE (1..60)),

age INTEGER (1..100),

position IA5String (SIZE (1..60)),

handedness ENUMERATED {

 left-handed (0),

 right-handed (1),

 ambidextrous (2) },

batting-average REAL }

Here is a possible instance of such a card in the XML syntax that this defines:

 <BBCard>

 <name>Jorge Posada</name>

 <team>New York Yankees</team>

 <age>29</age>

 <position>C</position>

 <handedness><right-handed/></handedness>

 <batting-average>0.277</batting-average>

 </BBCard>

The above is the "vanilla" syntax. If desired, the "handedness" tags can be removed by coloring, and "team" and "age" can be made into attributes.

This same definition automatically produces the following C data structure for application code that is to process this message. Library routines provided by ASN.1 tool providers convert between values of this C (or a similar C++ and Java) data structure and the XML format. The C data structure is typically:

typedef struct BBCard {

 char name [61] ;

 char team [61] ;

 short age ;

 char position [61] ;

 enum {

 left_handed = 0,

 right_handed = 1,

 ambidextrous = 2,

 } handedness ;

 float batting_average ;

 } BBCard ;

Binary encodings for this message are also automatically defined, using either BER or (more commonly today) PER. Canonical versions of these encodings (CXER, DER or CPER) can be used if there is serious concern with security.

2.3
The personnel record - encoding comparisons

This example has been part of the ASN.1 specification since 1984, and has been used to illustrate the encoding of this type in all the syntaxes supported by ASN.1, from BER (originally) through PER to XER today. The ASN.1 definition is:

PersonnelRecord ::= SEQUENCE {

name Name,

title VisibleString,

number EmployeeNumber,

dateOfHire Date,

nameOfSpouse Name,

children SEQUENCE OF

 child ChildInformation DEFAULT {} }

ChildInformation ::= SEQUENCE {

name Name,

dateOfBirth Date}

Name ::= SEQUENCE {

givenName VisibleString,

initial VisibleString,

familyName VisibleString}

EmployeeNumber ::= INTEGER

Date ::= VisibleString -- YYYYMMDD

A possible instance of this in "vanilla" XER could be:

 <PersonnelRecord>

 <name>

 <givenName>John</givenName>

 <initial>P</initial>

 <familyName>Smith</familyName>

 </name>

 <title>Director</title>

 <number>51</number>

 <dateOfHire>19710917</dateOfHire>

 <nameOfSpouse>

 <givenName>Mary</givenName>

 <initial>T</initial>

 <familyName>Smith</familyName>

 </nameOfSpouse>

 <children>

 <child>

 <name>

 <givenName>Ralph</givenName>

 <initial>T</initial>

 <familyName>Smith</familyName>

 </name>

 <dateOfBirth>19571111</dateOfBirth>

 </child>

 <child>

 <name>

 <givenName>Susan</givenName>

 <initial>B</initial>

 <familyName>Jones</familyName>

 </name>

 <dateOfBirth>19590717</dateOfBirth>

 </child>

 </children>

 </PersonnelRecord>

If the canonical form of XER is used, all white space is omitted, and the total count of octets is 653 octets. If this same information is encoded using BER, the octet count reduces to 136 octets, and with PER, it takes only 94 octets.

2.4
A security example - use of XCN coloring

This is an example that illustrates the use of ASN.1 as an XML Schema notation where the form of the XML required is already determined (an existing definition is being replaced). The ASN.1 definition is:

PKIStatusInfo ::= SEQUENCE {

 status PKIStatus,

 statusStrings PKIFreeText OPTIONAL,

 failInfo PKIFailureInfo OPTIONAL

}

PKIStatus ::= INTEGER { rejection (2) } (0..MAX)

PKIFreeText ::= SEQUENCE SIZE(1..MAX) OF string UTF8String

A possible XML message that would be validated by ASN.1 tools against this definition is:

 <PKIStatusInfo>

 <status> <rejection/> </status>

 <statusStrings>

 <string>

 Your request has been rejected.

 </string>

 <string>

 There was no time available to complete the request.

 </string>

 </statusStrings>

 <failInfo> <timeNotAvailble/> </failInfo>

 </PKIStatusInfo>

It is possible to use "coloring" (Encoding Control Instructions) to:

a)
replace the empty-content tags <rejection/> and <timeNotAvailable/> with simple character strings;

b)
remove the <statusStrings> start and end tags;

c)
make the <status> element into an attribute (assuming (a) above has been done).

The XCN specification is:

TEXT status, failinfo

ATTRIBUTE status

UNTAGGED statusStrings

The XML instance now becomes:

 <PKIStatusInfo status = "rejection">

 <string>

 Your request has been rejected.

 </string>

 <string>

 There was no time available to complete the request.

 </string>

 <failInfo>timeNotAvailble</failInfo>

 </PKIStatusInfo>

In general, ASN.1 with Encoding Control Instructions can define (and ASN.1 tools supporting it can generate and validate or decode) any form of XML syntax that is desired, or that can be defined in XSD or Relax NG.

3
Some technical points

The following sub-clauses are in no particular order, but cover a number of areas that are relevant to any technical discussion on the use of ASN.1 as a notation for defining XML-based messages. They are only briefly mentioned in the presentation.

3.1
Content and syntax

There are interesting issues (that can also become religious wars!) concerned with the separation of the specification of message content and the specification of the encoding or syntax of messages.

A formal (machine-readable and precise) definition of both message content and syntax are important for many reasons. The clear separation of the two is also important. The following advantages of formal and separate definitions can be cited:

–
Easy mapping to different syntaxes, including both mapping to programming language data structures for easy implementation and mapping to compact binary formats for both security and bandwidth purposes (see 3.8 below).

–
Provision of tools for validation of message syntax and processing of message content, including application-independent encode/decode libraries.

–
Automatic generation of test-suites.

–
Checking for completion and validity of the specifications becomes possible.

In the extreme case of a message defined using ABNF (Augmented BNF), there is no formal specification of the message content. The focus is entirely on the specification of what messages are syntactically correct.

It is possible to deduce (usually correctly) that the optional presence of any element that is composed of purely of non-printing characters has no semantic significance. It is also usually the case that the presence or absence of elements that are single "punctuation" characters (such as curly brace, comma, etc) may affect the parsing, but rarely carries application semantics. But all this is deduction in the case of an ABNF-defined message.

In the case of a message defined using XML Schema Definition (XSD) notation, the emphasis is still on defining what is a syntactically valid XML instance, not on what is the information content of such a message.

The basic thrust is: if two instances are valid syntax, do differences in those instances represent differences in the information content of the messages, or merely different representations of the same information content?

NOTE – As an aside, ASN.1 work has long recognised the value of minimising the number of encoding variants for a given message content and of having a precise definition of a canonical encoding (a single distinguished encoding) for any given encoding format (see 3.8.1).

These issues matter if one is to attempt to map the information content of a message to a programming language data structure for efficient implementations, or to provide tools that can convert between different message syntaxes without loss of information.

3.2
Determinants

One of the recognitions in the ASN.1 work over the last half-century (almost) is that encoded elements in any message perform one or more of a small set of functions discussed below.

3.2.1
Length determination

Length determination applies to both a basic element and to a repetition.

There is no application semantics here - this is a field supporting the syntax. In a TLV encoding, the L provides the length determination. In XML, length determination of basic elements is always by use of the end-tag. For repetitions, the L in TLV provides the length determination, but the situation with EDIFACT and with XSD is more complex. In these cases, determination of the end of a repeated sequence depends on the sequence identifier or XML tag of the next element in the encoding being different from that of the repeated element. This is discussed further below (see 3.3).

NOTE – In more general character encodings and in binary encodings, length determination might use a special token, as in a comma-separated list, or a null-terminated character string. This is, however, outside the scope of this paper.

3.2.2
Optionality determination.

There is usually application semantics associated with absence of an element that is different from the semantics associated with any value that can actually be encoded.

In other cases, absence in the encoding is not a separate value (with different semantics) it simply identifies a specified "default" value that could have been included in the encoding.

NOTE – The ability to encode a default value by the absence of an encoding for it as well as by encoding its actual value means that there are two possible encodings for the same value. This has to be addressed in canonicalisation work.

In the case of XSD, there is additionally the concept of "nillable" - an element may express a range of values, but its absence may express two separate values: either "no value available", or the value "nil". Which of these is being encoded is carried in an attribute of the XML tag in the encoding.

These differences in the value model of different notations are not often recognised, and make "syntax-independent" specifications more difficult. This is a very technical point, but use of "nillable" in XSD should be rejected for e-health standards defined using XSD, as it makes the entire content definition heavily-dependent on a feature only found in XSD.

3.2.3
Choice determination

There are many mechanisms used for choice determination in general, including:

–
Use of distinct T values in a TLV encoding.

–
Use of distinct tags in an XML encoding.

–
Use of a "choice index" for binary encodings.

–
Use of an attribute of some containing tag to identify the choice alternative.

The latter is the xsi:type attribute, and bears a lot of similarity with the use of a choice index in a binary encoding.

The problem with the use of xsi:type is that this uses XSD-specific semantics in the XML document. XML formats that are defined to use this are harder to replicate with definitions in other schema notations, as this is not a feature defined for XML generally.

This is one of many examples where it can be easy to define XML formats that depend on semantics defined in the schema notation used, rather than in the application definition or in XML itself. Where independence of schema notation is desired, such features should not be employed, and any resulting XML definition should not be accepted in standardisation work.

NOTE – There will be many XSD adherents that will disagree with the above remark!

3.3
Deterministic content

There is a general problem with allowing an element to be repeated an indefinite number of times. If such a sequence is followed by another sequence repeating the same element (but with different semantics), then there can be problems with the determination of where one sequence ends and the next begins.

This is never a problem with the TLV approach, as a TL wrapper is placed all repeating elements. In the case of EDIFACT and XML in general, reliance is placed on the segment identifier or tag of the next element to determine when a sequence has ended.

XML discusses this problem in non-normative text under the heading "deterministic content models". Not only is this text non-normative, but XML processors are not required to flag non-deterministic, or ambiguous XML documents as errors. In the case of XSD, we have a statement under the heading "Unique Particle Attribution" that:

A content model must be formed such that during validation of an element information item sequence, the particle contained directly, indirectly or implicitly therein with which to attempt to validate each item in the sequence in turn can be uniquely determined without examining the content or attributes of that item, and without any information about the items in the remainder of the sequence.
Non-normative text goes on to say that (statically) checking this is difficult due to various constructs in the XSD notation. In practice, violations of this in an XSD specification will only be detected when an instance of XML in which the constraint is validated is encountered. Of course, this could, in principle, be some time after a system had been deployed in pathological cases!

In the case of "vanilla" XER, this problem can never arise, as additional XML tags are always placed around any repeated element (and around any choice of elements). If, however, coloring (Encoding Instructions) is used to remove these (often unnecessary) XML tags, ASN.1 tools can easily detect the error and diagnose the result as illegal, because of the explicit content model present in the ASN.1 specification.

3.4
Constraints and subtyping

One of the strengths and richnesses of ASN.1 is the ability to constrain or subtype elements or types. XSD also supports a good range of constraint mechanisms.

However, one of the problems that is often encountered when people take a "high-level" approach to the definition of "business objects" is that issues such as string lengths and sizes of integers and of repetitions are frequently left undetermined.

This is discouraged (but cannot, of course, be forbidden) in writing ASN.1, but most ASN.1 authors are aware that if bounds are imposed, then the encodings produced by PER are much more compact than if they are not given. (In general, it means that length determinants need not be encoded, as the lengths are statically determinable.)

It is important that designers that still prefer to work with "syntax-independent" tabular formats be aware of the need to fully specify bounds.

An important tool in the ASN.1 notation is to be able to specify a length of (for example) zero to 127 for a character string normally, but to indicate that occasionally it may be unlimited. In this case, PER will encode the length determinant in eight bits (with the first bit set to zero) if it is in the normal range, and in more bits (with the first bit set to one) if it is outside the normal range. For XML-based encodings such considerations are not important (length determination is always done using an XML end-tag), but if high-level definitions are to be truly syntax-independent, and are to support efficient binary protocols a well as XML formats, issues such as this have to be addressed.

Note that what is "normal" and what is unusual is very much a business or high-level decision. It is not a syntax or coding matter. Nonetheless, it is important for efficient encodings.

At first sight, issues of bounds are pretty irrelevant if an XML-format is to be used as the syntax. However, if the content is to be mapped into a C, C++ or Java API, knowledge of bounds is important. Knowledge and checking of bounds can also be a guard against denial-of-service attacks by hackers, and an aid to general detection of errors. Strong encouragement should be given to high-level designers to include as much information as possibly on rigid bounds and likely limits.

3.5
Extensibility

This is another area which some might consider to be an implementation issue, but which needs consideration in the high-level design.

To recap: extensibility refers to the ability for a version 1 system to successfully process messages produced by systems conforming to a version 2 specification and hence, typically, containing additional XML elements that are not in the version 1 specification.

This issue has many ramifications. For strongly typed and length determined syntaxes such as XML, it is largely related to procedural matters. When should a version 1 system ignore an unknown tag because it might have been inserted in version 2?

Ignoring unknown tags everywhere can render XML validation almost impotent. Care also has to be taken about the effect of such action on determinism of the content model. Both XSD and XML are largely silent on this subject.

ASN.1 has well-defined and well-used mechanisms to enable a version 1 designer to indicate not only where additional elements may need to be added in version 2, but also on what bounds (present in version 1) may need to be relaxed in version 2. Of course, it also provides for the version 2 (and 3 and 4...) specifications to provide the additional elements or the relaxed bounds.

3.6
Open types and object identifiers

This is a difficult area, and different notations have different approaches to it.

In ASN.1, it is possible to assert that the form (total content) of a particular element (an open type) is not determined in the base specification, but rather is identified by some other field carrying some form of identification for the element. In the case of ASN.1, this is typically an ASN.1 Object Identifier value.

This is similar to the layering of traditional protocol specifications, where a lower-layer contains a "hole" to be filled by an upper layer which is invisible to it (and for which there may be multiple different possibilities), with the contents of the "hole" identified by some form of protocol identification. The situation with messages that are intended to be generic carriers for other more-specific messages is similar.

An implementation will typically be required to process elements whose object identifier it recognises, and to take defined actions for those that are not recognised.

The XML/XSD namespace concept partially, but by no means completely, provides similar functionality. Yet the use of open types with the contents identified by an object identifier is perhaps one of the most heavily used parts of the ASN.1 notation for serious international standardisation. There is little doubt that work on e-health standards would benefit from its use.

It is important here to note that ASN.1 Object Identifiers provide a hierarchically assigned namespace that is heavily used in banking work, and which enables any organization to obtain and to manage parts of that namespace in a flexible and simple way.

3.7
Bandwidth discussions

In this technical section, it is appropriate to make a few remarks concerned with bandwidth.

Message syntaxes that burn band-width general require much higher processing power to handle the messages, and hence provide a much lower transactions per hour rate than message syntaxes that involve fewer characters.

It is also been asserted that using a compression tool such as WinZip can reduce the bandwidth needed for transmission of XML messages. This is only partly true. Shannon's Information Theory states that the minimum number of bits needed to transmit some information depends on the information content. In the case of an XML encoding, the XML tags are additional information content, and no matter how efficiently they are encoded, they will cost overall. When ZIP was applied to BER and to PER encodings, it was found that both were reduced by about a factor of two, but remained largely in the same ratio for the above reason.

Moreover, application of general-purpose compression normally worsens the CPU requirements for processing a transaction.

This is not an argument for binary encodings rather than XML, but the ability which ASN.1 provides for easy lossless conversion between XML-formats and compact binary formats is likely to be of value in a number of scenarios, but particularly where e-health is conducted using mobile phones, radio traffic beacons, with information stored on smart-cards, or by high-transaction-rate systems. In all these environments, bandwidth is likely to be important for some time.

3.8
Security discussions

ASN.1 has established itself, largely through DER and X.509 formats for public key and attribute certificates, as the primary format for security applications.

This clause discusses a number of aspects of security work.

3.8.1
Canonical encodings

A critical feature for much security work is to have encoding formats in which there is precisely one encoding for any given content value (abstract value). Such encodings are called canonical encodings. For this concept to be applied, there has to be a very clear model of the contents (abstract values) of a message, not just of the permitted syntax of the message.

NOTE – Canonical encodings are important because they remove side-channels by which a Trojan horse can communicate at encoding time, and also because they mean that simple checks on changes to the encoding can be used to produce confirmation (with no false negatives) that the actual content has been changed (or is unchanged).

Achieving canonical encodings is not an easy task. Simple things such as removing white space (or requiring exactly one space) are only part of the discussion.

ASN.1 has had many years experience in the design of canonical encodings, and generally today ASN.1 Encoding Rules are defined with as few options in them as possible. (This not only helps with security-related work, but it also helps with test-suite generation and with decoder implementation costs.)

The XML formats generated by ASN.1 XER are largely canonical, apart from freedom to insert white space in order to format the documents for human-readability. CXER is truly canonical, and is generally recommended for all computer-to-computer communications, particularly where security issues are important.

3.8.2
Non-disclosure functions

Non-disclosure functions (in laymen's terms, application of old-fashioned encryption for secrecy) are usually discussed in terms of their strength against:

–
Chosen message attack.

–
Known message attack.

–
Known pattern attack.

The model here is in terms of a super-computer trying various decryption keys and looking to see if the decrypted message matches.

In the case of a chosen message, it is assumed that the attacker has access to an encryption machine and can encrypt any messages of choice. In the case of known message attack it is simply assumed that one message has been compromised. The interest in this discussion is in known pattern attack.

Any attempt at applying a cryptographic non-disclosure function to material with a known pattern makes it vulnerable to brute force attacks where a key is tried, and if the pattern is detected then that key is a likely contender, otherwise another key is tried.

Thus any encoding with a large amount of redundancy is vulnerable.

The fact that an XML-format is character based immediately introduces a lot of redundancy. The use of English language text for the content of elements introduces more, and the use of English words for tags adds more. Finally, the existence of many angle brackets and paired start and end tags produces even more redundancy and pattern.

Attempts have been made to remove XML tags before encryption (so that only the document contents are encrypted), with restoration of the tags using the Schema. However, XML tags frequently perform the role of choice and other determinants, and cannot simply be removed and blindly restored without knowledge of the document contents.

Another suggested approach is to remove the patterns by doing a WinZip compression, but as with bandwidth reduction, this fails. The format of a WinZip file is well known, and the patterns are still present within this file, and can be trivially revealed by applying decompression after decryption with the trial key.

If ASN.1 has been used as the XML Schema notation, then the XML document can be safely encrypted by an encryption function which first decodes to an abstract value, then encodes with PER, then encrypts the resulting bits. Decryption is the reverse transformation. This is not possible at this time with any other schema notation that the writer of this paper is aware of.

Bibliography

[ASN.1]
http://www.itu.int/ITU-T/studygroups/com17/languages/
[INTRO]
http://asn1.elibel.tm.fr/introduction
[USES]
http://asn1.elibel.tm.fr/uses/
[LARMOUTH]
http://www.oss.com/asn1/larmouth.html
[DUBUISSON]
http://www.oss.com/asn1/dubuisson.html
[DUB-FR]
http://asn1.elibel.tm.fr/fr/livre
[LINKS]
http://asn1.elibel.tm.fr/links/
�

Figure 1 - Bits and bytes picture for IPv4

Figure 2 - Use of tabular notation for a binary message

�

Figure 3 - Use of tabular notation for an X12 message

2

3

