

* Contact: TSB Tel: +41 22 730 5860
Fax: +41 22 730 5853
E-mail: bigi@itu.int

R:\REFTXT98\ITU-T\COM-T\COM16\R\R030E.WW7 03.04.98 03.04.98
(65317)

Question: 19/16

Texte disponible seulement en
Text available only in
Texto disponible solamente en

E

STUDY GROUP 16 – REPORT R 30

SOURCE*: STUDY GROUP 16 (GENEVA MEETING, 26 JANUARY - 6 FEBRUARY 1998)

TITLE: PART II.B OF THE REPORT OF WORKING PARTY 3/16 (SIGNAL

PROCESSING) - IMPLEMENTOR'S GUIDE FOR ANNEX B/G.729 AND A
TABLE OF G.723.1

CONTENTS

 Page

1 Correction to Annex B to G.729... 2

2 Error correction in Table of G.723.1 .. 5

Attention: This is not an ITU publication made available to the public, but an internal ITU Document intended only for use by the
Member States of the ITU and by its Sector Members and their respective staff and collaborators in their ITU related work. It shall
not be made available to, and used by, any other persons or entities without the prior written consent of the ITU.

INTERNATIONAL TELECOMMUNICATION UNION
TELECOMMUNICATION
STANDARDIZATION SECTOR
STUDY PERIOD 1997 - 2000

COM 16-R 30-E
March 1998
Original: English

- 2 -
COM 16-R 30-E

R:\REFTXT98\ITU-T\COM-T\COM16\R\R030E.WW7 03.04.98 03.04.98
(65317)

1 Correction to Annex B of G.729

Problems related to frame erasures in G.729 Annex B
Problems related to the frame erasures simulation and bad frame handling in the case of the specific
algorithms of G.729 Annex B have been discovered and are discussed below.

First the present bitstream format and frame erasure indication in the bitstream file of the ANSI C
simulation software is recalled. The problem of the frame erasure indication for not transmitted
frame is then addressed. Related to this problem, a bug has been found in the decoder of G.729B
and G.729AB which is explained below. The test sequence TSTSEQ6.BIT designed to test the
behaviour of the G.729B/G.729AB with frame erasures will also need to be modified, as explained
in the last paragraph.

Bitstream format and frame erasure indication
In the distributed software of G.729 and its annexes (including G.729A, G.729B and G.729AB) the
bitstream file contains, for each frame:
• one 16 bit synchro word: serial[0] = SYNC_WORD (0x6B21);
• one 16 bit word indicating the number Nb of bits for the frame: serial[1] = Nb:

– Nb = 80 for G.729, G.729A, and for active frames of G.729B/G.729AB;
– Nb = 15 or 16 (depending on the option of transmission) for SID frames of

G.729B/G.729AB;
– Nb = 0 for untransmitted frames of G.729B/G.729AB;

• Nb 16 bit words encoding the bits (BIT_0 = 0x007F, or BIT_1 = 0x0081)

when Nb ≠ 0, serial [i]= BIT_0 or BIT_1 for i = 2 to Nb + 1.

In the bitstream file of the G.729 software a frame erasure is indicated by zeroing those Nb words.

Frame erasure indication for not transmitted frames
This frame erasure indication does not allow to distinguish between valid not transmitted frames
and erased not transmitted frames, since Nb=0 for those frames.

This is a problem since in actual implementations, both cases may occur leading possibly to
different results as shown by the following example:

Suppose the following sequence of frames:

frame number actual frame type (encoder)

T active
(T+1) SID
(T+2) Not Transmitted

and suppose that frames (T+1) and (T+2) are erased.

With the frame erasure indication of the present simulation, frame (T+2) cannot be recognized as
erased.

- 3 -
COM 16-R 30-E

R:\REFTXT98\ITU-T\COM-T\COM16\R\R030E.WW7 03.04.98 03.04.98
(65317)

Therefore the decoder treats the frames in the following way:

frame number present decoded frame type

T active
(T+1) active with BFI
(T+2) valid not Transmitted

Yet for frame (T+2), the algorithm detects that a SID frame has been erased and creates SID
parameters using the parameters stored at frame T.

But in actual system implementation, if the system is able to detect that frame (T+2) has also been
erased (it is left open to system designers but some systems will make this possible), the processing
would rather be:

frame number present decoded frame type

T active
(T+1) active with BFI
(T+2) active with BFI

It seems therefore necessary to have a distinct indication of the not transmitted erased frames in the
bitstream file.

We propose to introduce a 4th value of the second word serial[1], RATE_0_BFI = 0x8000 for
erased not transmitted frames:
Frame type Tx mode serial[1]
active RATE_8000 = 80
SID if OCTET_TX_MODE RATE_SID_OCTET = 16
 else RATE_SID = 15
valid not transmitted RATE_0 = 0
erased not transmitted RATE_0_BFI=0x8000

The number of bits of any type of frame and hence the number of words after the 2 words header
into the bitstream file can then be obtained by masking the MSB of serial[1].

The erasure indication of the other types of frames could be maintained as it is (zeroing the
transmitted bits) to keep the compatibility with G.729/G.729A frame erasure indication.

Error in the G.729B and G.729AB ANSI C decoder
In the G.729B/G.729 AB ANSI C simulation of the decoder, the current frame type is contained by
the variable ftyp (ftyp = 0: not transmitted, ftyp = 1: active, ftyp = 2: SID) which is first filled by
parm[1], deduced from the bitstream file. When a bad frame has been detected, the type of the
current erased frame depends of the type of the preceding frame. This is expressed by the following
lines of the source files DEC_LD8K.C/DEC_LD8A.C:

- 4 -
COM 16-R 30-E

R:\REFTXT98\ITU-T\COM-T\COM16\R\R030E.WW7 03.04.98 03.04.98
(65317)

--
 if(bfi ==1)

 if(past_ftyp == 1) ftyp = 1;

 else ftyp = 0;

--

where past_ftyp contains the type of the preceding frame.

Yet the value parm[1] is not modified. In the present program, parm[1] will in fact contain the
frame type of the erased frame, because parm[1] is deduced from serial[1] mentioned above, and
serial[1] is not affected by the frame erasures.

The function Dec_cng() that generates the comfort noise filters and excitation signal is called in
DEC_LD8K.C/DEC_LD8A.C for non active (SID or not transmitted) frames. But the variable ftyp
is not passed as argument of this function, that uses parm[1] to identify the frame type. This is not a
problem when the frame is valid or an erased not transmitted frame (in both cases parm[1]=ftyp)
but creates a bug whenever the frame is an erased SID frame.

It is therefore necessary to modify the lines above in the following manner:
--
 if(bfi ==1) {

 if(past_ftyp == 1) ftyp = 1;

 else ftyp = 0;

 *parm = ftyp;

 }

Problem with test sequence TSTSEQ6.BIT
The test sequence TSTSEQ6.BIT is dedicated to the testing of the decoder DTX/CNG algorithms
when the first SID frame of an inactive period is erased. The simulation of erased frames employed
to design this test sequence was incorrect, which explains that the bug described above has not been
detected. A whole SID frame (including the two words header) has been cleared instead of just the
words representing the bits. Then this null frame is interpreted by the decoder as a series of 8 not
transmitted frames (because in OCTET_TX_MODE). Hence the bitstream of the following frame
does not loose its synchronization.

The first not transmitted frame occurs after an active frame and the procedure that creates SID
parameters from previously stored values is therefore activated and tested by TESTSEQ6.BIT.

Yet this sequence is impossible from a system point of view (there should be a "BFI" somewhere
between the active and the not transmitted frame). It should be corrected and this modified
sequence could then also incorporate some testing of the new "not transmitted and erased"
indication mentioned above.

- 5 -
COM 16-R 30-E

R:\REFTXT98\ITU-T\COM-T\COM16\R\R030E.WW7 03.04.98 03.04.98
(65317)

2 Error correction in Table of G.723.1

Summary
In this contribution we describe an error in the Table of G.723.1 which specifies the octet bit
packing for the high-rate (6.3 kbit/s) codec, and propose a correction to the error.

Introduction
In March 1996, SG 15 approved Recommendation G.723.1. In its Table 5, on page 23, the octet bit
packing for the high-rate (6.3 kbit/s) codec is specified. Recently, it was pointed out in one of the
mailing lists discussing G.723.1 packetization, that there was an error in that table. The error was
initially spotted by Mr. Terry Lyons of Lucent Technologies.

Description
The problem is with octets 16-18. As things read now:
• Octet 16: POS1_B2, POS1_B0, POS0_B15..B10.
• Octet 17: POS1_B10..B3.
• Octet 18: POS2_B3..B0, POS1_B13..B11.

Hence:
• The transmitter omits POS1_B1.
• Octet 18 contains only 7 bits!

Solution
Looking at the reference C code, all the bits of the encoded bitstream are transmitted always from
the least significant bit towards the most significant bit, systematically. Therefore, since the C code
takes precedence over the written text, Table 5/G.723.1 should be amended such that:
• Octet 16: POS1_B1..B0, POS0_B15..B10.
• Octet 17: POS1_B9..B2.
• Octet 18: POS2_B3..B0, POS1_B13..B10.

This is done in the replacement Table below. This should be published in an Implementor's Guide
at the next SG 16 meeting in January 1998.

- 6 -
COM 16-R 30-E

R:\REFTXT98\ITU-T\COM-T\COM16\R\R030E.WW7 03.04.98 03.04.98
(65317)

CORRECTED TABLE 5/G.723.1

Octet bit packing for the high bit rate codec
High rate

Transmitted octets PARx By, ...
1 LPC_B5...LPC_B0, VADFLAG_B0, RATEFLAG_B0
2 LPC_B13...LPC_B6
3 LPC_B21...LPC_B14
4 ACL0_B5...ACL0_B0, LPC_B23, LPC_B22
5 ACL2_B4...ACL2_B0, ACL1_B1, ACL1_B0, ACL0_B6
6 GAIN0_B3...GAIN0_B0, ACL3_B1, ACL3_B0, ACL2_B6, ACL2_B5
7 GAIN0_B11...GAIN0_B4
8 GAIN1_B7...GAIN1_B0
9 GAIN2_B3...GAIN2_B0, GAIN1_B11...GAIN1_B8

10 GAIN2_B11...GAIN2_B4
11 GAIN3_B7...GAIN3_B0
12 GRID3_B0, GRID2_B0, GRID1_B0, GRID0_B0,

GAIN3_B11...GAIN3_B8
13 MSBPOS_B6...MSBPOS_B0, UB
14 POS0_B1. POS0_B0, MSBPOS_B12...MSBPOS_B7
15 POS0_B9...POS0_B2
16 POS1_B1, POS1_B0, POS0_B15...POS0_B10
17 POS1_B9...POS1_B2
18 POS2_B3...POS2_B0, POS1_B13...POS1_B10
19 POS2_B11...POS2_B4
20 POS3_B3...POS3_B0, POS2_B15...POS2_B12
21 POS3_B11...POS3_B4
22 PSIG0_B5...PSIG0_B0, POS3_B13, POS3_B12
23 PSIG2_B2...PSIG2_B0, PSIG1_B4...PSIG1_B0
24 PSIG3_B4...PSIG3_B0, PSIG2_B5...PSIG2_B3
