

DEMONS Decentralized, cooperative and privacy preserving Monitoting for trustworthiness

Dr. Sathya Rao KYOS, Geneva, Switzerland Sathya.rao@kyos.ch

Introduction

- DEMONS is an integrated project of European FP7 framework partly funded by the European Commission
- Started on Sept. 2010 and will be active for 30 months to achieve its goals
- Has 13 European partners: 3 operators, 6 commercial companies and 4 research institutes
- The budget is 8.3 M€ with EC funding of 5.35 M €
- DEMONS plans to demonstrate the trustworthiness of the inter-domain network monitoring and management infrastructure in a cooperative operational environment

Motivation

Today's monitoring systems

- Centralized
- Huge amount of exported/collected data
- Hard/no cooperation across domains
- Poor flexibility in access control to monitored data (little more than Y/N)

Hardly coping with

- Higher link rates and traffic volumes
- Networks pervasiveness & capillarity
- distributed, cross-domain, threats

From data-gathering probes to collaborative P2P computing and filtering devices

In-network processing and distributed intelligence Application-tailored data reduction and protection Resilient autonomic monitoring overlay Cross-domain interworking Target Impact Scalability Privacy preservation Flexibility and resilience Cross-domain threat detection and mitigation

Exchange only the information strictly necessary for a given monitoring and analysis objective

S&T Approach

Application Layer

- Cooperative applications
- Application adaptation and deployment
- Presentation & visualization

- Resilient, scalable monitoring overlay
- Orchestration, authorization and control of distributed operation
- Inter-domain cooperation

- In-probe processing and filtering
- Composable traffic analysis tasks
- Flexible & programmable devices

WP structure

WP9 - Project Management WP8 - Dissemination, Exploitation and Standardization WP5 - Application Layer Components WP4 - Dentralized Coordination **Layer Principles and Components** WP3 – Measurement Layer **Principles and Components** WP1 WP2 WP6 WP7 Scenarios, Privacy System Assessment Preservation Requirements Integration and Trials and **Techniques** Architecture

Use Cases and Requirements

Activities so far:

- Collect, discuss and write representative use cases depicting current existing problems in the Security (Monitoring) world which DEMONS aims at.
- Extract an initial set of basic requirements for the DEMONS architecture able to address all those scenarios (and more!)

Summary of proposed use cases

- Botnet detection
 - Fast-flux detection
 - Collaboration graph
- Statistical Anomaly detection
- Collaborative IDS
 - Alarm scoring
 - Decentralized filters
- VoIP trustworhiness
- DDoS detection
- Smart grid

Proposed use cases do not cover ALL known security issues but consitutes a balanced set of cases providing a valuable input to build a more general Security Monitoring system

Followed Approach

SG17-Tutorial, 13 April 2011, Geneva

Summary of Requirements

Organizational

Data input

Processing

Information exchange

Storage

Non Functional

Organizational

Performance

Usability, deployment capability & manageability

Processing

Regulatory

Eunstianal Doquiroments

Requirements about how to handle the input data (5 requirements)

Requirements about storage needs from envisaged applications (3 requirements)

Informatio

Storage

capability & manageability

Processing

Regulatory

Regulatory Requirements

SG17-Tutorial, 13 April 2011, Geneva

DEMONS Activities

Topics being developed:

- Architecture and initial design
- Authorization and access control models
- In-network traffic processing technologies
- Privacy-enhanced cooperation solutions
- Threat detection and defense solutions (voip, interdomain, botnet, mitigation)

DEMONS Architecture and Design

DEMONS inter-domain architecture

SG17-Tutorial, 13 April 2011, Geneva

DEMONS Architecture Principles

- Multiple simultaneous applications...
- ...defined in terms of composable building blocks.
- Infrastructure which adapts to network load and available data.
- Cooperation among domains for data analyalsis and mitigation.
- Application of privacy-enhancing technologies and principles of privacy preservation
- Integration with existing operator infrastructure.

Selected Architectural Requirements

- Dynamic reconfiguration for scalability: handle peak data volumes with high performance, grow/shrink/reconfigure with minimal delay
- Distributed infrastructure: leverage multiple observation and processing points dealing with data distributed in space (thus need to cope with partial state information)
- Allow real-time analysis and mitigation as well as application of historical trends; deal with data distributed in time
- Support programmability of elementary processing tasks and dynamic composition of these primitives into more complex processing tasks.
- Allow decomposition of high-level monitoring application objectives to a pipeline of processing tasks
- Allow parallelization of multiple applications over the same monitoring infrastructure
- **Efficient export** of measurement information (e.g., flow-level, compressed data structures)

DEMONS Architecture Elements

- Nodes provide traffic capture, data import, processing, and centralization of results.
- A Node Controller (NC) provides a central point for exchanging control information among nodes.
- An Interdomain Exchange Point (IXP) provides a well-known point of contact among domains, providing access control and data forwarding.
- A Mitigation Control Point (MCP) provides an interface to existing mitigation systems or incident handling workflow management.
- An Orchestrator manages the control-plane communications among the control points, providing a single interface for application development.
- A graphical user interface for each application accepts processed data from the Nodes

IPFIX in DEMONS

- Each Node may have an import interface (IPFIX Collecting Process) for accepting data via IPFIX from other Nodes or external exporters.
- Each Node may have an export interface (IPFIX Exporting Process) for sending data via IPFIX to other nodes, to a presentation system, or for handling by the MCP or IXP.

BlockMon: a framework for Distributed Network Monitoring and Real-Time Data Intensive Analysis

BlockMon's Node Architecture

- BlockMon composes monitoring logic from configurable blocks
 - A block is a small unit of processing, e.g. packet counting
- Blocks connect to each other through input and output gates
- Processing in a BlockMon node is done through a composition
 - A composition is a set of inter-connected blocks
 - See example below

Requirements addressed:

- Allow *programmability* of *elementary processing tasks*
- Allow *dynamic composition* of elementary processing task into more complex processing tasks (*serialization*)

General Node Architecture

Requirements addressed:

• Allow *parallelization* of multiple applications over the same monitoring infrastructure

Addressing scalability and distribution of data in space

Data is distributed in space ->
distribute the infrastructure for monitoring

 Process data locally as much as possible, aggregate and export

Requirements addressed:

- **Be distributed in nature**: leverage multiple observation and processing points dealing with data distributed in space (thus need to cope with partial state information)
- Allow *real-time analysis and mitigation* (as opposed to historical analysis and no reaction): deal with data distributed in time

BlockMon Control Functionality

- Distributes configuration and composition to BlockMon nodes.
- Generates and dynamically reconfigures per-application topologies across a set of nodes
- Instantiates processing in each of the nodes of a topology
- Allows node management and maintenance
 - Monitors current nodes, retrieving current performance statistics to better allocate processing to nodes
- Dynamically scales depending on current traffic patterns

Interfaces in the DEMONS World: IXP, MCP, and Orchestrator

Interdomain Exchange Point (IXP)

- Communication among domains must be coordinated at a well-known point for each domain
 - Access control, security policy, audit, etc.
- IXP mediates inter-domain communication
 - Buffers data for inter-domain measurements on non-sensitive information
- IXP forwards both data and control messages

Mitigation Control Point (MCP)

- Most operators have established procedures for network-level mitigation, and workflows/tools to support them.
- The MCP acts as an interface to these to allow flexible deployment of mitigation.
- MCP accepts data as well as control messages
 - Data from nodes indicating traffic to mitigate
 - Control from MCPs in other domains via IXP

The application block

Orchestration

Authorisation and Access Control

The starting point: **DEMONS Inheritance**

- Organization-Based Access Control (OrBAC)
 - One of the most mature and cited access control models
 - Provides several extensions related to DEMONS
 - Comes with a variety of tools for policies management
 - Supports ontologies
 - Supports policy-driven adaptation strategies (e.g., negotiation of precomputed mitigation strategies)
- Access Control & Authorisation Model
 - Specifically devised for privacy in network monitoring
 - Yet, it constitutes a general purpose framework
 - Fully based on ontologies & X.509 Attribute Certificates
 - Supports the specification of workflows for data transformations
 - Product of joint work between engineers & lawyers

Privacy by Design

- Privacy by Design reflects the concept whereby privacy and data protection compliance is designed into systems holding information right from the start
- Directive 95/46/EC requires that:
 - ...appropriate technical and organizational measures be taken, both at the time of the design of the processing system and at the time of the processing itself...
- DEMONS aims at the higher degree of automation regarding the enhancement of applications with privacyenhancing features already at their specification phase

Overall approach

Overall approach

- Introduce privacy-awareness to Operations and Workflows
 - Blocks development
 - Blocks Composition
 - Operator-level Workflow
 - DEMONS-level Workflow
- Include mitigation strategies in the Workflows
 - By means of dynamic security policies
 - Mitigation actions: Operations
 - Triggered as a result of *alerts*, represented by contextual parameters activation
- Approach: policy-based, semantics-aware, model-driven

SG17-Tutorial, 13 April 2011, Geneva

Privacy-enhancement: Blocks & Compositions

- Block development
 - Each Block represents an Operation
 - Abstracted as a DEMONS Service
 - With specific semantics (e.g., a "PacketCounter")
 - WSDL-like description, enhanced with metadata related with security & privacy
 - e.g., user roles allowed to execute the Block
- Composition
 - Higher level semantic Operation
 - Inherits features from its Blocks
 - Description enhanced with security & privacy provisions
 - Need to check various types of accesses

Privacy-enhancement: Workflows validation criteria

- Purpose compliance
 - A distance-based approach comparing the user-declared purpose with the defined Operations' "sum"
- Access constraints
 - User → Operation
 - User \rightarrow Data
 - Operation → Operation
 - Operation → Data
- Access constraints++
 - Multi level verification
 - Path-based verification
- Inter-domain case
 - Verification at the attachment points
 - Negotiation of access parameters (e.g., ontological role mapping)

Policy model

SG17-Tutorial, 13 April 2011, Geneva

DEMONS Orchestrator

In-network processing

Approach

- Processing
 - Filtering
 - Metering
 - Isolate "interesting" events
 - Aggregate/compare
 - ____
- Tools
 - Matching/filtering/parsing
 - High performance analysis
 - Bloom filters & Extensions
 - Extending PRISM inheritance

Tasks involved

- Analysis primitives and aggregation issues
- SW acceleration
- HW acceleration

Threat detection and defense solutions

COLLABORATION

Goals

- enable/exploit collaboration between monitoring instances
- change/evolve legacy instances as needed to fit in [take advantage from] a collaborative framework
- focus not (necessarily) on new algorithms, but on their application/adaptation to a collaborative/decentralized framework

Collaboration

- Multiple forms of collaboration: between ...
 - multiple ISPs [inter-domain]
 - different sensors
 - gather and reuse inputs from legacy systems like commercial IDS/IPS, spam-filters... [intra-domain]
 - monitoring probes
 - decentralized monitoring [intra-domain]

Target monitoring applications

- Botnet detection
 - centralized C&C → by fast-flux detection
 - p2p C&C → by analysis of collaboration graphs
- DDoS detection and mitigation
- VoIP threats detection
- Collaborative intrusion detection
- Statistical-based anomaly detection

List of monitoring applications

monitoring application	inter-domain coll. between ISPs	coll. between different sensors	coll. between monitor probes
Botnet - domain-flux detection	VVV		
Botnet – collaboration graph	VVV	V	
Statistical Anomaly-Detection	VV		VV
Collaborative IDS – alarm scoring	V	///	
Collaborative IDS – decentralized filters			VVV
VoIP trustworthiness	V		VVV
DDoS detection and mitigation ??	VV		??

Dissemination and Standardisation

Project website

 www.fp7-demons.eu and www.fp7-demons.org are operational with the status of the project.

SG17-Tutorial, 13 April 2011, Geneva

Dissemination: publications

General awareness

- Project factsheet
- Project presentation
- Press release

Available on the website

Technical publications

- 8 workshop presentations
- 3 conference papers
- 2 journal publications

Standardization

Contributions to IPFIX

- http://tools.ietf.org/html/rfc6046 (published)
- •http://tools.ietf.org/html/draft-ietf-ipfix-anon-06 (contributed and in discussions)
- •http://tools.ietf.org/id/draft-trammell-ipfix-a9n-01.txt (draft)
- •http://tools.ietf.org/id/draft-claise-ipfix-mediation-protocol-02.txt (draft)

Cooperation with INS ISG

- Contact with INS ISG
- · Working on defining a new activity within the ISG

Liasion with SG-17

- First contact done
- •Studying how to let SG-17 participate into the project.

Featured Event

DEMONS hosted the **IPFIX Interoperability event** (http://fp7-demons.eu/?p=164) in Prague during 24-25 Mar. 2011

DEMONS: so young and so mature...

- DEMONS targets to solve the limitations of today's monitoring systems in order to enhance the trustworthiness of the Internet
 - Providing a paradigm shift: from data-gathering devices to collaborative computing and filtering devices with privacy built-in by design
- The project is working at full speed
 - Deep analysis of SoA
 - First release of use cases and requirements
 - Dissemination (e.g., 2 journal publications), standardization (e.g., IETF, ETSI, ITU)
 - Preliminary architectural vision
- Several technological contributions already outlined
 - Authorization and access control models
 - In-network traffic processing technologies
 - Privacy-enhancing cooperation solutions
 - Decentralized and cooperative threat detection techniques

Thank you for your interest in DEMONS

Please visit www.fp7-demons.eu for more information on the project

For background information on privacy, visit www.fp7-prism.eu