Korea’s experience of massive DDoS attacks from Botnet

April 12, 2011

Heung Youl YOUM Ph.D.

SoonChunHyang University, Korea
President, KIISC, Korea
Vice-chairman, ITU-T SG 17

ITU-T SG 17, April 12, 2011, Geneva
Table of Contents

- Overview of 7.7 / 3.4 Botnet attack
 - 7.7 DDoS Attack - scenario
 - 7.7 DDoS Attack - characteristics
 - 3.4 DDoS Attack - scenario
 - 3.4 DDoS Attack - characteristics
 - DDoS attack - how to respond to DDoS attack

- Countermeasures - legal & technical countermeasures
 - Technical countermeasure - DNS sinkhole scheme
 - Countermeasures - legal countermeasures
 - Countermeasures - online checking / help-desk service

- Concluding remark
DDoS Attacks – scenario

Typical DDoS attack scenario

1. Compromise C&C Servers
2. Compromise a legitimate server.
3. Inject malwares into the web site of exploited server.
4. When user visits the website, the malware is downloaded to user’s computer.
5. Malware is installed on user’s computer.
6. Issue an attack command.
7. Forwards an attack command

C&C Servers

8. Launch DDoS attack to Target web site.

Target website

Bot-infected computers

Disallow other users to visit this web site at the time of the attack.

Web sites used for distributing malware
Overview of 7.7 Botnet attacks

7.7 DDoS attack

Labeled 7.7 cyber terror by the media,
- due to the first date when this attack occurred in Korea, July 7th, 2009 and carrying out three separate dates.
- First massive DDoS attack, resulted in shutting down of victim sites for a while.

7.7 DDoS attack-characteristics

No attack commands from C&C servers – most attack activities are initiated by each Bot-infected computer, instead of C&C server. 538 compromised servers mostly outside Korea were used.

Sophisticated structure of malware used for DDoS attack

Lots of zombie computers were used. - 115,044 zombie computers.

Well organized and scheduled attacks scenario operated like a time bomb.

Still, we don’t know the purpose&source of this attack.
7.7 DDoS Attacks – scenario

3. When downloading the patch, the malware is also downloaded into user’s computer.

4. The malware is also installed, turning user’s computer into Zombie computer.

1. Hack the server for providing Internet web hard service based p2p techniques.

2. Embed malwares into the patch for providing service for providing web hard.

3. When downloading the patch, the malware is also downloaded into user’s computer.

4. The malware is also installed, turning user’s computer into Zombie computer.

5. Launch DDoS attack based on the scheduler programmed in the malware.

- To update malware and a list of attack targets.
7.7 DDoS Attack – characteristics

Timelines of DDoS attacks

1st Attack (DDoS)
- Zombie computers: 26,209
- 7th July 18:00 PM ~ 8th July 8:00 AM, 2009
- Victims: 26 sites (US & Korea)

2nd Attack (DDoS)
- Zombie computers: 47,123
- 8th July 18:00 PM ~ 9th July 6:00 AM, 2009
- Victims: 16 sites (Korea)

3rd Attack (DDoS)
- Zombie computers: 41,712
- 9th July 18:00 PM ~ 10th July 6:00 AM, 2009
- Victims: 7 sites (Korea)

4th attack (Virus)
- To destruct the hard disk in Zombie computers
- 10th July 10:00 AM ~

- Total zombie computers: 115,044
- Total Victim sites: 36
- Number of dedicated vaccines installed by users: 2,580,000
Overview of 3.4 Botnet attacks

3.4 DDoS attack

- Labeled 3.4 DDoS attack by the media,
 - due to the first date when this attack occurred in Korea, March 4\(^{th}\), 2011.
 - Due to the well organized public-private partnership and improved technical response established since the 7.7 DDoS attack, no serious damages were made.

3.4 DDoS attack-characteristics

- Many exploited servers such as malware distribution server, command distribution server - most attack activities first initiated by each Bot-infected computer. 748 compromised servers being mostly outside Korea were used.
- Similar structured malwares & attack scenarios as the 7.7 attack & are used for DDoS attack.
- 7 compromised local websites used for distributing malware to users
- Zombie computers used to 7.7 DDoS attack - about 116,299 zombie computers.
3.4 DDoS Attack – characteristics

Timelines of 3.4 DDoS attacks

1st Attack (DDoS)
- Zombie computers: 24,696
- 4th March, 2011 10:00 AM ~
- Victims: 29 sites

2nd Attack (DDoS)
- Zombie computers: 51,434
- 4th March, 2011 18:00 PM ~
- Victims: 40 sites

3rd Attack (DDoS)
- Zombie computers: 11,310
- 5th March, 2011 10:00 AM ~
- Victims: 29 sites

4th Attack (DDoS)
- To destruct the hard disk in Zombie computers
- 5th March, 18:30 PM ~

Total zombie computers: 116,299, Total Victim sites: 40
Number of dedicated vaccines installed by users: 11,510,000
Servers used for storing private files from Zombie computers

Servers used for distributing malware

Servers used for updating malware/attack targets and managing zombie computers

• Blocking communication to exploited servers

Target websites

ISP

Block connection to Compromised Servers

Raise national alert level to attention

Free-of-charge vaccine program

Disinfect Zombies

KISA/KCC/Portals/Anti-virus companies/ISPs

DDoS prevention solutions used.

Zombie computers

Information sharing

Private sectors
Countermeasures—three pillars

Technical framework
- Improved a real-time framework for enabling early detection, early warning, and effective response to DDoS attacks.
- Improve the real-time response system including as well as deploying DDoS prevention solutions and Bot-disinfection system.

Sharing of incident data
- Improve a real-time exchange framework of incident-related data and collaborations between KISA/KCC/NCSC and private sectors including major anti-vaccine companies and ISPs and among ISPs to respond to incidents collectively.

Legal framework
- To improve roles & responsibility of ISP, ASP, and Internet users to protect against DDoS attack by enacting “Law on malware spreading prevention” called “Zombie PC prevention law”.

Technical countermeasures – DNS sinkhole scheme

DNS sinkhole scheme

- Launched since 2005 by
- To protect against Botnet attacks, that is, to block the communication between bot-infected computers and C&C servers, making them to remain dormant.
 - With collaboration of ISP, the IP address of the domain name of the C&C servers are changed to that of DNS sinkhole server deployed by KISA.
 - As of September, 2010, about 60 organizations including major ISPs are employing DNS sinkhole scheme.
 - An average of 2,000 domain names are blocked by the scheme.
- In case of Botnet using C&C server, it works against Botnet attacks.
DNS sinkhole scheme – effectiveness

Without DNS sinkhole scheme

1. C&C DNS query
2. Return back IP address of C&C server.
3. Connect with C&C server.
4. Issue attack command.
5. DDoS Attack

Bot infected computers

ISP DNS server

With DNS sinkhole scheme

1. C&C DNS query

2. Send back IP address of KISA sink hole.
3. Connect with KISA sinkhole server.
4. Collect information on Bot infected computer’s.

Bot infected computers

ISP’s DNS server

KISA Sinkhole server
Legal framework – a zombie PC prevention law (Draft)

Objectives

- A legal framework to ensure that early warning and effective response and recovery are in place.
- Filed at December 2010 by Korean parliament and expected to start a public consultation process from April 2011.

Contents

- Grant ISP’s right to block communication from infected computers in an emergency state.
- Enable access to zombie computers for collecting malware’s sample.
- Improve role and responsibility of ISP, ASP, users in terms of preventing zombie computer.

Issues

- Concerns about privacy concerns raised - concerns about potentially using deep packet inspection technology.

Countermeasure - Online bot-infection checking service

Online bot-infection checking service

- Provided by KrCERT/CC in KISA.
 - http://www.boho.or.kr/pccheck/pcch_03.jsp?page_id=3
- To check if the computer in question is infected with bots.
- Use database collected & monitored from DNS sinkhole scheme.

Your computers on IP address(x.x.x.x) is not infected by the malicious bots known to KrCERT/CC.
Online help-desk service

- Is called e-118 service
- Provided by the KrCERT/CC, part of KISA.
- Use telephone number “118” from any computer users in Korea.
- Remote help desk service is provided by KISA help-desk staffs to check if the computer is infected by virus, spyware, or malicious code, based on the requests reserved by users’ telephone calls.

- This service is provided from 9:00 to 17:30 only on weekdays.
Closing remark (1/2)

- Lessons learnt from this massive DDoS attacks
 - The incident data exchange based on global standards plays an important role in countering these attacks.
 - A real-time technical/administrative response systems should be established and improved.
 - In order to trace the attack source, a global scale real-time cooperation among investigation agencies is mandatory.
 - Establishing an effective legal framework which allows the technical/managerial countermeasures is important.
 - User awareness is important.
Future tasks for improvement.

- Early attack detection, automated malware collection and behavior analysis, and effective disinfection system.
- Effective network-wide response system including block of communication path to compromised servers from Zombie computers by ISPs.
- Effective prevention user computers and websites from being infected by malware used for DDoS attacks
 - For example, online bot-infection checking & help-desk services should be expanded.
 - A new law on preventing spreading malicious code.
Thank you very much for your attention!!

E-mail: hyyoum at sch.ac.kr
Tel: +82-41-530-1328
Fax: +82-41-530-1494