

Optical Access Standards Progress
Session 1: Fiber Access Technology Updates

Frank J. Effenberger (Chair ITU-T Q2/15)
Marcus Brunner (ETSI ISG F5G Liaison Officer)

Optical access standards framework

SG-15 Flyers are on-line

https://www.itu.int/en/ITU-T/studygroups/2017-2020/15/Pages/tflyers.aspx

Committed to connecting the world

Technical Flyers

MGFast: Multi-Gigabit fast access to subscriber terminals

PON Overview: ITU-T Passive Optical Network Solutions

G.984: Gigabit Passive Optical Networks

G.984.5 Amendment: Gigabit Passive Optical Networks: Enhancement band and PON Coexistence

G.987: 10-Gigabit Passive Optical Networks

G.9807: 10-Gigabit Symmetric Passive Optical Networks

G.989: NG-PON2 Passive Optical Networks

G.988: ONU Management and Configuration Interface

G.986: 1 Gbit/s point-to-point optical access system and G.9806: Higher-speed bidirectional point-to-point

G.9802: Multiple-Wavelength Passive Optical Networks

G.9803: Radio over fibre systems

G.9804: HSP: Higher Speed Passive Optical Networks

G.Suppl.66: 5G wireless fronthaul in a PON context

Expect a new batch of flyers to be released this Fall

ITU-T Study Group 15

G.9804 HSP: Higher Speed Passive Optical Networks

- Full-service support including voice, TDM, Ethernet (10/100/1000/10G/25G BASE), xDSL, wireless xhaul
- Basic physical reach is 20 km. Logical reach of up to 60 km. System is wavelength coexistent with G-PON, XG(S)-PON, 10G-EPON
- Support for bit-rate options, 50 Gbit/s downstream and 12.5 or 25 or 50 Gbit/s upstream
- Powerful OAM&P and system protection capabilities

- providing a feature rich and reliable service management system
- Advanced security features including authentication, rogue detection, and information privacy
- Power saving features on top of the already considerable low power nature of fibre access

Major areas of progress

- G.9802.2: WDM-PON: PMD and TC layers
- G.9804.3: Higher speed PON: 50Gb/s upstream PMD specifications
- G.9805: PON coexistence and crosstalk issues
- G.9806 Amd.3: 100Gb/s Bidirectional point to point PHYs

G.9802.2: WDM-PON PMD and TC layers

- System initially designed for 20 wavelengths in the C-band, with 100 GHz spacing
- Each channel is modulated at 10 or 25 Gb/s NRZ
- FEC follows the client signal format (no extra system FEC)

- Transmission convergence reuses XG-PON framing
 - Header-based wavelength ID
 - PLOAM for wavelength management
 - XGEM for higher layer management

G.9805: Crosstalk and coexistence issues

		XG 3	XG 6	XG 8	XG 7	XG 2	XG 4	XG 5	XG 1
	RSSI	-26	-24	-23.5	-20.5	-18	-17	-14	-14
G 3	-30					Error		Error	Error
G 2	-29.5	+_	— —	— —	→ ,			Error	Error
G 1	-29				<u> </u>	T1	Error	Error	Error
G 4	-26						T2 -	→	Error
G 5	-20								
G 6	-15							+	-

G.9806 Amd. 3: 100 Gb/s bidirectional point to point optics

- While PON serves the vast majority of users, some applications just require so much dedicated bandwidth that point-to-point optics is the best solution
- As services increase, there is need for higher speeds
 - Currently, 25G and 50G are very popular for 5G wireless backhaul
 - 100G will be needed fairly soon, with 200 and 400G coming a few years later
- These higher speed systems will operate over the same ODN, making upgrade easier
- PMDs from the Ethernet market can be leveraged

ETSI Fixed 5th Generation project

- The ETSI 3GPP project has proven to be a huge advantage for cellular wireless technology, and is key to its expansion
- Similarly, ETSI F5G runs a project to develop generations of fixed networks, their use cases, and the technology required
- Generations Definition
- Use Cases
- Technology landscape
- Architecture
- F5G Advanced and Beyond

Fixed Network Generations Definition

- The evolution of wireless has benefitted from having welldefined generations
- Fixed networks have lacked this structure and definition, and has had uneven deployment over time

F5G Use Cases

- Extending to various markets segements
- Enabling new services through new features
- Simplifying operations

		6.8	Use case #8: Multiple Access		
6.1	Use case #1: Cloud Virtual Reality	Aggregation over PON			
6.2	Use case #2: High Quality Private	6.9	Use case #9: Extend PON to legacy		
Line		Ethernet Uplink			
6.3	Use case #3: High quality low cost	6.10	Use case #10: Scenario based		
private line for s	mall and medium enterprises	broadband			
6.4	Use case #4: PON on-premises	6.11 monitoring and Network	Use case #11: Enhanced traffic network control in Intelligent Access		
6.5	Use case #5: Passive optical LAN	6.12 Quality Transpor	Use case #12: On Demand High rt for Real time applications		
6.6 Manufacturing	Use case #6: PON for Industrial	6.13 for Secured Netv	Use case #13: Remote Attestation work Elements		
6.7 Public Service	Use case #7: Using PON for City	6.14	Use case #14: Digitalized ODN/FTTX		
7.1 Presence	Use case #15: XR-based Virtual	7.2 connectivity to n	Use case #16: Enterprise private line nultiple Clouds		
7.3 broadband conr	Use case #17: Premium home nectivity to multiple Clouds	7.4	Use case #18: Virtual Music		
7.5 Digital Twins	Use case #19: Next Generation	7.6	Use case #20: Media Transport		
7.7 visual inspection production	Use case #21: Edge/Cloud-based n for automatic quality assessment in	7.8 control of autom	Use case #22: Edge/Cloud-based nated guided vehicles (AGV) .		
7.9 Medical Imaging	Use case #23: Cloudification of	7.10 Mine	Use case #24: F5G for Intelligent		
7.11 transport netwo	Use case #25: Enhanced optical ork for Data Centre Interconnections)	7.12 point optical acc	Use case #26: Enhanced point to ess		
7.13	Use case #27: Rural Scenarios	7.14 P2MP Network 1	Use case #28: High-speed Passive Traffic Aggregation		
7.15 services in xPON	Use case #29: Orchestration of B2B	7.16 Demand	Use case #30: Bandwidth on		
7.17	Use case #31: Intelligent Optical	7.18	Use case #32: Al-based PON optical		
Cable Managem		path diagnosis	ose case #32. Al-Daseu PON optical		

Selected Use Cases

Digitalized ODN

Home Local Area Network (HAN): House, apartment, ...

Selected Use Cases

Residential: Virtual Music

Business: Cloudification of Medical Imaging

Enterprise: Optical Cloud Network to Multiple Clouds

Verticals: Industrial PON

Technology landscape

- For each use case, the requirements are enumerated
- Standards from IEEE, ITU, BBF, WFA, etc. that serve these requirements are enumerated
- Analysis of any perceived gaps

Figure 1: Bandwidth and latency requirements of potential 5G use cases

Source: GSMA Intelligence

F5G E2E Architecture

Key enabling features

- Separation of Services Plane and Underlay Plane
- Aggregation Network Fabric
 - Dual IP/Ethernet & OTN Fabric
- Network Slicing
 - · Wi-Fi, PON, OTN, IP AggN Slicing
 - · User Group Oriented Slicing
 - · Service-Oriented Slicing
- · Al-embedded Traffic Steering
- Autonomous E2E Management

Summary

- The F5G effort is working to promote an all-fiber world
 - Increasing scale of deployment of advanced systems
 - Broadening the scope of F5G to cover even more applications
 - Better coordinating the standards and development
- White paper on F5G Advanced and Beyond
 - Considering what the next steps are for the project
- Please join the conversation!

