DATA CENTRIC TRUST EVALUATION AND PREDICTION FRAMEWORK FOR IOT

Upul Jayasinghe
Department of Computer Science
Liverpool John Moores University
upuljm@gmail.com
Trust Overview

• “Firm belief in the reliability, truth, or ability of someone or something” -- Oxford Dictionary

• Trustor : Evaluating the trust
• Trustee : Who is being evaluated
• Trust Value : Trustee’s trustworthiness in trustor’s perspective

• Trust Definition (Computer Science)
 – Qualitative or Quantitative property of trustee, measured by trustor as a belief, in subjective or objective manner, for a given task, in a specific context, for a specific time period
Trust in IoT

• Problems
 – Risks involved in Cyber, Physical and Social World
 – Entity based trust vs Data Trust

• Data centric trust evaluation and prediction
 – Extend research on entity based trust towards data centric trust
 – Hybrid trust framework (Entity and Data)
 – Trust prediction in the absence of previous encounters
 – Implementation Scenario based on an user case

• Standardization activities ITU-T SG13
 – ITU-T SG13/Q16 - Recommendation on trust
 – ITU-T FG-DPM - Data quality & trust
Generic Trust Model

- REK Model

Data Trust Model

- Knowledge
 - Uniqueness
 - Completeness
 - Timeliness
 - Validity
 - Consistency
 - Accuracy

- Data Trust
 - Direct Trust
 - Accumulation

- Experience
 - Success
 - Cost
 - Recommendations
 - Ratings

- Reputation
 - Recommendations
 - Ratings

- Knowledge
 - Relationship
 - Spatial
 - Willingness
 - Confidence
 - Persistence
 - Disposition
 - Fulfillment
 - Dependence
 - Competence
 - Temporal

- Experience
 - Credibility
 - Feedback

- Reputation
 - Recommendations
 - Ratings
Data Trust Framework
Data Trust Computational Model

- **Knowledge DTM** \(T_{AB}^K \)
 \[- T_{AB}^K = \alpha T_B^{cm} + \beta T_B^{uq} + \gamma T_B^{tm} + \delta T_B^{vl} + \varepsilon T_B^{ac} + \epsilon T_B^{cn} \]
 where \(\alpha + \beta + \gamma + \delta + \varepsilon + \epsilon = 1 \)

- **Experience DTM** \(T_{AB}^E \)
 \[- T_{AB}^E = \sigma T_B^{su} + \varphi \frac{1}{T_B^{ct}} \]

- **Reputation DTM** \(T_{AB}^R \)
 \[- T_{AB}^R = T_{1B}^R + T_{2B}^R + \cdots + T_{nB}^R \]

- **Final data trust value**
 \[- T_{AB}^d = \rho T_{AB}^K + \tau T_{AB}^E + \omega T_{AB}^R \]
Data Trust Prediction

- Collaborative filtering (CF) to predict the unknown trust values between the user and specific data source.
- Over six different data centric features:
 - Completeness (T_{cm}), Uniqueness (T_{uq}), Timeliness (T_{tm}), Validity (T_{vl}), Accuracy (T_{ac}) and Consistency (T_{cn}).

<table>
<thead>
<tr>
<th>Trustees (DS)</th>
<th>Trustors (Users)</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>u_2</td>
<td>\ldots</td>
</tr>
<tr>
<td>i_1</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>j_{nm}</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

- T_{cm}, T_{uq}, T_{tm}, T_{vl}, T_{ac} and T_{cn}.
Data Trust Prediction II

• Algorithm

Inputs

– trustors or users \((n_u)\), number of Trustees or DSs \((n_m)\) and six features \((T^x)\)
– \(\triangleleft\): users already having trust relationships \(\rightarrow y^{(i,j)}\): Trust Value
– \(\blacklozenge\): values of each six features \(\rightarrow T^{(i)}\): Feature Vector for each DS

Outputs

– \(\theta^{(j)}\): parameter that describes the profile of users
– \(T^{dp}_{ij}\): predicted data trust value

\[
T^{dp}_{ij} = (\theta^{(j)})^T (T^{(i)})
\]
Data Trust Prediction III

- $T_{ij}^{dp} = (\theta^{(j)})^T (T^{(i)})$
 - $T^{(i)} = [T_{cm}^u T_{mq}^m T_{vl}^l T_{ac}^l T_{cn}]^T$

- $\theta^{(j)}$: profile of users

 - Using MSE method, J: $\min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} (\theta^{(j)})^T (T^{(i)}) - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^{6} (\theta_k^{(j)})^2$

 - Find the best parameter using gradient decent

\[
\theta_k^{(j)} = \begin{cases}
\theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} (\theta^{(j)})^T (T^{(i)}) - y^{(i,j)})^2 T_k^{(i)} , k = 0 \\
\theta_k^{(j)} - \alpha (\sum_{i:r(i,j)=1} (\theta^{(j)})^T (T^{(i)}) - y^{(i,j)})^2 T_k^{(i)} + \lambda \theta_k^{(j)} , k \neq 0
\end{cases}
\]

<table>
<thead>
<tr>
<th>Trustors (Users)</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>T_{cm}^u</td>
</tr>
<tr>
<td>u_2</td>
<td>T_{mq}^m</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>u_{nu}</td>
<td>T_{ac}^l</td>
</tr>
<tr>
<td>T_{cn}</td>
<td>T_{vl}^l</td>
</tr>
</tbody>
</table>

Trustors (Users) Features

- θ_{ij}: profile of users
Implementation Model

- **Use Case**: Air pollution crowd sensing
Conclusion and Future Work

• Extended entity based trust assessment towards data
 – Identify relevant data trust metrics, evaluation and prediction
 – Hybrid Trust Framework
 – Implementation scenario based on publish-subscribe architecture

• Increase autonomous capabilities and decision making abilities with improved accuracy

• Future work
 – Intelligent trust evaluation using machine learning and AI techniques
 – Application of Reinforcement techniques to improve the REK trust model
 – Develop the prediction algorithm based on advanced recommendation algorithms (E.g. Content and Contextual information)
 – Stimulate the standardization on data trust
Thank you!

For more info:

u.u.jayasinghe@2015.ljmu.ac.uk
upuljm@gmail.com