

Secrecy Energy Efficiency Optimization for Aritificial Noise Aided Physical-Layer Security in Cognitive Radio Networks

Yuhan Jiang Nanjing University of Posts and Telecommunications 1016010430@njupt.edu.cn

Framework

A joint zero-forcing (ZF) beamforming and power allocation problem is formulated to maximize the SEE under the constraints of the total transmit power, the secrecy rate (SR) of cognitive user (CU) and the quality-of-service (QoS) requirement of primary user (PU).

Underlay cognitive radio networks (CRNs)

> Zero-forcing beamforming (ZF)

Transform the formulated non-convex optimization problem in fractional form into an equivalent one in subtractive form

Use the difference of two-convex functions (D.C.) approximation method to obtain an equivalent convex problem

Nanjing, China 27-29 November 2017

Artificial

noise (AN)

System Model

System model for secure communication in CRNs

Problem Formulation

$$\max_{P_c, P_z} \eta_{\text{SEE}} = \frac{\log_2 \left(1 + \frac{\left| \mathbf{h}_c^H \mathbf{v}_c \right|^2 P_c}{\left| \mathbf{h}_c^H \mathbf{v}_z \right|^2 P_z + \sigma_c^2} \right) - \log_2 \left(1 + \frac{\left| \mathbf{h}_e^H \mathbf{v}_c \right|^2 P_c}{\left| \mathbf{h}_e^H \mathbf{v}_z \right|^2 P_z + \sigma_e^2} \right)}{P_c + P_z + P_b}$$

s.t.
$$\frac{\left|\mathbf{h}_{p}^{H}\mathbf{v}_{c}\right|^{2}P_{c}}{\left|\mathbf{h}_{p}^{H}\mathbf{v}_{z}\right|^{2}P_{z}+\sigma_{p}^{2}} \geq \gamma_{p}^{th}$$
$$\log_{2}\left(1+\frac{\left|\mathbf{h}_{c}^{H}\mathbf{v}_{c}\right|^{2}P_{c}}{\left|\mathbf{h}_{c}^{H}\mathbf{v}_{z}\right|^{2}P_{z}+\sigma_{c}^{2}}\right) - \log_{2}\left(1+\frac{\left|\mathbf{h}_{e}^{H}\mathbf{v}_{c}\right|^{2}P_{c}}{\left|\mathbf{h}_{e}^{H}\mathbf{v}_{z}\right|^{2}P_{z}+\sigma_{e}^{2}}\right) \geq 0$$
$$0 \leq P_{c}+P_{z} \leq P_{CBS}^{\max}$$

We design the normalized beamforming vector v_c in the null space of h_p, meanwhile, v_z is designed at the null space of h_p and h_c to guarantee that the AN only degards the channel condition of eavesdropper.

$$\max_{P_c, P_z} \eta_{\text{SEE}} = \frac{\log_2 \left(1 + \frac{\left|\mathbf{h}_c^H \mathbf{v}_c\right|^2 P_c}{\sigma_c^2}\right) - \log_2 \left(1 + \frac{\left|\mathbf{h}_e^H \mathbf{v}_c\right|^2 P_c}{\left|\mathbf{h}_e^H \mathbf{v}_z\right|^2 P_z + \sigma_e^2}\right)}{P_c + P_z + P_b}$$

s.t.
$$\log_2 \left(1 + \frac{\left|\mathbf{h}_c^H \mathbf{v}_c\right|^2 P_c}{\sigma_c^2}\right) - \log_2 \left(1 + \frac{\left|\mathbf{h}_e^H \mathbf{v}_c\right|^2 P_c}{\left|\mathbf{h}_e^H \mathbf{v}_z\right|^2 P_z + \sigma_e^2}\right) \ge 0$$
$$0 \le P_c + P_z \le P_{CBS}^{\text{max}}$$

Dinkelbach's method

$$\max_{\substack{P_c,P_z\\P_c,P_z}} f\left(\eta_{\text{SEE}}\right) = \log_2 \left(1 + \frac{\left|\mathbf{h}_c^H \mathbf{v}_c\right|^2 P_c}{\sigma_c^2}\right) - \log_2 \left(1 + \frac{\left|\mathbf{h}_e^H \mathbf{v}_c\right|^2 P_c}{\left|\mathbf{h}_e^H \mathbf{v}_z\right|^2 P_z + \sigma_e^2}\right) - \eta_{\text{SEE}} \left(P_c + P_z + P_b\right)$$

s.t.
$$\log_2 \left(1 + \frac{\left|\mathbf{h}_c^H \mathbf{v}_c\right|^2 P_c}{\sigma_c^2}\right) - \log_2 \left(1 + \frac{\left|\mathbf{h}_e^H \mathbf{v}_c\right|^2 P_c}{\left|\mathbf{h}_e^H \mathbf{v}_z\right|^2 P_z + \sigma_e^2}\right) \ge 0$$
$$0 \le P_c + P_z \le P_{CBS}^{\text{max}}$$

• D.C. approaches

$$f_{1}(P_{c}, P_{z}, \eta_{\text{SEE}}) = \log_{2}\left(1 + \frac{\left|\mathbf{h}_{c}^{H}\mathbf{v}_{c}\right|^{2}P_{c}}{\sigma_{c}^{2}}\right) + \log_{2}\left(\left|\mathbf{h}_{e}^{H}\mathbf{v}_{z}\right|^{2}P_{z} + \sigma_{e}^{2}\right) - \eta_{\text{SEE}}\left(P_{c} + P_{z} + P_{b}\right)$$

$$f_{2}(P_{c}, P_{z}) = \log_{2}\left(\left|\mathbf{h}_{e}^{H}\mathbf{v}_{c}\right|^{2}P_{c} + \left|\mathbf{h}_{e}^{H}\mathbf{v}_{z}\right|^{2}P_{z} + \sigma_{e}^{2}\right)$$

$$f_{2}(P_{c}, P_{z}) \approx f_{2}\left(\overline{P}_{c}, \overline{P}_{z}\right) + \frac{\left|\mathbf{h}_{e}^{H}\mathbf{v}_{c}\right|^{2}\left(P_{c} - \overline{P}_{c}\right) + \left|\mathbf{h}_{e}^{H}\mathbf{v}_{z}\right|^{2}\left(P_{z} - \overline{P}_{z}\right)}{\left(\left|\mathbf{h}_{e}^{H}\mathbf{v}_{c}\right|^{2}\overline{P}_{c} + \left|\mathbf{h}_{e}^{H}\mathbf{v}_{z}\right|^{2}\overline{P}_{z} + \sigma_{e}^{2}\right)\ln 2}$$

• D.C. approaches

Nanjing, China

$$\max_{P_{c},P_{z}} \left\{ f_{1}(P_{c},P_{z},\eta_{SEE}) - f_{2}(\overline{P}_{c},\overline{P}_{z}) - \frac{\left| \boldsymbol{h}_{e}^{H}\boldsymbol{v}_{c} \right|^{2}(P_{c}-\overline{P}_{c}) + \left| \boldsymbol{h}_{e}^{H}\boldsymbol{v}_{z} \right|^{2}(P_{z}-\overline{P}_{z})}{\left(\left| \boldsymbol{h}_{e}^{H}\boldsymbol{v}_{c} \right|^{2}\overline{P}_{c} + \left| \boldsymbol{h}_{e}^{H}\boldsymbol{v}_{z} \right|^{2}\overline{P}_{z} + \sigma_{e}^{2} \right) \ln 2} \right\}$$

s.t.
$$P_{z} \geq \frac{\left| \boldsymbol{h}_{e}^{H}\boldsymbol{v}_{c} \right|^{2}\sigma_{c}^{2} - \left| \boldsymbol{h}_{c}^{H}\boldsymbol{v}_{c} \right|^{2}\sigma_{e}^{2}}{\left| \boldsymbol{h}_{e}^{H}\boldsymbol{v}_{z} \right|^{2}}$$
$$0 \leq P_{c} + P_{z} \leq P_{CBS}^{\max}$$

The Proposed Algorithm to Solve SEEM Problem

for

Function Outer_Iteration

- Step 1: Initialize the maximum number of iterations i_{\max} and the maximum tolerance ε .
- Step 2: Set maximum SEE $\eta_{\text{SEE}}^0 = 0$ and iteration index i = 0.
- Step 3: Call **Function** Inner_Iteration with η_{SEE}^i to obtain the optimal solution (P_c^i, P_z^i) .
- Step 4: Update

$$\begin{split} \eta_{\text{SEE}}^{i+1} &= \frac{\log_2(1+\frac{eP_c^i}{\sigma_c^2}) - \log_2(1+\frac{eP_c^i}{fP_z^i+\sigma_c^2})}{P_c^i+P_z^i+P_b} \\ \text{Step 5: Set } i &= i+1. \\ \text{Step 6: if } \left|\eta_{\text{SEE}}^i - \eta_{\text{SEE}}^{i-1}\right| \geq \varepsilon \text{ or } i \leq i_{\text{max}} \\ \text{Step 7: goto Step 3.} \\ \text{Step 8: end if} \\ \text{Step 9: return } P_c^i \text{ and } P_z^i. \\ \text{Step 10: Obtain the optimal solution } P_c^* &= P_c^i \text{ and } P_z^* = P_z^i \\ \text{ problem (12).} \end{split}$$

Function Inner_Iteration (η_{SEE}) Step 11: Initialize ($\overline{P}_c^0, \overline{P}_z^0$) = (0, 0) and $f^0 = 0$. Step 12: Set i = 0. Step 13: Find the optimal solution (P_c, P_z) of (22) for given ($\overline{P}_c^i, \overline{P}_z^i$) and η_{SEE} by using CVX. Step 14: Compute $f^{i+1} = f_1(P_c^{i+1}, P_z^{i+1}, \eta_{\text{SEE}}) - f_2(P_c^{i+1}, P_z^{i+1})$. Step 15: Set i = i + 1. Step 16: if $|f^i - f^{i-1}| \ge \varepsilon$ or $i \le i_{\text{max}}$ Step 17: goto Step 13. Step 18: end if Step 19: return P_c and P_z . end

Simulation Results

Average SEE versus P_{CBS}^{max} of the proposed SEEM and convential SRM and EEM schemes

Simulation Results

Average SEE versus P_{CBS}^{max} of the proposed SEEM scheme with the optimal power allocation and simple equal power allocation strategies.

Thank you for listening!

