ITU Kaleidoscope 2014 Living in a Converged World – Impossible without Standards?

SQUALES: A QT-based Application for Full-Reference Objective Video Quality Measurement

Marcelo S. Alencar Federal University of Campina Grande malencar@ieee.org

Saint Petersburg Russian Federation

Outline

Introduction

Objective Algorithms

Proposed Scheme

Numerical Results

Conclusions and Future Work

Introduction

- The methodology applied in subjective experiments for video quality assessment are described in Recommendations ITU-T P.910 and ITU-R BT.500-13
- Successful full-reference objective algorithms were developed for 2D video quality assessment (ITU-T J.144)
- Stereoscopic video signals present new parameters and hardware requirements that need to be considered in the design of the objective algorithms and future standards, such as: bandwidth, bit-rate, storage space, power consumption and depth
- A platform independent application that uses a graphical user interface (GUI) for objective stereoscopic VQA, was developed
- It is called SQUALES (Stereoscopic video QUALity Evaluation Software)

Introduction

- The stereoscopic video signals supported are based on a twoview model, such as the H.264/AVC standard with Multiview Video Coding (MVC), and several spatial resolutions are made available
- Numerical results corresponding to the performance of the objective measurements acquired using the proposed application are presented
- The ultimate goal is that the application contributes, as an opensource tool to be used by academia and industry, for standardization and development of objective algorithms and evaluation of impairments in stereoscopic video signals

Objective Algorithms

Perceptual Weighting Structural Similarity Index

$$\left|\vec{\nabla}f\right| = \left|\frac{\partial f}{\partial x}\hat{a}_x + \frac{\partial f}{\partial y}\hat{a}_y\right|$$

$$SI(f_j) = \sqrt{\frac{1}{K-1} \sum_{k=1}^{K} (\mu_j - |\nabla f_j(k)|)^2}$$
$$PW-SSIM(f,h) = \frac{\sum_{j=1}^{J} SSIM(f_j,h_j) \cdot SI(f_j)}{\sum_{j=1}^{J} SI(f_j)}$$

Saint Petersburg, Russian Federation, 3-5 June 2014

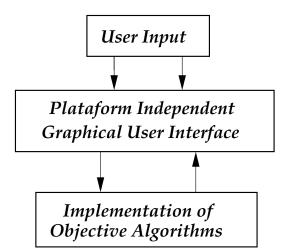
Objective Algorithms

Disparity Weighting

$$D(F(x,y,n)) = |f_L(x,y,n) - f_R(x,y,n)|, \forall (x,y,n)$$

$$\mathsf{DMSE}_{L}(F,H) = \frac{\sum_{n=1}^{N} \sum_{y=1}^{Y} \sum_{x=1}^{X} [f_{L}(x,y,n) - h_{L}(x,y,n)]^{2} \cdot D(F(x,y,n))}{\sum_{n=1}^{N} \sum_{y=1}^{Y} \sum_{x=1}^{X} D(F(x,y,n))}$$
$$\mathsf{DPSNR}_{L}(F,H) = 20 \cdot \log_{10} \left[\frac{MAX}{\sqrt{\mathsf{DMSE}_{L}(F,H)}}\right] \quad [\mathsf{dB}]$$

Saint Petersburg, Russian Federation, 3-5 June 2014


Objective Algorithms

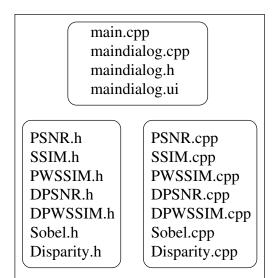
Disparity Weighting

$$DSSIM(F,H) = \frac{\sum_{j=1}^{J} SSIM(F_j,H_j) \cdot D(F_j)}{\sum_{j=1}^{J} D(F_j)}$$
$$DPW-SSIM(F,H) = \frac{\sum_{j=1}^{J} SSIM(F_j,H_j) \cdot SI(F_j) \cdot D(F_j)}{\sum_{j=1}^{J} [SI(F_j) \cdot D(F_j)]}$$

Saint Petersburg, Russian Federation, 3-5 June 2014

Proposed Scheme

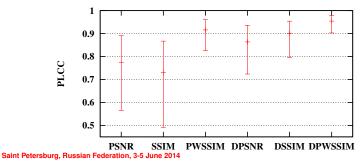
Proposed Scheme


QT-based Application

00	SQUALES		
Resolution	1920 x 1080	\$	
Original Signals (.yuv)			
Left View			Browse
Right View			Browse
Processed Signals (.yuv)			
Left View			Browse
Right View			Browse
Metric Selection	DPW-SSIM	*	
	Start		

Saint Petersburg, Russian Federation, 3-5 June 2014

Proposed Scheme


QT-based Application

Saint Petersburg, Russian Federation, 3-5 June 2014

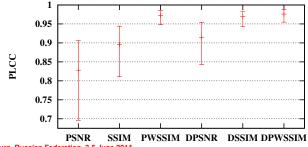
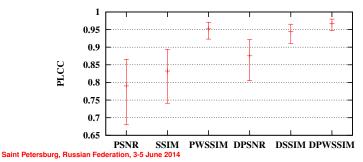

Algorithm	PLCC	SROCC	KROCC	RMSE
PSNR	0.774946	0.721424	0.533869	0.689299
SSIM	0.730523	0.716222	0.555117	0.744770
PW-SSIM	0.915983	0.906776	0.756978	0.437573
DPSNR	0.863640	0.838604	0.640111	0.549789
DSSIM	0.901635	0.892266	0.746354	0.471688
DPW-SSIM	0.954403	0.937166	0.815412	0.325572

Table : Performance measures for H.264 scenario

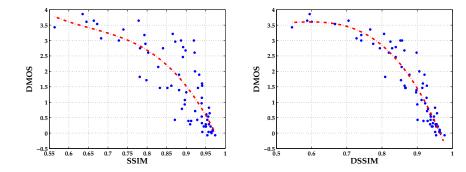
Algorithm	PLCC	SROCC	KROCC	RMSE
PSNR	0.828049	0.825865	0.662380	0.734844
SSIM	0.896314	0.907419	0.750010	0.581185
PW-SSIM	0.972477	0.965980	0.860836	0.305388
DPSNR	0.914034	0.927596	0.770629	0.531663
DSSIM	0.969310	0.962132	0.853104	0.322222
DPW-SSIM	0.975911	0.971048	0.865991	0.285951

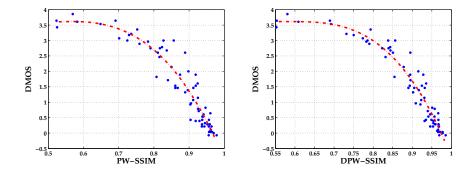

Table : Performance measures for JPEG2000 scenario



Saint Petersburg, Russian Federation, 3-5 June 2014

Algorithm	PLCC	SROCC	KROCC	RMSE
PSNR	0.790152	0.766721	0.588923	0.750780
SSIM	0.832476	0.841566	0.658728	0.678694
PW-SSIM	0.951992	0.943427	0.800988	0.374981
DPSNR	0.875461	0.858578	0.678167	0.592001
DSSIM	0.944039	0.942530	0.801872	0.404026
DPW-SSIM	0.967001	0.955609	0.830147	0.312082


Table : Performance measures for Joint scenario



Saint Petersburg, Russian Federation, 3-5 June 2014 ITU Kaleidoscope 2014 - Living in a converged world - impossible without standards?

12

Saint Petersburg, Russian Federation, 3-5 June 2014

Saint Petersburg, Russian Federation, 3-5 June 2014

Conclusion

- An application that computes the video quality plays an important role in the development and standardization of new objective video quality prediction models
- The application produces stereoscopic video quality assessment, is platform independent, quickly computes the video quality, because the C++ programming language was used in the implementation presents a user-friendly GUI and is not based on closedsource architectures
- The figure of merit used to validate the performance of the objective algorithms evidences the outstanding performance of the algorithms that use the disparity weighting technique, suggesting that SQUALES is a useful tool to be used by the academia, by the industry and also by standards organizations
- The authors will develop a statistical analysis tool and add it to SQUALES

Acknowledgments

Just work hard...jointly.