Migration from legacy networks to NGN

Chaesub Lee
Contents

1. Legacy Networks (LNs)
2. Summary of NGN
3. Gaps
4. For Migration
5. Conclusion
1. Legacy Networks (LNs)

Definition and scope of LNs

- **Definition of LNs (Not formal):**
 a network based on older, out-dated protocol that is not based on the IP (TCP/IP) protocol. IPX, SNA, AppleTalk and DECnet are examples of legacy networks.

- **Scope of LNs:**
 - Public Switched Telephone Networks (PSTN)
 - Packet Switched Data Networks (PSDN)
 - Integrated Services Digital Networks (ISDN)
1. Legacy Networks (LNs)

PSTN

- **Features of PSTN:**
 - the oldest and widest popular network
 - voice-band services (voice and 3.1 kHz Audio-band data services)
 - the channel remains reserved and not allow to use for competing users (full dedicated)
 - provides continuous transfer without the overhead
 - a dedicated path persisting between two communicating parties or nodes
 - the constant bit delay during a connection
 - guaranteed a QoS of the circuit (channel), so no degradation of QoS by competing users
1. Legacy Networks (LNs)

PSTN

- Architectures and Configurations of PSTN
1. Legacy Networks (LNs)

PSDN

- **Features of PSDN:**
 - Packet means a small container or a pouch, such as a formatted block of data.
 - Physical layer: specifies the physical, electrical, functional and procedural characteristics to control the physical link between a DTE and a DCE (e.g. X.21).
 - Data link layer: link access procedure for data interchange on the link between a DTE and a DCE (LAPB) that manages a communication session and controls the packet framing including error correction & orderly delivery.
 - Packet layer: exchanging control and user data packets to form a packet-switching network.
1. Legacy Networks (LNs)

ISDN

- **Features of ISDN:**
 - Circuit switching: Provide 64 kb/s including bigger than 64 kb/s (rate adapted to 64 kb/s for less than 64 kb/s rate)
 - Packet switching: Provide number of packet mode bearer services based on two types;
 - packet handling functions: handling of packet calls within the ISDN;
 - interworking functions: interworking between ISDN and PSDN;
 - Frame mode: Provide the order preserving bidirectional transfer of service data units (L2 frames) on the basis of an attached label
 - Signalling capability: carried by the D-channel
1. Legacy Networks (LNs)

ISDN

- Functional architecture of ISDN
1. Legacy Networks (LNs)

ISDN

- Functional configuration of ISDN
Definition of NGN

Next Generation Network (NGN): a packet-based network able to provide telecommunication services and able to make use of multiple broadband, QoS-enabled transport technologies and in which service-related functions are independent from underlying transport-related technologies.

It enables unfettered access for users to networks and to competing service providers and/or services of their choice. It supports generalized mobility which will allow consistent and ubiquitous provision of services to users.
Practical meaning of NGN

NGN is a Broadband Managed IP-based Network

- NGN got benefits from today’s broadband capabilities; over fixed, over mobile and over wireless
- NGN has capabilities to support managed features of IP based network, especially QoS, Security and Mobility
2. Summary of NGN

Summary features of NGN

- **Packet-based transfer**;
- **Separation of control functions**;
- **Decoupling of service provision from transport**;
- Support for a wide range of services based on service building blocks;
- **Broadband capabilities** with end-to-end QoS;
- **Interworking with legacy networks** via open interfaces;
- **Generalized mobility**;
- **Unfettered access by users** to different service providers;
- A variety of identification schemes;
- **Converged services between fixed/mobile**;
- Support of multiple last mile technologies;
- Compliant with all regulatory requirements (e.g. emergency, privacy, lawful interception, etc.)
2. Summary of NGN

Capability requirements of NGN (1)

- **Transport connectivity**
 - Use of IPv4 and IPv6;
 - real time and non-real time comm.
 - One-to-one and one-to-many connectivity

- **Communication modes**
 - One-to-one, one-to-many;
 - Many-to-any, many-to-one

- **Media resources management**
 - Support various media resources and its managements;
 - Media recording, DTMF/advanced speech recognition, media conversion, transcoding, bridging, duplication and insertion

- **Codecs**
 - Transcoding should be avoided wherever possible;
 - Shall support end-end codec negotiation;
 - Supporting G.711 for interworking with other networks
2. Summary of NGN

Capability requirements of NGN (2)

- **Access network and network attachment**
 - Shall support diverse access transport technologies;
 - Capable of providing IP connectivity;
 - Support registration & re-config. at the access network;
 - User access authen. data/inf. in user profile used for access configuration

- **User networks**
 - support access to the NGN via a user network with NAT/NAPT/Firewalls;
 - simultaneous use of multiple types of access transport functions by a single terminal

- **Interconnection and Interworking**
 - Connectivity-oriented and service-oriented interconnection;
 - support interworking with PSTN/ISDN and other networks
2. Summary of NGN

NGN Basic Reference Model

- Separation Transport (Access and Core) from Services
- But keeping 3 Planes for basic function: User, Control and Management
2. Summary of NGN

Overall NGN Architecture
3. Gaps

Technical Gaps between NGN and LNs

Legacy Networks

- **PSTN**
 - Voice & Voiceband Data (telephony)
 - Circuit (64kbit Channel)
- **PSDN**
 - Data (Non Real-time)
 - Packet (X.25)
- **internet**
 - Information
 - Packet (IP)

NGN

- Integrated Multimedia Services (real/non real-time)
- IP

Technical Gaps

- QoS/Security
- Packet adaptation/Addressing/Accounting
- PAD/Numbering/Accounting & charging/Echo Cancellation
3. Gaps

Gaps on Architectural aspects

Vertical views

Horizontal views

* TWP: Twisted Pair Cable, DSL: Digital Subscriber Loop, PDH: Plesiochronous Digital Hierarchy
WDM: Wavelength Division Multiplexing, PONs: Passive Optical Networks
4. For Migration

PSTN/ISDN Emulation & Simulation

- Emulation: Provision of PSTN/ISDN service capabilities and interfaces using adaptation to an IP infrastructure
 - An encapsulation process
 - All services available to PSTN/ISDN users
 - User experience not changed

ADF: Adaptation Function
4. For Migration

PSTN/ISDN Emulation & Simulation

- Simulation: Provision of **PSTN/ISDN-like service capabilities** using session control over IP
 - PSTN/ISDN-like services available
 - Availability of possible new services
 - User experience is changed by the network transformation
4. For Migration

Overall Configuration

UNI = User Network Interface = IF1
NNI = Network Node Interface = IF2

ADF = Adaptation Function
IWF = Interworking Function

Simulation

Emulation

NGN (Carrier Y)
PLMN
NGN (Carrier X)
PSTN/ISDN
Public IP Network, e.g. SIP (non-IMS)
4. For Migration

Overlay Migration Scenario

- deploy NGN overlay to the existing LNs
- two infrastructures both NGN and LNs exist together
- NGN provides advanced services while LNs keep existing services
4. For Migration

Replacement Migration Scenario

- Use mixed simulation and emulation together
- Simulation: for PSTN/ISDN-like services to the NGN users with advanced NGN features
- Emulation: for voice oriented services keeping the legacy terminal
5. Conclusion

- Handbook on “Migration Scenarios from Legacy Networks to NGN in developing countries” has been approved at the February 2013 SG13 meeting

Thank you for your attention !!!