

ITU Green standards week Innovating today for a sustainable tomorrow_

The feasibility of Measuring Abyssal Ocean Temperature with Thermometers Embedded in the Trans-Ocean Communication Cables David Murphy, Bruce Howe, Roger Lukas

The Feasibility of Measuring Abyssal **Ocean Temperatures with Thermometers** Embedded in Trans-Ocean **Communication Cables**

David Murphy¹, Bruce Howe², Roger Lukas²

1) Sea-Bird Electronics 2) School of Ocean and Earth Science and Technology University of Hawai'i at Manoa

Points of Discussion

- We are interested in two things
 - Accurately measuring ocean temperature at the seafloor
 - Accurately estimating the rate of warming or cooling of the deep ocean
- What accuracy and measurement drift performance do we need?

Are we able to meet these requirements? (yes)

• A seafloor data example to consider

What Are We Interested in Measuring?

• Will discuss an example from:

Purkey, S., G. Johnson, 2010: "Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets" Journal of Climate, Vol 23, pp 6336 – 6351.

- Published by the American Meteorological Society

Data Source

- Instrumentation lowered from ships along tracks shown on the right
- Measurements repeated \bullet through 1990s and 2000s, continue to present
- Data collected by \bullet international science programs: WOCE, CLIVAR, et. al.

Observed Warming Rates in Southern Ocean

- Grey shading indicates ocean floor
- As in all models of climate change, some places get warmer, some colder
- Note very high spatial variability, instrumented cable address this
- Note scale at the bottom, +/-0.1°C/decade
- Will focus on area with green asterisk

Observed Warming Rate Near Ocean Floor at 4000 Meters Depth

- Estimated warming rate 0.1°C/20 years
- 0.005 °C/ year
- Dotted lines are 95% confidence level, estimated from spatial variance – not temporal variance
- Instrumenting cables will address this shortcoming by providing a time series of measurements in many locations

Suitable Deep Sea Thermometer

- Top plot is calibration standard used for deep ocean temperatures
 - Shows the stability of the calibration
- Bottom plot is drift ightarrowhistory of candidate thermometer
 - Shows the stability of the thermometer in the field

Problems We Face

- Cable repeaters dissipate power (heat) continuously into the seawater environment ightarrow
 - 56 Watts maximum
 - 25 30 Watts typical
- Power wire in cable dissipates power (heat) continuously \bullet
 - 1 Amp DC constant supply current
 - Power line resistance depends on wire type and temperature, at 3 degrees C
 - 0.95 Ohm/km for SL17
 - 0.72 Ohm/km for SL21
 - Worst case I^2R power is 950 μ W/m
- Thermistor in Sea-Bird products typically has self heating of $\sim 3 \mu W$ ightarrow
- Cables use seawater ground ightarrow
 - No contribution to heat budget

Example: ALOHA Cabled Observatory

- Seafloor deployment of multi-parameter ocean observing system
- Power and data from repurposed communication cable
- System includes measurement of abyssal temperature

What it looks like on the Seafloor

Mosaic of Seafloor Installation

ACO Mosaic Navigation - UTM Zone 4

Position of Power Supply and Thermometer

• CTD swings out of frame, up and over upon deployment

upside down, opposite side

Seafloor Temperature Record – Spikes from heat of power supply

Data Is Useful But Requires Manipulation

- induced artifact

Data is de-spiked and averaged daily • Variations are real and not equipment

Design Challenges Embedding a thermometer in or very near a repeater will not yield

- useful data
- Embedding a thermometer in a cable at some distance from a ightarrowrepeater much more attractive
 - Must design to shield thermometer from heating within the cable from power wire
 - Need to model heat flow within the cable
 - Best design would have multiple thermometers at each repeater to avoid being buried in the mud Candidate designs should be tested *in-situ* at a site such as the
- \bullet **ALOHA** Cabled Observatory

Courtesy Peter Phibbs and TE Subcom

Thank you

