

AS DIVERSE AS AVIATION ITSELF

Aviation Products

Thomas R. Schmutz Vice President, Engineering L-3, Aviation Recorders

L-3 At A Glance

- Aerospace and Defense Contractor 2013 Sales \$12.6B
 - Fortune 200 Company
 - 48,000 Employees
- Prime for ISR, Aircraft Modernization, Logistics, Enterprise IT
- Supplier of Communication and Electronic Systems
- Attributes:
 - Broad/Diverse Technologies, Customers
 - High Earnings-to-Cash Flow Conversion
 - Efficient Capital Structure
 - Investment Grade Credit

C3ISR

National Security Solutions

Platform & Logistics Solutions

Electronic Systems

Commercial Aviation

- Integrated Avionics
 - TCAS
 - TAWS
 - ADS-B
 - Transponders
 - Lightning Detection
 - Weather Mapping
 - Airborne Navigation
 - Standby Systems
 - Touch Screen Controllers

- Flight Displays
 - Displays & Processors
 - 3D Moving Map & Synthetic Vision
- Data Acquisition, Connectivity & Storage
 - Flight Data & Cockpit Voice Recorders
 - Iridium SATCOM
- Emergency Power Supplies
- Support Services
 - Aftermarket; MRO & Logistics

Starting Point...Where we left off

- Triggered Transmission of Flight Data Working Group met following the AF447 WG
- BEA Report published 5/18/2011 (http://www.bea.aero/en/enquetes/flight.af.447/triggered.transmission.of.flight.data.pdf)
- Triggered transmission of flight data is essential to control the costs associated with real time transmission. This is an underlying assumption of the WG.
- Summary of Conclusions:
 - Developing reliable emergency detection criteria (triggers) is achievable
 - 85% of known cases would have allowed transmission of data prior to impact with surface given the detectable warning times
 - Two or more antennas may be necessary for satellite systems due to unpredictable attitude
 - A location radius of 4 NM by year 2020 is technically feasible to significantly reduce the search area by
 - Triggering the transmission of appropriate data via SatCom prior to impact
 - Automatically activating next generation ELT prior to impact
 - Increase frequency of position reports

Real Time Monitoring: Key Points

Standardization

- Recorder MOPS has been very successful in driving worldwide standards for Flight Recording
- Real time monitoring requirements should continue to be harmonized through international committees and added to ED-112A
- Consider using all available aircraft communication means and use the recorder to trigger the transmission

Privacy

- ED-112A: Cockpit Voice Recorders are not downloaded while on aircraft
- Pin strapping prevent download while installed
- Ownership of flight data and audio varies according to country and situation
- Important part of any discussion on real time monitoring

Security

- Transport methods should be encrypted and secure
- Storage concepts should protect and secure data according to data owners wishes
- Storage persistence should be clearly identified

Reliability

- Extremely high reliability of data transfer may not be necessary; existing recorder provides backup
- High reliability could impede acceptance due to costs

Goals for Real Time Monitoring

- Flight recorder data has always been considered only <u>part</u> of an overall investigation
- Investigators review all of the available data; information recorded prior to any "trigger" point may be important to the case and may not be transmitted due to warning time
- Even when flight recorders are found in an accident, as much of the wreckage as can be recovered is pieced together and evaluated
- Real Time monitoring will not change this fundamental approach
- Goals for Real Time Monitoring Could Be:
 - Find the aircraft
 - 2. Alert authorities of a problem; try to prevent a mishap
 - 3. Have a data set to investigate if recorder cannot be found or is damaged

Background FDR/CVR Info for Record

FA5000 CVR/FDR MADRAS

FA2100 FDR

SRVIVR® CVR/FDR

FA2100 CVR/FDR

FA2300 MADRAS

Commercial and Military Aviation Solutions.

Flight Data Recorder Equipment

- Governing Minimum Operation Performance Standard
 - Standard published by EUROCAE (www.eurocae.org)
 - ED-112A published September 2013
 - Supersedes:
 - ED-112 published March 2003
 - ED-55 published May 1990
 - Reissued 4 times over 23 years
- Technical Standard Order (E/TSO)
 - TSO-124c effective 12/19/2013 (ED-112A requirement)
 - TSO-124b applications no longer approved after June, 2015
 - Existing authorizations to TSO-124b will stand
 - ETSO-124b effective 12/21/10 (ED-112 requirement)
 - ETSO-124c issue is expected

Cockpit Voice Recorder Equipment

- Governing Minimum Operation Performance Standard
 - ED-112A published September 2013
 - Supersedes:
 - ED-112 published March 2003
 - ED-56A published December 1993
- Technical Standard Orders (E/TSO)
 - TSO-123c effective 12/19/2013 (ED-112A requirement)
 - TSO-123b applications no longer approved after June, 2015
 - Existing authorizations to TSO-123b will stand
 - ETSO-123b effective 12/21/10 (ED-112 requirement)
 - ETSO-123c issue is expected

Changes in ED-112A

- ED-112A added detail to the flight recorder standard specifically addressing recent aviation investigations including:
 - Air France 447 in Atlantic
 - British Airways 38 engine incident at Heathrow
- Deployable Recorder Changes
 - Requirement for deployable recorders to be fitted with a dual frequency 406/121.5 MHz radio transmitter for detection
- Cockpit Voice Recorder Changes
 - Implemented additional classes of CVR's with longer recording durations
 - Current standard class is 2 hours
 - Added 10, 15 and 25 hours classes

Changes in ED-112A: FDR

- Flight Data Recorder (FDR) additional parameters were added
 - Engine fuel metering valve position
 - Vertical speed
 - Flight director commands
 - Computed weight
 - Cabin pressure altitude
- Increased sampling rates on some existing FDR parameters
 - Control forces, Inputs and Surfaces
 - Attitude
 - Navigation data (lat and long)
 - Power level position
 - Accelerations
- FDR to also store the data frame layout information (FRED File) for investigators to decode the flight data.

Changes in ED-112A: ULB

- Underwater locator beacon (37.5 kHz ULB) controlled by TSO-C121a
 - TSO-C121b established 90 day versus 30 day beacon
 - TSO-C121b will revoke TSO-C121/C121a in March 2015
 - 90 day beacons will become standard by attrition
 - ICAO has published in Annex 6 that recorders shall have 90 day ULB's in January 2018
- ED-112A adds a shear test to the ULB retention mechanism so that the beacons won't become detached
 - The BEA (French Safety Board) provided a study where many water incidents had recorders with beacons detached.

8.8kHz Low Frequency Beacon

- ED-112A does not specify the operational performance of the ULB
 - Performance was discussed in the working group
 - Many of the same participants worked in the SAE group to develop the specification for the 90 day ULB on the flight recorders and a low frequency, greater range ULB for the airframe.
- Low Frequency Beacon spawned from the BEA organized AF447
 Working Group
 - Described the Recorder ULB as a means to find a needle in the haystack
 - Described the Low Frequency Beacon as a means to find the haystack
- Transport aircraft operating over oceanic areas be fitted with the low frequency ULB by January 2019

Data Rates For FDR Systems

- FDR essential parameters recorded from a 256 word per second ARINC 717 interface. Words are 12 bits.
 - Required Rate = 256 Words/Second * 12 bits/Word = 3,072 Bits/second
 - Duration = 25 hours
 - Image Size = 25 hours * 3600 seconds/hour * 3,072 bits/second = 276.480
 MBit = 34.56 MB
 - Compression possible
- FDR typical parameters recorded from a 1024 word per second ARINC 717 interface.
 - Typical Rate = 12,288 bits/Second
 - Duration = 25 hours
 - Image Size = 1,106 Gbit = 138.24 MB
 - Compression possible

Data Rates For CVR Systems

- 3 Pilot Audio Channels sampled at 8 kHz
 - 3 x 16 bits x 8 kHz = 384 kbps
- 1 Cockpit Area Microphone Channel sampled at 16 kHz
 - 1 x 16 bits x 16 kHz = 256 kbps
- Total Raw Audio Channel Rate = 640 kbps
 - Good compression techniques are available to compress these raw data rates
- CPDLC Messages are also required to be recorded on aircraft with Datalink installed
 - The message record rate is variable and small compared to audio rates

Thomas R. Schmutz
Vice President, Engineering
L-3 Communications, Aviation Recorders
100 Cattlemen Road, Sarasota FL USA 34233
941-377-5511
tom.schmutz@L-3com.com