

Al Perspectives for Geodetic Hazard Monitoring

Benedikt Soja

March 13, 2024. ITU/WMO/UNEP Workshop on "Resilience to Natural Hazards through AI Solutions"

Geodesy: measuring the Earth

- International coordination of geodetic activities:
 - International Association of Geodesy (IAG)
 - Global Geodetic Observing System (GGOS)
 - Several other entities related to geodesy

Geodetic contributions to hazard monitoring

- Earthquakes
- Tsunamis
- Volcanic activity
- Landslides
- Flooding
- Severe weather events
- Cyclones
- ...

Most important geodetic observations for hazard monitoring

- GNSS
 - GNSS remote sensing
 - GNSS reflectometry
- InSAR
- GRACE(-FO)
- ...

Opportunities for AI in Geodesy

- Geodetic problems very suitable for the application of techniques from the field of AI
 - Detection of anomalies
 - Fusing different geodetic and auxiliary datasets
 - Modeling and prediction of spatio-temporal data
- Data-rich:
 - Huge increase in data volume from GNSS stations, InSAR, etc.
 - Auxiliary data: weather, climate, environmental models, etc.

18'000 GNSS stations

• Label-rich: data analysis logs, labeled discontinuities

IAG components related to the application of AI in geodesy

- GGOS Focus Area: Al for Geodesy (Al4G)
- ICCT JSG T29: Theoretical Foundations of Machine and Deep Learning in Geodesy
- Several other components with close connection to AI
 - GGOS Focus Area on Geodetic Space Weather Research

- ...

•

80+ members •

GGOS Focus Area: Al for Geodesy (AI4G)

- Goals: ٠
 - **Develop** improved geodetic products based on AI —
 - **Evaluate** these products thoroughly \rightarrow build trust —

- Chair: Prof. Dr. Benedikt Soja (ETH Zurich, Switzerland) •
- Vice-chair: Dr. Maria Kaselimi (NTUA, Greece) ٠
- 4 Joint Study Groups

Joint Study Groups of AI4G

• AI for GNSS Remote Sensing

• Al for Gravity Field and Mass Change

• Al for Earth Orientation Parameter Prediction

•

Al for Geodetic Deformation Monitoring

Orientation in Space

Examples of AI for geodetic hazard monitoring

Detection of earthquakes in GNSS station position time series

- Earthquakes cause discontinuities in GNSS station position time series
 - Important to consider when modeling the time series (e.g., estimation of velocities)

Data Products: Blewitt et al. 2018

Station coordinate time series

Data Products: Blewitt et al. 2018

ETH zürich SPACE GEODESY B. Soja: AI Perspectives for Geodetic Hazard Monitoring

Station coordinate time series

Data Products: Blewitt et al. 2018

ETH ZÜRICH SPACE GEODESY B. Soja: AI Perspectives for Geodetic Hazard Monitoring

Overview of study

Task: classify **EQ causing a jump > 10 mm** based on GNSS station coordinate time series

- Study region: Japan (664 stations)
- Data:

ETH zürich

- daily GNSS station coordinate time series
- − Earthquake (EQ) catalogue \rightarrow time of EQ is known

GEODESY B. Soja: AI Perspectives for Geodetic Hazard Monitoring

• Testing various machine learning algorithms

Classification

- Target: EQ causing a jump > 10mm
- Features: station coordinates \rightarrow chunks of 21 days

13

Data Products: Blewitt et al. 2018

High-level overview

GEODESY B. Soja: AI Perspectives for Geodetic Hazard Monitoring

Results of Random Forest

→ Precision → among all <u>detected</u> EQ, ~81% are truly EQ
→ Recall → among all <u>'true'</u> EQ, ~78% are detected correctly
→ F1 score → weighted average of precision and recall (~80%)

True Positives \bigcirc → EQ correctly classified as EQ (~78%) **False Negatives** \bigotimes → EQ wrongly classified as <u>no</u> EQ (~22%)

True Negatives \bigcirc → <u>no</u> EQ correctly classified as <u>no</u> EQ (~100%) False Positives \bigotimes → <u>no</u> EQ wrongly classified as EQ (~0%)

Crocetti et al., 2021

Detection of earthquakes and tsunamis via the ionosphere

- Strong earthquakes and tsunamis can cause traveling ionospheric disturbances (TIDs)
- Potential of TIDs in early warning systems highlighted by NASA-JPL GUARDIAN system

- Case study: Illapel earthquake (2015)
- Machine learning approach to detect TIDs
- GNSS data processing with VARION
- ML model trained with data from 25 station-satellite links

Classification performance

 ML model tested on 6 station-satellite links with TIDs and 18 links without TIDs

Test station UDAT

- Best performing model: XGBoost
- Approach could be applied in real-time with minor modifications

Average metrics over test set

	XGBoost	
Precision	0.80	
Recall	0.74	
F1 score	0.77	
Time diff.	75 seconds	

Fuso et al., GPS Solut., minor rev.

Detection of strong wind events with GNSS

- Alpine foehn: weather phenomena characterized by strong and warm winds
- Typical in mountainous regions
- Foehn events visible in meteorological data \rightarrow Foehn index (FI)

Alpine foehn visible in GNSS data?

Machine learning to detect Alpine foehn in GNSS data

- Methods:
 - Gradient boosting (GB)
 - Support vector classifier (SVC)
- Input data:
 - ZWD and ZHD (and their differences)
 - Tropospheric gradients
- Target data:
 - Foehn index at station Altdorf, CH
- Training: 2010-2018
- Test: 2019-2020

Machine learning to detect Alpine foehn in GNSS data

Method	Probability of detection	Correct alarm ratio	Average
GB	0.753	0.764	0.758
SVC	0.804	0.663	0.733

- Main result: GNSS-based alternative to FI
- Possible in near real-time with slightly worse performance

Aichinger-Rosenberger et al., Atmos. Meas. Tech., 2022

Al perspectives for geodetic hazard monitoring

Al perspectives for geodetic hazard monitoring

- Al offers a powerful new way to detect patterns and anomalies in geodetic data
 - ...including those related to hazards!
- Al has significant potential to issue early warnings or at least offer an indication
 - Final decision could still be made by humans
- Domain knowledge will always be essential

Al perspectives for geodetic hazard monitoring

- Increasingly difficult to properly exploit the available geodetic data
 - Efficiency of deep learning algorithms could become a necessity
 - Accelerated by low-cost sensors and smallsats

- Trust & interpretability will be essential in the acceptance of AI results
 - Explainable learning
 - Uncertainty quantification
 - Feature importance
 - Physics-based learning

ETHZÜRICH SPACE B. Soja: AI Perspectives for Geodetic Hazard Monitoring

Conclusions

- Geodesy contributes significantly to hazard monitoring
- Al with great potential to improve upon current approaches to hazard monitoring
 - Successful applications of AI in anomaly detection problems
- Further opportunities with the growing amount of data
- Importance of trust and interpretability of AI

Benedikt Soja soja@ethz.ch

Thanks for your attention!

ETH Zurich Chair of Space Geodesy Institute of Geodesy and Photogrammetry Zurich, Switzerland https://space.igp.ethz.ch