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Geodesy: measuring the Earth

• International coordination of geodetic activities:
− International Association of Geodesy (IAG)
− Global Geodetic Observing System (GGOS)
− Several other entities related to geodesy
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Geodetic contributions to hazard monitoring

• Earthquakes

• Tsunamis 

• Volcanic activity

• Landslides

• Flooding

• Severe weather events 

• Cyclones

• …
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Most important geodetic observations for hazard monitoring

• GNSS
− GNSS remote sensing
− GNSS reflectometry

• InSAR

• GRACE(-FO)

• …
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Opportunities for AI in Geodesy

• Geodetic problems very suitable for the application of techniques from the field of AI
− Detection of anomalies 
− Fusing different geodetic and auxiliary datasets
− Modeling and prediction of spatio-temporal data

• Data-rich: 
− Huge increase in data volume from GNSS stations, InSAR, etc. 
− Auxiliary data: weather, climate, environmental models, etc. 

• Label-rich: data analysis logs, labeled discontinuities
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18’000 GNSS stations

B. Soja: AI Perspectives for Geodetic Hazard Monitoring 13.03.2024



IAG components related to the application of AI in geodesy

• GGOS Focus Area: AI for Geodesy (AI4G)

• ICCT JSG T29: Theoretical Foundations of Machine and Deep Learning in Geodesy

• Several other components with close connection to AI
− GGOS Focus Area on Geodetic Space Weather Research
− ...
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GGOS Focus Area: AI for Geodesy (AI4G)

• Goals: 
− Develop improved geodetic products based on AI
− Evaluate these products thoroughly  build trust

• Chair: Prof. Dr. Benedikt Soja (ETH Zurich, Switzerland)

• Vice-chair: Dr. Maria Kaselimi (NTUA, Greece)

• 4 Joint Study Groups

• 80+ members
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Joint Study Groups of AI4G

• AI for GNSS Remote Sensing

• AI for Gravity Field and Mass Change

• AI for Earth Orientation Parameter Prediction

• AI for Geodetic Deformation Monitoring
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Gravity Field

Geometry

Orientation in Space
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Examples of AI for geodetic hazard monitoring
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Detection of earthquakes in GNSS station position time series
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• Earthquakes cause discontinuities in GNSS station position time series
− Important to consider when modeling the time series (e.g., estimation of velocities)

• GNSS stations

Data Products: Blewitt et al. 2018

©ESA
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• GNSS stations

Data Products: Blewitt et al. 2018

Station coordinate time series
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station coordinates 
of station HANM (New Zealand)

x

– station coordinates
- - time of earthquake
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Data Products: Blewitt et al. 2018

station coordinates 
of station HANM (New Zealand)

Station coordinate time series
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Idea: detect these jumps (caused due to earthquakes) 
using machine learning

– station coordinates
- - time of earthquake

x
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Overview of study

Task: classify EQ causing a jump > 10 mm based on GNSS station coordinate time series

• Study region: Japan (664 stations)

• Data: 
− daily GNSS station coordinate time series 
− Earthquake (EQ) catalogue  time of EQ is known

• Testing various machine learning algorithms
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Data Products: Blewitt et al. 2018

Classification
• Target: EQ causing a jump > 10mm 

• Features: station coordinates  chunks of 21 days
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CLASSIFICATION OF EQ CAUSING A JUMP > 10 mm

Target: EQ occurrence (>10mm)
Features: station coordinates (chunks of 21 days)

GNSS STATION COORDINATES

Pre-processing of data
(outliers, discontinuities, seasonal signal, trend …) 

High-level overview
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Split data into training 
and testing stations

Fit machine learning 
model Calculate predictions

Validate the model
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Results of Random Forest
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wrongly 
classified 
as no EQ

correctly 
classified 
as no EQ

correctly 
classified 

as EQ

Precision among all detected EQ, ~81% are truly EQ
Recall among all 'true' EQ, ~78% are detected correctly
F1 score  weighted average of precision and recall (~80%)

True Positives   EQ correctly classified as EQ (~78%)
False Negatives   EQ wrongly classified as no EQ (~22%)

True Negatives   no EQ correctly classified as no EQ (~100%)
False Positives   no EQ wrongly classified as EQ (~0%)

all 
earthquakes

all no
earthquakes
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Crocetti et al., 2021
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Detection of earthquakes and tsunamis via the ionosphere 

• Strong earthquakes and tsunamis can cause 
traveling ionospheric disturbances (TIDs)

• Potential of TIDs in early warning systems 
highlighted by NASA-JPL GUARDIAN system

• Case study: Illapel earthquake (2015)

• Machine learning approach to detect TIDs

• GNSS data processing with VARION 

• ML model trained with data from 25 station-satellite links
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Classification performance

• ML model tested on 6 station-satellite links with TIDs
and 18 links without TIDs

• Best performing model: XGBoost

• Approach could be applied in real-time with 
minor modifications
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XGBoost

Precision 0.80

Recall 0.74

F1 score 0.77

Time diff. 75 seconds

Average metrics over test set

Test station UDAT

Fuso et al., GPS Solut., 
minor rev.
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Detection of strong wind events with GNSS

• Alpine foehn: weather phenomena characterized by strong and warm winds

• Typical in mountainous regions

• Foehn events visible in meteorological data  Foehn index (FI)
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Alpine foehn visible in GNSS data?
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FI

Challenge: GNSS not sensitive to wind

Goal: machine learning for foehn detection
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Machine learning to detect Alpine foehn in GNSS data

• Methods:
− Gradient boosting (GB)
− Support vector classifier (SVC)

• Input data: 
− ZWD and ZHD (and their differences)
− Tropospheric gradients

• Target data:
− Foehn index at station Altdorf, CH

• Training: 2010-2018

• Test: 2019-2020
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Machine learning to detect Alpine foehn in GNSS data

Method Probability of 
detection

Correct alarm ratio Average

GB 0.753 0.764 0.758
SVC 0.804 0.663 0.733
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Aichinger-Rosenberger et al., Atmos. Meas. Tech., 2022

• Main result: GNSS-based alternative to FI

• Possible in near real-time with slightly 
worse performance

Example:
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AI perspectives for geodetic hazard monitoring 
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AI perspectives for geodetic hazard monitoring

• AI offers a powerful new way to detect patterns and anomalies in geodetic data
− …including those related to hazards!

• AI has significant potential to issue early warnings or at least offer an indication
− Final decision could still be made by humans

• Domain knowledge will always be essential 
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AI perspectives for geodetic hazard monitoring

• Increasingly difficult to properly exploit the available geodetic data
− Efficiency of deep learning algorithms could become a necessity
− Accelerated by low-cost sensors and smallsats

• Trust & interpretability will be essential in the acceptance of AI results 
− Explainable learning
− Uncertainty quantification
− Feature importance
− Physics-based learning
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Conclusions

• Geodesy contributes significantly to hazard monitoring

• AI with great potential to improve upon current approaches to hazard monitoring
− Successful applications of AI in anomaly detection problems

• Further opportunities with the growing amount of data

• Importance of trust and interpretability of AI
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Benedikt Soja
soja@ethz.ch

ETH Zurich
Chair of Space Geodesy
Institute of Geodesy and Photogrammetry
Zurich, Switzerland
https://space.igp.ethz.ch

Thanks for your attention!
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