

Comcores Radio over Ethernet Gateway for Future Fronthaul Networks

FG IMT-2020 Workshop and Demo Day

Anders Lund, Comcores ApS Bomin Li, Comcores ApS Thomas Nørgaard, Comcores ApS

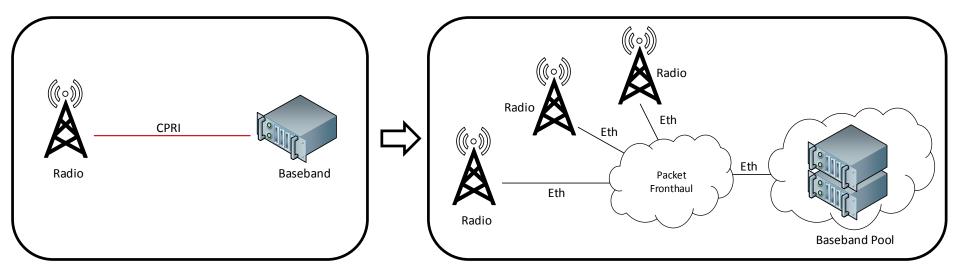
Agenda

- About Comcores
- Motivation for Ethernet Based Fronthaul
- Comcores Overview on next generation fronthaul networks
- Demo setup
- Demo results

Comcores Headquarter

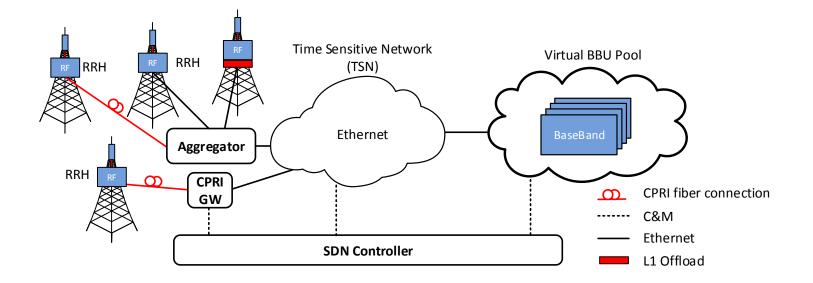
About Comcores

- Established in 2014
- Globally oriented high-tech company, headquartered in Scion DTU Science Park, 20 min outside Copenhagen, Denmark
- IP cores and design services for communication systems
- Specialized in digital radio systems



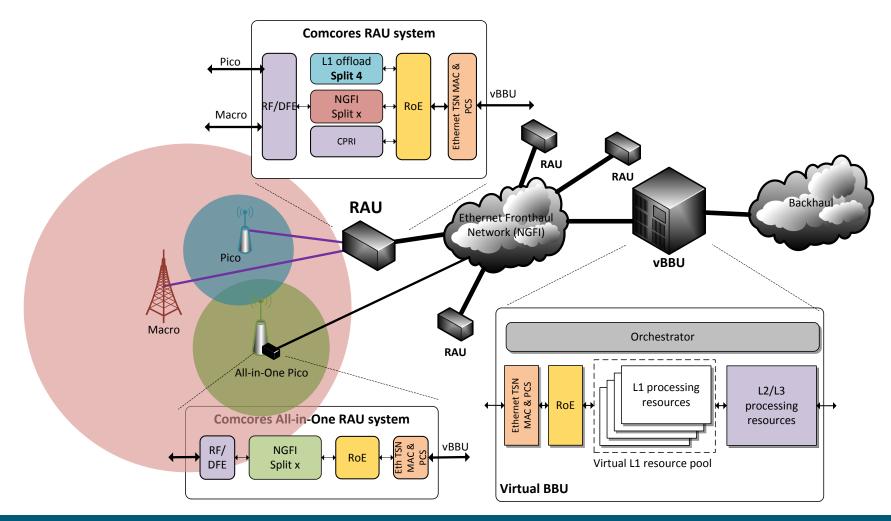
Comcores Headquarter

Motivation for Ethernet Based Fronthaul

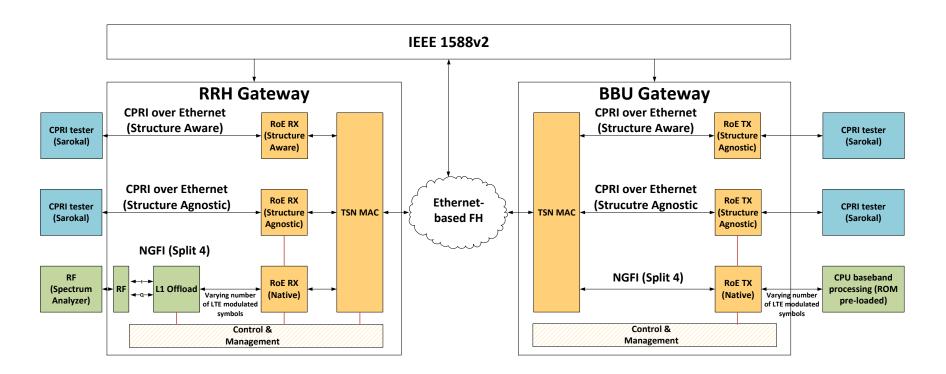

- New fronthaul interface technologies are required to satisfy various RAN deployment and evolution requirements, and reduce fronthaul transmission costs
- Current dedicated point-to-point connection between BBUs and RRUs (such as CPRI/OBSAI) will evolve to many-to-many fronthaul mainstream switch networks (such as Ethernet) due to cost, availability and flexibility
- Fronthaul architecture is migrating from traditional RAN where single BBU connects to single/few RRUs to architectures where multiple centralized BBUs connect to multiple RRUs making a packet switched technology ideal
- Ethernet is a widely adopted & nearly ubiquitous standard technology

Δ

Comcores Overview on next generation fronthaul networks



Comcores gateway


- Fits on both radio and base band side
- support of CPRI, new radio interface and high speed Ethernet

Demo setup



- IEEE P1914.3 CPRI over Ethernet mapper/de-mapper
- IEEE P1914.1 Next Generation Fronthaul Interface
- IEEE 802.3 Time Sensitive Network features
- IEEE 1588v2 time stamp

Lab setup

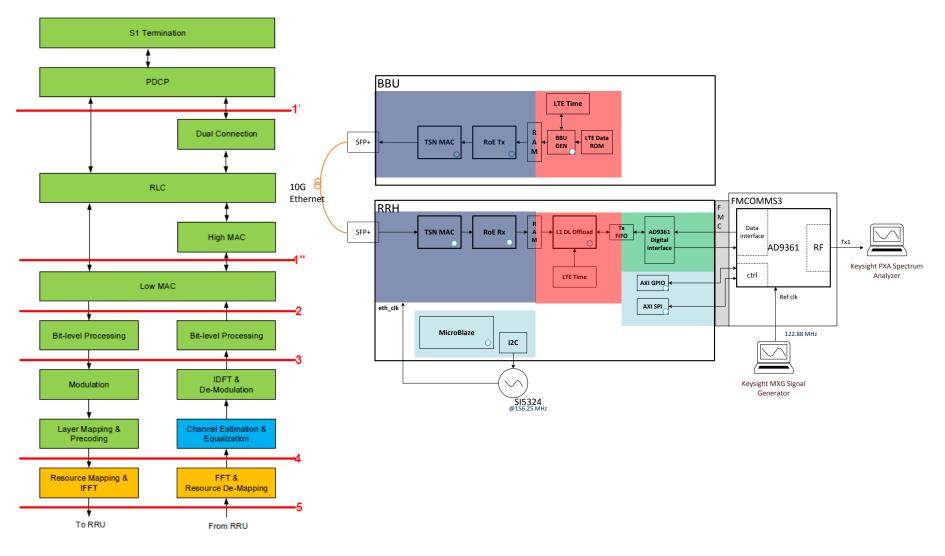
- Xilinx VC709 FPGA demonstration platform
- CPRI verification by Sarokal X-STEP tester
- LTE demondulation verification by Keysight PXA spectrum analyzer

CPRI over Ethernet - motivation

C-RAN

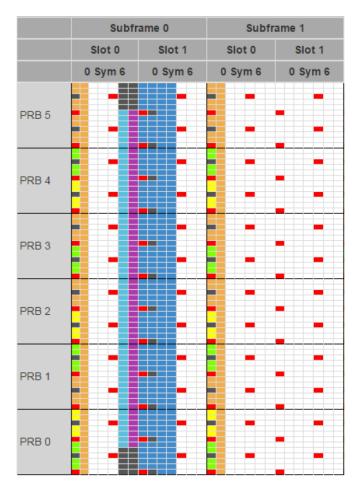
 Bridge to carry current CPRI flows in future Ethernet based fronthaul networks

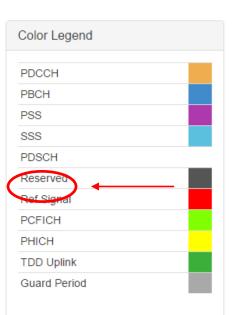
CPRI over Ethernet - result


- Synchronous traffic over asynchronous networks
- Lossless transmission based on the clock recovery and delay control schemes

X-STEP™ CPRI™ Actor Still					
Transmission Settings Reception Settings					
Rx Control Control Plane (C&M) User Plane (I/Q) Cus	stom Setup				
C) 201		5-2016 Sarokal Test	Systems Oy	Version 3	2016.1.beta 🕕
Fiber connections		Reports			
Input 1 Al Rx - Label RRH1		Output directory			
Input 2	bel RRH2	/root/CPRIActor/wo	ork/CPRIActor		
		Control word repor	t prefix		
Line rate and capture size	cpri_control_word_report				
Line rate 4X (2457 Mbps)	Basic frame report prefix				
Capture size 10ms (1 radio frame)	✓ cpri_basic_frame_report				
Scrambling	Raw capture image prefix				
Off Automatic Manual					
	Show partial hyperframes in reports				
Input 1 Seed 0x 0 Input 2 Seed 0x 0		Ouick analysis			
Capture trigger					
🔘 Instant		Input 1:			
• Hyperframe boundary (K28.5)		Local status:	LOS 🥥	LOF 🥥	
 Line Coding Violation (LCV) 	Remote status:	100			
 CPRI frame triggers 	Remote status:	los 🥥 Rai 🕥	LOF 🥥 SDI 🥥	RST 🥥	
Node B frame no. (BFN) [04095]	0	Capture status:	KAI 😈	SDI 😈	KSI 🚽
Hyperframe no. (HFN) [0149]	Start timestamp:				
Local status: LOS LOF		End timestamp:			
Remote status: LOS LOF					
SDI RAI RS	эт	Input 2:			
Custom Byte (X.W.Y)		Local status:	LOS 🔘	LOF 🌑	
0 • 0 • Value = 0x					
Trigger input signal in I/O 1 pin 3 (pos. edge)		Remote status:	LOS 🔘	LOF	
 Trigger input signal in I/O 1 pin 3 (neg. edge) 		Capture status:	rai 🌑	SDI 🔘	RST 🔘
Trigger position in capture window	0% -	Start timestamp:			
France detect multiple output in 1/0.2 pin 5 (non-odin 2		End timestamp:			
Frame detect pulse output in I/O 1 pin 5 (pos. edge)					
Off Hyperframe 10ms Fra	Capture		View analysis results		
HW programmed, select triggers and click Capture to continu	Je.				

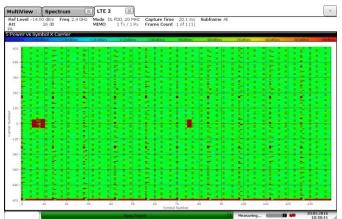
Intra-PHY Split Proof of Concept




Source: "White Paper of Next Generation Fronthaul Interface"

PDSCH cell load

PDSCH cell load is dependent on the real traffic for Intra-PHY splits



Downlink shared channel for user data

Low load in a 10 MHz cell

- Succesful cell synchronization
- 1 user allocated 1 RB (bottom)
- Autodetection of cell configuration
- Autodetection of user allocation



Peak load in a 10 MHz cell

- Full allocation of user data (PDSCH)
- 1 % EVM
- ~160 Mbps load on Ethernet link
- 1:4 reduction compared to CPRI

