High Efficiency Video Coding (HEVC) and its Extensions

Gary Sullivan

Microsoft, Rapporteur Q6/16, co-chair JCT-VC, JCT-3V, MPEG Video

13 Febuary 2015

- Compress digital video content
- Twice as much as you did before
- With the same video quality, e.g. as MPEG-2 or H.263
- Or get higher quality with the same number of bits (or a combo)
- Example: higher quality may mean higher resolution, e.g. HD
- · And better adaptation to applications and network environments
- Unfortunately, with substantially higher computing requirements and memory requirements for both encoders and decoders

Gary J. Sullivan 2015-02-13

Comparison	of	HEVC	and	AVC
een pan isen	•		and	

	HEVC	AVC	
Coding Tree Unit	64x64, 32x32, 16x16 CTU	16x16 macroblock	
Coding Unit	64x64, 32x32, 16x16, 8x8 CU	16x16 macroblock	
Prediction Unit	square, symmetric rectangular, asymmetric rectangular PU	square, symmetric rectangular	
Transform Unit	32x32, 16x16, 8x8, 4x4 TU	8x8, 4x4 transforms	
Intra prediction	33 directional modes, DC, planar	8 directional modes, DC, 16x16-only planar	
Motion prediction	multi-candidate MV prediction with spatial & temporal region merging	spatial median or temporal co-located MV prediction	
Luma interpolation	1/4 pixel 7-tap, 1/2 pixel 8-tap	1/2 pixel 6-tap + 1/4 pixel bilinear	
Chroma interpolation	4-tap	bilinear	
Entropy coding	CABAC	CABAC, CAVLC	
Loop filtering	deblocking filter, sample adaptive offset (SAO)	deblocking filter	
Parallelism	tiles, wavefronts, slices (deblocking filter, SAO, other)	slices	
Gary J. Sullivan 2015-02-1			

HEVC version 2 extensions (2014)

- Format range extensions "RExt" (~20 profiles!)
 - 4:4:4, 4:2:2, monochrome, all-intra
 - Increased bit depths
 - More color-related metadata (SMPTE 428, 2084, 2086, knee, mapping)
 - Completion April 2014 (a few aspects one meeting later)

Scalability "SHVC" (~3 profiles)

- Hooks for extensions built into version 1
- Spatial, SNR, color gamut, bit depth enhancements
- Architecturally simple multi-loop "reference index" design
- Alpha channel, overlays, other metadata
- AVC base layer possible
- Completion July 2014

MV-HEVC for 3D video (~2 profiles)

- (Frame packing was in version 1)
- Extensions to AVC as well as HEVC
- Completion July 2014 for multiview & depth map encoding
- Combined 3D encoding designed (but to be in next version)

Gary J. Sullivan 2015-02-13

Summary and outlook for HEVC

- Very active work (many documents & people per meeting)
- · Very diverse company & university participation
- · Major technical advance over prior standards
- · Computational/implementation complexity is reasonable
- Parallelism is an increased theme
- · Three profiles in first version, with two bit rate tiers and 13 levels
- Deliverables:
 - Video coding specification
 - Reference software
 - Conformance testing specification
- Systems support developed for MPEG-2 TS, ISO BMFF, DASH, etc.
- Multiple versions and extensions (RExt, 3D/MVC, SHVC, SCC)
- Contact: JVT, JCT-VC, JCT-3V, VCEG, MPEG video chairs:
 - Gary J. Sullivan (garysull@microsoft.com)
 - Jens-Rainer Ohm (ohm@ient.rwth-aachen.de)

Gary J. Sullivan 2015-02-13

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

For further info - publications

• Publications

- HEVC books by Wien and by Sze, Budagavi & Sullivan
- "Special Issue on Emerging Research and Standards in Next Generation Video Coding (HEVC)", *IEEE T-CSVT*, Dec. 2012 (includes technical overview paper, compression capability analysis paper, complexity analysis paper, and others)
- Nutshell article in *IEEE Commun. Magazine,* Jan. 2013.
- "Standardized Extensions of High Efficiency Video Coding", IEEE Journal on Selected Topics in Signal Processing, Vol. 7, no. 6, pp. 1001–1016, Dec. 2013
- Upcoming special issue of *IEEE T-CSVT*

Gary J. Sullivan 2015-02-13