Evolution of Fixed Services for wireless backhaul of IMT 2020 / 5G

- Wireless Backhaul for IMT 2020 / 5G Overview and introduction by Renato Lombardi, Huawei
- Wireless X-Haul Requirements by Nader Zein, NEC
- Microwave and millimeter-wave technology overview and evolution by Mario Frecassetti, Nokia
- Operator's view on frequency use related challenges for microwave and millimeter-wave in IMT 2020/ 5G backhaul/X-Haul by Paolo Agabio, Vodafone
- Panel discussion:

Economics on deployment and operational aspects of microwave and millimeter-wave technology in IMT 2020 / 5G mobile backhaul/X-Haul network

- To cope with future 5G transport network requirements, two main points should be considered including their impact on solution TCO :
 - 1. Availability of suitable "Spectrum" \rightarrow New Bands are needed
 - Specific spectrum for different use cases
 - New mmW Bands to address forthcoming 5G use cases
 - 2. Capacity & Spectral efficiency (spectrum is a scarce resource)
 - Channel size & Modulation schemes (bit/s/Hz)
 - XPIC, BCA, LoS-MIMO, OAM
 - Geographical spectral efficiency: Dense reuse of channels
- Overview of current technology capabilities
 - Capacity
 - Latency
 - SDN

- To cope with future 5G transport network requirements, two main points should be considered including their impact on solution TCO :
 - 1. Availability of suitable "Spectrum" \rightarrow New Bands are needed
 - Specific spectrum for different use cases
 - New mmW Bands to address forthcoming 5G use cases
 - 2. Capacity & Spectral efficiency (spectrum is a scarce resource)
 - Channel size & Modulation schemes (bit/s/Hz)
 - XPIC, BCA, LoS-MIMO, OAM
 - Geographical spectral efficiency: Dense reuse of channels
- Overview of current technology capabilities
 - Capacity
 - Latency
 - SDN

New mmW Bands to address forthcoming 5G use cases

5G Access Sites Configurations and Network Segments

- To cope with future 5G transport network requirements, two main points should be considered including their impact on solution TCO :
 - **1.** Availability of suitable "Spectrum" \rightarrow New Bands are needed
 - Specific spectrum for different use cases
 - New mmW Bands to address forthcoming 5G use cases
 - 2. Capacity & Spectral efficiency (spectrum is a scarce resource)
 - Channel size & Modulation schemes (bit/s/Hz)
 - XPIC, BCA, LoS-MIMO, OAM
 - Geographical spectral efficiency: Dense reuse of channels
- Overview of current technology capabilities
 - Capacity
 - Latency
 - SDN

(3)	Larger channels $ ightarrow$ not anymore a technology limit
1 28 MHz 2 56 MHz 4 112 MHz 8 224 MHz 9 250 MHz 36	 In MW bands recent regulatory limit shifted up to CS=224MHz, but not everywhere. Up to CS=2000MHz in EBand and above 100GHz TCO: N*CS means N*capacity within one <u>RTX</u>. But licence fees increase usually *N Where larger CS are needed: Carrier Aggregation, in same band or adjacent band 1000 MHz
72	2000 MHz
COPSK (2b/s/Hz) OPSK (2b/s/Hz	 Higher Modulation schemes → Reached the reasonable top 4096QAM (and more) → Channel spectral efficiency reached substantially the top After 1024QAM spectral efficiency gain is less than 10% ever step Adaptive Modulation introduced everywhere Penalty on System Gain to be considered TCO: High modulations RTX at the same cost

.

.

.

Solution Frequency Reuse (XPIC) \rightarrow well known technique doubling the spectral efficiency

- Well known approach
- Spectral efficiency *2
- TCO: Need two RTXs and one antenna per site. TCO's advantage is reached only if license fees are reduced for second polarization

- Solution Solution Solution State State
 - Exploiting link geometry deployment two different signals in the same channel can be transmitted. 4x4 LoS-MIMO is obtained with LoS-MIMO 2x2 plus XPIC
 - LoS MIMO needs optimal antennas separation.

Under optimal conditions, spectral efficiency close to x4 improvement, lower performance in case of suboptimal conditions

- Not yet massively deployed
- TCO: RTX cost per bit is the same (4 RTX).
 Spectrum fees approach will play a role in LoS-MIMO future success

Optimal antennas separation

\bigcirc OAM \rightarrow Orbital Angular Momentum

- Using different antennas, multiple OAM signals with different spiral phase front (mode) can be transmitted. OAM modes are orthogonal of each other
- OAM promises then to be able to transmit N different signals in a single channel and single polarization
- Today, experimental results with 16 streams. No commercial product on the market
- TCO: Spectrum fees approach will play a role in its future success

- Bands & Carriers Aggregation (BCA)
 - BCA joins different channels that may be even in different bands, providing a single big capacity pipe. Lower band will provide capacity pipe's segment with high availability, while higher band the best effort capacity pipe segment. Packets may be adaptively re-routed among different channels according to their priority and channels condition
 - One of the most valuable approach is 15/18/23 GHz with E-Band where dual band antennas are available:
 - Links up to 7-10Km are feasible. Capacity may even exceed 10Gbps
 - High spectral efficiency obtained because E-Band can reach longer links than in traditional approach.
 - BCA among two MW bands is another variant when distance becomes more challenging i.e.: rural application

- Geographical spectral efficiency: Dense reuse of channels
 - To better exploit the scarce resource (spectrum) it is advisable to increase not only the single channel spectral efficiency but also the channel reusability in a given area, guaranteeing the "interference free operation"
 - Nodal configuration is the key point to understand the concept
 - Better antenna class are introduced (e.g. ETSI Class 4), reducing a lot the minimum angle between two links using the same/adjacent channels (angle discrimination)
 - Cross polar (XPIC) can here help in reducing angle discrimination
 - Co-Channel Interference Canceller (CCIC) further improve the re-use of channels with very narrow angle discrimination
 - TCO: Investments and efforts to be spectral efficient should be rewarded through adequate policy fees (discount/license per node/area)

Geographical spectral efficiency: Dense reuse of channels

Today to avoid interference:

- Ch1 reused but with different polarization
- Ch3 must be used because too close to Ch1

Class 4 antenna enable:

- Ch1s can be used with same polarization
- Ch2 can be used instead of Ch3

Increase nodal capacity is now easy at **no additional spectrum (*)** with XPIC

(*) In this region no other operator can use the H spectrum, so no additional spectrum is consumed

Geographical spectral efficiency: Dense reuse of channels

When additional capacity is needed and then additional channels shall be used, CCIC permit an optimal re-use of channels with very narrow angle discrimination

- To cope with future 5G transport network requirements, two main points should be considered including their impact on solution TCO :
 - **1.** Availability of suitable "Spectrum" \rightarrow New Bands are needed
 - Specific spectrum for different use cases
 - New mmW Bands to address forthcoming 5G use cases
 - 2. Capacity & Spectral efficiency (spectrum is a scarce resource)
 - Channel size & Modulation schemes (bit/s/Hz)
 - XPIC, BCA, LoS-MIMO, OAM
 - Geographical spectral efficiency: Dense reuse of channels

Overview of current technology capabilities

- Capacity
- Latency
- SDN

Overview of current technology capabilities

- Possible "basic" solutions to address the different scenarios
- Capacity and latency already capable to address 5G Phase 1

Backhaul Technology	Configuration (indicative)	Backhaul Capacity (typical)	Backhaul Latency One-Way (typical)	5G "Phase 1"	Cell Type	Area	
6-15GHz	4+0 56MHz or 2+0 XPIC 56MHz	2 Gbps	<250us	<2 Gbps	Macro-cell	Rural	
18-42GHz	BCA MW 56MHz + E- band 500MHz	3.7 Gbps	<250us	<3 Gbps	Macro-cell	Sub-Urban/ Semi-Rural	
V-band (PtP 60GHz)	200MHz	1 Gbps	<500us	cE Chas	Small-cell	Dense	
E-band (70/80GHz)	500MHz-2GHz	3-10 Gbps	<50-100us	<2 gpbs	Macro-cell	Urban	

Overview of future technology capabilities - Capacity

- Evolution to enhance performance combining latest capabilities
- Microwave (MW) and mmWave evolution represented

MW Backhaul Technology	56 MHz BW	112 MHz BW	224 MHz BW	+XPIC	+ LoS 2x2 MIMO	+ BCA (with higher MW Band)	+ BCA (with mmW Band)
6-15GHz	0.5 Gbps	1 Gbps		2 Gbps		3-4 Gbps	
18-42GHz	0.5 Gbps	1 Gbps	2 Gbps	2-4 Gbps	4-8 Gbps		4-10 Gbps

mmW Backhaul Technology	500 MHz BW	2 GHz BW	4 GHz BW	+XPIC	+LOS 2x2 MIMO/OAM
V-band (60GHz)		>4 Gbps			
E-band (70/80GHz)	3.2 Gbps	12.8 Gbps		25.6 Gbps	51.2 Gbps
W-band (100GHz)	3.2 Gbps	12.8 Gbps	25.6 Gbps	51.2 Gbps	102.4 Gbps
D-band (150GHz)	3.2 Gbps	12.8 Gbps	25.6 Gbps	51.2 Gbps	102.4 Gbps

Overview of future technology capabilities - Latency

- Target end to end latency:
 - eMBB use cases (max ~10ms RTT)
 - URLLC use cases (max ~1ms RTT)

- MW latency can go down to 100us per hop, mmW is able to reach down to 10us (but always less than 50us)
- Fundamental for network slicing evolution

SDN use cases for mobile backhaul

Conclusions

- Specific spectrum for different use cases and new mmW Bands to address 5G use cases are needed
- Pursuing solutions for increasing the spectral efficiency of single Channel and Geographical Spectral efficiency are a must that should be rewarded

We believe that only a coordinated approach involving all stakeholders will enable this view

- Manufacturers \rightarrow to invest in innovation
- Operators \rightarrow to adopt more spectral efficient approaches
- Regulators \rightarrow to reward spectral efficient approaches, enabling innovation as well