

ITU WORKSHOP on SHORT RANGE DEVICES (SRDs) AND ULTRA WIDE BAND (UWB) (Geneva, 3 June 2014*)

APT Activities on SRD Frequency Usage Harmonisation

Dr Masayuki Ariyoshi Chairman of the APT/AWG TG-SRD

ITU WORKSHOP ON SHORT RANGE DEVICES AND ULTRA WIDE BAND

GENEVA, SWITZERLAND 3 JUNE 2014

www.itu.int/go/ITU-R/RWP1B-SRD-UWB-14

- SRD related status in Asia-Pacific
 - SRD implementations
 - SRD operations
 - Introduction of SRD applications and services
- Towards harmonised use of SRDs
 - Regulatory aspects: frequency band and output power
 - Technical aspects: related R&D activities for advanced technology on SRD

- Report ITU-R SM.2153-4:
 - Short-range Radiocommunication Devices (SRDs) are intended to cover radio transmitters which provide either unidirectional or bidirectional communication and which have low capability of causing interference to other radio equipment.
 - Such devices are permitted to operate on a non-interference and non-protected basis.

- Survey on SRD operations
 - SRD type approval process, Mutual Recognition Arrangement (MRA), licensing requirements, etc
 - APT/AWG/REP-07 (rev 2): adopted in August 2008, revised in Sept 2008 and in Sept 2012
- Survey on SRD introduction, applications, issues and technologies
 - Rather focusing on SRD services and applications in operation, especially in ISM band
 - APT/AWG/REP-31: adopted in Sept 2012, currently being revised
- Frequency bands for harmonised use of SRDs
 - Summary of implementation status and directions for harmonised use of SRDs including possible frequency bands for harmonisation
 - > APT/AWG/REP-35: adopted in March 2013

Status of SRDs Implementation

Frequency band	Remarks	AUS	BRU	CTN	CHN	L	KOR	LAO	MLA	MYN	Масао	PNG	RMI	SNG	THA	VTN
9-148.5 kHz		Y	Р	Y	Y	N	Y	Y	Y	N	Y	N	N	Y	Р	Р
148.5-315 kHz		N	N	U	Р	N	Р	N	Y	N	N	U	N	N	N	N
3 155-3 400 kHz	RR No.5.116	Y	Y	U	Y	Р	Y	Y	Y	N	N	U	N	N	N	N
6 765-6 795 kHz	RR No.5.138	U	Y	Y	Y	Y	U	U	Y	N	N	U	N	N	N	N
7 400-8 800 kHz		Y	Y	Y	Р	N	Р	N	U	N	N	U	N	N	N	N
13.553-13.567 MHz	RR No.5.150	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	N	Y	Y	Y
26.957-27.283 MHz	RR No.5.150	Y	Y	Y	Y	Y	Р	Y	Y	Y	Y	U	N	Y	Р	Y
40.66-40.7 MHz	RR No.5.150	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	N	Y	Р	Y
312-315 MHz		Y	Y	N	Р	Y	N	N	Y	Y	N	U	N	Y	Y	Y
433.05-434.79 MHz		Y	Y	Y	Y	Р	Р	Y	Y	N	N	U	[P]	Y	Y	Y
401-402 MHz		Y	N	U	N	N	U	Y	U	N	N	U	N	Y	Y	Y
402-405 MHz		Y	N	U	N	Y	Y	Y	Y	N	N	U	N	N	Y	[P]
405-406 MHz		Y	Ν	U	N	N	U	Y	Y	Ν	N	U	N	N	Y	Y
862-875 MHz		N	Р	Р	N	N	N	Y	Y	N	N	U	U	Р	N	Р
875-960 MHz		N	Р	Р	Р	Р	Р	N	Y	N	N	N	[P]	Р	Р	Р
2 400-2 483.5 MHz	RR No.5.150	Р	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	N	Y	Y	Y
5 150-5 350 MHz		Y	Р	Y	N	Y	Y	Y	N	Y	N	U	[P]	Y	Y	Y
5 470-5 725 MHz		Y	Р	Y	Ν	Y	Р	Y	Ν	Y	N	U	[P]	Y	Y	Y
5 725-5 875 MHz	RR No.5.150	Y	Y	Y	Y	Y	Р	Y	Y	Y	Р	U	[P]	Y	Р	Р
24.00-24.25 GHz	RR No.5.150	Y	Y	Y	Y	Y	Р	Y	Y	N	N	U	[P]	Y	Р	Y
61.0-61.5 GHz	RR No.5.138	Y	N	Y	N	Y	Y	Y	Y	Ν	N	U	N	Y	U	N
76-77 GHz		Y	Y	Y	Y	Y	Y	Ν	Y	Y	N	U	N	Y	Y	N
122-123 GHz	RR No.5.138	U	U	Y	N	Y	U	Y	Y	N	N	U	N	N	N	N
244-246 GHz	RR No.5.138	U	U	Y	Ν	Y	U	Y	Y	N	N	U	N	N	N	Ν

Y: Yes, implemented already

P: Partially implemented

U: Under implementation

N: Not [available or undecided]

ITU Workshop on Short Range Devices (SRDs) and Ultra Wide Band (UWB), 3 June 2014, Geneva

- Radio equipment type approval process and related
 - In the most of the APT countries
- Mutual Recognition Arrangement with other countries/regions (as of Sept 2012)

- It has been seen that SRD connectivity in ISM bands is getting widely introduced in APT countries
- Introduced in:
 - PCs, tablets, mobile phones
 - Digital devices (camera, recorder, etc), games, portable audios
 - > Wireless AP, mobile routers
 - > medical equipment, wireless microphones, etc
 - Deployed in:

Airports, train stations, café, shopping mall, public offices, schools, museums, ...

- There are differences in implementation status, power limits and other technical parameters for SRDs in Asia-Pacific region
- However, regionally harmonised frequency bands and technical rules for SRDs would be desirable
- It is also noted that even when the same band is allowed for SRD operation, the type of application designated for SRDs may not be the same; resulting in different categories of SRDs operating under various output power levels
- What to be harmonised?
 Frequency bands and typical applications
 RF output power levels

- Harmonised use for SRDs provides benefits for SRD end users, manufacturers, and regulators:
 - greater user confidence in the reliable functioning of devices when travelling abroad;
 - a broader manufacturing base and increased volume of equipment (globalisation of markets) resulting in economies of scale and expanded equipment availability;
 - improved spectrum utilisation;
 - potential reduction in the influx of illegal or nonconforming SRDs into the marketplace of some countries

- Some frequency bands have been harmonised for typical applications in Asia-Pacific
 - across Brunei, Hong Kong, Japan, Korea, Malaysia, Philippines, New Zealand, and Singapore

Typical Applications	Frequencies / Frequency band (MHz)	Range of the maximum power level			
Cordless Phones / Telemetry	315	25uW to 10mW e.r.p			
Medical Implant	402-405	25uW e.r.p			
RFID	433.92	1mW to 25m W e.r.p			
WLAN	2400-2483.5	10mW to 1000mW e.i.r.p			
Vehicle Radar	76000-77000	10mW to 100W e.i.r.p			

across Hong Kong, Korea, Philippines, New Zealand, and Singapore

Typical Applications	Frequencies / Frequency band (MHz)	Range of maximum power level			
RFID	13.553-13.567	100 mW (e.i.r.p) / 42 dBµA/m at 10m			
	26.96-27.28	0.5W to 3W e.r.p / 42 dBµA/m at 10m			
Model Control	40.66-40.70	100 mW to 1000mW e.r.p			
	72-72.25	10 mW to 750 mW e.r.p			
Cordless Phones	864.8-865	10 mW to 1000 mW e.r.p			
WLAN	5725-5850	10 mW to 4W e.i.r.p			

- There are certain frequency bands for SRDs in all regions
 - Recommendation ITU-R SM.1896: frequency ranges for SRD global harmonisation
 - Most of these frequency bands are ISM bands and SRDs are allowed to operate within these bands under the condition accepting harmful interference which may be caused by these applications
- Possible frequency bands for harmonisation of SRDs in Asia-Pacific region

Frequency band	Typical Application	Remarks
402-405 MHz	Medical Implant	APT REC-05
433.05-434.79 MHz	RFID	APT REP-07
862-960 MHz	RFID	APT REC-03
5150-5350 MHz	WLAN	APT REC-06
5470-5725 MHz	WLAN	
76-77 GHz	Vehicle Radar	APT REP-07

R&D activities on SRD related technologies in APT countries (as of Sept 2012)

Country	Comments
Australia	National ICT Australia (NICTA) has been researching gigabit Wi-Fi. The low-
	power 60 GHz chip could be up to 10 times faster than current Wi-Fi chips,
	achieving speeds of up to 5 Gbps.
Brunei	A the moment there are R&D activities which are focused on the development of
	RFID applications e.g. Point-of-Sales (PoS), inventory management, vehicle ID
	tracking etc.
China	Some companies, research institution and universities carry out research on SRD
	related technologies in China.
Japan	- Millimetre-wave and Terahertz related technologies (There are several projects
	related to system and semiconductor device).
	- Dynamic Spectrum Access for WPAN (radio resource enhancement technologies,
	organised by the Ministry of Internal Affairs and Communications, Japan).
Korea	IEEE802.11ac(5GHz band), WiGig (57 -64GHz band), UWB, Picocast, NFC
	(Near Field Communication).
Malaysia	Institutions of higher learning in Malaysia have been actively doing R&D
	activities with regards to SRD, such as Wireless Sensor Networks (WSN) and
	Ultra Wideband (UWB) technology.
Singapore	No e.g. Multi-Gigabit technologies for last inch research by various Research &
	Development Institutions and local Universities.

Evolution of Wireless Networks

Growing M2M Applications Using SRDs

- Various M2M applications are in operation using WLAN, Bluetooth, ZigBee, etc in ISM band
 - Medical information systems: medical sensors, handheld devices, ...
 - Emergency situations: disaster recovery, rescue operations,

A Measurement in Hospital

Bluetooth AP

- Hospital WLAN service
 is provided on channels
 1, 6, and 11
- Other private devices operated on other channels would cause interference to existing WLAN devices
- WLAN and Bluetooth packets would cause collisions
- Noise from microwave oven is also measured

M Uno, et al, "A proposal of QoE based self-organised wireless system considering the measurement results in a major hospital," Proc of WinMee 2013, May 2013 ITU Workshop on Short Range Devices (SRDs) and Ultra Wide Band (UWB), 3 June 2014, Geneva

- A new self-organising wireless network on which applications on many terminals can run with high quality even in congested shared frequency bands
- QoE as a key metric for designing / managing the network

General Concept of the Proposed System

M Ariyoshi, et al, "Design of a self-organising wireless network improving application QoE in shared frequency band," Proc of SDR-WInnComm 2014, March 2014

Multiple Layer Smart Sensing

T Miyasaka, et al, "Brind separation of multiple radio signals based on statistical approach," Proc of the 2013 IEICE General Conference, B-17-7, March 2013

19 ITU Workshop on Short Range Devices (SRDs) and Ultra Wide Band (UWB), 3 June 2014, Geneva

20

- Calculate the estimated Channel Occupancy Rate (COR) of 1. own wireless network from current information about offered load, average packet size, and data rate of each STA.
- Get information about COR of other network from multi-layer 2 smart sensing function.
- Update the estimated COR of the own network considering 3. additional offered load.
- Prediction of COR change 4. of other network is obtained. 60 According to the predicted <mark>≈ 50</mark> point, one can judge COR of BSS2 whether or not the traffic of own network would achieve their QoS requirement at the next transmission period.

IEICE Technical Report, SR2013-36, July 2013 ITU Workshop on Short Range Devices (SRDs) and Ultra Wide Band (UWB), 3 June 2014, Geneva

- Proposing an enhanced access control upon IEEE 802.11e
 Enhanced Distributed Channel Access (EDCA)
 - Random back-off parameter set for each access category
 - Exclusively grant transmission opportunity (TXOP)
 - Support of achieved QoS
 - Handling of cases when there is some traffic in a same access category
 - Traffic with excessive required QoE will be restricted; and such the surplus resources will be allocated to other traffic
- Integrated wireless resource allocation mechanisms based on:
 - Dynamic Frequency Selection (DFS) with bandwidth control, or
 - Dynamic Spectrum Access (DSA)

System Simulation Parameters

System	IEEE 802.11g ERP-OFDM [5]
Simulation runs	$3 \mathrm{s} \times 20 \mathrm{runs}$
Control slot duration	$500\mathrm{ms}$
Sampling rate, FFT size	$120 \text{ MHz}, 6.4 \mu \text{s} \ (768 \text{ points})$
Spectrum sensing threshold	$-89\mathrm{dBm/MHz}$
Simulation area	$20 \mathrm{m} \times 20 \mathrm{m}$
Number of BSSs and STAs	2 (BSS), 5 / BSS (STA)
Transmission power	16 dBm (AP), $12 dBm$ (STA)
Propagation model	Free space loss
Center frequency	$2.442\mathrm{GHz}$
Antenna directivity	Omni-diractional (2.15 dBi)
Number of antennas	$2 \text{ (AP, 0.5}\lambda \text{ spacing), 1 (STA)}$
Transmitted frame	DATA, ACK
Transmission rate	$24\mathrm{Mb/s}$
Payload length	1500 Octet
Offered load	$150 \mathrm{kOctet/s/link} (BSS 1)$
	$100 \mathrm{kOctet/s/link} (BSS 2)$
Noise parameters	NF = 10 dB, 300 K

K Yano, et al, "On the effect of load capacity prediction and priority-based access control for multiple-system coexistence," Proc of the 2013 IEICE Society Conference, B-17-4, Sept 2013 ITU Workshop on Short Range Devices (SRDs) and Ultra Wide Band (UWB), 3 June 2014, Geneva

- Conditions:
 - Two sets of BSS
 - Priority of BSS1 traffic: AP > STA
- Improvement in QoS satisfaction ratio / throughput owing to access limitation for BSS1 STA

K Yano, et al, "On the effect of load capacity prediction and priority-based access control for multiple-system coexistence," Proc of the 2013 IEICE Society Conference, B-17-4, Sept 2013 ITU Workshop on Short Range Devices (SRDs) and Ultra Wide Band (UWB), 3 June 2014, Geneva

- Wireless transceivers and sensing nodes have been developed for field trials
- Wireless TRx prototype:
 - Proposed functions are implemented by modifying driver software on commercial WLAN module
- Sensing node:
 - Capable of sensing of 80MHz bandwidth in 2.4GHz band

This work (pp 13-24) is supported by the Ministry of Internal Affairs and Communications, Japan under a grant entitled "Research and development of dynamic and reconfigurable M2M wireless network technology." ITU Workshop on Short Range Devices (SRDs) and Ultra Wide Band (UWB), 3 June 2014, Geneva

- Needs for future work:
 - to work towards harmonised spectrum bands for SRDs
 - to provide regulatory certainty for manufactures and end-users
 - to catalyst the developments of new SRD applications
- The possible approaches:
 - to simplify the conditions on the use of SRDs
 - to the largest extent possible
 - to adopt frequency bands that are already established in Europe or US: e.g., Recommendation CEPT/ERC/REC 70-03, the Recommendation ITU-R SM. 1896
- This however should take into account potential interference from SRDs and ensuring that existing services remain protected.

- APT/AWG/REP-07 (Rev 2): Operation of Short-Range Devices (SRDs)
- APT/AWG/REP-35: The Frequency Bands for Harmonised Use of Short-Range Devices (SRDs)
- APT/AWG/REP-31: Introduction, Application, Issues and Technologies for Short Range Devices (SRDs)