

The importance of spectrum and orbit efficient use for large area and developing countries

Marcos G. Castello Branco CPqD / Brazil (Vice-Chairman ITU-R Study Group 4)

ITU / BR Workshop on the efficient use of the spectrum/orbit resource Geneva, 6 May 2009

Summary

- Satellite strategic roll;
- The importance of satellite service spectrum and orbit management and regulation;
- Geographical, economical and social aspects in Brazil;
- Climate diversity and quality of service impacts;
- Views on possible improvements through ITU.

What satellites can do differently?

Radio tower view

GSO satellite view

Geostationary Satellite Orbit congestion

Almost the entire GSO arc is already occupied by international and commercial satellite operators.

Large area and population distribution – Satellite solution constraint 1

CR

Consumers distribution – Satellite solution constraint 2

and a second second

Basic telephony subscriber line distribution – Satellite solution constraint 3

Basic education and social diversity – Satellite solution constraint 4

IDEB 2007 – Basic Education Development Index

Source: Ministério da Educação

Climate diversity – Satellite solution constraint 5

- 1. Equatorial
- 2. Tropical
- 3. Tropical Semiarid
- 4. Coastal
- 5. Subtropical
- 6. Tropical climate of altitude

Available spectrum x climate effects

- 4 / 6 GHz band
 - Best option for Brazilian climate;
 - Some sharing problems with FS, including those using WiMAX technology;
 - Bigger antenna sizes;
 - Difficult space coordination due to wider beams;
- 11 / 14 GHz band
 - Higher number of satellites;
 - Lower link availability due to rain;
 - Smaller antenna sizes x availability;
- 20 / 30 GHz band
 - Strong rain effect;
 - Higher equipment cost.

Latitude diversity – Satellite solution constraint 6

GSO arc almost vertical for earth stations at lower latitudes;

GSO arc almost horizontal for earth stations at higher latitudes (South Hem).

Major observations in Brazilian case

- Climate and social distributions produce heterogeneous effects over the satellite coverage and capacity planning in Brazil;
- Economical differences and large remote areas with less network infrastructure make satellites very important to provide basic telecommunication services and uniform national development;
- Satellite frequency spectrum options are rare and hardly shared with terrestrial services as well as subject to propagation conditions due to climate diversity;
- GSO arc has almost no more options for satellite orbital locations specially due to coordination difficulties in 4/6 and 11/14 GHz bands;

Major observations in Brazilian case

- Satellite antenna beam has to be broad in order to cover the big territory and distribute satellite capacity with adequate cost. Hardest coordination in the beam roll-off region with neighbor Administrations;
- Basic and social services (e.g. e-Learning Educational and Medical support) are not commercially interesting for international satellite service providers thus requiring public financing;
- Climate and latitude diversity produce heterogeneous types and sizes of earth station antennas and pointing structures as well as hard QoS and link margin.

Brazil – Satellite social importance

Satellite has been used to fostering the governmental policy:

- to guarantee the universal telephone access;
- to provide broadband access to public schools, districts and indigenous villages (almost 5.130 points of presence) (GESAC project);
- as part of a backhaul to give support to broadband access.

Public Telephones (TUPs) supported by Satellite Earth Stations in Brazil per Region

Views on possible improvements through ITU

- Spectrum and Orbit regulations are very much important for large and developing countries (like Brazil) with heterogeneous geographical, climatic, economical and social distributions;
- Satellite network filings and coordination procedures could be simplified to make it easier for countries which strongly depend on satellite resources;
- More stringent side-lobe reference patterns are necessary for earth station antennas, but some relaxation outside the GSO arc is required specially due to latitude diversity (e.g. Rec ITU-R S. [CSREF-PATT]);
- Off-axis e.i.r.p densities limits (e.g. Rec. ITU-R S.524) should be balanced by high rain rate attenuation effects. Otherwise, power control solutions would not be practical and cost effective.

References / Source

- ANATEL Agência Nacional de Telecomunicações / Comissão Brasileira de Comunicações 2 – Radiocomunicações / Grupo Relator de Radiocomunicações 3 (GRR3) - Serviços por Satélite;
- Ministério das Comunicações "As cidades digitais no mapa do Brasil – Uma rota para a inclusão social" – Organizado por: A.A.Souto, J.C.Dall´Antonia e G.M. de Holanda (CPqD) / 2006;
- Ministério da Educação IDEB 2007;
- Atlas Brasileiro de Telecomunicações 2009.

Marcos G. Castello Branco castello@cpqd.com.br +55 19 3705-6543

www.cpqd.com.br

