

Efficient use of Satellite Resources through the use of Technical Developments and Regulations

ITU BR Workshop on the Efficient use of the Spectrum/Orbit resource

Session II: Technical Options to Improve Access to, and the Efficient use of the Spectrum /Orbit resource

Presented by Gerry Shewan, Head Fixed Satellite and Multimedia

Background – History of Satellite communications

- 1945
 - Arthur C. Clarke Article: proposes a station in geosynchronous orbit to relay communications and broadcast television
- 1957
 - Sputnik 1: First satellite to orbit the earth
- 1965
 - EARLY BIRD: First commercial communications satellite
- 1972
 - ANIK-1: First Domestic Communications Satellite (Canada)

Today - Spectrum/orbit congestion

- Developments in satellite communications lead to an increased use of spectrum and orbital locations
- Since Dec 2007, the BR has received approximately:
 - 730 new Advance Publication of Information (API)
 - 320 new Coordination requests (CR/C)
 - 70 new Notification requests (Part I-S)
- ITU SRS database contains approximately:
 - 3500 APIs, 2100 CR/Cs, 1200 Notifications

Satellite Networks in SRS for C-Band

Satellite Networks in SRS for Ku-Band

Satellite Networks in SRS for Ext-Ku-Band

C

Satellite Networks in SRS for Ka-Band

 Planned satellite networks sent to the BR for notification and brought into use

BSS

- Appendix 30, Region 1 & 3
 - 73 satellite networks
- Appendix 30A, Region 1 & 3 feeder-links
 - 61 satellite networks
- Appendices 30 & 30A, Region 2
 - 22 satellite networks

FSS

- Appendix 30B
 - 56 satellite networks

High-Density FSS Applications

- HD FSS spreads the cost of a satellite network over a large number of subscribers using smaller less expensive terminals
- Frequency bands identified for high-density applications in the FSS

- No. 5.516B of the ITU-RR

High-Density Applications (cont'd)

 Frequency bands identified for high-density applications in the FSS

- No. 5.516B of the ITU-RR

Spectrum Management

Link Budget Basics

- Ability of a satellite link to deliver information from a transmitting earth station at one location over a satellite to a receiving earth station in another location is dependent upon the <u>link margin</u>
- Propagation conditions on the wanted signal path will determine the percentage of the time that the received signal is above the receiving system's (C/N_{Total}) threshold

Spectrum Management (cont'd)

Link Budget Basics (cont'd)

This percentage of the time is referred to as the end-to-end link availability

$$M = \left(\frac{C}{N+I}\right)_{Total \ Link, CS} - \left(\frac{C}{N_{Total}}\right)_{Threshold}$$

 Regardless of what levels of interference are present in a satellite link, all that really matters in terms of the satellite link performance is the link margin and the propagation conditions on the wanted signal path

Spectrum Management (cont'd)

- Mechanisms to share the spectrum among space users
 - Coordination procedures
 - Unplanned frequency bands
 - First come, first served
 - Planning approach
 - Equitable access to spectrum
 - Provide national coverage
 - Reservation of spectrum for future use
 - Specified notification procedures for FSS Plan and BSS Plans
 - Allocations
 - Technical limits (for protection of Space Plans)

Coordination Procedures

Article 9 of the ITU Radio Regulations

- No. 9.6 : "Before an administration notifies to the Bureau or brings into use a frequency assignment ... it shall effect coordination, as required, with other administrations"
- Lengthy and complex procedures

Coordination requirements

- First come, first served
 - Process
 - Article 9 of the ITU Radio Regulations
 - API
 - Coordination
 - Article 11 of the ITU Radio Regulations
 - Notification

Planning Approach

Planned Frequency bands

Identified in Article 5 of ITU-RR, Article 2 of Appendices 30 & 30A, and Article 3 of Appendix 30B

Appendix 30 & 30A of the ITU Radio Regulations

- Compatibility with assignments in the Plan and List
 - EPM, PFD, or Coordination Arc in Region 1 & 3
 - OEPM in Region 2
- Compatibility between Plan/List and unplanned services or other Regions
 - PFD & $\Delta T/T$

Planning Approach (cont'd)

Appendix 30B of the ITU Radio Regulations

- Compatibility with assignments in the Plan and List
 - C/I & Coordination Arc
 - Outside Coordination $\text{Arc} \rightarrow \text{PFD}$ hard limit
- Compatibility with terrestrial service
 - PFD limit in Article 21

Improving Utilization of Space Assets

- Due to spectrum/orbital congestion, coordination process is increasingly more difficult
 - Constant increase in spectrum/orbit use and demand
 - limited access to ideal spectrum and orbital location
 - Solution?

Technological developments

- DVB-S2, "2nd generation" standard for satellite communications
 - Improved Forward Error Correction (FEC) performance
 - Option to use higher order modulation schemes
 - Adaptive ability to dynamically change modulation and coding schemes can be used to advantage in some applications

- DVB-S2 compared to DVB-S
 - Average E_b/N_o margin increase of 2.7dB
 - Average bandwidth reduction of 25%
 - Average power spectral density reduction of 46%
 - Average throughput increase of 33%
- Potential use for DVB-S2
 - Where limited by Article 21 PFD Hard Limit
 - Possible to provide services with national coverage using smaller antennas without increasing satellite EIRP
 - Cost reduction
 - Option to decrease receive antenna size
 - Option to increase the number of HDTV channels per transponder

- Statistical Multiplexing
 - As capacity of broadcasting signals vary with time, not all signals require constant maximum information rate
 - Statistical multiplexing benefits from sharing the baseband capacity among the channels
 - by giving the most bandwidth at to the most demanding channel at any given moment
 - Can increase the capacity by more than 20%
 - transponder with an aggregate information rate of 44 Mb/s can increase its capacity from 8 channels to 10 channels

- Video coding standard: H.264/AVC (MPEG-4 part-10)
 - Improved image quality at same compressed bit rate
 - Same image quality at lower compressed bit rate
 - Bit-rate savings compared to MPEG-2
 - Reduction average of 64% for equivalent quality
 - Satellite employing DVB-S system using MPEG-2 can triple its number of programmes by switching to:
 - 8-PSK with turbo coding or equivalent
 - DVB-S2
 - H.264/AVC
 - Compared to MPEG-2 video compression, required information rate reduced by a factor of 2.25 to 2.5

Advances in Technology

High Mass / High Power Payloads

- Use of multiple frequency bands and high power satellites
- Reliability of launch and in-orbit operations paramount

Satellite Solar Panel Technology

- Fewer solar panels required to supply same bus power

Modulation and Coding

- Higher information rates with less spectrum
- Use adaptive modulation and coding to combat rain fading

Improved earth station radiation pattern envelopes

- Compliant with improved off-axis radiation pattern envelope of 29-25log ϕ instead of the more familiar 32-25log ϕ envelope
 - Reduces the susceptibility to adjacent satellite interference and interference caused to adjacent satellites

Advances in Technology (cont'd)

- Digital compression and replacement of analogue technology
 - Enable more TV channels per transponders
 - Smaller antennas make TV reception by satellite more accessible to greater numbers of subscribers

Rain fade countermeasures

- Make more efficient use of spectrum at all times
 - Higher information rates using less power per unit of bandwidth under clear sky conditions (most of the time)
 - Lower information rates using more power per unit of bandwidth only during fading events

Satellite antenna advancements

 Large shaped mesh reflectors (25 m+) at C-band can be used to provide multiple spot beam coverage are in development

Limits of Technology

High mass/High power payloads

- Increased complexity and integration of time with multiple band payloads
- Heavy lift launch vehicle have their limits
- Use of new, heavier lift payload launchers carries additional risk
- Insurance costs
 - Choose overall launch and hardware reliability over payload size

Satellite Solar Panel Technology

- Limits to efficiency difficult to achieve on wide scale commercially
 - 27% to 40% (in Lab) for triple junction cells, potentially twice that of current of Silicon cells.
- Higher efficiency dual and triple junction solar cells are more costly and currently produced in lower volumes
- Most efficient triple junction solar cells require 100's of suns illumination for peak efficiency adding weight and mechanical complexity of concentrators

Modulation and Coding

- DVB-S2 has "higher" modulation and coding schemes that are more spectrally efficient but at the expense of additional power (refer to slides 19 & 20)
- Modulation schemes employing 8PSK, 16PSK or 32 APSK require quasi-linear transponders to minimize non-linear distortions driving up the size and mass of TWTA's to achieve appropriate output power back-off's

- Digital compression and replacement of analogue technology
 - H.264 uses a more efficient digital video compression algorithm
 - H.264 takes significantly more processing power and memory to compress and decompress video

Rain fade countermeasures

- Use of hydrophobic coatings and other techniques to reduce/eliminate "antenna wetting" losses
- Automatic Level Control (ALC) and Uplink Power Control (UPC) widely employed by feeder link uplinks to the Broadcasting Satellite Service
- Adaptive coding/modulation techniques for increasing throughput best suited to applications where there is feedback from the receiving ES to the transmitting ES to control the level of modulation and/or coding employed while optimizing end-toend link performance

Satellite antenna advancements

 Use of large antennas employing multi-beam spot beams at C-band can be used to greatly increase capacity, increase flexibility and reduce frequency coordination problems with satellite networks covering adjacent administrations.

Impact of Modern Technology

- Provide new or additional satellite applications over limited spectrum/orbit resources
 - More robust
 - Reduced susceptibility to adjacent satellite interference
 - Increased throughput through employment of rain fade countermeasures
 - Increased availability with improved link margin
 - Conserve satellite capacity
 - Increased coverage area
 - Use smaller earth station antenna dish
- All of the above options make satellite technology more accessible and will increase or generate new revenue streams!!!

Regulatory changes due to technology improvements

- Changes to Appendix 30B at WRC-07
- Regulatory changes
 - New Coordination Arc
 - 10 $^{\circ}$ /9 $^{\circ}$ $\,$ for C/Ku frequency bands
 - Use of updated propagation models
 - ITU-R Rec. P.676-7 and P.618-9
 - Simplified Regulatory procedures
 - Non-sequential processing (Article 6 of Ap30B)
 - Elimination of PDA and Macro Segmentation
 - Revised and improved procedures for addition of new Allotments to the Plan for new Member States

Regulatory changes due to technology improvements (cont'd)

Technical changes

- 13/10-11 GHz band

<u>Uplink</u>

	Pre-WRC-07	WRC-07	Impact on (C/N)	Min Faded C/N	
ES Antenna	3m	2.7m	-0.9 dB	Pre-WRC-07	WRC-07
Sat RX Noise Temp	1500 K	550 K	4.4 dB	- 00 4B	
Net difference to clear sky uplink (C/N)			3.5 dB	ן ∠3 08	21.08

<u>Downlink</u>

	Pre-WRC-07	WRC-07	Impact on (C/N)	Min Faded C/N	
ES Antenna	3m	2.7m	-0.9 dB	Pre-WRC-07	WRC-07
ES RX Noise Temp	200 K	125 K	2.0 dB	- 17 dD	1도 쉬다
Net difference to clear sky uplink (C/N)			1.1 dB		15.08

Regulatory changes due to technology improvements (cont'd)

- Changes to Appendix 30B at WRC-07 (cont'd)
 - 6/4 GHz band

<u>Uplink</u>

	Pre-WRC-07	WRC-07	Impact on (C/N)	Min Faded C/N	
ES Antenna	7m	5.5m	-2.1 dB	Pre-WRC-07	WRC-07
Sat RX Noise Temp	1000 K	500 K	3.0 dB	- 00 4B	21 dD
Net difference to clear sky uplink (C/N)			0.9 dB	23 0B	ZIOB

<u>Downlink</u>

	Pre-WRC-07	WRC-07	Impact on (C/N)	Min Faded C/N	
ES Antenna	7m	5.5m	-2.1 dB	Pre-WRC-07	WRC-07
ES RX Noise Temp	140 K	95 K	1.7 dB		
Net difference to clear sky uplink (C/N)			-0.4 dB		15.08

Future Technical & Regulatory Options for Increasing Capacity of Spectrum

- Increased utilization of geostationary orbit
 - Larger earth stations (impractical)
 - Improved earth station antenna standards
 - Earth stations with improved performance in the direction of the GSO plane
 - Implementation of coordination arcs in additional frequency bands
 - Homogeneous networks (similar levels and parameters eases coordination difficulties)

Future Technical & Regulatory Options for Increasing Capacity of Spectrum (cont'd)

- Backlog in the number of satellite filings
 - Use of ITU-RR provisions to request assistance from the BR increases burden on BR
 - Decrease burden on the BR
 - Eliminate ALL paper: make it mandatory to file satellite antenna patterns electronically
 - Improve mechanism for coordination "opt-in" provision (example, No. 9.41) other than $\Delta T/T>6\%$
 - Administrations conduct its due diligence before requesting assistance from the BR
 - Develop guidelines for procedures to contact BR
 - Study methods to streamline this process with objective of accelerating problem resolution from time of request

Future Technical & Regulatory Options for Increasing Capacity of Spectrum (cont'd)

- Competition with co-primary services for the same spectrum (e.g., space based services (FSS or BSS) sharing with fixed service)
 - Do not rely on simple worst-case interference calculations when developing regulatory conditions (e.g., Art. 21) for sharing
 - Rely less on I/N calculations and more on impact to service availability
 - Study quantitative inter and intra-service burden sharing methodologies with other that will help achieve overall spectrum utilization
 - Use more complex statistical methodologies for developing sharing conditions
 - Incorporate more imaginative solutions for sharing that are more than a single globally applied pfd limit (explore nonuniform pfd limits linked to climatic parameters and/or operational constraints)

Questions

ITU References

- ITU Radio Regulations
- ITU Recommendations
- Radiocommunication Bureau Seminar
- Space Network List (SNL)
- Space Network Systems Online (SNS)
- ITU BR Space Networks software

#