

DO THIS NOW!

- 1. Run GIBC
- 2. Select PFD (Terrestrial) tab
- 3. Enter Network 116520121
- 4. Click Start

Space Workshop GIBC (PFD) Exercises

Hon Fai Ng

Space Services Department

Radiocommunication Bureau (BR)

54%

Satellite networks in 2016 have unfavourable findings No status & no date of protection New submission incurs cost & new date of protection However, unfavourable findings

Source: SRS dated 25.11.2016

Interference Control Mechanism

Allocation

Frequency separation of different services (Article 5)

Power Limits

Power-Flux Density (PFD) to protect
TERR services
EIRP to protect SPACE services
EPFD to protect GSO from NGSO
(Articles 5, 21 & 22)

Regulatory Protection "Not to cause harmful interference

"Not to cause harmful interference or claim protection" (Articles 5 & 22)

Coordination

between Administrations to ensure interference-free operations conditions (Article 9)

Right to international recognition, taken into account to avoid harmful interference (No. 8.3)

1. Findings ←

Conformity with Table of Frequency Allocation & other provisions (PFD/EIRP Limits etc.)
(Nos. 9.35, 11.31 of RR, RoP11.31)

2. Coordination Requirements

Identify any administration with which coordination may need to be effected (Nos. 9.36, 9.36.1, 9.36.2)

OPEN PFD.LST (use Notepad)

C:\BR_TEX_RESULTS\PFD\116520121\<timestamp>

OR

<USB Key>

\Space_Workshops...\09-Coordination...\PFD\PFD Hard Sample 1.LST

OR

www.itu.int/en/ITU-R/space/Pages/wrs2016SpaceWorkshop.aspx

PFD.LST STRUCTURE

Satellite Network

Beam
Groups
Frequency assignments & Results
(Frequency x emission)

PFD.LST (HARD LIMITS)

Frequency assignment with excess Gain | PFD at worst case | Max Excess | PFD Limit | Ref BW

(Frequency | Bandwidth | Emission | Total Peak Power | Maximum Power Density)

CASE STUDY

Satellite name: GSAT-NS(93.5E)

Notice ID: 116520121

Orbital Longitude: 93.5°E

Frequency Bands: Ku-band

Services: FSS

Special Section: CR/C/4091

BR IFIC: 2832 / 08.11.2016

QUESTION 1/7

The GIBC (PFD) program can be used for:

ANSWER

- a. Both GSO and Non-GSO satellite networks/systems
- 🟏 b. GSO satellite networks only 🦠

GIBC (PFD) only works for GSO!

Hint: Use the search function in Notepad

QUESTION 2/7

For beam KTR3S in group 116.677654, what is the PFD excess value (dB) for the emission 29M6G7F--?

KTR3S	34.00 DB	POINTING ACC	0.10 DEG		
EC 40000 KHZ DP 12.05	.16				A- 116.677654
12.22000 G 40000 KHZ 29M	16G7F 20.50 DBW	-53.40 DBW/HZ			N- 0001
(7) RR 21.16 REGION 3	FIXED-SATELLITE	169E0421 1	8S3827 V UT	34.00 -146.65	REF. BW 0.004MHZ 1.35 -148.00 N-

ANSWER

a. 34.00

b. -146.65

c. 1.35

PFD excess value

QUESTION 3/7

Assuming KTR3S is a <u>fixed</u> beam, what would be the finding of emission 29M6G7F--?

KTR3S		34.00 DB	POINTING ACC	0.10 DEG		
EC	40000 KHZ DP 12.05.16	5				A- 116.677654
12.22000	G 40000 KHZ 29M6G	7F 20.50 DBW	-53.40 DBW/HZ			N- 0001
	(7) RR 21.16 REGION 3	FIXED-SATELLITE	169E0421 1	8S3827 V UT	34.00 -146.65	REF. BW 0.004MHZ 1.35 -148.00 N-

ANSWER

a. Favourableb. Unfavourable

Because PFD limit is exceeded!

To resolve, reduce maximum power density, total peak power or transmit gain of satellite by excess value

QUESTION 4/7

For <u>steerable</u> beams, if frequency assignments exceed PFD hard limits (space-to-Earth), what are the conditions for a favourable finding?

ANSWER

- a) At least one position of the beam where PFD limits are met without reduction of power density
- b) Administration states that PFD limits will be met by applying a method submitted to BR "B3b1b Method in An1 RoP21.16" check box
- c) All of the above (a + b) in SpaceCap
 - d) None of the above, PFD limits must be met at all positions

See Rules of Procedures on No. 21.16

STEERABLE BEAM **Formula** Power Flux-Density, **PFD** $= PD_{max} + 10log(BW_{ref}) + G(\theta) 10\log(4\pi \mathbf{R}^2) dB(W/m^2)$ **R** is shorter, **PFD** is higher **Worst case** Most stringent **Best case** Least stringent

QUESTION 5/7

Assuming KTR3S is a globally <u>steerable</u> beam, what would be the finding of emission 29M6G7F--?

ANSWER

- **V**
- a. Favourable
- b. Unfavourable

Worst case location is at 5 deg elevation angle & Administration provided a method to meet PFD hard limits to BR

Within tolerable excess

QUESTION 6/7

Assuming KTR3S is a globally <u>steerable</u> beam, what would be the finding of emission 4K00N0N--?

KTR3S	34.00 DB	POINTING ACC	0.10 DEG		
EK ER 300000 KHZ DR 12.05.1	6				N- 116.677653
12.35000 G 300000 KHZ 4K00N	0N8.00 DBW	-44.00 DBW/HZ			N- 0001
(7) RR 21.16 REGION 3	FIXED-SATELLITE	169E0421 18	3S3827 V UT	34.00 -137.27	REF. BW 0.004MHZ 10.73 -148.00 N-

ANSWER

a. Favourableb. Unfavourable

Worst case location is at 5 deg elevation angle & Administration provided a method to meet PFD hard limits to BR

Exceeds tolerable excess

Formula

Excess = PFD - PFD Limit where PFD = PD_{max} + $10log(BW_{ref})$ + $G(\theta)$ - $10log(4\pi R^2)$ dB(W/m²)

QUESTION 7/7

What parameters will affect PFD (space-to-Earth) excess?

MULTIPLE ANSWERS

- Maximum power density or total peak power
 - Satellite transmit gain
- Earth station gain or antenna diameter
- Earth station antenna pattern
 - Test point location
 - Frequency bands and service

Hard Limits vs Trigger

GIBC "Hard Limits" option

GIBC "Trigger" option

To establish findings

To establish coordination requirements

Excess = Unfavourable (except for steerable beams, conditions apply)

Excess = Coordination may be required, Adm needs to confirm

Provisions: 9.14, 9.11, 9.21/C

PFD.LST (TRIGGER) STRUCTURE

CLCR			42.0 D	В	POINTING	ACC	0.20	DEG							1	16.520160
EI	950	0 KHZ	DR 26.05	.16											1	16.683385
1529.75000	М	9500	KHZ 1K0	0N0N-	- 4.0 D	BW -	26.0 DE	BW/HZ							A- 0001	
	(51) RR			МО	BILE-SATE	LLITE									REF. BW	1.000MHZ
	REGIONS	1 AND	3						07N13 TH	A	38.0 -	121. 3	6.7	128.0	N -	
	AFS	1.1	AGL	1.9	ALG	0.7	ARS	0.8	AUS/HMD	2.4	AUS/ICO	5.5	BDI	1.9		
	BEN	1.2	BFA	0.9	BGD	4.1	BOT	1.7	BRM	6.7	BTN	4.1	CAF	1.9		
	CBG	6.7	CHN	6.7	CME	1.9	COD	1.9	COG	1.9	COM	1.1	CTI	0.6		
	DJI	1.3	DNK/FRO	1.8	EGY	1.2	ERI	1.5	ETH	1.9	F /AMS	0.1	F /KER	0.4		
	F /MYT	0.8	F /REU	0.6	FIN	3.7	G	0.5	GAB	1.9	GHA	1.0	GNE	1.9		
	IND	6.5	INS	6.7	ISL	5.6	KAZ	5.2	KEN	1.9	KGZ	1.7	LAO	6.7		
	LBY	1.5	LS0	0.3	MDG	0.7	MLA	6.7	MLI	0.8	MNG	6.7	MOZ	1.9		
	MWI	1.9	NGR	1.9	NIG	1.9	NMB	1.8	NOR	6.7	NPL	2.5	POR/AZR	0.4		
	RRW	1.9	RUS	6.7	S	3.2	SDN	1.9	SEY	0.9	SNG	6.6	SOM	1.8		
	SSD	1.9	STP	1.9	SWZ	0.6	TCD	1.9	TGO	1.1	THA	6.7	TZA	1.9		
	UGA	1.9	VTN	6.7	XZZ/XBY	1.9	YEM	1.0	ZMB	1.9	ZWE	1.9				

List of <u>ALL</u> countries where PFD trigger is exceeded | PFD excess in the country

HOW TO DEFINE MAX POWER DENSITY

Source: Footnote 2 to Tables A, B, C, D of Annex 2 to Appendix 4 Rec ITU-R SF.675-4 (www.itu.int/rec/R-REC-SF.675/en)

Annex 13 to Doc. 4A/63 (www.itu.int/md/choice md.asp?id=R15-WP4A-C-0063!N13!MSW-E&lang=en&type=sitems)

KEY POINTS

Use GIBC (Hard Limits)

Check applicable limits are not exceeded

Resolve before submitting to BR

Modify parameters & submit correct Max Power Density For steerable beams, check "B3b1b Method in An1 RoP21.16" Check (manually) conformity with Table of Frequency Allocation

Eliminate Unfavourable finding

To obtain date of protection