

ITU Regional Forum for ARAB Region: IMT Systems Technology, Evolution and Implementation, Tunisia, 7-9 May 2013.

Session 3: IMT Business & Markets Forecasts

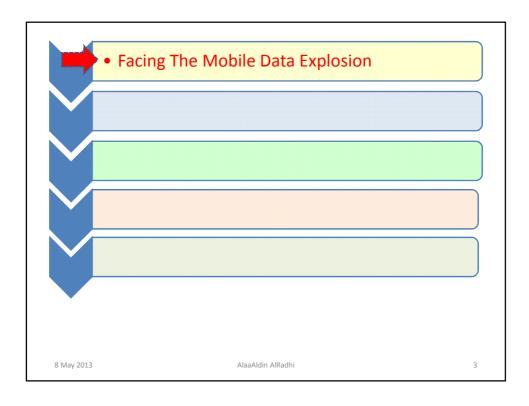
AlaaAlDin AlRadhi

ITU Affiliated & Internet, Telecoms & Emerging Technologies Infrastructures Landscape:

Strategist, Capacity Builder, Researcher & Consultant <u>alradhi2000@yahoo.ca</u>, <u>alaalradhi@gmail.com</u>

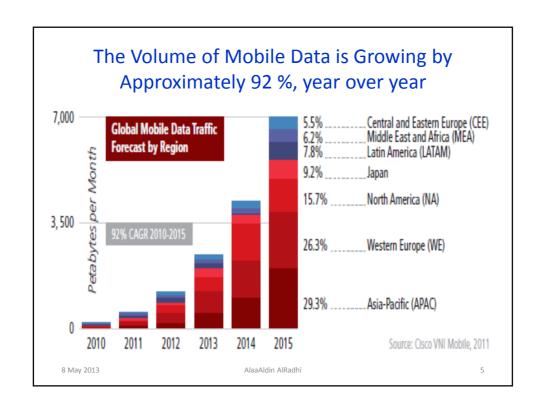
8 May 2013

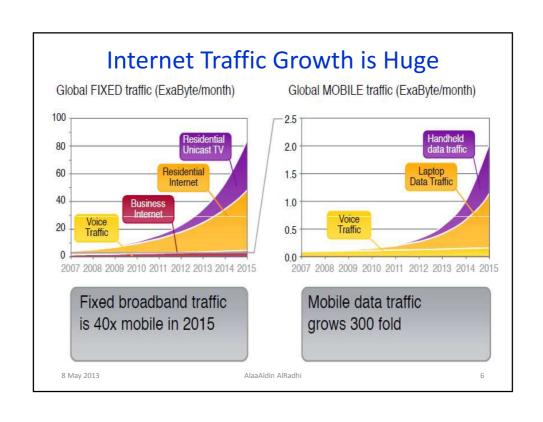
AlaaAldin AlRadh


• Facing The Mobile Data Explosion

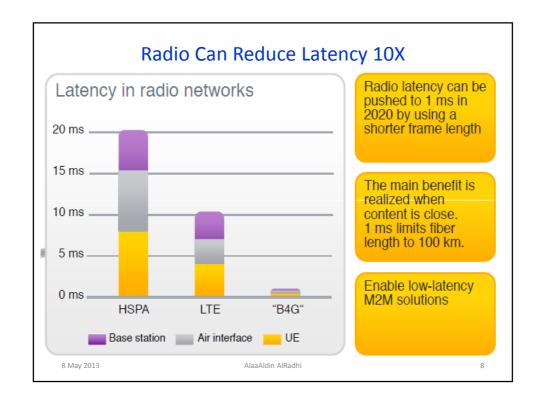
ITU & IMT

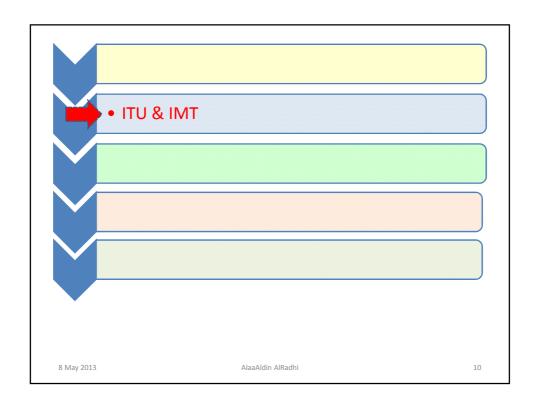
• ITU IMT-Related Works: Stats, Forecasts etc


• ITU & Arab Region Aspects

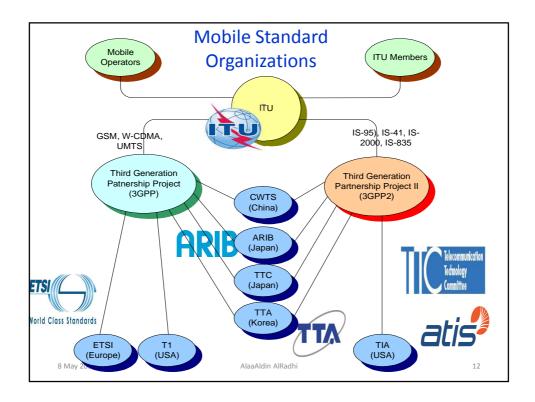

Additional Slides & Some References

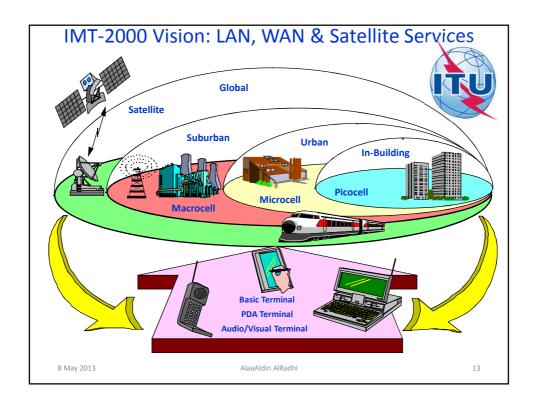
Facing up to the Mobile Data Explosion: Stats


- As of today there are more than:
 - 1 billion 3G subscriptions
 - 400 3GPP-family networks of HSPA technology with data speeds in the 2-14 Mbps range.
 - 140 networks of HSPA+ technology with data speeds of up to 42 Mbps
 - 50 LTE already installed networks (started commercially late 2009) with 10 million LTE subscriptions and with many foreseen operators to deploy LTE gradually

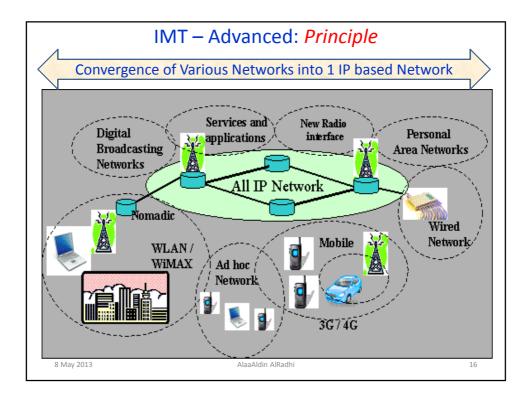


Facing up to the Mobile Data Explosion: What is Needed?


- So we need:
 - More Spectrum to support the projected growth of mobile data.
 - Less Radio Latency
 - Higher Processing Speed
 - Access to all kind of networks & interfaces



- IMT = International Mobile Telecommunications
- ITU Global Broadband Multimedia International Mobile Telecommunication System
- A family of Standards:
 - IMT-2000: ITU's umbrella name for 3G
 - IMT-Advanced"
- National & Regional standards bodies are collaborating in 3G partnership projects: TIA (US), ETSI (EU), TTC (Japan), TTA (South Korea), etc
- 3G Partnership Projects (3GPP & 3GPP2): Focused on evolution of access & core networks
- Currently: There Are More Than 2 Billion IMT Subscribers In The World


IMT – Advanced: ITU Standard for 4G

- IMT- Advanced was standardized late 2011 & agreed @ ITU
 Radiocommunication Assembly (RA-12), in Geneva, January 2012, consensus was reached to expand the IMT Radio Interface Family by establishing the new IMT-Advanced standard. The Recommendation ITU-R M.2012 dealing with IMT was approved by all Member States.
- During the ITU World Radiocommunication Conference (WRC-12) in Geneva, February 2012, it was agreed that additional spectrum for the mobile applications (which includes IMT) was made in Resolution 232 in the band 694 790 MHz in Region 1 and additionally asked the ITU-R to perform sharing studies in this band and in additional bands to be identified for IMT in preparation for WRC-15 (Resolution 233). The additional spectrum will be assigned by the next WRC-15.
- IMT-Advanced to be commercialized by 2015
- Data Rates of 1 Gbps Range RaaAldin AlRadhi

14

IMT – Advanced: Summary of Major Improvements Over IMT-2000

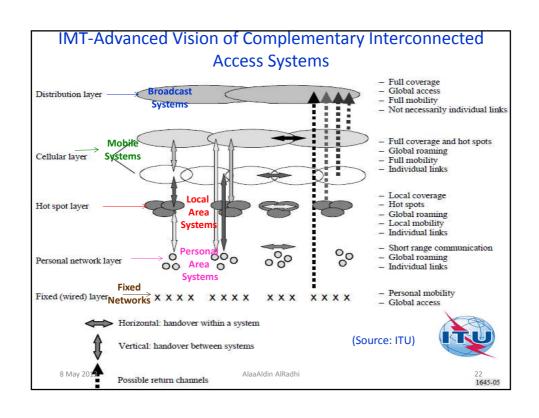
- Increased spectrum efficiency supporting more users at higher data rates per radio channel;
- Fully packet-based architecture meaning reduced costs, and comprehensive support for broadband wireless data;
- Improved radio resource management and control — for enhanced quality of service;
- New capabilities for the physical layer of the radio interface — including wideband radio channels, MIMO [multiple input multiple output] smart antennas and flexible deployment options.

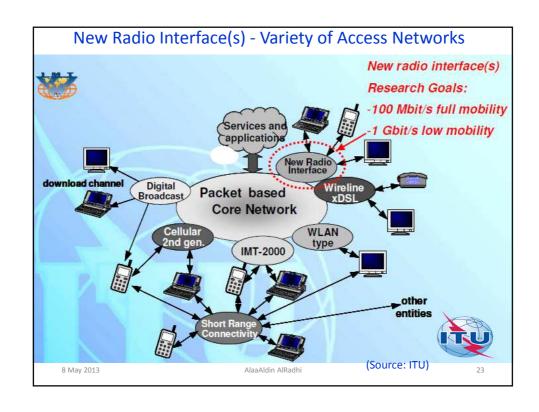
IMT – Advanced: Key Features

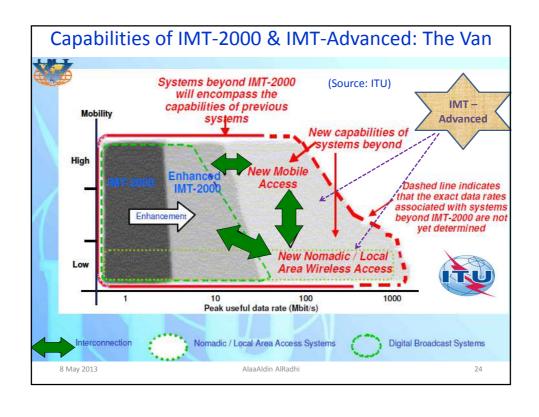
- Compatibility of services within IMT & with fixed networks
- Capability of interworking with other radio access
- Worldwide roaming capability systems
- Enhanced peak data rates to support advanced services & applications (100 Mbit/s for high and 1 Gbit/s for low mobility
- Use radio-frequency spectrum much more efficiently making higher data transfers possible on lesser bandwidth
- Less Latency
- A QoS that matches those of fixed networks

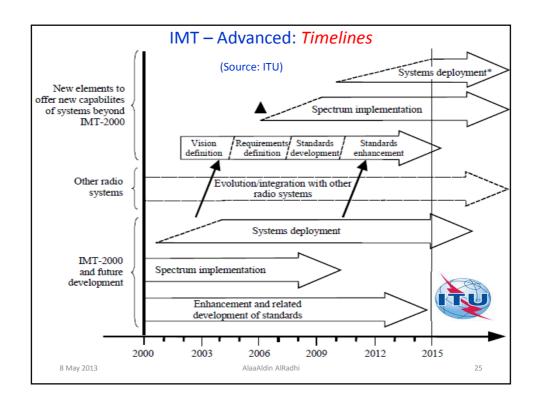
8 May 2013 AlaaAldin AlRadhi 1

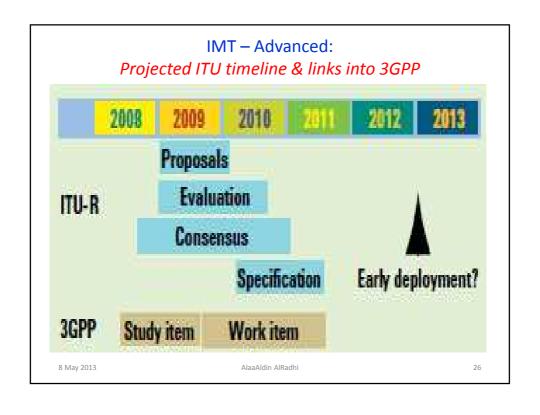
IMT – Advanced: Requirements

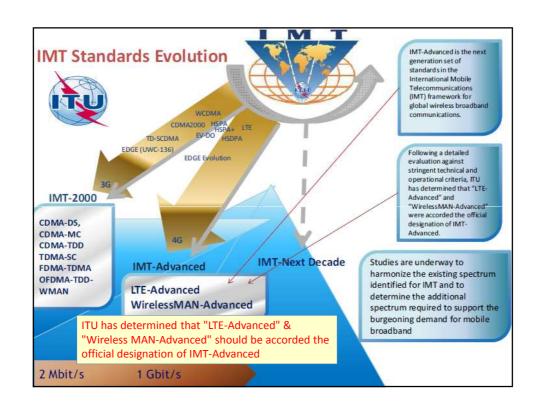

- 1 IP based global core network. Various networks (Wired PSTN, LAN, Cellular (3G), wireless (WIMAX), nomadic, ad hoc & sensor networks) will be able to communicate with this core network.
- The new Radio Channel Multiple access technologies will be backward compatible and must coexist with the IMT-2000 systems. Examples are:
 - OFDMA (Orthogonal Frequency Division Multiple Access)
 - SC-FDMA (Single Carrier- Frequency Division Multiple Access),
 - OFDM-TDMA (Orthogonal Frequency Division Multiplexing -Time Division Multiple Access)
- Radio Aspects:
 - Base station: 2 transmit & 2 receive antennas: (2 x 2)
 - Mobile Station: 1 transmit & 2 receive antennas (1 x 2)
 AlaaAldin AlRadhi

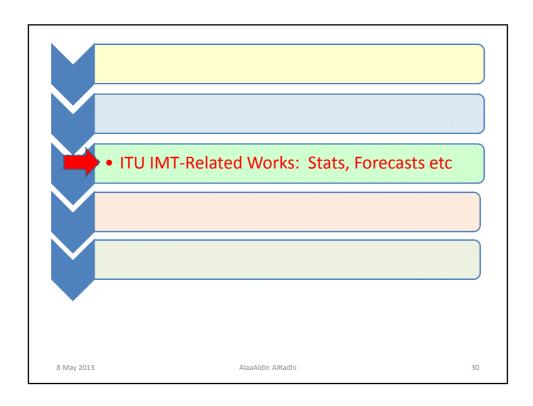

18

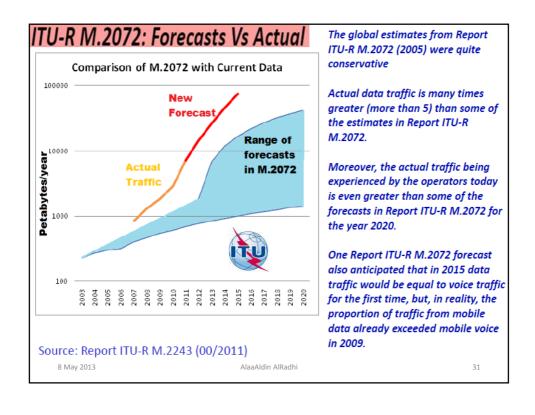

Spectrum	Current Use	Advantages	Disadvantages
410 - 430 MHz	Land mobile services-public protection and disaster relief	More coverage area, good propagation characteristics	Large antennas, limited band, capabilities of IMT-Advanced could downscale
450 - 470 MHz	Land mobile services-public protection and disaster relief	More coverage area, good propagation characteristics	Large antennas, limited band, capabilities of IMT-Advanced could downscale
470 - 806 MHz	Broadcasting services (TV & Radio)	More coverage area, good propagation , upper band closer to IMT-2000. So reduced complexity of Equipment	Large antennas, limited band, capabilities of IMT-Advanced could downscale
2300 - 2400 MHz	Fixed and mobile services	Band closer to IMT-2000. Simplifies development, planning & deployment of IMT systems	Insufficient bandwidth Used in other applications

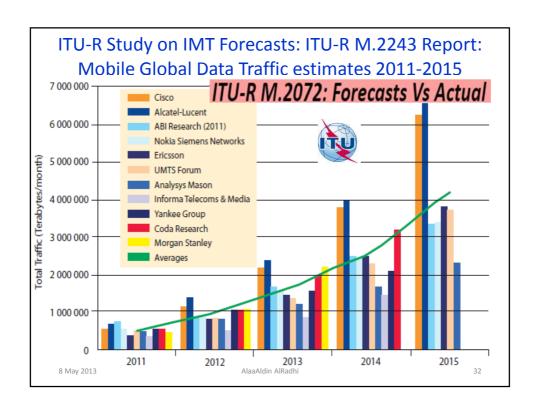

Spectrum	Current Use	Advantages	Disadvantages
2700 - 2900 MHz	Radar systems, aeronautical radio navigation	Band closer to IMT- 2000. Simplifies development, planning & deployment of IMT systems in this band	Not feasible for IMT- 2000 systems. Lots of interference from radars
3400 - 4200 MHz	Fixed services & fixed satellite services; fixed &mobile BB wireless access systems	Large bandwidth, smaller antenna size, relatively better propagation characteristics	interference mitigation measures are required

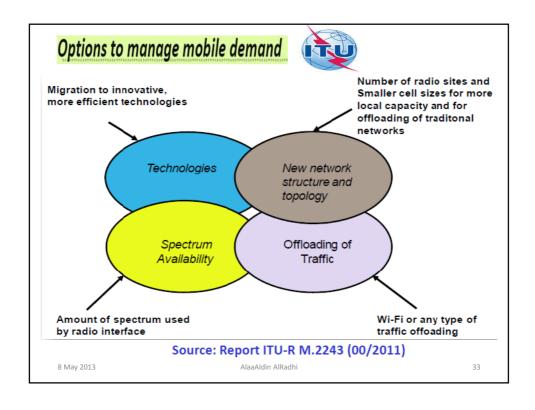

Spectrum	Current Use	Advantages	Disadvantages
4400 - 4990 MHz	Mobile service, FSS providing basic infrastructure telecommunic ation system, aeronautical mobile or for Fixed Services (FS) for long distance links, radio astronomy	Large bandwidth, smaller antenna size, multiple antenna techniques enabling high spectrum efficiency	largest frequency- dependent propagation loss adversely affecting high mobility
8 May 2013		AlaaAldin AlRadhi	21

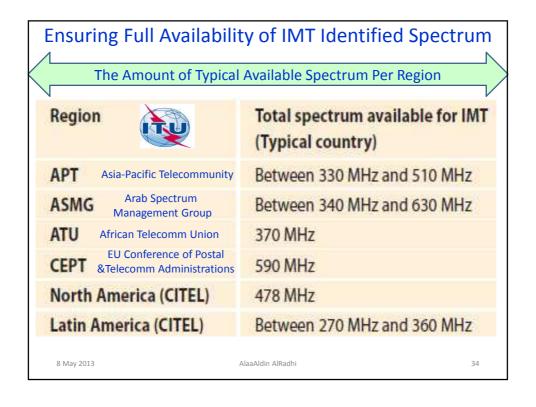


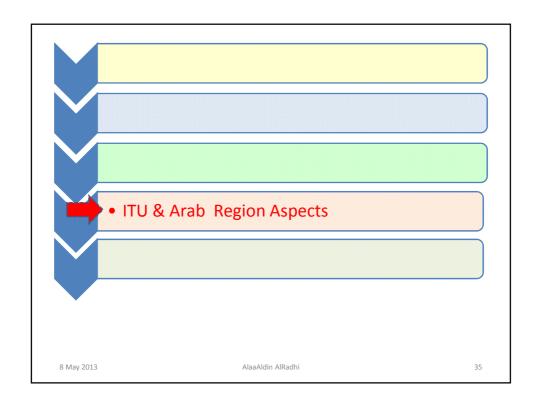

	IMT – Advanced: <i>Summary</i>	
Characteristics	Technology	
Deployment	2012-2015	
Core networks	IP based	
Band	Below 6 GHz	
Data rates	100 Mbps to 1 GHz	
Access methods	OFDMA, SC- FDMA, OFDM-TDMA	
Radio Interface	Cognitive radios, software defined radios.	
Modulation	QPSK, 16QAM, 64QAM, DAPSK	
Services provided	Rich multimedia, voice, high speed data.	
Duplex methods	FDD(paired, unpaired), TDD	
Error control	LDPC, turbo codes, HARQ	
Handover	Seamless, vertical, horizontal, hard, soft	
8 May 2013	AlaaAldin AlRadhi	27

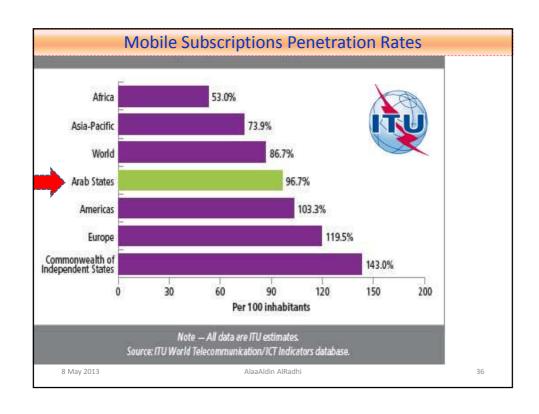


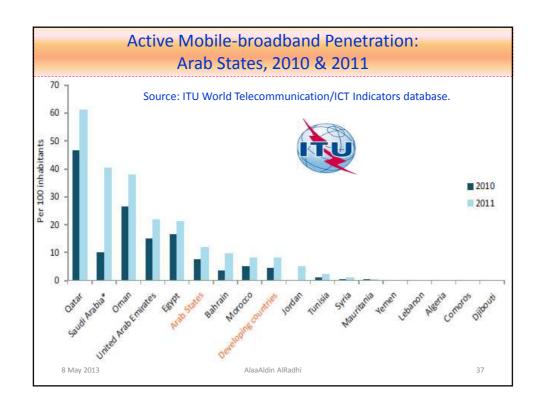

Role of ITU

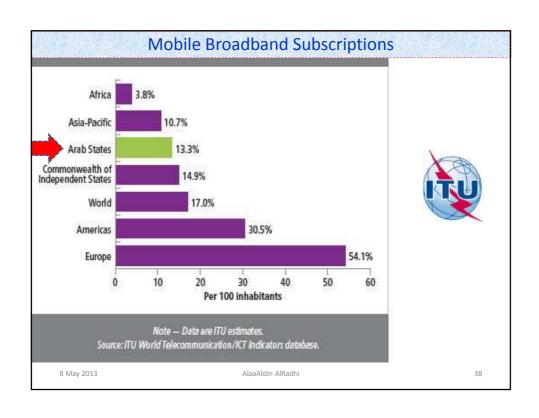


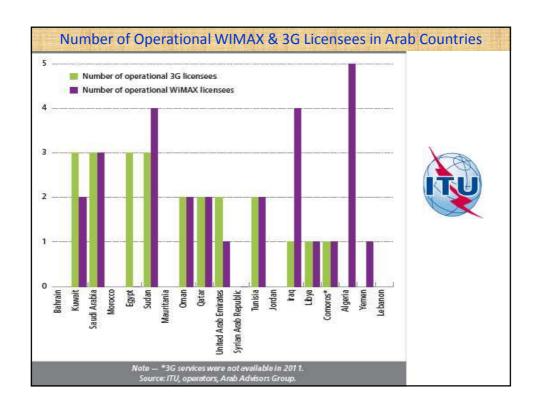

- World-Wide Spectrum Efficiency Coordination & Improvements
- Policy & Regulatory Harmonization
- International Standards for Key Access and Network Interfaces
- Provide Foundation, Framework & Catalyst For 3G Convergence Across Regions & Technologies
- Harmonize Regional Input Contributions & Consensus Building
- World Radiocommunication Conference (WRCs): Reviews & revises the use of the Radio-Frequency spectrum
- Radiocommunication Assembly (RA): Sets work priorities / timeframes and approves the Recommendations in support of WRCs
- Radio Regulations Board (RRB): Approves Rules of Procedure for applying Radio Regulations and registering frequency assignments made by Member States

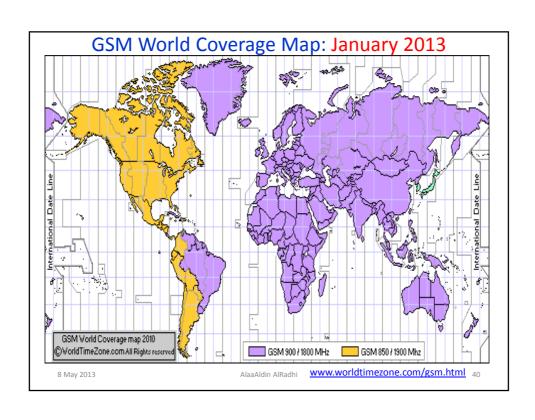


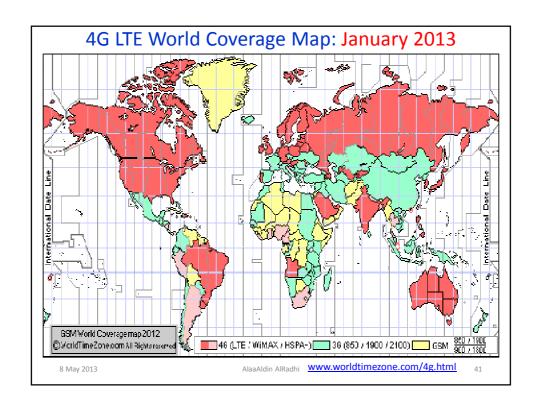


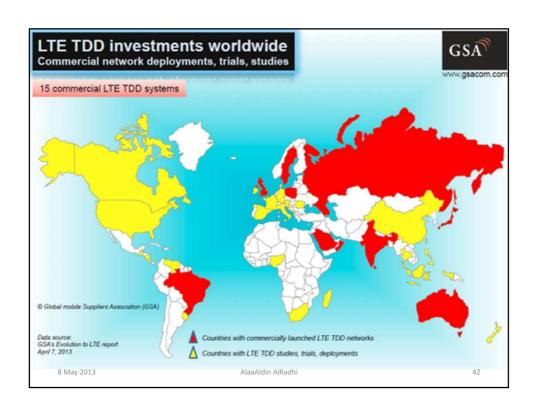


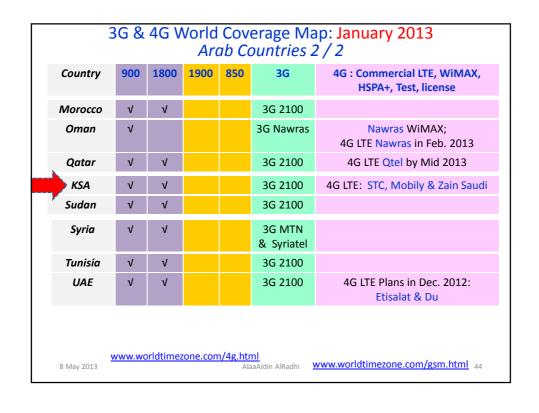




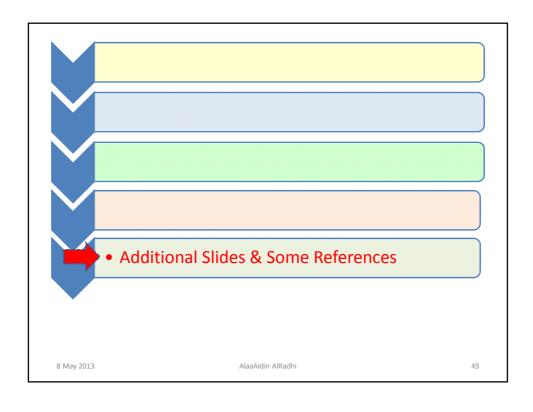








Country	900	1800	1900	850	3G	4G : Commercial LTE, WiMAX, HSPA+, Test, license
Algeria	٧	٧				
Bahrain	٧	٧			3G 2100, 3G 850	Menatelecom WiMAX; Testing 4G LTE Menatelecom – Huawei
Egypt	٧	٧			3G 2100	LTE by end 2014 / Beginning of 2015
Iraq	٧				3G MobiTel	
Jordan	٧	٧			3G 1900/2100	4G WIMAX (UMAX)
Kuwait	٧	٧			3G 1900/2100	4G LTE: Zain Kuwait, Wataniya & Viva
Lebanon	٧				3G 2100	4G LTE in April 2013: Alfa & Touch
Libya	٧					



- M.687 International Mobile Telecommunications-2000 (IMT-2000)
- <u>M.816</u> Framework for services supported on International Mobile Telecommunications-2000 (IMT-2000)
- M.817 International Mobile Telecommunications-2000 (IMT-2000).
 Network architectures
- M.818 Satellite operation within International Mobile Telecommunications-2000 (IMT-2000)
- M.819 International Mobile Telecommunications-2000 (IMT-2000) for developing countries
- M.1034 Requirements for the radio interface(s) for International Mobile Telecommunications-2000 (IMT-2000)
- M.1035 Framework for the radio interface(s) and radio sub-system functionality for International Mobile Telecommunications-2000 (IMT-2000)
- M.1036 Frequency arrangements for implementation of the terrestrial component of International Mobile Telecommunications (IMT) in the bands identified for IMT in the Radio Regulations (RR)
- M.1078 Security principles for International Mobile Telecommunications-2000 (IMT-2000)

- M.1079 Performance and quality of service requirements for International Mobile Telecommunications-2000 (IMT-2000) access networks
- M.1167 Framework for the satellite component of International Mobile Telecommunications-2000 (IMT-2000)
- M.1168 Framework of International Mobile Telecommunications-2000 (IMT-2000)
- M.1182 Integration of terrestrial and satellite mobile communication
- M.1223 Evaluation of security mechanisms for IMT-2000
- M.1224 Vocabulary of terms for International Mobile Telecommunications (IMT)
- M.1225 Guidelines for evaluation of radio transmission technologies for IMT-2000
- M.1308 Evolution of land mobile systems towards IMT-2000
- M.1311 Framework for modularity and radio commonality within IMT-2000
- M.1390 Methodology for the calculation of IMT-2000 terrestrial spectrum requirements
- M.1391 Methodology for the calculation of IMT-2000 satellite spectrum requirements

- M.1456 Minimum performance characteristics & operational conditions for high altitude platform stations providing IMT-2000 in the bands 1 885-1 980 MHz, 2 010-2 025 MHz & 2 110-2 170 MHz in Regions 1 & 3 and 1 885-1 980 MHz & 2 110-2 160 MHz in Region 2
- M.1457 Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications-2000 (IMT-2000)
- <u>M.1545</u> Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000
- M.1579 Global circulation of IMT-2000 terrestrial terminals
- M.1580 Generic unwanted emission characteristics of base stations using the terrestrial radio interfaces of IMT 2000
- M.1581 Generic unwanted emission characteristics of mobile stations using the terrestrial radio interfaces of IMT 2000
- M.1635 General methodology for assessing the potential for interference between IMT-2000 or systems beyond IMT-2000 and other services
- M.1641 A methodology for co-channel interference evaluation to determine separation distance from a system using high-altitude platform stations to a cellular system to provide IMT-2000 service
- M.1645 Framework and overall objectives of the future development of IMT-2000 and systems beyond IMT-2000

- M.1646 Parameters to be used in co-frequency sharing & pfd threshold studies between terrestrial IMT-2000 & BSS (sound) in the 2 630-2 655 MHz
- M.1654 A methodology to assess interference from broadcasting-satellite service (sound) into terrestrial IMT-2000 systems intending to use the band 2 630-2 655 MHz
- M.1768 Methodology for calculation of spectrum requirements for the future development of the terrestrial component of IMT-2000 and systems beyond IMT-2000
- M.1822 Framework for services supported by IMT
- M.1850 Detailed specifications of the radio interfaces for the satellite component of International Mobile Telecommunications-2000 (IMT-2000)
- M.2012 Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications Advanced (and 5.433A)
- M.2014 Global circulation of IMT-2000 satellite terminals
- <u>S.1856</u> Methodologies for determining whether an IMT station at a given location operating in the band 3 400-3 600 MHz would transmit without exceeding the power flux-density limits in the Radio Regulations Nos. 5.430A, 5.432A, 5.432B and 5.433A

- <u>BT.2247</u> Field measurement and analysis of compatibility between DTTB and IMT
- F.2060 Fixed service use in the IMT-2000 transport network
- M.1153 Future public land mobile telecommunication systems
- M.1155 Adaptation of mobile Radiocommunication technology to the needs of developing countries
- M.2023 Spectrum requirements for International Mobile Telecommunications-2000 (IMT-2000)
- M.2024 Summary of spectrum usage survey results
- M.2030 Coexistence between IMT-2000 time division duplex and frequency division duplex terrestrial radio interface technologies around 2 600 MHz operating in adjacent bands and in the same geographical area
- M.2031 Compatibility between WCDMA 1800 downlink and GSM 1900 uplink
- M.2038 Technology trends
- M.2039 Characteristics of terrestrial IMT-2000 systems for frequency sharing/interference analyses
- M.2041 Sharing and adjacent band compatibility in the 2.5 GHz band between the terrestrial and satellite components of IMT-2000

- M.2045 Mitigating techniques to address coexistence between IMT-2000 time division duplex and frequency division duplex radio interface technologies within the frequency range 2 500-2 690 MHz operating in adjacent bands and in the same geographical area
- M.2072 World mobile telecommunication market forecast
- M.2074 Radio aspects for the terrestrial component of IMT-2000 and systems beyond IMT-2000
- M.2077 Traffic forecasts and estimated spectrum requirements for the satellite component of IMT 2000 and systems beyond IMT-2000 for the period 2010 to 2020
- M.2078 Estimated spectrum bandwidth requirements for the future development of IMT-2000 and IMT-Advanced
- M.2079 Technical and operational information for identifying Spectrum for the terrestrial component of future development of IMT-2000 and IMT-Advanced
- M.2109 Sharing studies between IMT Advanced systems and geostationary satellite networks in the fixed-satellite service in the 3 400-4 200 and 4 500-4 800 MHz frequency bands

- M.2110 Sharing studies between Radiocommunication services and IMT systems operating in the 450-470 MHz band
- M.2111 Sharing studies between IMT-Advanced and the radiolocation service in the 3 400-3 700 MHz bands
- M.2112 Compatibility/sharing of airport surveillance radars and meteorological radar with IMT systems within the 2 700-2 900 MHz band
- M.2113 Sharing studies in the 2 500-2 690 MHz band between IMT-2000 and fixed broadband wireless access systems including nomadic applications in the same geographical area
- M.2133 Requirements, evaluation criteria and submission templates for the development of IMT-Advanced
- M.2134 Requirements related to technical performance for IMT-Advanced radio interface(s)
- M.2135 Guidelines for evaluation of radio interface technologies for IMT-Advanced
- M.2146 Coexistence between IMT-2000 CDMA-DS and IMT-2000 OFDMA TDD WMAN in the 2 500-2 690 MHz band operating in adjacent bands in the same area

- M.2176 Vision and requirements for the satellite radio interface(s) of IMT-Advanced
- M.2198 The outcome of the evaluation, consensus building and decision of the IMT-Advanced process (steps 4-7), including characteristics of IMT-Advanced radio interfaces
- M.2241 Compatibility studies in relation to Resolution 224 in the bands 698-806 MHz and 790-862 MHz
- M.2242 Cognitive Radio Systems specific for IMT Systems
- M.2243 Assessment of the global mobile broadband deployments and forecasts for International Mobile Telecommunications
- M.2244 Isolation between antennas of IMT base stations in the land mobile service

Partnership Project and Forums

- ITU IMT http://www.itu.int/imt
- Mobile Partnership Projects:
 - 3GPP: http://www.3gpp.org
 - 3GPP2: http://www.3gpp2.org
- Mobile Technical Forums:
 - 3G All IP Forum: http://www.3gip.org
 - IPv6 Forum: http://www.ipv6forum.com
- Mobile Marketing Forums
 - Mobile Wireless Internet Forum: http://www.mwif.org
 - UMTS Forum: http://www.umts-forum.org
 - GSM Forum: http://www.gsmworld.org
 - Universal Wireless Communication: http://www.uwcc.org
 - Global Mobile Supplier: http://www.gsacom.com

Mobile Standards Organizations

- European Technical Standard Institute (Europe):
 - http://www.etsi.org
- Telecommunication Industry Association (USA):
 - http://www.tiaonline.org
- Standard Committee T1 (USA):
 - http://www.t1.org
- China Wireless Telecommunication Standard (China):
 - http://www.cwts.org
- The Association of Radio Industries and Businesses (Japan):
 - http://www.arib.or.jp/arib/english/
- The Telecommunication Technology Committee (Japan):
 - http://www.ttc.or.jp/e/index.html
- The Telecommunication Technology Association (Korea):
- http://www.tta.or.kr/english/e_index.htm

61