

ITU Training on Conformance and Interoperability for ARB Region CERT, 2-6 April 2013,

EMC fundamentals

Presented by: Karim Loukil & Kaïs Siala

Karim.wakil@cert.mincom.tn Kais.siala@cert.mincom.tn

Basics of electromagnetics

Electromagnetic waves

A wave is a moving vibration

 λ (m) = c(m/s) / F(Hz)

Definitions

• The wavelength is the distance traveled by a wave in an oscillation cycle

 Frequency is measured by the number of cycles per second and the unit is Hz
 One cycle per second is one Hertz.

Electromagnetic waves (2)

An electromagnetic wave consists of:
 ✓ an electric field E (produced by the force of electric charges)

 a magnetic field H (produced by the movement of electric charges)

 The fields E and H are orthogonal and are m oving at the speed of light c = 3. 10⁸ m/s

E and H fields

Electric field The field amplitude is expressed in (V/m).

E(V/m)

Magnetic field

The field amplitude is expressed in (A/m).

Power density

Radiated power is perpendicular to a surface, divided by the area of the surface. The power density is expressed as S (W / m²), or (mW /cm ²), or (μ W / cm ²).

E and H fields

- Near a whip, the dominant field is the E field. The impedance in this area is Zc
 > 377 ohms.
- Near a loop, the dominant field is the H field. The impedance in this area is Z c <377 ohms.

Plane wave

DISTANCE FROM SOURCE NORMALIZED to 入/27

The EMC way of thinking

Electrical domain	Electromagnetic domain
Voltage V (Volt)	Electric Field E (V/m)
Current I (Amp)	Magnetic field H (A/m)
Impedance Z (Ohm)	Characteristic impedance Z0 (Ohm)
Z=V/I	Z=E/H
P=I ² x R (watts)	P=H ² x 377 (watts/m ²) far field conditions

Harmonics

Harmonics

EMC results

Why in frequency domain (Hz) ?

- Time domain aspect is dominated by the major frequency harmonics
- Distinguish contributions of each harmonics, even small ones
 Why in logarithm scale (dB) ?
- Signals are composed of high and low amplitude harmonics
- Very large dynamic (from µV to several mV)
- Logarithm scale is requested

THE ELECTROMAGNETIC SPECTRUM

Frequencies

Frequency	Wavelength	Metric designation	Current designation	Abrev	iations
3 kHz à 30 kHz	100 km à 10 km	myriamétric waves	Very Low Frequencies	VLF	O.Mm
30 kHz à 300 kHz	10 km à 1 km	kilometric waves	Low Frequencies	LF	O.km
300 kHz à 3 MHz	1 km à 100 m	Hectometric waves	Mid Frequencies	MF	O.hm
3 MHz à 30 MHz	100 m à 10 m	Decamétric waves	High Frequencies	HF	O.dam
30 MHz à 300 MHz	10 m à 1 m	metric waves	Very High Frequencies	VHF	O.m
300 MHz à 3 GHz	1 m à 10 cm	décimetric waves	Ultra High Frequencies	UHF	O.dm
3 GHz à 30 GHz	10 cm à 1 cm	Centimetric waves	HyperFrequenci es	SHF	O.cm
30 GHz à 300 GHz	1 cm à 1 mm	Millimetric waves		EHF	O.mm 15

In an isotropic and homogenuous area, wave propagation is modeled by Maxwell equations:

rot H = E(σ – j $ω_0$ ε) div εE = ρ

rot E = $j\omega_0\mu H$ div $\mu H = 0$

H (A/m), Magnetic field
E (V/m), electric field
ε (F/m), Dielectric constant (permettivity)
μ (H/m), magnetic permeability
σ (ohms-1/m), conductibility

physical quantities

Grandeur	Symbol	Unit	Symbol
Frequency	f	Hertz	Hz
Wavelength	λ	Metre	m
Electric field	E	Volt per metre	V/m
Magnetic field	Н	Ampere per metre	A/m
Magnetic flow density	В	Tesla	Т
Power density	S	Watt per square metre	W/m²
intrinsic impedance	Ζ	Ohm	Ω
Antenna's highest dimension	D	Metre	m

Wave impedance

At several wavelengths from the antenna, wave impedance is expressed as:

$$Z_0 = \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}}$$

Intrinsic impedance of the propagation environment (in ohms)

- For distances to the source below λ / 2 π we consider that we are in near field c onditions.
 - Electric dipole: E varies as 1/r³, H varie s as 1/r², So Z varies as 1/r.
 - At short distance from the dipole radiate s mainly in field E.
- Magnetic dipole: E varies as 1/r², 1/r³ H, Z varies as r

At short distance loop radiates mainly i n field H.

- E and H decrease as 1/r, Z=Cte=377Ω (empty environment impedance)
- The EM field has the caracteristics of a plane wave
- For the majority of radio tests, only electric component is measured as the tests are carried out in far field conditions

Relations field/distance

Radiated field

• Radiated field (in V/m)

$$E = \frac{1}{d}\sqrt{30.P.G}$$

d: distance from the transmitter (in m)P: power t the output of the transmitter in WG: Antenna gain (in dB)

- FM Emetter
- Output power: 100 Watts
- Antenna gain : 5
- Frequency 100 Mz

Compute the electric field at 50 m?

• $G = 10^* \log 5 = 6.98$

• Field at 50m = 2.89 V/m

Specific units

dBµV

60

40

20

-20

-40

Milli

Volt

0.1

0.01-

0.001

0.0001

Voltage Units Volt dBV 100 Wide dynamic range of signals in 40 $EMC \rightarrow use of dB (decibel)$ 20 10 For example dBV, dBA : $dBV = 20 \times \log(V)$ 0 $dBA = 20 \times \log(A)$ -20 0.1Extensive use of dBµV 0.01 -40 $V_{dB\mu V} = 20 \times \log\left(\frac{V}{1\mu V}\right) = 20 \times \log(V) + 120$ 0.001 -60 0.00001

Specific units

	Power	Power
Power Units	(Watt)	(dBm)
The most common power unit is the " dBm " (dB mi lli-Watt)	1 MW-	- 90
	1 KW-	- 60
$P_{dBmW} = 10 \times \log\left(\frac{P_W}{1mW}\right) = 10 \times \log(P_W) + 30$	1 W-	
Exercise: Specific units	1 mW-	- 0
1 mV = dBµV 1 W = dBm	1 µW–	30
	1 nW	60
		26

dB	Voltage or current ratio	Power ratio	dBm (50Ω,
	·		column 1 in dBµV)
-20	0.1	0.01	-127
-10	0.3162	0.1	-117
-6	0.501	0.251	-113
-3	0.708	0.501	-110
0	1.000	1.000	-107
0.5	1.059	1.122	-106.5
1	1.122	1.259	-106
2	1.259	1.585	-105
3	1.413	1.995	-104
4	1.585	2.512	-103
5	1.778	3.162	-102
6	1.995	3.981	-101
7	2.239	5.012	-100
8	2.512	6.310	-99
9	2.818	7.943	-98
10	3.162	10.000	-97
12	3.981	15.849	-95
14	5.012	25.120	-93
16	6.310	39.811	-91
18 20	7.943 10.000	63.096 100.00	-89 -87
25	17.783	316.2	-82
30	31.62	1000	-77
35	56.23	3162	-72
40	100	10,000	-67
45	177.8	31,623	-62
50	316.2	10 ⁵	-57
55	562.3	3.162 . 10 ⁵	-52
60	1000	10 ⁶	-47
65	1778	3.162 . 10 ⁶	-42
70	3162	10 ⁷	-37
75	5623	3.162 . 10 ⁷	-32
80	10,000	10 ⁸	-27
85	17,783	3.162 . 10 ⁸	-22
90	31,623	10 ⁹	-17
95	56,234	3.162 . 10 ⁹	-12
100	10 ⁵	10 ¹⁰	-7
110	3.162 . 10 ⁵	1011	3
120	10 ⁶	10 ¹²	13

	Amplitude	Power
3 dB	x 1,41	x 2
6 dB	x 2	x 4
10 dB	x 3,16	x 10
20 dB	x 10	x 100

Example: $46 \text{ dB}\mu\text{V} = 20 + 20 + 6 \text{ dB}\mu\text{V}$ $= 10 \times 10 \times 2 \mu\text{V}$ $= 200 \mu\text{V}$

Electromagnetic compatibility

Electromagnetic interference labs

- Electric and electronic systems are not isolated fro m their environment.
- Electromagnetic energy can unintentionally cross their borders:
 - ✓ to enter,
 - ✓ or to escape.
- This energy is called stray electromagnetic interference.

Example of perturbation

Analogue video

✓ Moire
✓ loss of luminance, contrast
✓ loss of color
✓ loss of synchronization

Digital video signal

- ✓ block effect
- ✓ cessation of movement
- ✓ black screen

Sources of perturbation

RF transmitters

- External Impacts
- Internal Impacts
- Human Impacts

Mobile phone

Electric equipment:

Victim of its environment:
 ✓ Malfunction
 ✓ Temporary malfunction or permanent

2. Source of disturbance in its environment

According to the european directive 2004/108/CEE, EMC refers to:

 the ability of an equipment or a system to perform satisfactorily in its electromagnetic environment

 without introducing intolerable interference into any thing in that environment.

*EUT = Equipement Under Test

- The parasites circulating currents and voltages in cables or equipments will radiate.
- The radiated power will also induce currents and stray voltages in the different interconnections.
 - => The conducted and radiated disturbances are closely coupled.

Test sites

Electromagnetic wave

Metal

Absorber

.....

Semi anechoic chamber SAC (2)

Fully anechoic chamber (FAC)

- Fully anechoic shielded enclosure
- Provided with radio
 frequency absorbent on its
 entire inner surface
- Emission measurements of direct radiation of radio frequency transmitters.
- Complies with ETSI

standards

•Shielded enclosure, sin gle or double wall, with metal stirrer

 Measures of radiated im munity and emission

•EN 61000-4-21.

- Closed cell loaded onto a characteristic impedance
- •Measures radiated emission and immunity.
- •EN61000-4-20

Open Area test sites

- The reference CISPR test site
- Radiated fields measures
- Great distance measures (10m 30m).

Open Area test sites

	Low distance faraday cage	Open area test site	Sami or fully anechoic chamber
Advantages	Isolating EUT from external EM noise	Correct field measurements	Correct field measurements
drawbacks	•Walls reflexions •Near field measure	Electromagnetic noise	 Degradation of absorbers performance high cost

EMC standards

- These are standards or guidelines that define the general requirements for the "EMC" (phenomena, testing ...).
- They apply to all products and are used as references to develop specific standards.
- They include:
 - the description of electromagnetic phenomena
 - the characteristics of measuring instruments and of generation of test signals
 - the implementation of testing
 - the recommendations of severity levels
 - general criteria for proper operation.

Fundamental standards

EN 61000.4.2	Electrostatic discharge immunity test		
EN 61000.4.3	Radiated, radio-frequency, electromagnetic field immunity test		
EN 61000.4.4	Electrical fast transient/burst immunity test		
EN 61000.4.5	Surge immunity test		
EN 61000.4.6	Immunity to conducted disturbances, induced by radio- frequency fields		
EN 61000.4.8	Power frequency magnetic field immunity test		
EN 61000.4.9	Pulse magnetic field immunity test		
EN 61000.4.11	Voltage dips, short interruptions and voltage variations immunity tests		
EN 61000-3-2 et EN 61000-3-3	Limits for harmonic current / flicker emissions (equipment input current ≤ 16 A per phase) 53		

Product standards

EN 55011	Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement		
EN 55014	Requirements for household appliances, electric tools and similar apparatus Part 1: Emission. Part 2: Immunity		
EN 55022	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement		
EN 55024	Information technology equipment - Immunity characteristics - Limits and methods of measurement.		
ETSI EN 300- 330	Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop systems in the frequency range 9 kHz to 30 MHz; 54		

- These standards define, for products or product families, the special design, characteristics, methods and test levels.
- Where available, these standards take precedence over generic standards.
- They use the fundamental standards.
- They define:
 - tests to be performed
 - Ievels of severity of tests
 - the criteria for proper operation

Generic standards

- These standards define the essential require ments in terms of level to be maintained by type of test
- In the absence of product or family product standards, they apply to products installed in a defined environment (industrial, residential).
- They use the fundamental standards.
- They define:
 - the environment (residential, industrial ...)
 - tests to be performed
 - Ievels of severity of tests
 - the performance criteria

Generic standards

EN 61000-6-1:	Immunity for residential, commercial and light-industrial environments	
EN 61000-6-2	Immunity for industrial environments	
EN 61000-6-3:	Emission standard for residential, commercial and light- industrial environments	
EN 61000-6-4:	Emission standard for industrial environments	

CISPR 16 standards

OLD CISPR 16

NEW CISPR 16

CISPR 16-1	Radio disturbance and immunity measuring apparatus		CISPR 16-1-1	Measuring apparatus
		Ľ	CISPR 16-1-2	Ancillary eqpt – conducted disturbances
		£>	CISPR 16-1-3	Ancillary eqpt – Disturbance power
		14	CISPR 16-1-4	Ancillary eqpt – Radiated disturbances
CISPR 16-2	Methods of measurement of disturbances and immunity	2	CISPR 16-1-5	Antenna calibration test sites 30MHz - 1000MHz
		~>	CISPR 16-2-1	Conducted disturbance power
		1	CISPR 16-2-2	Measurement of disturbance power
		1	CISPR 16-2-3	Radiated disturbance measurements
CISPR 16-3	Reports and recommendations of CISPR	2	CISPR 16-2-4	Immunity measurements
		->	CISPR 16-3	CISPR technical reports
			CISPR 16-4-1	Uncertainties in standardised EMC tests
		N	CISPR 16-4-2	Measurement instrumentation uncertainty
CISPR 16-4	Uncertainty in EMC measurements	X	CISPR 16-4-3	Statistical considerations in the determination of EMC compliance of mass –produce products
			CISPR 16-4-4	Statistics of complaints and a model for the calculation of limits

ITU Training on Conformance and Interoperability for ARB Region CERT, 2-6 April 2013,

59

EMC fundamentals

Presented by: Karim Loukil & Kaïs Siala

Karim.wakil@cert.mincom.tn Kais.siala@cert.mincom.tn