

Monitoring the Implementation of Broadband Plans

Dr. Raúl L. Katz, Adjunct Professor, Division of Finance and Economics, and Director, Business Strategy Research, Columbia Institute of Teleinformation

ITU/BDT Regional Economic and Financial Forum of Telecommunications/ICTs for Latin America and the Caribbean San Jose, Costa Rica March 11-12, 2014

The development of a Broadband Plan impact system is aimed at ex ante assessment as well as ex post facto monitoring

- In general terms, nations have some capability to measure results of an ICT policy *ex post facto*
- On the other hand, the capability of conducting an *ex ante* impact analysis is limited
- This creates an important issue given that the cost to the State of misallocated resources or the opportunity cost if the policy fails is quite high
- Furthermore, the creation of a monitoring capability allows for refining or refocusing policies in course of implementation
- This is critical because the margin of error for implementing ICT policies is more and more limited
- The limited availability of data and tools limits the possibility to conduct such analyses

Assessing the Impact of Broadband Plans is a multi-dimensional problem

- To monitor implementation of a Broadband Plan, the monitoring metrics (e.g. targets) have to be defined *ex ante*
- The definition of targets requires the ability to conduct impact assessment to determine:
 - Objectives to maximize (Social welfare? Economic impact? Focus on regional engines of growth? Focus on isolated and rural areas? Increase government efficiency? Focus on small and medium enterprises?
 - What is the expected payback (e.g. Impact) of each strategy?
 - Under a limited resource context, how do we manage trade-offs?
- Once the targets are defined, and the Plan is launched, the issue is to determine how do we measure fulfillment?
 - Is data available? If not, can it imputed?
 - How do we normalize it to allow for robust estimations?
 - How do we build the technical and human capability to conduct the monitoring?
- Based on the monitoring process, how do we feed results back into the policymaking process?
 - Fine-tunning and realignment
 - Accomodate for changes in the environment (e.g. Technology)

Contents

Broadband Plan target definition
Assessing impact *ex ante*Monitoring results

The definition of Broadband Plan targets is typically conducted without rigorous analysis: example of broadband speeds

TARGETS OF COVERAGE AND DOWNLOAD SPEED FOR NATIONAL BROADBAND PLANS

COUNTRY	Coverage Targets (as a percent of households)	Speed Targets (as a percent of households)
United States	100 % (2012)	 4 Mbps (100%) (2012) 50 Mbps
Germany	100 % (2014)	 1 Mbps (100%) (2014) 50 Mbps (75%) (2014)
Singapore	100 % (2012)	• 100 Mbps (95%) (2012)
Australia	100 % (2012)	• 12 Mbps (100%) (2012)
United Kingdom	100 % (2012)	• 2 Mbps (100%) (2012)
Malaysia	75 % (2010)	 (33%) 50-100 Mbps (42%) 1.5 Mbps
Brazil	50% urban households and 25% rural hoiuseholds	• 75% (512-784 kbps)
European Union	100 % (2013)	 30 Mbps (100%) (2020) 100 Mbps (50%) (2020)

Sources: National Broadband Plans

Furthermore, target definition rarely decouples social versus economic objectives, or supply and demand goals

- Social objectives focus on rural/isolated areas, and bottom of the sociodemographic pyramid population (affordability, digital literacy, content and applications)
- Welfare objectives focus on efficiency of the delivery of public services (education and health)
- Economic objectives focus on economic growth, development clusters, small and medium enterprise technology assimilation
- Supply targets address coverage and speed
- Demand targets tackle adoption (service acquisition) and use (what users do with broadband)

First, it is critical to differentiate between social and economic targets for broadband supply and demand

		Type of Target		
		Supply (scope: service coverage)	Demand (scope: broadband adoption)	
Perspective	Social (objective: Universalization)	Reach universal coverage (I)	Achieve, at least, a penetration consistent with economic development level (II)	
	Economic (objective: maximize impact)	Focus deployment of networks and services in areas of high economic impact (III)	Increase technology adoption in order to reach multiplying economic impact (IV)	

TARGET DEFINITION FRAMEWORK

Second, it is important to differentiate entities delivering public services, specifying penetration and speed

EXAMPLE: COSTA RICA BROADBAND STRATEGY EDUCATIONAL AND HEALTH INSTITUTIONS TARGETS (2016)

Targets	Penetration	Speed
Percent of Universities	100%	20 Mbps-100 Mbps symmetrical
Percent of secondary schools	100%	6 Mbps-20 Mbps download
Percent of primary schools	100%	6 Mbps-20 Mbps download
Percent of research centers	100%	20 Mbps-100 Mbps symmetrical
Percent of public libraries	100%	6 Mbps-20 Mbps download
Percent of cultural centers	100%	6 Mbps-20 Mbps download
Percent of hospitals	100%	20 Mbps-100 Mbps symmetrical
Percent of clinics	100%	6 Mbps-20 Mbps download

Source: Rectoria de Telecomunicaciones

Third, coverage and service targets need to be defined on the basis of analysis of level of investment and social and economic returns

Contents

Broadband Plan target definition

• Assessing impact *ex ante*

• Monitoring results

Assessing impact *ex ante* entails forecasting the expected results of the Broadband Plan policies and targets

- What is the expected economic impact of recommended supply and demand targets?
 - Economic growth
 - Job creation
 - Poverty reduction
- What are the expected social effects resulting from achieving the Broadband Plan?
- What will the resulting industry structure and level of competition be at the completion of the Plan?
 - Impact on quality of service and diversity of offerings
 - Impact on service price decline

Impact analysis *ex ante* brings empirical evidence to the development of National Broadband Plans

- Evidence-based policy is public policy formulated on the basis of rigorously established objective evidence
- Evidence-based policy approaches can be applied to telecommunicactions policy making
 - Tests why a certain policy recommendation is more cost-effective and what the impact of the policy will be if it is successful
 - Includes a counterfactual: what will occur if the policy is not implemented
 - Incorporates a quantitative measurement of the impact of the policy
 - Examines both direct and indirect effects that occur because of the policy ("Law of unintended consequences")
 - Separates the uncertainties and controls for other influences outside of the policy that may have an effect on the result
 - Impact assessment should be able to be tested by a third party
- The overall methodology can be fit under the category of cost-benefit analysis used to estimate a net payoff if the policy is implemented

- Cost-benefit analysis feeding regulatory decisions requires accurate data
- Limited data introduces considerable "noise" in the analytical process
- Considering the amount of investment in ICT, and their economic impact, the amount of data and analysis leading to decisions is typically sub-optimal
- In our view, given the little data sometimes policy makers have about economic impact of ICT, this is not an issue of how "to optimize regulation under imperfect information", but how do we gain a better understanding of these effects

Lack of ICT data fosters policy imitation

- One or more incentives for imitiative behavior can be identified
 - Reduction of uncertainty: the more countries adopt a policy, the higher the value of example
 - Promote reputation
 - Cost of information: herding allows to short-cut the analytical work or use of rigorous data analysis leading to the formulation of a regulatory model
 - Learning from opinion leaders: leaders that are outside the country of decision maker increase legitimacy of decision

In order to conduct the economic impact assessment of the Broadband Plan, it is necessary to differentiate among effects

Infrastructure effect: The input/output-matrix assesses the value added of additional demand based on a multiplier

With input-output tables it is possible to calculate the effect of additional investment in telecommunications

The result is a multiplier indicating how much additional value added will be generated due to the fiber deployment.

What measure Multipliers? Multipliers measure the total additional production in the economy due to a unit increase in demand in a specific sector (e.g. construction).

- The input-output model of economics uses a matrix representation of a nation's economy. It is designed to predict the effect of additional demand in one industry (e.g. telecommunications) on others.
- The input-output analysis considers inter-industry relations in an economy. It depicts how the output of one industry goes to another industry where it serves as an input, and thereby makes one industry dependent on another both as customer of output and as supplier of inputs. An input-output model is a specific formulation of input-output analysis.
- The mathematics of input-output economics is straightforward, but the data requirements are enormous because the expenditures and revenues of each branch of economic activity has to be represented.

Infrastructure effect: data to support a quantification of investment (input) and the I-O matrices are required to estimate this

DATA UTILIZED IN INPUT-OUTPUT STUDIES

DATA	REMARKS	AVAILABILITY	RATIONALE
Investment in broadband program	Breakdown of investment by sectors (i.e. manufacturing of electronic equipment, construction, telecommunication)	To be calculated based on benchmarks	This is the investment input that will trigger growth in output and/or jobs
Input-output-table	Requires reformatting to estimate employment effects	To be supplied by government statistical units and/or Central Banks	Required to understand inter-sectoral relationships
# of employed persons	In the same classification as the input-output-table	To be supplied by government statistical units	Required to calculate employment effects

Infrastructure effect: Example: Total investment in broadband needs to be split across sectors

Infrastructure effect: the I/O matrix analysis enables the quantification of output and jobs resulting from broadband deployment

EXAMPLE: SOUTH AFRICA CONNECT IMPACT ON JOBS			Sector	Effect		
			INVESTMENT		Electronics equipment	47,989
Investment (R	and in millions)		65,000		Construction	131,360
		.lobs in equipment	· · · · · · · · · · · · · · · · · · ·	-1	Communications	47,675
	Direct effect	manufacturing, construction	227,024		Total	227,024
Employment creation	Indirect effect	Jobs in other sectors	102,161		Sector	Effect
				Ŋ	Distribution	15,396
	Induced effect induced from (Household spending induced from direct/indirect	106 701	106,701	Finance	4,461
		effects			Metal products	6,907
	Total effect	Jobs in all sectors	435,886		Electrical Eq.	4,604
Multipliere	Туре І	Type I Multiplier (Direct + indirect)/direct	1.45		Other services	24,461
	Multiplier				Other	46,332
Malupilers	Type II Multiplier	(Direct + indirect + induced)/direct	1.92		Total	102,161

Source: Methodology reviewed in Katz (2012)

Note: The estimation was made using the input/output matrix of United States. Then the results are corrected using the added value of South Africa in relation to the United States (32.42% vs 56.17%)

EFFECT	DESCRIPTION	EMPLOYMENT EXAMPLES
Productivity	 Improvement of productivity as a result of the adoption of more efficient business processes enabled by broadband 	Marketing of excess inventoriesOptimization of supply chains
Innovation	 Acceleration of innovation resulting from the introduction of new broadband- enabled applications and services 	 New applications and services (telemedicine, Internet search, e- commerce, online education, VOD and social networking) New forms of commerce and financial intermediation
Value chain recomposition	 Attract employment from other regions as a result of the ability to process information and provide services remotely 	 Outsourcing of services Virtual call centers Core economic development clusters

Externalities: data requirements for econometric analysis of externalities include both ICT and economic

DATA UTILIZED IN ECONOMETRIC STUDIES

DEPENDENT VARIABLES	INDEPENDENT VARIABLES	CONTROL VARIABLES
 Annual or quarterly rate of change of GDP Annual or quarterly rate of change of employment Annual or quarterly rate of change of unemployment Annual number of SME' s 	•Annual or quarterly rate of change of broadband penetration	 GDP at starting time of period Level of education: Percent of population with tertiary degrees; Illiteracy rate; Years of schooling; participation rate in secondary school Regional Investment as percentage of regional GDP Percent of households with electricity or running water Number of projects and added value of construction projects financed by the state Number of hospitals per inhabitant; number of beds in hospitals per pop. Access to financial services: Number of banking offices and bank credit p.c. Industry concentration: Contribution of financial services, commerce and manufacturing sectors to regional GDP Importance of tourism in the region (number of domestic tourism trips) Cost index for interstate trade costs Cost to create new business Regional Gini Coefficient Percentage of people living in urban centers Total road length per hundred sq. Km by area; Road development index Population growth rate Globalization Index; Globalization Index per region

Network effects: The impact of broadband externalities is measured through a structural model

EXAMPLE: PANAMA ECONOMIC IMPACT OF BROADBAND

Variable	Explanation	Source
GDP	Gross Domestic Product in constant USD (2000)	World Bank
GDPC	Gross Domestic Product per capita in constant USD (2000)	World Bank
к	Gross fixed capital formation in constant USD (2000)	World Bank
L	Labor force with secondary education	World Bank
BB_Pen	Fixed broadband penetration (in 100 people)	World Bank
BBPr	Fixed broadband price per month	Local Operators (CW Panama)
BB_Rev	Fixed Broadband Telecommunications revenue	ITU
Urb	Urbanization	World Bank

Variables	Fixed Broadband Model
Growth (GDP _{it})	
Labour force (L _{it})	1.148***
Fixed Capital Stock (K _{it})	0.234***
BB Penetration (BB_Pen _{it})	0.045***
Constant	-
Demand (BB_Pen _{it})	
BB. Price (BBPr _{it})	-2.121***
GDPC (GDPC _{it})	2.443***
Constant	-18.536**
Supply (Mob_Rev _{it})	
GDPC (GDPC _{it})	0.556***
Urbanization (Urb _{it})	0.374***
Constant	13.910***
Output (ΔBB_Pen _{it})	
BB Revenue (BB_Rev _{it})	4.606***
Constant	-95.451***
Year Effects	YES
Obs	40
R ²	(1)
Growth	0.99
Demand	0.92
Supply	0.97
Output	0.40

Source: Katz and Koutroumpis (2012)

HISTORICAL STUDIES	FORWARD-LOOKING
Greenstein and McDevitt (2009) analysis of broadband bonus in the United States	Crandall and Jackson (2001) analysis of consumer surplus generated by broadband adoption in the United States
Greenstein and McDevitt (2010) comparative analysis of consumer value generated by broadband diffusion in China, Mexico, Spain, Canada and the United Kingdom: scale of value creation is proportionate to deployment	Katz et al. (2008) comparative analysis of consumer surplus to be generated in Switzerland by alternative fiber deployment strategies: consumer surplus is maximized in competitive models that promote infrastructure based competition

	ADVANTAGES	DISADVANTAGES
	Easy to communicate	Static models
Input-output analysis	 Based on proven interlinks 	 Numerous caveats on induced effects
		 Dependent on up to date I-O matrices
	Ability to link projections of	Length of data sets
Econometric analysis	growth	 Data disaggregation
Consumer Surplus	Useful to calculate economic impact not captured GDP numbers	 Analysis could be conservative because it excludes gains to early consumers, shifts in demand due to GDP growth
	 Results are quite valid in the short run because the analysis assumes stable demand 	falling prices of PCs, etc.

To sum up, data requirements for assessing broadband economic impact range from aggregate macro to the micro-data data

- Disaggregated data for ICT, broadband and economic indicators
 - Increase the number of observations
 - Deal with fixed effects
- Quarterly data
 - Gain better understanding of timing of effects
 - Ability to conduct analysis for monitoring of effects
- Data on broadband download speeds
 - Understand return to broadband speed
 - Frame investment and broadband target requirements
- Data on wireless internet access
 - Capture a growing trend and shift in broadband platform
- Broadband coverage data
 - Understand uptake trends
 - Gain more evidence to support formulation of demand gap policies
- Variables to control income endogeneity (prices, competition, government, investment)
 - Gain better understanding of causality

Contents

- Assessing impact *ex ante*
- Monitoring results

- Assess the cost-benefit of a successful broadband plan
- Analyze scenarios of expected outcomes if the policy is not implemented
- Be capable of providing a quantitative assessment of the policy impact (jobs created? Improvement in social indicators?)
- Examine not only the direct effects, but also the indirect ones (for example, considering the "law of unintended consequences)
- Identify those factors that can influence policy outcomes, upon which the government does not have adequate control
- Have the capability to support the analysis of independent entity (for validation and replication purposes)

Along those lines, governments need to develop systems oriented to gather data and conduct the policy impact assessment

- This platform needs to be sufficiently flexible to allow multiple types of analysis (social, economic, political)
- Its components are not merely technological; they include the human capability needed to conduct all types of analysis
- The platform needs to comprise the following components:
 - Formal data gathering methodology
 - Data warehouse
 - Analytics team: human capacity to conduct the analysis relying on state of the art econometric and statistical techniques
 - Technology tools
- Of these four components, the most critical ones are the data gathering methodology and the human capacity
- Additionally, since not all analytical options can be defined upfront, it is critical for the platform to preserve a certain level of flexibility

The approach to develop such a system comprises two parallel workstreams

Example of a pilot project in Colombia: how many jobs has the *Vive Digital* Program created so far?

- Questions to be answered:
 - What has the aggregate impact on job creation of the Broadband Plan been?
 - In what industrial sectors?
 - In what provinces / states?
 - What type of employment?
- Once the questions are defined, data gathering needs to be conducted with all relevant administrations, and private sector
- If information is not available, data "proxies" will have to be specified
- The pilot will serve not only to tackle a critical issue regarding the plan but also as a first step in the development of the monitoring platform

The econometric analysis indicates an impact of broadband deployment in the employment rate of 0.0003 percentage points

EXAMPLE: IMPACT OF VIVE DIGITAL (COLOMBIA) ON JOB CREATION

Crecimiento de tasa de empleo (%)

Variable Dependiente: Crecimiento de tasa de empleo entre 2006 y 2010

Variables Independientes: Crecimiento accesos B.A., PBI 2003 y Crecimiento Población

	Total	Baja Penet.	Alta Penet.	
Crecimiento accesos B.A. (%)	0.0003004	** 0.0002951	** 0.0006572	
	(0.0001359)	(0.0001547)	(0.0005495)	
Crecimiento Población (%)	0.0159829	-0.2538734	0.5937073 *	
	(0.5114836)	(0.7899623)	(0.3761862)	
PBI 2003 (Millones de Pesos)	0.0053431	-0.1084577	0.0003309	
	(0.0077051)	(0.1308956) (0.0090124)	
R^2 ajustado	0.0110	0.0318	0.0338	
Prob > F	0.0730	0.0321	0.4351	
Número de Observaciones	132	64	68	_ \
An increase of 10% in broadband connections increased employment rate in 0.003%	Job creation app concentrated penetration dep	ears to be in low artments	While impact app highly penetra results are not sta	ears to be higher in ted departments, atistically significant

To sum up, developing National Broadband Plan monitoring systems is a critical task

- Necessary input for developing targets
- Critical for assessing trade-offs among objectives to maximize
- Necessary platform to assess progress, refine and/or refocus efforts