

István BOZSÓKI, ITU/BDT/SBD

Introduction

- Analogue terrestrial broadcasting uses significant parts of the frequency spectrum below 1 GHz
 - VHF band (47-68 and 174-230 MHz) / UHF band (470-890 MHz)
 - total BW for terrestrial TV : 497 MHz, i.e. 48% on total spectrum below 1 GHz
 - large networks of primary transmitters and associated secondary transmitters towards roof-top/indoor antennas
 - since the eighties, challenged by cable and satellite television, and more recently by ADSL and internet television.
 - the share of terrestrial television broadcasting has generally decreased, in some cases below 5 per cent of the population

• Transition from analogue to digital

- higher number of programmes, a better quality
- much more spectrum efficient than analogue
- spectrum made available by the transition of terrestrial television broadcasting from analogue to digital

INFRASTRUCTURE DIGITAL DIVIDEND: INSIGHTS FOR SPECTRUM DECISIONS

Table of contents

- Foreword
- 1. Introduction
- 2. Scope and potential usage of the digital dividend
- 3. Spectrum management constraints on digital dividend allocation and availability
- 4. Market developments
- 5. National decision-making
- 6. Benchmarking of digital dividend spectrum decisions
- 7. Use of television white spaces
- 8. Conclusions
- ANNEX 1 Countries experiences Germany
- ANNEX 2 Countries experiences France
- Appendix A: various auction designs
- Glossary of abbreviations

http://www.itu.int/ITU-D/tech/digital_broadcasting/index.html

Definition of the Digital Dividend

- Spectrum efficiency gain due to the switchover to digital terrestrial television services
- Several parameters determine the overall spectrum required to permit this transition
- More advanced technologies become available digital dividend will increase
- Analogue transmissions need to be switched-off
- Definition: the digital dividend is the amount of spectrum made available by the transition of terrestrial television broadcasting from analogue to digital

Potential usage of the Digital Dividend

• Broadcasting services

- Provisions of more programs
- HD, 3D, MTV
- Frequency planning arrangements at national level and with neighbouring countries as part of the preparations for digital switchover may require modifications to make available additional spectrum resources.

• Other services

- under the envelope of frequency assignments or allotments already planned for broadcasting, if no more interference is caused and more protection is claimed than the original ones
- white spaces of the broadcasting frequency plan (without disrupting broadcasting services, such as wireless microphones used in theatres or during public events, WiFi or fixed wireless access
- distinct, harmonized frequency allocation to enable ubiquitous service provision, universally compatible equipment and international roaming (e.g. International Mobile Telecommunications, IMT)
 - requires national decisions to move broadcasting out of the corresponding frequency band

Availability of the Digital Dividend

• For broadcasting services (e.g. HDTV)

- as frequency channels in the UHF band become available through analogue switch-off.
- at the time of frequency planning of digital television, which may also involve negotiations with neighbouring countries.

• For mobile service (IMT systems)

- only after analogue switch-off in order to avoid interference with broadcasting services
- the corresponding frequency band is freed from digital broadcasting and from other services to which it may be allocated
- constraints arising from cross-border interference be waived.
- requires regional harmonization decisions and the conclusion of regional and/or bilateral agreements.

Analogue broadcasting services in VHF

 parts of the digital dividend in UHF could be made available more easily, subject to cross-border coordination

Size of the Digital Dividend

- Determined by the trade-offs underlying the choice of the basic parameters of digital transmissions
 - the type of digital TV reception, the percentage of population to be covered, the quality required, the technology used, the respective use of MFN and SFN.
- The VHF and UHF broadcasting bands are also allocated in a number of countries to services other than broadcasting
 - e.g. to aeronautical radionavigation, radio astronomy, fixed services, or used by PMSE applications. Two situations may occur:
 - protection of these services may reduce the size of the digital dividend (e.g. aeronautical radionavigation and radio astronomy in some countries);
 - services need to be adapted to the new situation or re-allocated (e.g. PMSE applications in many countries), which may entail additional costs.
- The size of the digital dividend will therefore vary from country to country. It may also be impacted by the situation in adjacent countries, as a result of the need to avoid, or limit interference.

Importance of the Digital Dividend

- The essence of the digital dividend is to open the possibility of re-allocating a large part of the radio spectrum
 - It is about allocating scarce resources, no different to what spectrum managers normally do.
 - But one of the most important spectrum decisions expected to make for many years to come.

• Digital dividend is not only about spectrum efficiency gains

- The process is closely related to the introduction of digital terrestrial television
- This introduction of new digital television services will deliver other important benefits for:
 - Customers
 - Industry

Customer and industry benefits from the digital television

• Customer benefits

- From the possibility of digital processing and compression, making much more efficient use of the network's capacity.
- The key benefits (compared to analogue television broadcasts):
 - wider choice in TV and radio channels; improved picture and sound quality (depending on the system settings); greater flexibility due to portable and mobile reception; enhanced information services (e.g. Electronic Programming Guide or enhanced 'teletext' services (with enhanced graphics); increasing market competition and innovation

Industry benefits

- new industry has arisen, producing:
 - lower prices (per channel) for broadcasters; pay-tv services (i.e. conditional access system (CAS)); new transmitter networks; new receiver devices (e.g. set-top-boxes, PC-card and USB-based receivers, Integrated Digital Television sets)

Release of valuable spectrum for mobile broadband

- Governments: the availability and efficient management of radio spectrum is an important driver for economic growth
 - e.g. total value of services that depend on the use of radio spectrum in the EU exceeds EUR 250 billion, about 2.2 per cent of the annual European GDP
 - 2008 US spectrum auctions of the 700 MHz band raised USD 19.1 billion for 56 MHz of spectrum, implying an average value of USD 340 million per megahertz.
 - German auction of May 2010 assigning 60 MHz in the 800 MHz band raised proceeds of EUR 3.57 billion, or EUR 60 million per megahertz
 - France, the auction of 60 MHz in the 800 MHz band raised EUR 2.6 billion or EUR 40 million per megahertz
- The importance of the digital dividend bands for the mobile community
 - larger service area per base station.
 - UHF frequencies penetrate buildings more easily
- An efficient allocation of the digital dividend is expected to boost innovation in ICT and help provide new and more affordable services.

Treatment of incumbent users

- Existing users (including broadcast network operators and PMSE users) are present in the very same bands where new types of non-broadcasting allocations/services are foreseen
 - incompatibility issues are bound to emerge and need to be resolved
- Incumbent broadcasters also claim significant parts of the digital dividend as they need additional spectrum to launch new channels and services
 - currently HDTV and perhaps later 3D television
 - make these services sufficiently attractive to switch off their analogue networks
- Potentially large impact of cross-border interference
 - harmonization and coordination at sub-regional or regional level
- Other incumbent uses in the UHF band
 - refarming solutions, including financial compensations

Coordinating the Digital Dividend with neighbouring countries

• WRC-07 and WRC-12

- established an international framework
- each country to decide, whether to continue its use of the upper UHF band by television broadcasting or military applications, or to use for mobile services.
- international condition: whether neighbouring countries agree
- bilateral or multilateral negotiation

Growth of mobile data services

- International and domestic pressure to make spectrum available to the mobile service
- In cases where bilateral negotiations meet difficulties, the ITU assistance may be requested to facilitate a successful outcome

• The GE06 Agreement

- international framework applicable to 119 countries for the use of the UHF band by television broadcasting.
- modification procedure, bilateral and multilateral discussions
- Renegotiating the GE06 Plan does not require renegotiating the GE06 Agreement

Market developments

- Allocating digital dividend is a national strategy decision
- Digital dividend is an important driver for economic growth
- Market developments are resulting in the spectrum demand growth
 - Phased approach of spectrum release is preferable
 - Demands vary between different countries for digital terrestrial television and wireless broadband;
 - Any model is bound to be very sensitive to economic growth or downturn.
 - Economic downturn will affect consumption (and demand for spectrum), and the decline in consumption may be more severe than expected.

• Demand drivers

- Digital terrestrial television
- Wireless broadband

Allocation of the Digital Dividend

• Bands identified for IMT by WRC-07 and WRC-12

- Interference, cross-border frequency coordination, preferably at regional level, is a pre-requisite for this purpose.
- A regional coordinated approach, by which all countries in a region jointly agree to use these bands in a consistent way is therefore obviously preferable.
- Allocating the 700 MHz and/or 800 MHz bands to the mobile service would still enable a large portion of the *digital dividend* to be allocated to television broadcasting in the remaining parts of the UHF band.
- Could result in the loss of channels which may already have been negotiated with neighbouring countries, it requires bilateral and possibly multilateral frequency coordination discussions

• Clear regulatory situation is required for

 handling of possible interference into broadcasting receivers in cases where a base station of the mobile service is established and transmits on frequencies adjacent to those to be used by broadcasting

International standardization

improvement of the immunity of broadcasting receivers

Recent decisions in relation to the allocation of the Digital Dividend

- Important decisions concerning digital dividend:
 - on the analogue switch-off date
 - the technology for digital terrestrial television
 - the allocation of a sub-band for mobile services

• Examples in the Report

<u>Table 6-1</u> Overview of digital switchover dates in Europe (DigiTag) <u>Table 6-2</u> Overview of the allocation of sub-bands for mobile services in a number of countries

Annexes 1 and 2

more detailed information on the experience reported by countries in response to a questionnaire sent by the ITU in relation to the allocation and implementation of the digital dividend (Germany, France).

Conclusions

• The use of radio frequency spectrum

- has a social and economic impact for a country
- a public choice and often implies highly political discussions.

• WRC-07 and WRC-12

- decisions provide a major opportunity to national spectrum decision makers to bridge the digital divide by allocating part of the *digital dividend* to the mobile service.
- international harmonization is already well advanced and can ensure the availability of low cost equipment for broadband mobile access
- Regulatory environment needs to be organised to address jointly the planning of the *digital dividend* and the *analogue switch-off*
- For achieving a successful transition to digital terrestrial television and to successfully implement the digital dividend
 - legal and regulatory measures for the migration to digital networks;
 - harmonised allocation of the *digital dividend* spectrum;
 - integration of all the relevant stakeholders into the process;
 - regional harmonization and cross-border coordination negotiations

