Regional workshop on "Spectrum Management: Economic Aspects" International Telecommunication Union (ITU) and Ministry of ICT (I.R. Iran) - ICT Faculty Tehran, November 21 – 23, 2016

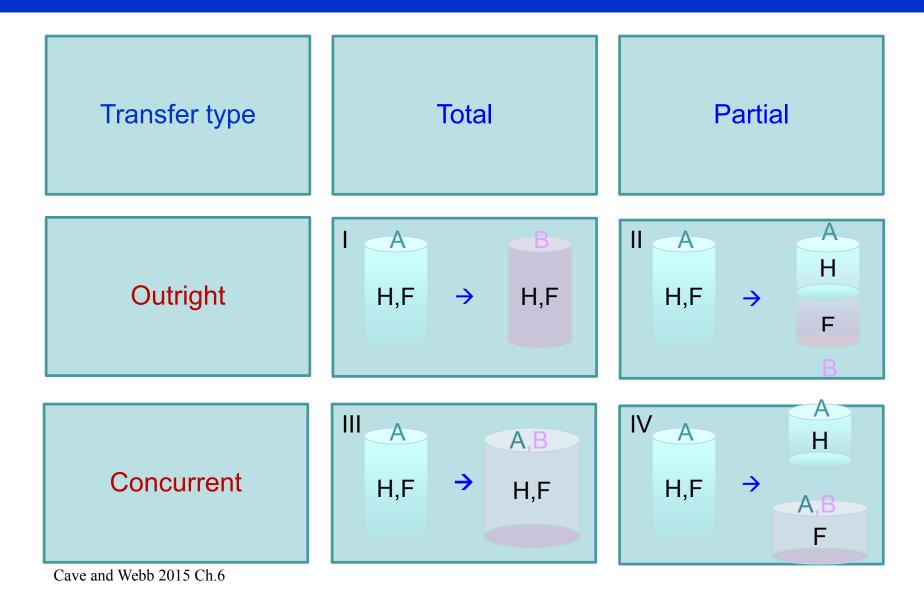
# d the Australian Experience

## Ben Freyer

Faculty of BGL, University of Canberra Center of Law & Economics, Australian National University

di

# Spectrum trading: why?


#### • Key vector for efficiency (welfare)

- > facilitates spectrum transfer faster than traditional 'return-reassign'
- > contributes to dynamic efficiency: incumbents, new entrants
- > improves allocative efficiency: balancing out value across users (MB<sub>i</sub> = MB<sub>i</sub>  $\forall i,j$ )
- improves technical efficiency: incentive to sell if unused
- Key pricing (information) mechanism
  - > spectrum value established by market forces
  - possibly the best mechanism to elicit 'true value'
- Key mechanism for the success of property rights regimes
  - without trading, propertized spectrum is too exclusive
  - > makes a property rights regime:
    - > more flexible and technically efficient
    - responsive to market needs and trends

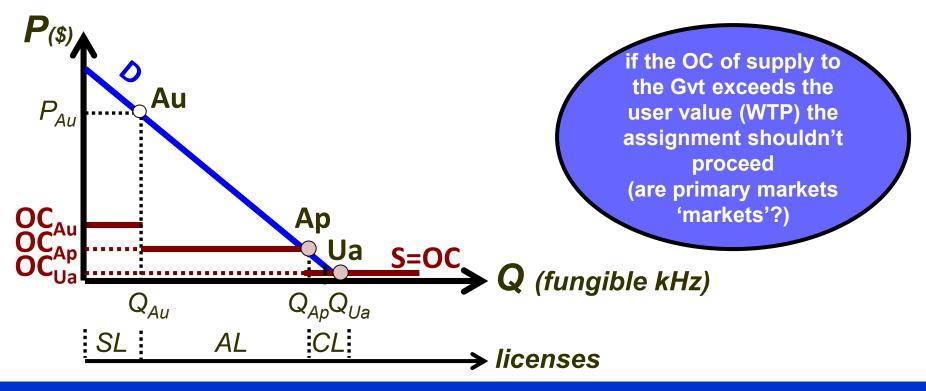
#### Spectrum trading: why not?

- Potential issues with trading:
  - Trading will be sluggish if:
    - poorly-defined usage rights and responsibilities
    - information doesn't flow (need for clearinghouse, online databanks, registries)
    - high transaction costs (taxes, red tape, time cost: notification, approval)
  - Anti-competitive behaviour (Cave 2010)
    - trading can lead to license hoarding to deny spectrum to competitors
    - ~complementary strategy to overbuying at the moment of primary issue
  - Dispute resolution:
    - under regulated assignments the regulator is also the umpire
    - legislation cannot specify all contingencies and possible arrangements
    - who resolves rights and obligations disputes in secondary markets?
  - Asymmetric information
  - Public good nature of some spectrum markets
  - Assessing the fungibility of the traded asset (Weiss et al. 2012)
  - ✤ Externalities: with subdivision: more licenses → more spillovers

# A typology of trades (analogy with land)

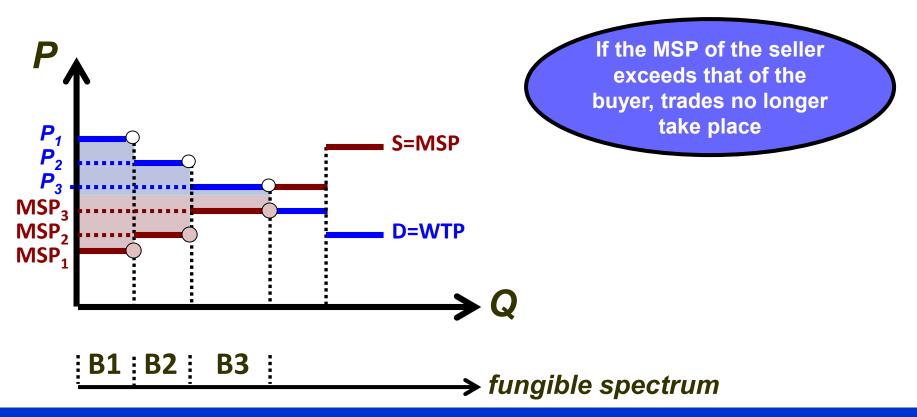


#### The dimensions of trade


- Key dimensions: bandwidth, geography and time (leases)
- Users have different propagation and bandwidth requirements
- Users also have different tolerance to interference
  - Broadcasters: bandwidth domain
    - tolerance for symbiotic WS devices (Freyens & Loney, TelPol 2013)
    - intolerance for invasive WS devices
  - MNOs: geographic domain
    - tolerance for predictable or low-power applications in regional coverage areas
    - intolerance for most applications in metro areas

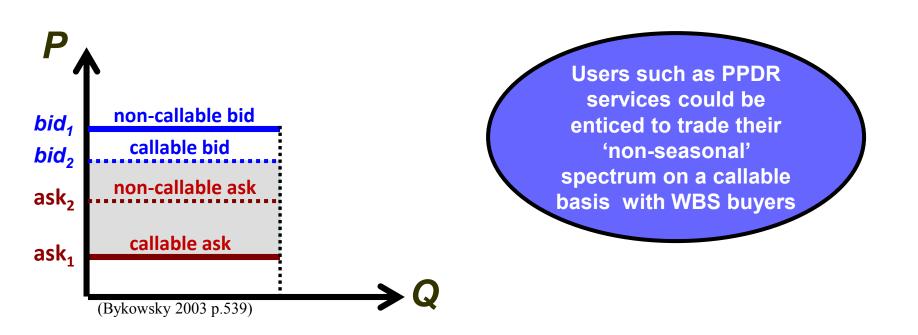
# The Australian licensing system

| Attributes                 | ALs                    | SLs               | CLs           |
|----------------------------|------------------------|-------------------|---------------|
| Regime focus               | Device-centric         | Space-centric     | Tech-centric  |
| Efficiency objective       | productive (use)       | allocative        | dynamic       |
| Exclusivity                | medium to high         | very high         | none          |
| Coordination rules         | administratively set   | proprietary       | self-governed |
| Flexibility (tech-service) | none to moderate       | high              | variable      |
| Individually assigned      | Yes or No              | Yes               | No            |
| Assignment by              | ad-pricing, auction    | auction           | not assigned  |
| Price                      | admin fee / market pr. | market pricing    | free          |
| Tenure and Term            | up to 5 years/renew.   | 15 years / renew. | Unlimited     |
| Interference protection    | provided               | provided          | not provided  |
| Tradable                   | Moderate               | High              | None          |
| Sub-division               | not allowed            | allowed           | not possible  |
| Coordination needed        | low                    | high              | very low      |
| Service – tech neutrality  | usually none           | high              | high or low   |


#### Primary markets: supply and demand

- What are the characteristics of **supply** and **demand** for use of the spectrum?
- in primary markets:
  - demand emanates from a wide-range of users / services
    - high market value, moderate value, low value or experimental
  - governments have ultimate power over spectrum rights
  - they 'supply' spectrum to users by auctions (Au), priced assignments (Ap) and unlicensed assignments (Ua): supply just reflects the OC of assigning the spectrum




#### Secondary markets: supply and demand

- Efficient ('liquid') trading could rely on electronic call markets (*Bykowsky 2003, IEP*)
- 'invisible hand' → sequence of asks and bids step functions
  - > The market price clears the market (between  $P_1$  and  $MSP_3$ )
  - he blue and red areas capture trading surplus



#### Secondary markets: improving liquidity

- Call options: can be weaved into secondary trading to increase liquidity
  - > conditions enabling the issuer (seller) to regain the asset against an agreed set price
  - > call options transfer risk onto buyers  $\rightarrow$  require ex ante payment of risk premiums
  - trades can be made on callable (favoured by seller) or non-callable basis
  - > In this case, more efficient on callable basis (trading surplus is larger)



#### Secondary markets: improving liquidity

- **Ex ante** or **ex post** assessment of competition issues? (*M. Cave 2010 TelPol*)
  - > spectrum trading can lead to deliberate hoarding to crowd out competitors
  - > eventually leading to higher consumer prices and lower welfare
  - need for regulatory oversight
- **Ex ante** oversight:
  - > each trade must be notified and authorized before proceeding
  - protects third-parties (consumers and competitors)
  - > risk of **type I error**: preventing efficient trades (regulator's test too restrictive)
  - adds 'barriers to trade'

#### • **Ex post** oversight:

- trades proceed without authorization but are reviewed later (possibly reversed)
- > risk of type II error: allowing anti-competitive trades that should have been prevented
- > post-trade reviews may come with considerable lags  $\rightarrow$  poor protection for third parties
- > post-trade reviews may be hard to conduct after the facts (confounding factors)
- encourages trade (innovators etc.)
- Is **anti-competitive** behaviour in ex-post trading effectively checked by:
  - > spectrum caps? arbitrary, artificially constrain firms' investment and expansion
  - > use it or lose it clauses? non-usage is not akin to anti-competitive behaviour:
    - > licensee may be unsure: of its future needs, and its ability to buy back spectrum it needs
    - concern that a partial sale would reduce the value of a larger package.
    - Icensee may attach a high 'option value' to the license—licensees may hold licenses predicting a rise in value that outweighs depreciation due to the elapsing term.
  - both measures tend to reduce welfare (*Freyens & Yerokhin 2011 TelPol*)

# Secondary markets: improving liquidity

- Incentivising government users
- Possible measures:
  - > propertize their spectrum endowments and associated proceeds from any sale
  - > or allow them to retain a fixed percentage of any sale
  - but trading profits typically reduce future agency funding
  - > allow barter in spectrum amongst agencies and other operators?

# Trading of SLs in Australia: procedures

Spectrum Licenses (SLs) were designed specifically to permit trading. SLs are highly fungible financial assets: - sub-dividable and combinable at STU level - service and technology neutral - LT property rights

| 1. | Identify the<br>licensed<br>spectrum space<br>you want to buy<br>or lease. | Search the <u>Radiocommunications Licence Register</u> on<br>the ACMA website to locate the owner of the licence<br>or licences for that spectrum and the licence conditions<br>that apply to it.                                                                                                                                                                                 |
|----|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Initiate<br>discussions<br>with the<br>licensee or<br>licensees.           | Open discussions with a view to reaching agreement<br>on mutually acceptable terms for sale or lease of the<br>relevant spectrum.                                                                                                                                                                                                                                                 |
| 3. | Agree on the<br>terms of sale or<br>lease.                                 | Obtain agreement on the terms of sale or lease at a mutually acceptable price. If you cannot negotiate acceptable terms, consider seeking a <u>third party</u> <u>authorisation</u> from the licensee, whereby they retain legal rights to the spectrum but grant you authority to use for the period and purposes you require subject to you meeting <u>licence conditions</u> . |
| 4. | Complete and<br>sign the ACMA<br>R036 form.                                | Both parties complete and sign application<br>form <u>R036</u> and submit it to the ACMA along with a<br>payment of the relevant fee. The trade becomes<br>effective from the date the changes are notified in<br>the <u>Radiocommunications Licence Register</u> , usually<br>within a week of the ACMA receiving the completed<br>form.                                         |

| 500 MHz* | 273 | 3.4 GHz    | 87 |
|----------|-----|------------|----|
| 800 MHz  | 36  | 27 GHz*    | 3  |
| 1800 MHz | 77  | 28/31 GHz* | 3  |
| 2 GHz    | 170 | 700 MHz    | 2  |
| 2.3 GHz  | 62  | 2.5 GHz    | 8  |

Total spectrum licences issued 721

^ As part of the expiring spectrum licence process, multiple licences were transferred to a single licence for licensees. For example, in the 1800 MHz band licences the 77 licences were transferred to 8 individual licences.

\*500 MHz, 27 GHz, 28/31 GHz bands are no longer spectrum licenced

# Trading of SLs in Australia 2001-2016 (genuine trades in bold)

| Year    | Band             | Number of licences (bandwidth)          | Description of trade                                                                                                                                            |  |
|---------|------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2001    | 2 GHz            | 8 (2x 2.5 MHz)                          | Internal Vodafone aggregation                                                                                                                                   |  |
| 2002    | 500 MHz          | 2 (2x100 kHz)                           | 2 small trades (1 internal)                                                                                                                                     |  |
| 2002    | 500 MHz          | 2 (2x40 kHz)                            | Aust Document Exchange to Toll Holdings                                                                                                                         |  |
| 2002    | 500 MHz          | 51 (less than 200 khz)                  | Simico (Land Mobile provider in administration)<br>to Motorola (Aust)                                                                                           |  |
| 2003    | 3.4 GHz          | 2 (2 x 36 MHz)                          | Internal Unwired trade                                                                                                                                          |  |
| 2004    | 28/31 GHz        | 1(2 x 850 MHz)                          | Internal AAPT trade                                                                                                                                             |  |
|         |                  | 1 (2 x 300 MHz)                         |                                                                                                                                                                 |  |
| 2004    | 800 MHz          | 19 (2x5 MHz)                            | Internal AAPT trade                                                                                                                                             |  |
| 2004    | 800 MHz          | 6 (2x10 MHz)                            | Internal Hutchison trade                                                                                                                                        |  |
| 2005    | 2.3 GHz          | 58 (a mixture of 98 MHz and 42<br>MHz)  | Austar and Unwired engaged in a spectrum<br>swap. Austar traded the portions of its 2.3 GHz<br>spectrum holding covering capital cities to<br>Unwired;          |  |
| 2005    | 2.3 GHz          | 47 ( a mixture of 98 MHz and 42<br>MHz) | Internal Unwired transfer for outer metropolitan licences                                                                                                       |  |
| 2005    | 3.4 GHz          | 49 (2x17 MHz)                           | Unwired traded the portions of its 3.4 GHz<br>spectrum, held via its subsidiary BKAL, to<br>Austarcovering Austar's regional subscription-<br>television areas. |  |
| 2005    | 500 MHz          | 2 (2x2 MHz)                             | Motorola (Aust) to WA Police Service                                                                                                                            |  |
| 2006    | 2.3 GHz<br>(MDS) | 1 (7 MHz)                               | Internal CFM Technology transfer (WA)                                                                                                                           |  |
| 2006    | 500 MHz          | 2 (100 kHz)                             | Optus to Connex                                                                                                                                                 |  |
| 2006-07 | 1800 MHz         | 23 (mixture of 2.5 MHz and 5<br>MHz)    | Sale of One.Tel spectrum by liquidator to State<br>Rail authorities                                                                                             |  |
| 2007    | 1800 MHz         | 19 (2x5 MHz)                            | AAPT to Hutchison                                                                                                                                               |  |
| 2008    | 1800 MHz         | 8 (2x2.5 MHz)                           | One –Tel to South Australian rail authority                                                                                                                     |  |
| 2011    | 1800 MHz         | Multiple (2x 2.5MHz and 2 x 5<br>MHz)   | Internal 1800 MHz aggregation for Vodafone and rail authorities                                                                                                 |  |
| 2013    | 1800             | 1 (2x5 MHz)                             | Rail Corp traded internally to Sydney Trains                                                                                                                    |  |

## Where to next for spectrum trading in Australia?

- Trading generally disappointing in Australia (as in UK, NZ etc)
- Some alleged factors:
  - > Market is quite illiquid  $\rightarrow$  fear of not being able to regain spectrum in the future inhibits selling
  - Low OC of holding spectrum unused for large budget organisations (e.g Gvt)
  - > The market is thin –few buyers and sellers, with different structures and abilities to fund trades
  - Stamp duty and CGT are barriers to spectrum licence trading (high tax country)
  - > Uncertainty regarding how licences would be priced (or repriced) if buyer seeks a change of use
  - Constraints from international harmonisation
  - > Downstream competition  $\rightarrow$  even a small perceived benefit to a competitor inhibit trades
  - Geographical dimension little trade potential in regional areas because of the lighter demand, yet even there owners are reluctant to share or authorise third party access for small users.
  - > some licensees hold on to spectrum 'just in case' it is useful later if a new technology arises
  - > Government spectrum rights holders have no incentive, to share or sell spectrum.
  - > Other spectrum rights holders, such as FTA broadcasters, also have few incentives to trade

## Opportunities for spectrum trading in Australia?

- Potentially high value spectrum is held and used inefficiently by some users.
- Greater certainty/predictability may increase confidence in spectrum trading:
  - of future planning arrangements, including ability to convert licences to a different use in the future
  - of tenure and/or renewal
- More flexible technical conditions on licenses may promote secondary trading
- Less use of 'bespoke' approaches to licensing the more specifically tailored to a
  particular use, the less tradable is the license.
- defragmentation of bands (e.g. 2GHz spectrum).
- an extreme degree of technological neutrality and/or transferability of licences may not be achievable
- spectrum exchange model a system of rules that would be applied if a holder of a set of one licence type (eg ALs in an area) sought to replace them with another (eg, a spectrum or wide area licence). Such rules would address issues such as spectrum re-pricing.

#### What does spectrum best compare to and what can we learn from it?

- Wrong perceptions of spectrum trading as stock market trades
- Many comparisons to land...
- Spectrum more akin to a **commodity** 
  - > radio waves as seams of mineral ore of different purpose and quality
  - > require expensive investments in infrastructure to 'mine' the spectrum
  - > requires long-term certainty about usage rights
  - b like commodities, spectrum-using industries are highly exposed to market vagaries
  - > (many successes, many failures)
  - > Australia uses a **royalty system** to extract rents on highly lucrative mining operations
  - could a royalty system both simplify and improve spectrum pricing?