
## **AGENDA:**

#### **Transforming Education for the Next Generation**

Planning to integrate ICT into education

**Ensuring Long-Term Success (Contents and teacher professional development)** 

**META** countries in Action



Achieving **YOUR VISION** of Student Success



#### WHY INVEST ICT IN EDUCATION

- •Government are already using billions of US dollars each year for classical education systems. They usually **ineffective, inefficient and inconsistent** if not updated and improved by technology.
- •Due to lack of standardization of resources, **the classical system cause more differentiations, inequalities in opportunities**. Rich always learn more and better than Poor; they receive bigger share from the Pie.
- •Digital learning can help to **close the gap** in Digital Divide.
- ICT based education system is for the future generations, gives them **new skills and intelligent knowledge**.
- With e-content, they learn as they play and they play as they learn. Whatever learned stays with them since they enjoy the learning process **Good learning experience**
- •Education Transformation is in reality an Education Based ICT Transformation. Students will teach digital skills to their friends families; **whole society benefit**, not just students.
- •Digital Literacy is key to increase the **Broadband Penetration**, **Internet Usage and e-inclusion**



### **Benefits of Education Transformation**

#### Employment and Economic Development

- Build 21<sup>st</sup> century workforce
- Reduce unemployment

#### Competitiveness

- Equip every student for success
- Increase academic rigor and achievement

#### Citizenship and Social Equity

- Unlock student potential
- Prepare students for social leadership and citizenship

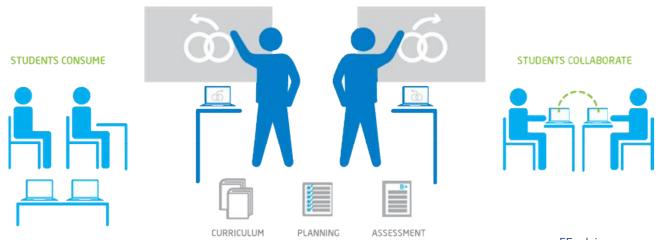


Wob losses and earnings losses have been concentrated in low-skilled, low-income households. ...Many workers remain trapped in low-paid, insecure jobs with little social protection...Young people continue to face record unemployment levels.

- OECD



## **Shifting the Learning Paradigm**


#### **Traditional Teacher-Centered Classroom**

Lecture-based knowledge dissemination. Limited use of technology.

#### **Transitional Teacher-Centered Classroom**

Lecture-based knowledge dissemination. Technology used for collaboration.

#### TEACHER DIRECTS



5Evolving

Evolving toward STUDENT CENTERED CLASSROOM



## **Shifting the Learning Paradigm**

## **Student-Centered Classroom** Technology-rich environment enables learning any time, anywhere, any way COLLABORATION TEACHER AS STUDENTS EXPERTS EXPLORE DISCOVER ASSESSMENTS LEARN RESOURCES COMMUNITY

6





## **Viewing Education Requirements from Several Perspectives**

- What Teachers Might Need (Understand activities and requirements).
- What Students Might Need.
- What Parents Might Need.
- What School Administrators Might Need



## **Understand overall Constraints**

- Geography and terrain (for example, rural, remote, or rugged)
- Population density
- Electrical power (quality and existence)
- Availability of broadband Internet connectivity
- Weather, climate, and other environmental concerns
- Socio-economic factors
- Language and customs
- Existing or legacy infrastructure





## **Intel Global Girls and Women Initiative**

Empower millions of girls and women through education and technology to advance economic opportunity

### **Education Access**

Drive awareness and action to expand education opportunities for girls

## **STEM & Tech Careers**

Inspire more girls and women to become creators of technology

## **Technology Access**

Connect girls and women to new opportunities through technology access, digital literacy and entrepreneurship







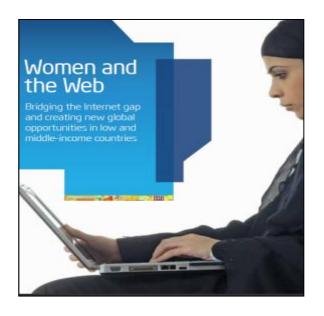




## Inspire Girls and Women to Become Creators of Technology

- Use of hands-on "Maker" and coding activities
- Exposure to peer mentors and role models
- Connecting technology and engineering careers to real world applications and positive social impact

## Examples of Programs and Partnerships:


- Girls Who Code
- NCWIT AspireIT
- Robotics programs
- Hermanas: Diseña Tu Futura
- Compugirls
- TechGYRLS
- Intel Computer Clubhouse Network Start Making! program
- Intel International Science and Engineering Fair and the Intel Science Talent Search\*
- EPICS program
- Higher Ed Scholarships and fellowships





## Intel® She Will Connect Program

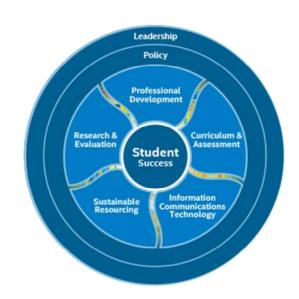
Goal: Empower millions of girls and women through technology and bridge the Internet gap



- Directly responds to findings and call to action in 2013 Intelsupported "Women and the Web" report to empower women in developing countries.
- Innovative combination of digital literacy training, online peer networks, and gender-relevant content.
- To be piloted in sub-Saharan Africa in 2014 and then scaled to other regions.
- Program to be delivered through partnerships with leading local NGOs and other organizations.

Intel® She Will Connect Video: <a href="http://www.intel.com/content/www/us/en/technology-in-education/she-wilconnect-program-close-gender-gap-video.html">http://www.intel.com/content/www/us/en/technology-in-education/she-wilconnect-program-close-gender-gap-video.html</a>




## **AGENDA:**

**Transforming Education for the Next Generation** 

Planning to integrate ICT into education

**Ensuring Long-Term Success (Contents and teacher professional development)** 

**META** countries in Action



Achieving **YOUR VISION** of Student Success



## **Intel® Education Solutions**

User Experience

### Hardware



Software & Services



Content Ecosystem



Implementation Support



Flexible, holistic education technology solution



### Information and Communication Technology Models in Education

#### School Station



Primary usage is for administrative tasks. Students and Teachers have limited access.



#### DESCRIPTION

- The basic ICT configuration relies on just a few computers at school where usage is focused on School Administration Tasks and Professional Learning.
- Teachers and Students may have limited access to computers in the Media Center / Library primarily for research purposes.



### Information and Communication Technology Models in Education

#### Labs

Computers are stationary. Focused primarily on Digital Literacy (ICT skills) and limited integration of Core Curricula activities.





#### **FEATURES**

- Labs are stationary and can foster 1:1 or 1: many learning environments.
- Time spent using technology is limited to availability of Lab.
- The teachers may begin integrating technology into the core curriculum.
- Professional Learning focuses on Digital Literacy.
- Focus areas can include ICT skills development, online assessments, and limited Core Curriculum (math, language, science, etc).

#### RECOMMENDED ACCESSORIES







### Information and Communication Technology Models in Education

#### In Class

Devices are mobile and foster 1:1 learning environment. Teachers share access to devices and plan curriculum accordingly. Learning becomes more technology-enhanced but in short periods of time.





#### **FEATURES**

- An in classroom set of digital learning tools subject to availability to be used inside the classroom for all subjects.
- Also known as a Computers on Wheels model where the devices are on a charging cart and wheeled from room to room.
- Teachers plan curriculum according to availability of devices.

  In class digital learning usage propages students and teachers.
- In-class digital learning usage prepares students and teachers for a more comprehensive use of technology in a 1:1 environment.

  Professional Learning focuses on integration of technology into core curriculum and movement to a student-centered environment.
- Focus areas can include STEM, staff and parents communication, and online assessment.

#### RECOMMENDED ACCESSORIES

Headsets

Printer







### Information and Communication **Technology Models in Education**

#### Personal 1:1

Personalized Learning. Anytime/anywhere/anyway learning. Fully integrated with core curriculum.





#### **FEATURES**

- The Personal model facilitates Personalized Learning, allowing device usage anytime, anywhere. The one to one computer model allows for improved usage of a wide range of digital materials and focuses on a true student-centered learning environment where students take control of their own learning through high quality education software, comprehensive digital content and tools.

  A faster connection also enables online assessment and evaluation.

  Measurement of skills and digital content is embedded in the curriculum.

  Teacher becomes a tutor and expert facilitator.

  Refresh cycle and security plans take place.

#### RECOMMENDED ACCESSORIES

Headsets



Printer

#### **OPTIONAL**





T Project RED: A Global Toolkit for Education Transformation, 2014 For more information click here 🕙

## **Bridging connectivity issue inside Classroom**

**Easy to service:** open back to access battery, HDD, 3G/4G/LTE

**Easy to mount in a classroom** – bracket and screws included. Can be easily removed from wall mount for educator to transport from classroom to classroom OR to and from home

RJ-45 jack provides access to school Ethernet network

USB 3.0 port provides an additional easy way for educators to upload their content or for IT administrators to update device settings.





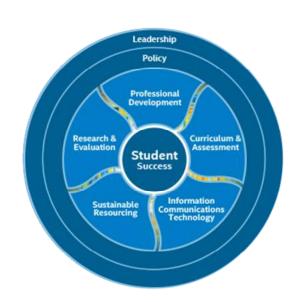
## ICT in Education solution elements

- Technology: devices—cell phones, tablets, netbooks, laptops, PCs, servers and networks—communications and computing
- Connectivity: broadband Internet access, wired or wireless
- Digital Content: learning material from the Net, multimedia CD/DVDs, podcasts, or other digital media
- Improved teaching methods include student-centric models, project-based
- learning, etc.; and professional development that helps teachers effectively integrate technology into their curriculum.

And to facilitate your implementation you should have the following support systems

- 1. Policy
- 2. Funding
- 3. Metrics and assessment
- 4. Commercial industry partners




## **AGENDA:**

Transforming Education for the Next Generation

Planning to integrate ICT into education

**Ensuring Long-Term Success (Contents and teacher professional development)** 

**META** countries in Action







## **Strategic Solution Design**

Education Leadership
Development

Digital Curriculum

Development

Policy Development

LCMS & Learning Platform Solutions

Teacher Professional Development

Personalised Learning & Learning Analytics

Curriculum Design & Development

Infrastructure and Services

Assessment Plan & Solutions

School Server and Local Cloud Solutions

The Achievement of Measurable Learning Outcomes is key focus of the design and assessment



## Supporting a worldwide Education Publisher and Content Developer Ecosystem



Education



- Education content from major publishers
- Innovative learning content and tools from innovators
- Core Curriculum and Supplementary Learning
- Rich interactive eBooks
- Creative Learning Tools
- Local Content Development

Investments in software & service industry drives local capacity development and youth

npioyment

# Intel<sup>®</sup> Education Resources

3 years.

**6** million implementations.

28 countries.

And growing.

## Courseware and supplemental apps to support 21st century skills development



## World-class resources

Curated courseware and supplemental apps



#### Multi-platform and OS

Use the device and OS that meets your needs



#### Global reach

Available in major languages from Intel® Education and global/local partners



#### Offline access

For anytime/anywhere usage



#### Easy to install

With support from Intel

#### 3 easy steps to get Intel® Education Resources!



- 1 Send request for courseware
- or supplemental apps.http://inteleducationresources.intel.com/crt



2. You will receive an e-mail with a link to our Download Center where you can download the latest build.



**3.** Accept the license agreement to download.



## **Building Success**with Intel® Education

#### **CURRICULUM AND ASSESSMENT**

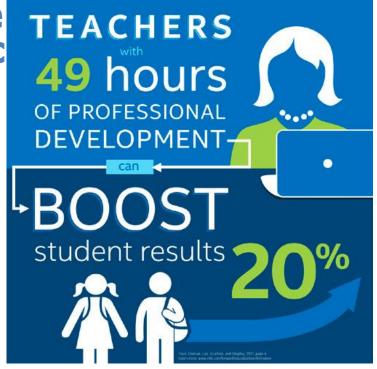
## Intel Education Collaborates to Advance and Align Curriculum and Assessment

- Intel® Education Alliance: worldwide network of content and solution providers to expand high-quality, locally relevant content
- ATC21S: Research-driven assessment initiative supported by Intel, Cisco, and Microsoft
- UNESCO ICT-Competency Standards for Teachers
- International Society for Technology in Education (ISTE)
- Collaborative Assessment Alliance










## **Professional Developme** for Your Customers' Suc

It takes **5-6 YEARS** for teachers to **master technology integration**<sup>1</sup>

**INADEQUATE PD** is a **significant barrier** to successful technology integration in schools<sup>1</sup>

INFORMAL or GENERAL TRAINING has **little effect** on teachers' use of technology<sup>1</sup>



For technology implementations to be successful, teachers need the skills to make effective use of the technology in the classroom

## Intel® Teach Elements eLearning Courses

## K12 teachers. Format: Facilitated or self paced online



Moving into Mobile Learning
Learn the benefits and challenges of mobile
learning, and how to create a successful mobilelearning environment in their classrooms.



Assessment in 21st Century Classrooms Learn to plan, develop, and manage student-centered assessment strategies for improved teaching and learning.



Designing Blended Learning
Explore transitioning to blended learning
experiences where some portion of learning occurs
online and outside of a classroom setting.



Project Based Approaches
Explore the features and benefits of project-based learning to engage students with self-directed learning.



Leadership in the 21st Century

For school Leaders: Explore school leadership practices and policy for effective digital learning

#### Creativity in the Mobile Classroom

Build on concepts from Moving into Mobile, learning to implement mobile learning effectively, while encouraging students' creativity.



#### Collaboration in the Digital Classroom

Design and manage collaboration activities that integrate online tools and prepare students for a globally connected world.



#### Inquiry in the Science Classroom

Explore ways to develop students' scientific thinking and practices.

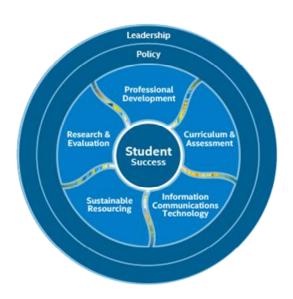


#### Thinking Critically with Data

Examine critical thinking with a focus on data analysis – preparing students to think analytically in our knowledge-driven world.





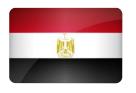

## **AGENDA:**

Transforming Education for the Next Generation

Planning to integrate ICT into education

**Ensuring Long-Term Success (Contents and teacher professional development)** 

**META** countries in Action






## **Education Transformation in Action**

#### **META Momentum**





**EGYPT** 

















# Q&A



