RECOMMENDATION ITU-R SA.509-2*

Space research earth station and radio astronomy reference antenna radiation pattern for use in interference calculations, including coordination procedures

(Question ITU-R 127/7)

(1978-1990-1998)

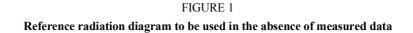
The ITU Radiocommunication Assembly,

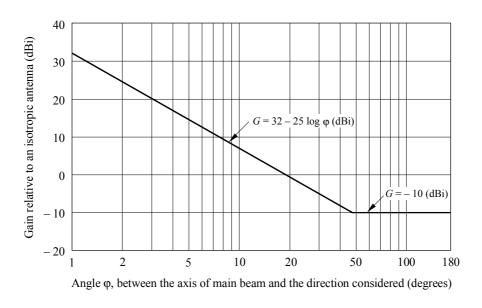
considering

a) that the application of coordination procedures between space research earth stations or radio astronomy observatories and stations of other services is dependent upon specific antenna radiation patterns;

b) that where this information does not exist, it may be desirable to use a reference antenna radiation pattern which represents the side-lobe gain levels that are not expected to be exceeded at most off-axis angles in the majority of antennas used in the service;

c) that measured data from some large $(D/\lambda \ge 100)$ parabolic Cassegrain antennas used in the Space Research Service indicate an off-axis discrimination that is as good as, or better than, that of the reference radiation pattern,


recommends

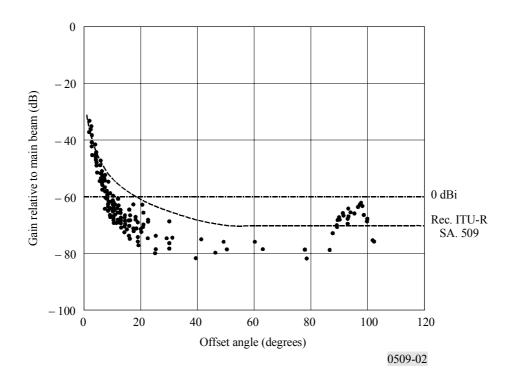

1 that in the absence of measured data on the levels of side-lobe response of a space research earth station or radio astronomy antenna which is subject to interference analyses or coordination procedures, the reference radiation pattern of Fig. 1 be used to represent the antenna side-lobe response;

2 that this reference radiation pattern be used only for antennas the diameters of which are greater than 100 wavelengths, for angles greater than 1° from the main beam axis and for frequencies between about 1 and 30 GHz;

3 that administrations be invited to submit measured antenna radiation patterns (see Annex 1) which may be used, if necessary, to revise the reference radiation diagram in Fig. 1.

^{*} Radiocommunication Study Group 7 made editorial amendments to this Recommendation in 2003 in accordance with Resolution ITU-R 44.

0509-01


Annex 1

Measured radiation patterns of space research earth station and radio astronomy antennas

1 Lovell Mk1A radio astronomy antenna

Fig. 2 shows the measured gain of the Lovell Mk1A radio astronomy antenna at 1 420 MHz. This antenna has a single reflector of circular aperture and a diameter of 76.2 m. The peak in the measured response at around 95° is due to spillover.

FIGURE 2 Measured side-lobe pattern at 1 420 MHz

