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Foreword 

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the 
radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without 
limit of frequency range on the basis of which Recommendations are adopted. 

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional 
Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. 

Policy on Intellectual Property Right (IPR) 

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of 
Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent 
holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the 
Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.  
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RECOMMENDATION  ITU-R  SA.1014-2 

Telecommunication requirements for manned 
and unmanned deep-space research 

 

(1994-2006-2011) 

 

Scope 

This Recommendation briefly describes some essential characteristics of deep-space 
telecommunications. These characteristics influence or determine the requirements for selection of 
candidate bands, coordination, band sharing and protection from interference. 

The ITU Radiocommunication Assembly, 

considering 

a) that telecommunications between the Earth and stations in deep space have unique 
requirements; 

b) that these requirements affect the selection of candidate band, band sharing, coordination, 
protection from interference and other regulatory and frequency management matters, 

recommends 

1 that the requirements and characteristics described in Annex 1 for deep-space 
telecommunications should be taken into account concerning deep-space research and its interaction 
with other services. 

 

 

 

 

Annex 1 
 

Telecommunication requirements for manned 
and unmanned deep-space research 

1 Introduction 

This Annex presents some characteristics of deep-space research missions, the functional and 
performance requirements for telecommunications needed to conduct deep-space research by means 
of spacecraft, and the technical methods and parameters of systems used in connection with such 
missions. 

Considerations regarding bandwidth characteristics and requirements are found in Report 
ITU-R SA.2177. 
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2 Telecommunication requirements 

Deep-space missions require highly reliable radiocommunications over long periods of time and 
great distances. For example, a spacecraft mission to gather scientific information at the planet 
Neptune takes eight years and requires telecommunication over a distance of 4.65 × 109 km. The 
need for high e.i.r.p. and very sensitive receivers at earth stations is a result of the large 
radiocommunication distances involved in deep-space research. 

Continuous usage of deep-space radiocommunication bands is a consequence of the several 
missions now in existence and others being planned. Because many deep-space missions continue 
for periods of several years, and because there are usually several missions in progress at the same 
time, there is a corresponding need for radiocommunication with several spacecraft at any given 
time. 

In addition, each mission may include more than one spacecraft, so that simultaneous 
radiocommunication with several space stations will be necessary. Simultaneous coordinated 
radiocommunication between a space station and more than one earth station may also be required. 

2.1 Telemetering requirements 

Telemetering is used to transmit both maintenance and scientific information from deep space. 

Maintenance telemetering information about the condition of the spacecraft must be received 
whenever needed to ensure the safety of the spacecraft and success of the mission. This requires a 
weather independent telecommunications link of sufficient capacity. This requirement is a partial 
determinant of the frequency bands that are preferred for deep-space research (see Report 
ITU-R SA.2177). 

Science telemetering involves the sending of data that is collected by the on-board scientific 
instruments. The required data rate and acceptable error rate may be quite different as a function of 
the particular instrument and measurement. Table 1 includes typical ranges of data transmission 
rates for scientific and maintenance telemetering. 

 

TABLE 1 

Required bit rates for deep-space research 

Direction and function 

Link characteristic 

Weather 
independent 

Normal High data rate 

Earth-to-space    

 Telecommand (bit/s) 
 Computer programming (kbit/s) 
 Voice (kbit/s) 
 Television (Mbit/s) 
 Ranging (Mbit/s) 

1-1 000 
1-50 
45 
1-4 
1 

1-1 000 
1-100 

45 
0.2-12 

10 

1-2 000 
1-200 

45 
6-100 
100 

Space-to-Earth    

 Maintenance telemetering (bit/s) 
 Scientific data (kbit/s) 
 Voice (kbit/s) 
 Television (Mbit/s) 
 Ranging (Mbit/s) 

8-500 
0.008-115 

45 
0.2-0.8 

1 

8-500 
1-500 

45 
0.2-8 

10 

8-2 × 105 
40-3 × 105 

45 
6-1 000 

100 
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Telemetering link capacity has steadily increased with the development of new equipment and 
techniques. This increase can be used in two ways: 

– to gather larger amounts of scientific data at a given planet or distance; and 

– to permit useful missions to more distant planets. 

For a particular telemetering system, the maximum possible data rate is proportional to the inverse 
square of the radiocommunication distance. The same link capacity that provides for a data rate of 
134 kbit/s from the vicinity of the planet Jupiter (9.3 × 108 km) would also provide for a data rate of 
1.74 Mbit/s from the vicinity of the planet Venus (2.58 × 108 km). Because higher data rates require 
wider transmission bandwidths, the ability to effectively utilize the maximum telemetering 
capability depends on the width of allocated bands, and the number of simultaneous mission 
spacecraft that are within the earth station beamwidth and are operating in the same band. 

An important contribution to telemetering has been the development of coding methods that permit 
operation with a lower signal-to-noise ratio. The coded signal requires a wider transmission 
bandwidth. The use of coded telemetering at very high data rates may be limited by allocation 
width. 

2.2 Telecommand requirements 

Reliability is the principal requirement of a telecommand link. Commands must be received 
accurately and when needed. The telecommand link is typically required to have a bit error rate not 
greater than 1 × 10−6. Commands must be received successfully, without regard to spacecraft 
orientation, even when the primary high gain antenna may not be pointed to Earth. For such 
circumstances, reception using a nearly omnidirectional spacecraft antenna is required. Very high 
e.i.r.p. is needed at earth stations because of low spacecraft antenna gain, and to provide high 
reliability. 

With computers on the spacecraft, automatic sequencing and operation of spacecraft systems is 
largely predetermined and stored on-board for later execution. For some complicated sequences, 
automatic operation is a requirement. Telecommand capability is required for in-flight alteration of 
stored instructions, which may be needed to correct for observed variations or malfunctions of 
spacecraft behaviour. This is particularly true for missions of long duration, and for those 
circumstances where sequencing is dependent on the results of earlier spacecraft events. For 
example, the commands for spacecraft trajectory correction are based on tracking measurements 
and cannot be predetermined. 

The range of required command data rates is given in Table 1. 

Reliable telecommand includes the need for reliable maintenance telemetering that is used to verify 
that commands are correctly received and loaded into command memory. 

2.3 Tracking requirements 

Tracking provides information used for spacecraft navigation and for radio science studies. 

2.3.1 Navigation 

The tracking measurements for navigation include radio-frequency Doppler shift, the round-trip 
propagation time of a ranging signal, and the reception of signals suitable for long baseline 
interferometry. The measurements must be made with a degree of precision that satisfies navigation 
requirements. Measurement accuracy is affected by variations in velocity of propagation, 
knowledge of station location, timing precision, and electronic circuit delay in earth and space 
station equipment. Table 2 lists a current example of the requirements for navigation accuracy and 
the associated measurements. 
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TABLE 2 

Navigation and tracking accuracy requirements 

Parameter Value 

Navigation accuracy (m) 300 (at Jupiter) 

Doppler measurement accuracy (Hz) ± 0.0005 

Range measurement accuracy (m) ± 0.15 

Accuracy of earth station location (m) ± 1 
 

 

2.3.2 Radio science 

Spacecraft telecommunication links can also be important to studies of propagation, relativity, 
celestial mechanics and gravity. Amplitude, phase, frequency, polarization and delay measurements 
provide the needed information. The opportunity to make these measurements depends upon the 
availability of appropriate allocations. Above 1 GHz, transmission delay and Faraday rotation 
(charged particle and magnetic field effects) decrease rapidly with increasing frequency, and thus 
are best studied with the lower frequencies. The higher frequencies provide relative freedom from 
these effects and are more suitable for studies of relativity, gravity and celestial mechanics. For 
these studies, calibration of charged particle effects at the lower frequencies is also needed. 

Range measurements with an absolute accuracy of 1 or 2 cm are required for this fundamental 
scientific work. This accuracy depends upon wideband codes and the simultaneous use of multiple 
frequencies for charged-particle calibration. 

2.4 Special requirements for manned deep-space missions 

The functional requirements for such missions will be similar in kind to those for unmanned 
missions. The presence of human occupants in spacecraft will, however, place additional 
requirements for reliability on the telemetering, telecommand and tracking functions. Given the 
necessary level of reliability, the significant difference between manned and unmanned missions 
will be the use of voice and television links for both Earth-to-space and space-to-Earth 
radiocommunication. Data rates for these functions are shown in Table 1. 

From a telecommunication standpoint, the effect of these additional functions will be a required 
expansion of transmission bandwidth in order to accommodate the video signals. Given the 
necessary link reliability and performance needed to support the required data transfer rates, 
telecommunications for manned and unmanned deep-space research are similar. 

3 Technical characteristics 

3.1 Locations and characteristics of deep-space earth stations 

Table 3 gives the locations of earth stations with the capability of operating within bands allocated 
for deep-space research. 
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TABLE 3 

Location of deep-space earth stations 

Administration Location Latitude Longitude 

China Kashi 
Jiamusi 

38° 55' N 
46° 28' N 

75° 52' E 
130° 26' E 

European Space Agency Cebreros (Spain) 
Malargüe (Argentina) 

40° 27' N 
35° 46' S 

4° 22' W 
69° 22' W 

 New Norcia (Australia)  31° 20' S 116° 11' E 

Germany Weilheim 47° 53' N 11° 04' E 

Ukraine Evpatoriya 45° 11' N 33° 11' E 

Russia Medvezhi ozera  55° 52' N 37° 57' E 

 Ussuriisk  44° 01' N 131° 45' E 

Japan Usuda, Nagano  36° 08' N 138° 22' E 

United States Canberra (Australia) 35° 28' S 148° 59' E 

 Goldstone, California (United States) 35° 22' N 115° 51' W 

 Madrid (Spain) 40° 26' N 04° 17' W 

 

At each of these locations there are one or more antennas, receivers and transmitters that can be 
utilized for deep-space links in one or more of the allocated bands. The principal parameters that 
characterize the maximum performance of one or more of these stations are listed in Table 4. 
Although these characteristics do not apply to all stations, it is nevertheless essential that band 
allocations and criteria for protection from interference be based on the maximum performance 
available. This is required in order to provide for international operation and protection of 
deep-space missions. 

TABLE 4 

Characteristics of deep-space earth stations with 70 m antennas 

Frequency 
(GHz) 

Antenna 
gain 
(dBi) 

Antenna 
beamwidth
(degrees) 

Transmitter
power 
(dBW) 

e.i.r.p. 
(dBW) 

Receiving 
system noise 
temperature 

(K) 

Receiving 
system noise 

power spectral 
density 

(dB(W/Hz)) 

2.110-2.120 
Earth-to-space 

62 0.14 50 
56(1) 

112 
118(1) 

-- -- 

2.290-2.300 
Space-to-Earth 

63 0.13 -- -- 25(2) 
21(3) 

–214(2)  
–215(3) 

7.145-7.190 
Earth-to-space 

72 0.04 43 115 -- -- 

8.400-8.450 
Space-to-Earth 

74 0.03 -- -- 37(2) 
27(3) 

–213(2) 
–214(3) 

31.832.3 
Space-to-Earth 

83.6(4) 0.01(4) -- -- 83(2) (4) 
61(3) (4) 

–209(2) (4) 
–211(3) (4) 

34.2-34.7 
Earth-to-space 

84(4) 0.01(4) To be 
determined 

To be 
determined 

-- -- 

(1) 56 dBW transmitter power used only during spacecraft emergencies. 
(2) Clear weather, 30° elevation angle, duplex mode for simultaneous transmission and reception. 
(3) Clear weather, 30° elevation angle, receive only. 
(4) Estimate. 
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The receiving performance of deep-space earth stations is usually specified in terms of the ratio of 
signal energy per bit-to-noise spectral density required to give a particular bit error rate. Another 
way to show the high performance and sensitivity of these stations is to express the ratio of antenna 
gain-to-noise temperature. This quotient, commonly referred to as G/T, is approximately 50 dB/(K) 
at 2.3 GHz, and 59.5 dB/(K) at 8.4 GHz. These values may be compared with the lower and typical 
41 dB/(K) of some fixed satellite earth stations. 

3.2 Space stations 

Spacecraft size and weight is limited by the payload capability of the launch vehicle. The power of 
the space station transmitter and the size of the antenna are limited in comparison with those 
parameters at earth stations. The noise temperature of the receiver is higher because an uncooled 
preamplifier is generally used. 

The space station has a combined receiver-transmitter, called a transponder, which operates in one 
of two modes. In the turn-around (also called two-way) mode, the carrier signal received from an 
earth station is used to control the oscillator in a phase-locked signal loop. The frequency of this 
oscillator is then used to control the transmitter frequency of the transponder according to a fixed 
ratio. In the one-way mode, no signal is received from an earth station, and the spacecraft 
transmitter frequency is controlled by a crystal oscillator. 

In the two-way mode, the spacecraft transmitted frequency and phase is controlled very precisely 
because of the extreme accuracy and precision of the signal received from an earth station. 

Table 5 lists major characteristics that are typical of space stations designed for deep-space 
research. 

TABLE 5 

Characteristics typical of space stations for deep-space research 

Earth-to-space 
frequency 

(GHz) 

Antenna 
diameter 

(m) 

Antenna gain 
(dBi) 

Antenna 
beamwidth 
(degrees) 

Receiver noise 
temperature 

(K) 

Receiver noise 
spectral power

density 
(dB(W/Hz)) 

2.110-2.120 3.7 36 2.6 200 –206 
7.145-7.190 3.7 48 0.64 330 –203 
34.2-34.7 3.7 61 0.14 2 000 −196 

 

Space-to-Earth 
frequency 

(GHz) 

Antenna 
diameter 

(m) 

Antenna gain 
(dBi) 

Antenna 
beamwidth 
(degrees) 

Transmitter 
power 
(dBW) 

e.i.r.p. 
(dBW) 

2.290-2.300 3.7 37 2.3 13 50 
8.400-8.450 3.7 48 0.64 13 61 
31.8-32.3 3.7 59.5 0.17 13 72.5 

 

Because of the limited e.i.r.p. of space stations, the earth station must have the most sensitive 
receiver possible. Receivers with lower sensitivity may be used in space stations as a result of the 
very high e.i.r.p. of the earth station. Data rate requirements and considerations of size, weight, cost, 
complexity and reliability determines the receiver noise temperature needed for a particular 
spacecraft. 

The power of the space station transmitter is limited primarily by the electrical power that can be 
supplied by the spacecraft. 
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4 Deep-space telecommunication methods 

Telemetering and telecommand functions for deep-space telecommunications are typically 
accomplished by transmission of phase modulated carriers. Doppler tracking is done by phase 
coherent detection of the received carrier. By adding a ranging signal to the modulation, the ranging 
function may be performed. 

4.1 Carrier tracking and Doppler measurement 

As received on Earth, the frequency of a signal transmitted by the spacecraft is modified by the 
Doppler effect. The means to measure the Doppler shift, and hence the velocity of the spacecraft 
with respect to the earth station, is provided by carrier phase tracking. Earth and space station 
receivers track the carrier signal with a phase-locked loop or a Costas loop. In the two-way 
transponder mode, the frequency and phase in the space station phase-locked loop are used to 
develop one or more space-to-Earth frequencies. This provides signals to the earth station that are 
correlated with the Earth-to-space frequency, enabling precise Doppler measurements to be made. 

In the one-way mode, the space-to-Earth frequencies are derived from the oscillator in the 
transponder, and the Doppler measurement is based on a priori knowledge of the oscillator 
frequency. 

4.2 Modulation and demodulation 

The radio links use phase modulation of the radio-frequency carrier. The baseband digital data 
signal is used to modulate a subcarrier, which in turn phase modulates the radio-frequency carrier. 
A square wave sub-carrier is typically used for telemetering; for telecommand the sub-carrier is 
often sinusoidal. The modulation index is adjusted to provide a desired ratio of residual carrier 
power to data sideband power. This ratio is selected to provide optimum carrier tracking and data 
detection in the receiver. 

RF carrier and data sub-carrier demodulation is accomplished by phase-locked loops (PLLs). Data 
detection generally uses correlation and matched filter techniques. 

Television and voice links for manned missions may use other modulation and demodulation 
techniques. Typically, bandwidth-efficient (offset) QPSK and GMSK modulation and demodulation 
are used in these cases with carrier tracking accomplished via Costas loops instead of PLLs. 

4.3 Coding 

In a digital telecommunication link, error probability can be reduced if the information bandwidth is 
increased. Coding accomplishes this increase by translating each data bit into a larger number of 
code symbols in a particular way. Some examples of coding types are block and convolutional 
codes. After transmission, the original data are recovered by a decoding process that is matched to 
the code type. The performance advantage of coded transmission is related to the wider bandwidth, 
and can vary from to 3.8 dB (convolutional coding, bit error ratio of 1 × 10–3) to more than 9 dB 
(rate 1/6 turbo coding). 

4.4 Multiplexing 

Science and maintenance telemetering may be combined into a single digital data stream by time 
division multiplexing; or may be on separate sub-carriers that are added to provide a composite 
modulating signal. A ranging signal may also be added in combination with telemetering or 
telecommand. The amplitude of the different data signals is adjusted to properly divide the 
transmitter power between the carrier and the information sidebands. 
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4.5 Ranging 

Ranging is performed from an earth station using the space station transponder in the two-way 
mode. Ranging modulation on the Earth-to-space signal is recovered in the transponder and used to 
modulate the space-to-Earth carrier. At the earth station, comparison of the transmitted and received 
ranging codes yields a transmission delay measurement proportional to range. 

A fundamental limitation to ranging precision is the ability to measure time correlation between the 
transmitted and received codes. The system currently in use employs a highest code frequency of 
2 062 MHz. The code period is 0.485 μs and resolution to 4 ns is readily achieved, assuming 
sufficient signal-to-noise ratio. This resolution is equivalent to 120 cm in a two-way path length, 
60 cm in range. This meets the current navigation accuracy requirements of Table 2. 

For the 1 cm accuracy needed for future radio science experiments (see § 2.3.2) a code frequency of 
at least 30 MHz is required. 

4.6 Antenna gain and pointing 

For the parabolic antennas typically used in space research, the maximum gain is limited by the 
accuracy with which the surface approaches a true parabola. This latter limitation places a bound on 
the maximum frequency that may be effectively used with a particular antenna. 

One factor in surface accuracy, common to both earth and space station antennas, is manufacturing 
precision. For earth station antennas, additional surface deformation is caused by wind and thermal 
effects. As elevation angle is varied, gravity introduces distortion of the surface, depending on the 
stiffness of the supporting structure. 

For space station antennas, size is limited by permissible mass, by the space available in the launch 
vehicle, and by the state of the art in the construction of unfurlable antennas. Thermal effects cause 
distortion in space station antenna’s surfaces. 

The maximum usable gain of antennas is limited by the ability to point them accurately. The 
beamwidth must be adequate to allow for the angular uncertainty in pointing. All the factors that 
cause distortion of the reflector surface also affect pointing accuracy. The accuracy of the spacecraft 
attitude control system (often governed by the amount of propellant which can be carried) is a factor 
in space station antenna pointing. 

The precision with which the location of the earth and space stations are known with respect to each 
other affects the minimum usable beamwidth and the maximum usable gain. 

Table 6 shows typical limits on antenna performance. 

TABLE 6 

Current limitations on accuracy and maximum antenna gain 

 Space station antennas Earth station antennas 

Limiting parameter Typical maximum 
value of parameter 

Maximum gain Typical maximum 
value of parameter 

Maximum gain 

Accuracy of dish 
surface 

0.24 mm r.m.s., 
3.7 m dish 

66 dBi(1) at 100 GHz 0.53 mm r.m.s., 
70 m dish 

83 dBi(1) at 37 GHz 

Pointing accuracy ± 0.15° (3σ) 55 dBi(2) ± 0.005° (3σ) 75 dBi(2) 

(1) Gain at other frequencies will be lower. 
(2) Gain of antenna with half power beamwidth equal to 2 times pointing accuracy. The beamwidth of an antenna with 

higher gain will be too narrow with respect to pointing accuracy. 
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4.7 Additional radionavigation techniques 

Doppler and ranging measurements provide the basic tracking information needed for navigation. 
Additional techniques have been developed to enhance navigation accuracy. 

4.7.1 Calibration of the velocity of propagation as affected by charged particles 

Range and Doppler measurements are influenced by variations in the velocity of radio-wave 
propagation caused by free electrons along the transmission path. The electrons exist in varying 
densities in space and in planetary atmospheres, and are particularly dense near the Sun. Unless 
accounted for, these variations in propagation velocity can introduce errors in navigation 
calculations. 

The charged particles cause an increase in phase velocity and a decrease in group velocity. By 
comparing range change with integrated Doppler over a period of time, the charged particle effect 
may be determined. The effect on propagation velocity is inversely proportional to the square of the 
radio frequency. This frequency dependency may be used for additional calibration accuracy. 
Turnaround ranging and Doppler tracking can be performed with simultaneous space-to-Earth 
signals in two or more separate bands. The charged particle effects in the separate bands are 
different in magnitude, and this difference is used to improve the calibration. 

The charged particle effect and its affect on range measurement is given in Report ITU-R SA.2177. 

4.7.2 Very long baseline interferometry (VLBI) 

Accuracy of spacecraft navigation depends upon the precise knowledge of earth station location 
with respect to the navigation coordinate system. A 3 m error in the assumed station location can 
result in a 700 km error in the calculated position of a spacecraft at Saturn distance. VLBI provides 
a means of improving the estimate of station location by using a celestial radio source (quasar) as a 
signal source at an essentially unchanging point on the celestial sphere. It is possible to record the 
quasar signals in such a way as to determine, with great accuracy, the difference in time of 
reception at two widely separated stations. Using several of these measurements the station 
locations can be determined to a relative accuracy of 10 cm. Frequencies near 2 and 8 GHz are used 
for VLBI at the present time. 

The VLBI technique is also used to measure directly the spacecraft declination angle. Two 
accurately located earth stations separated by a large north/south distance, measure the range to the 
spacecraft. The declination can then be calculated with great precision. 

A third application of the VLBI method can be used to improve the accuracy of measurement of 
spacecraft angular position. Two or more earth stations alternately observe a spacecraft signal and a 
quasar signal. By knowing time, station location and the effect of Earth rotation on the received 
signals, the angular position of the spacecraft can be determined with respect to the celestial 
references. When fully developed the techniques will provide a significant improvement over the 
current accuracy of 0.01 arc second. The improved accuracy will permit more precise navigation. 

5 Performance analysis and design margins 

Table 7 shows a link budget used for performance analysis. The example given is for high rate 
telemetering from Jupiter. Similar analysis for telecommand and ranging is performed. The earth 
and space station characteristics shown earlier are used as the basis for calculating a performance 
margin for each telecommunication function. 
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TABLE 7 

Performance budget, spacecraft-to-Earth from Jupiter 

Mission: Voyager Jupiter/Saturn 1977 

Mode: Telemetering, 115.2 kbit/s, coded, 8.45 GHz carrier 

Transmitter parameters  

 RF power (21 W) (dBW) 
 Circuit loss (dB) 
 Antenna gain (3.7 m) (dBi) 
 Pointing loss (dB) 

0013.2 
00–0.2 
0048.1 
00–0.2 

Path parameters  

 Free space loss between isotropic antennas (dB) 
 (8.45 GHz, 9.3 × 108 km) 

–290.4 

Receiver parameters  

 Antenna gain (64 m, 30° elevation angle) (dBi) 
 Pointing loss (dB) 
 Weather attenuation (dB) 
 System noise power spectral density (22.6 K) (dB(W/Hz)) 

0072.0 
00–0.3 
00–0.1 
–215.1 

Total power summary  

 Link loss (dB) 
 Received power P(T) (dBW) 

–171.1 
–157.9 

Carrier tracking performance (two-way)  

 Carrier power/total power (dB) 
 Received carrier power (dBW) 
 Carrier threshold noise bandwidth (B = 10 Hz) (10 log B) 
 Noise power (dBW) 
 Threshold signal/noise (dB) 
 Threshold carrier power (dBW) 
 Performance margin (dB) 

0–15.4 
–173.3 
0010.0 
–205.1 

000020000 
–185.1 
0011.8 

Data detection performance  

 Data power/total power (dB) 
 Data reception and detection losses (dB) 
 Received data power (dBW) 
 Noise bandwidth (effective noise bandwidth for matched filter detection of 115.2 kbit/s 
 data) (dB) 
 Noise power (dBW) 

 Threshold signal/noise (5 × 10–3 bit error rate) (dB) 
 Threshold data power (dBW) 
 Performance margin (dB) 

00–0.3 
00–0.5 
–158.7 
0050.6 
–164.5 
0002.3 
–162.2 
0003.5 

 

A most important point in the design of deep-space missions is that the telemetering performance 
margin is quite small (3.5 dB in the example given). This small margin is a consequence of the need 
to obtain maximum scientific value from each spacecraft. To design with a 10 dB larger margin of 
safety would reduce the quantity of telemetered data by a factor of 10. The risk of using a system 
with small performance margin is its susceptibility to harmful interference, and for bands above 
2 GHz, decreased reliability caused by weather effects. 
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