ITU-R
 Radiocommunication Sector of ITU

Recommendation ITU-R S.1503-3
(01/2018)
Functional description to be used in developing software tools for determining conformity of non-geostationary-satellite orbit fixed-satellite service systems or networks with limits contained in Article 22 of the Radio Regulations

S Series

Fixed-satellite service

Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radiofrequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

	\quad Series of ITU-R Recommendations
	\quad (Also available online at http://www.itu.int/publ/R-REC/en)
Series	
BO	Satellite delivery
BR	Recording for production, archival and play-out; film for television
BS	Broadcasting service (sound)
BT	Broadcasting service (television)
F	Fixed service
M	Mobile, radiodetermination, amateur and related satellite services
P	Radiowave propagation
RA	Radio astronomy
RS	Remote sensing systems
S	Fixed-satellite service
SA	Space applications and meteorology
SF	Frequency sharing and coordination between fixed-satellite and fixed service systems
SM	Spectrum management
SNG	Satellite news gathering
TF	Time signals and frequency standards emissions
V	Vocabulary and related subjects

Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.

RECOMMENDATION ITU-R S.1503-3

Functional description to be used in developing software tools for determining conformity of non-geostationary-satellite orbit fixed-satellite service systems or networks with limits contained in Article 22 of the Radio Regulations

(2000-2005-2013-2018)

Scope

This Recommendation provides a functional description of the software for use by the Radiocommunication Bureau of ITU to conduct examination of non-GSO FSS system notifications for their compliance with the validation limits specified in the Radio Regulations.

Keywords

epfd; non-GSO; methodology

Abbreviations/Glossary

Alpha angle (α): the minimum angle at the GSO earth station between the line to the non-GSO satellite and the lines to the GSO arc.
e.i.r.p. mask: equivalent isotropic radiated power mask used to define the emissions of the non-GSO earth station in the epfd(up) calculation or the emissions of the non-GSO satellite for the epfd(IS) calculation.
epfd: equivalent power flux-density, as defined in RR No. 22.5C.1, of which there are three cases to consider:
epfd(down): emissions from the non-GSO satellite system into a GSO satellite earth station; epfd(up): emissions from the non-GSO earth station into a GSO satellite;
epfd(IS): inter-satellite emissions from the non-GSO satellite system into a GSO satellite system.
pfd mask: power flux-density mask used to define the emissions of the non-GSO satellite in the epfd(down) calculation.
X angle (X): the minimum angle at the non-GSO satellite between the line from the GSO earth station and the lines to the GSO arc.

WCG: Worst Case Geometry, the location of the GSO earth station and GSO satellite that analysis suggests would cause the highest single entry epfd values for given inputs.
Related ITU Recommendations, Reports
Recommendation ITU-R BO.1443-3 Reference BSS earth station antenna patterns for use in interference assessment involving non-GSO satellites in frequency bands covered by RR Appendix 30
Recommendation ITU-R S.672-4 Satellite antenna radiation pattern for use as a design objective in the fixed-satellite service employing geostationary satellites
Recommendation ITU-R S.1428-1
Reference FSS earth-station radiation patterns for use in interference assessment involving non-GSO satellites in frequency bands between 10.7 GHz and 30 GHz

The ITU Radiocommunication Assembly,

considering

a) that WRC-2000 adopted, in Article 22 of the Radio Regulations (RR), single-entry limits applicable to non-geostationary satellite orbit (non-GSO) fixed-satellite service (FSS) systems in certain parts of the frequency range $10.7-30 \mathrm{GHz}$ to protect geostationary satellite orbit (GSO) networks operating in the same frequency bands from unacceptable interference;
b) that these frequency bands are currently used or planned to be used extensively by geostationary-satellite orbit systems (GSO systems);
c) that during the examination under Nos. 9.35 and 11.31, the Bureau examines non-GSO FSS systems to ensure their compliance with the single-entry epfd limits given in Tables 22-1A, 22-1B, $22-1 \mathrm{C}, 22-1 \mathrm{D}, 22-1 \mathrm{E}, 22-2$ and $22-3$ of Article 22 of the RR;
d) that to perform the regulatory examination referred to in considering c), the Radiocommunication Bureau (BR) requires a software tool that permits the calculation of the power levels produced by such systems, on the basis of the specific characteristics of each non-GSO FSS system submitted to the Bureau for coordination or notification, as appropriate;
e) that GSO FSS and GSO broadcasting-satellite service (BSS) systems have individual characteristics and that interference assessments will be required for multiple combinations of antenna characteristics, interference levels and probabilities;
f) that designers of satellite networks (non-GSO FSS, GSO FSS and GSO BSS) require knowledge of the basis on which the BR will make such checks;
g) that such tools may be already developed or under development and may be offered to the BR,
recommends
that the functional description specified in Annex 1 should be used to develop software tools calculating the power levels produced by non-GSO FSS systems and the compliance of these levels with the limits contained in Tables 22-1A, 22-1B, 22-1C, 22-1D, 22-1E, 22-2 and 22-3 of Article 22 of the RR.

Annex 1
 Functional description of software for use by the BR in checking compliance of non-GSO FSS systems with epfd limits

TABLE OF CONTENTS

Page
PART A - Fundamental constraints and basic assumptions. 3
PART B - Input parameters 9
PART C - Generation of pfd/e.i.r.p. masks 24
PART D - Software for the examination of non-GSO filings 43
PART E - Testing of the reliability of the software outputs 131
PART F - Software implementing this Recommendation 132
PART A

Fundamental constraints and basic assumptions

A1 General

A1.1 Purpose

The software algorithm described in this Annex is designed for its application by the BR to conduct examination of the non-GSO FSS system notifications for their compliance with the limits contained in Tables 22-1A, 22-1B, 22-1C, 22-1D, 22-1E, 22-2 and 22-3 of Article 22 of the RR.

The algorithm could also under certain conditions permit examination of whether coordination is required between non-GSO FSS systems and large earth stations under Articles 9.7A and 9.7B using the criteria in RR Appendix 5.
The algorithm in this Recommendation was developed based upon a reference GSO satellite in equatorial orbit with zero inclination angle. The analysis to determine whether a non-GSO satellite system meets the epfd limits in Article 22 of the RR is made by calculating the epfd levels at this reference satellite or at an earth station pointing towards it. A GSO satellite system operating at other inclination angles could be predicted to receive higher epfd levels without the non-GSO satellite system being considered in breach of the Article 22 limits. Analysis under RR Nos. 9.7A and 9.7B, however, is to determine if coordination is required by comparing against the trigger level in Appendix 5 of the RR, and therefore in this case other methodologies, including those that assume non-zero GSO satellite inclination, could be acceptable alternatives.

A1.2 Software block-diagram

The block-diagram of the software algorithm described in this Annex is shown in Fig. 1. It comprises initial data and calculation for the notifying administration and the BR. The data section contains the whole set of parameters relevant to the notified non-GSO system, a set of reference GSO system parameters as well as epfd limits provided by the BR.
The calculation section is designed for estimations required to examine notified non-GSO systems compliance with the epfd limits. The calculation section is based on a concept of a downlink power flux-density (pfd) mask (see Note 1), an uplink effective isotropic radiated power (e.i.r.p.) mask (see Note 2) and inter-satellite e.i.r.p. mask (see Note 3).
NOTE 1 - A pfd mask is a maximum pfd produced by a non-GSO space station and is defined in Part C.
NOTE 2 - An e.i.r.p. mask is a maximum e.i.r.p. radiated by a non-GSO earth station and is a function of latitude and the angle from the boresight of the transmitting antenna main beam to a point on the GSO arc.
NOTE 3 - An inter-satellite e.i.r.p. mask is a maximum e.i.r.p. radiated by a non-GSO space station and is a function of latitude and the angle between the line to the sub-satellite point and a point on the GSO arc.

The pfd/e.i.r.p. masks are calculated by the filing administration as identified in Block 1 and then supplied with the other non-GSO system parameters in Blocks a and b. The BR supplies additional parameters, in particular the epfd limits in Block c.

FIGURE 1
Stages in epfd verification - key logic blocks

A1.3 Allocation of responsibilities between Administrations and the BR for software employment

Taking into account significant complexity regarding specific features of different non-GSO system configurations in the software it would seem appropriate to impose some burden of responsibility relevant to testing for epfd limits on administrations notifying appropriate non-GSO systems. Therefore the examination procedure for meeting epfd limits would consist of two stages. The first stage would include derivation of a mask for pfd/e.i.r.p. produced by interfering non-GSO network stations. The mask would account for all the features of specific non-GSO systems arrangements (such as possible beam pointing and transmit powers). The first stage would be finalized by the delivery of the pfd/e.i.r.p. mask to the BR.

The second stage calculations would be effected at the BR. The second stage would feature the following operations:

- Identification of the runs required for a non-GSO network taking into account the frequencies for which it has filed and the frequency ranges for which there are epfd limits in Article 22 (Block 2).
- Definition of the maximum epfd geometry of a GSO space station and an earth station of that network (Block 3). It would ensure verification of sharing feasibility for a notified non-GSO network with any GSO network in the FSS and BSS.
- \quad epfd statistics estimation (Block 4).
- Making a decision on interference compliance with appropriate epfd limits.

The estimations are based on the non-GSO system parameters (Blocks a and b) delivered by a notifying administration and the initial data (Block c) available at the BR.
Any administration may use software that uses the algorithms defined in this Annex together with data on the non-GSO networks to estimate statistics for interference into its own GSO networks and check for compliance with epfd limits. It would assist in solving probable disputes between the BR and administrations concerned.

The elements of the software block-diagram discussed are presented hereinafter in detail. The Parts are as follows:

Part A - Basic limitations and main system requirements for the software as a whole are presented.

Part B - Non-GSO networks parameters and initial data for Blocks a and b are discussed
Part C - Definitions and estimation algorithms for pfd/e.i.r.p. masks relative to non-GSO network earth and space stations are presented. Specifics of those masks applying in simulation is also discussed (Block 1).

Part D - The part deals with general requirements on the software related to examination of nonGSO networks notifications, algorithms to estimate epfd statistics, and the format for output data presentation. Part D covers issues of Blocks 2, 3 and 4.
Parts E, F - These parts define requirements on the software related to valuation of delivered software and to verification of the software output on validity.

A2 Fundamental assumptions

A2.1 Units of measurement

To provide for adequate simulation results and to avoid errors a common measurement units system is used in Table 1 for the software description. The list of measurement units for the basic physical parameters is shown in Table 1.

TABLE 1
The system of measurement units for basic physical parameters used for the software performance description

Parameter	Units
Distance	km
Angle	degrees
Time	s
Linear rotation velocity	km / s
Angular rotation velocity	degrees/s
Frequency	MHz
Frequency bandwidth	kHz
Power	dBW
Power spectral density	$\mathrm{dB}(\mathrm{W} / \mathrm{Hz})$
pfd	$\mathrm{dB}\left(\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{BW}_{\text {ref }}\right)\right)$
Average number of co-frequency non-GSO earth stations per unit area	$\mathrm{dB} / \mathrm{km}^{2}$
epfd \downarrow, epfd or epfd ${ }_{\text {is }}$	$\left.\mathrm{dB} / \mathrm{BW}_{\text {ref }}\right)$
Antenna gain	dBi
Geographical position on the Earth's surface	degrees

A2.2 Constants

The functional description of the software for examination of non-GSO networks notification at the BR uses the constants shown in Table 2.

TABLE 2
Constants to be used by software

Parameter	Notation	Numerical value	Units
Radius of the Earth	R_{e}	6378.145	km
Radius of geostationary orbit	$R_{g e o}$	42164.2	km
Gravitational constant	μ	3.986012×10^{5}	$\mathrm{~km} / \mathrm{s}^{2}$
Speed of light	c	2.99792458×10^{5}	$\mathrm{~km} / \mathrm{s}$
Angular rate of rotation of the Earth	ω_{e}	$4.1780745823 \times 10^{-3}$	degrees $/ \mathrm{s}$
Earth rotation period	T_{e}	86164.09054	s
Factor of the Earth non-sphericity	J_{2}	0.001082636	-

A2.3 The Earth model

The force of the Earth attraction is the main factor to define a satellite orbital motion. Additional factors include:
orbit variations due to the Earth's oblateness and its mass distribution irregularities;

- solar and lunar attraction;
- medium drag for satellite;
- solar radiation pressure, etc.

The function description of software in this Annex accounts orbit perturbations only due to the Earth oblateness. It is motivated by the fact that effect of other perturbing factors is significantly less. The Earth's oblateness causes secular and periodic perturbations of ascending node longitude and orbit perigee argument. Section D6.3 describes expressions to account the Earth's oblateness effect.
The orbits of some repeating ground tracks can be very sensitive to the exact orbit model used. Administrations could also provide the BR with their own independently determined average precession rates that could be used by the software instead of the values calculated using the equation in § D6.3.

A2.4 Constellation types

The algorithm in this Recommendation has been developed to be applicable to at least the non-GSO satellite systems shown in Table 3.

Constellations can contain sub-constellations with different orbit parameters and shape, but all subconstellation within a constellation have to be either repeating or non-repeating. If the constellation is repeating then the repeat period specified must be appropriate for all non-GSO satellites, including all sub-constellations.

TABLE 3
Orbit type classification

Type	Orbit shape	Equatorial ?	Repeating ?
A	Circular	No	Yes
B	Circular	No	No
C	Circular	Yes	n/a
D	Elliptical $^{(1)}$	No	Yes
E	Elliptical $^{(1)}$	No	No

${ }^{(1)}$ Assuming that the elliptical system has perigee and apogee at the extrema in latitude, i.e. with active arc at highest or lowest latitude.

A3 Modelling methodology

The approach described in this Annex involves time simulation in which interference levels are evaluated on a time step by time step basis. Section D4 defines the method to calculate the size of time steps and the total number of time steps to be used. That section also identifies an optional dual time step approach to reduce run times without altering the resulting decision.

PART B

Input parameters

B1 Introduction

B1.1 Background

Certain parameters for a non-GSO network and other data must be specified in order to accomplish the requisite software functions:

- Function 1: Provide the pfd masks for the non-GSO satellites (downlink) and the e.i.r.p. mask for the earth stations transmitting to those satellites (uplink) or non-GSO satellite (intersatellite).
- Function 2: Apply the pfd/e.i.r.p. mask in the calculation of downlink epfd \downarrow, uplink epfd \uparrow and/or intersatellite epfd levels (cumulative time distributions of epfd).
- Function 3: Determine whether the pfd/e.i.r.p. mask levels are consistent with basic transmission parameters of the non-GSO network, only in the case of dispute.
The roles of the administration of the non-GSO network and the BR are discussed in § A1.3.
Detailed parameters are needed by the BR in support of Function 2 and so this section focuses on the parameters needed to fulfil that requirement.
The parameters provided should be consistent, so that if the administrations modifies its network (e.g. if there are changes to the constellation) so that the pfd/e.i.r.p. changes then a new mask would need to be supplied to the BR.

B1.2 Scope and overview

This section identifies inputs to the software in four main sections:

- \quad Section B2 defines the inputs from the BR;
- \quad Section B3 defines the inputs from the non-GSO operator excluding the pfd/e.i.r.p. masks;
- \quad Section B4 defines the pfd/e.i.r.p. masks.
- An Attachment to Part B then maps the parameters to the SRS database tables.

Note that in the following tables, square brackets in variable names indicate an index for that variable and not tentative text.

B2 BR supplied parameters to software

The BR supplies two types of data, firstly the type of run to execute:

RunType	One of $\{$ Article $22,9.7 \mathrm{~A}, 9.7 \mathrm{~B}\}$
SystemID	ID of system to examine (either non-GSO or large earth station)

The second data is to provide the threshold epfd levels to use as the pass / fail criteria. These are accessed by the software when generating the runs and consists of a series of records as follows:

epfddirection	One of $\{$ Down, Up, IS \}
VictimService	One of \{FSS, BSS \}
StartFrequencyMHz	Start of frequency range for which epfd threshold applies
EndFrequencyMHz	End of frequency range for which epfd threshold applies
VictimAntennaType	Reference code for antenna pattern to be used in calls to ITU supplied antenna gain pattern DLL
VictimAntennaDishSize	Dish size of victim antenna pattern to be used in calls to ITU supplied antenna gain pattern DLL
VictimAntennaBeamwidth	Beamwidth of victim antenna pattern to be used in calls to ITU supplied antenna gain pattern DLL
RefBandwidthHz	Reference bandwidth in Hz of epfd level
NumPoints	Number of points in epfd threshold mask
epfdthreshold[N]	epfd level in dBW/m²/Reference bandwidth
epfdpercent[N]	Percentage of time associated with epfdthreshold

B3 Non-GSO system inputs to software

These are split into constellation parameters, orbit parameters for each space station and one or more sets of system operating parameters.

B3.1 Non-GSO constellation parameters

$N_{\text {sat }}$	Number of non-GSO satellites
H_MIN	Minimum operating height (km)
DoesRepeat	Flag to identify that constellation repeats using station keeping to maintain track
AdminSuppliedPrecession	Flag to identify that the constellation orbit model precession field is supplied by the admin
$W_{\text {delta }}$	Station keeping range (degrees)
ORBIT_PRECESS	Administration supplied precession rate (degrees/second)

B3.2 Non-GSO space station parameters

For each of the non-GSO satellites, the following parameters to define the location of the constellation at the start of the simultion:

$\mathrm{A}[N]$	Semi-major axis of orbit (km)
$\mathrm{E}[N]$	Eccentricity of orbit
$\mathrm{I}[N]$	Inclination of orbit (degrees)
$\mathrm{O}[N]$	Longitude of ascending node of orbit (degrees)
$\mathrm{W}[N]$	Argument of perigee (degrees)
$\mathrm{V}[N]$	True anomaly (degrees)

B3.3 Non-GSO system operating parameters

These represent the set of parameter required to define the non-GSO system's operations. There could be different sets of parameters at different frequency bands, but only one set of operating parameters for any frequency band used by the non-GSO system.

Freq_Min	Minimum frequency for which this set of parameters applies
Freq_Max	Maximum frequency for which this set of parameters applies
MIN_EXCLUDE[Latitude]	Exclusion zone angle (degrees), the minimum angle to the GSO arc at the non-GSO ES at which it will operate defined at the ES (α angle) by latitude. The MIN_EXCLUDE at a specific latitude will be derived using linear interpolation between data points. This field could vary between non-GSO system orbit planes via the orb_id field. If the orb_id field is not defined then the data exclusion zone data applies to all orbit planes
MIN_ELEV[Latitude][Azimuth]	Minimum elevation angle of the non-GSO earth station when it is receiving or transmitting (degrees) by latitude and azimuth. The nearest latitude to that in the table will be used and then linear interpolation in azimuth
MIN_DURATION [Latitude]	Minimum satellite tracking duration at latitude (seconds): the nearest latitude to that in the table will be used
MAX_CO_FREQ[Latitude]	Maximum number of co-frequency tracked non-GSO satellites by latitude: the nearest latitude to that in the table will be used
ES_DENSITY	Average number of non-GSO earth stations active at the same time (/km²)
ES_DISTANCE	Average distance between cell or beam footprint centre (km)
ES_LAT_MIN	Minimum limit of the latitude range of non-GSO ES (degrees)
ES_LAT_MAX	Maximum limit of the latitude range of non-GSO ES (degrees)

These parameters would be supplied in XML format with header as follows:
<non_gso_operating_parameters es_lat_max="+90" es_lat_min="-90" es_distance="200"
es_density="0.00001" c_name="orb_id" b_name="azimuth" a_name="latitude"
high_freq_mhz="F2" low_freq_mhz="F1" param_id="1">
where:

Field	Type or range	Units	Example
ntc_id	Integer	-	12345678
sat_name	String	-	My satellite network
param_id	Integer	-	1
low_freq_mhz	Double precision	MHz	10000
high_freq_mhz	Double precision	MHz	12000
a_name	\{latitude \} range -0 to +90 degrees	-	latitude
b_name	\{azimuth\} range 000 to 360 degrees	-	azimuth
c_name	\{orb_id \} range 00 to 9999	-	orb_id
es_density	Double precision	km 2	0.0001
es_distance	Double precision	km	200
es_lat_min	Double precision	deg	-90
es_lat_max	Double precision	deg	+90

After the header the XML contains arrays of MIN_EXCLUDE which can vary by orb_id and latitude while the MIN_DURATION, MAX_CO_FREQ values vary only by latitude. The MIN_ELEV array can vary by both latitude and azimuth.
Note that if the non-GSO ES type defined in the e.i.r.p. mask is specific rather than typical, then the fields es_density and es_distance are not used.
The non-GSO operating parameters would be stored in the same database as the pfd and e.i.r.p. masks. An example non-GSO operating parameters XML file would therefore be:
<?xml version="1.0"?>
<satellite_system sat_name="MySatName" ntc_id="12345678">
<non_gso_operating_parameters es_lat_max="+90" es_lat_min="-90" es_distance="200" es_density="0.00001" c_name="orb_id" b_name="azimuth" a_name="latitude" high_freq_mhz="F2" low_freq_mhz="F1" param_id="1">
<min_exclude orb_id="00">
<exclusion_zone_angle latitude="-75">0<lexclusion_zone_angle>
<exclusion_zone_angle latitude="-45">3</exclusion_zone_angle>
<exclusion_zone_angle latitude="-15">5<lexclusion_zone_angle>
<exclusion_zone_angle latitude="15">5</exclusion_zone_angle>
<exclusion_zone_angle latitude="45">3</exclusion_zone_angle>
<exclusion_zone_angle latitude="75">0</exclusion_zone_angle>
</min_exclude>
<min_exclude orb_id="01">
<exclusion_zone_angle latitude="-75">0</exclusion_zone_angle>
<exclusion_zone_angle latitude="-45">4<lexclusion_zone_angle>
<exclusion_zone_angle latitude="-15">6<lexclusion_zone_angle>
<exclusion_zone_angle latitude="15">6</exclusion_zone_angle>

```
    <exclusion_zone_angle latitude="45">6</exclusion_zone_angle>
    <exclusion_zone_angle latitude="75">0</exclusion_zone_angle>
    </min_exclude>
    <max_co_freq latitude="0">2</max_co_freq>
    <min_duration latitude="-50">400</min_duration>
    <min_duration latitude="0">1000</min_duration>
    <min_duration latitude="50">400</min_duration>
    <min_elev latitude="-30">
    <elev_angle azimuth="0">30</elev_angle>
    <elev_angle azimuth="90">40</elev_angle>
    <elev_angle azimuth="280">30</elev_angle>
    <elev_angle azimuth="370">40</elev_angle>
    </min_elev>
    <min_elev latitude="0">
    <elev_angle azimuth="0">20</elev_angle>
    <elev_angle azimuth="90">30</elev_angle>
    <elev_angle azimuth="280">20</elev_angle>
    <elev_angle azimuth="370">30</elev_angle>
    </min_elev>
    <min_elev latitude="30">
    <elev_angle azimuth="0">30<lelev_angle>
    <elev_angle azimuth="90">40</elev_angle>
    <elev_angle azimuth="280">30</elev_angle>
    <elev_angle azimuth="370">40</elev_angle>
    </min_elev>
</non_gso_operating_parameters>
</satellite_system>
```


B4 pfd/e.i.r.p. masks

B4.1 Non-GSO downlink pfd mask

FreqMin	Minimum of frequency range in MHz for this pfd mask
FreqMax	Maximum of frequency range in MHz for this pfd mask
RefBW	The power level in the pfd mask should be given in kHz with respect to the same reference bandwidth as the epfd thresholds in the tables in Article 22 relevant for the frequency ranges covered. If the tables in Article 22 give two reference bandwidths (e.g. 40 kHz and 1 MHz) then the smaller bandwidth should be used.
MaskType	One of $\{\alpha, \mathrm{X}$, or (az,el) $\}$

B4.2 Non-GSO uplink e.i.r.p. mask

FreqMin	Minimum of frequency range in MHz for this pfd mask
FreqMax	Maximum of frequency range in MHz for this pfd mask
RefBW	The power level in the e.i.r.p. mask should be given in kHz with respect to the same reference bandwidth as the epfd thresholds in the tables in Article 22 relevant for the frequency ranges covered. If the tables in Article 22 give two reference bandwidths (e.g. 40 kHz and 1 MHz$)$ then the smaller bandwidth should be used.
ES_ID	Reference of non-GSO ES or -1 if using generic ES
ES_e.i.r.p. $[\theta][$ Lat]	Non-GSO earth station e.i.r.p. as a function of latitude and the angle between the line from the non-GSO ES boresight line and the line from the non-GSO ES to a point on the GSO arc.

B4.3 Non-GSO inter-satellite e.i.r.p. mask

FreqMin	Minimum of frequency range in MHz for this e.i.r.p. mask
FreqMax	Maximum of frequency range in MHz for this e.i.r.p. mask
RefBW	The power level in the e.i.r.p. mask should be given in kHz with respect to the same reference bandwidth as the epfd thresholds in the tables in Article 22 relevant for the frequency ranges covered. If the tables in Article 22 give two reference bandwidths (e.g. 40 kHz and 1 MHz) then the smaller bandwidth should be used.
SAT_e.i.r.p.[日][Lat]	Non-GSO satellite e.i.r.p. as a function of latitude and the angle seen from the NGSO satellite between the non-GSO sub-point and a point on the GSO arc.

B5 Validation of Input Parameters

This section describes the minimum met of validation of the input parameters: additional checks could also be undertaken.

B5.1 Non-GSO Space Station Parameters

This methodology is applicable for the types of non-GSO systems with orbital characteristics as defined in Table 3. To ensure consistency with this assumption, the following tests are required to be undertaken for each non-GSO satellite:

Test for circular or near-circular orbit:

If the $e>0$ and $e<$ MAX_CIRCULAR_E then
\{
WarningMessage: setting orbit to be circular from eccentricity $=e$
Set $e=0$ and continue
\}

Test HEO system has $\omega= \pm \pi / 2$:

If the eccentricity >= MAX_CIRCULAR_E then
\{
Ensure w in range $\{-\pi,+\pi\}$
If $(\operatorname{abs}(\pi / 2-\operatorname{abs}(w)))>$ MAX_HELO_DELTAW
\{
ErrorMessage: orbit apogree not at maximum latitude
Exit
\}

It is assumed that:

$$
\text { MAX_CIRCULAR_E = } 0.01
$$

MAX_HELO_DELTAW = 1e-5 degrees
With systems that use multiple sub-constellations, it must be checked that all are repeating or all are non-repeating.

B5.2 Non-GSO System Operating Parameters Ranges

The following non-GSO system operating parameters are to be checked:

$$
\begin{aligned}
& \text { MIN_EXCLUDE[Latitude] } \geq 0 \\
& \text { MIN_ELEV[Latitude, Azimuth] } \geq 0 \\
& \text { MIN_DURATION[Latitude] } \geq 1 \text { second } \\
& \text { MAX_CO_FREQ[Latitude] } \geq 0 \\
& \text { ES_DENSITY > } 0 \\
& \text { ES_DISTANCE } \geq 0 \\
& +90^{\circ}>\text { ES_LAT_MIN } \geq-90^{\circ} \\
& +90^{\circ} \geq \text { ES_LAT_MAX > -90 } \\
& \text { ES_LAT_MAX > ES_LAT_MIN }
\end{aligned}
$$

B5.3 Masks and system operating parameters XML files

The following non-GSO system operating parameters are to be checked:

- That there is only a single non-GSO system operating parameters set per frequency range.
- That there is a non-GSO system operating parameters set for each frequency range that is to be examined.
- That if the MIN_EXCLUDE varies by orbit plane, that a value is defined for each orbit plane. It is also necessary to check that any e.i.r.p. masks are monotonically decreasing.

Attachment
 to Part B

This Attachment to Part B details the parameters that the epfd software uses from the SRS database
Table 4 lists the current RR Appendix 4 information for non-GSO satellite systems included in the BR space networks system (SNS) database. The relationship between the database tables is shown in Fig. 2. Mask information and link tables are not shown in Fig. 2 but are described in Table 4.

Format description

Value	Description
X	Used to describe alphanumeric data. e.g. X(9) specifies a 9-character field containing alphanumeric data XXX is equivalent to X(3).
9	Used to describe digits
\ddots.	Shows the position of a decimal point
S	Implies a sign (sign leading separate) e.g. S999.99 implies a numeric field with a range of values from -999.99 to +999.99 99 implies a numeric field with a range of values from 0 to 99

FIGURE 2
Extract from SRS entity relationship

TABLE 4

SRS data for epfd analysis

Notice

Data Item	Data Type	Format	Description	Validation
ntc_id	Number	9(9)	Unique identifier of the notice	Primary Key
ntc_type	Text	X	Code indicating if the notice is of a geostationary satellite [G], Non-geostationary satellite [N], specific earth station [S] or typical earth station [T]	value != Null
d_rcv	Date/Time	9(8)	Date of receipt of the notice	
ntf_rsn	Text	X	Code indicating that the notice has been submitted under RR1488 [N], RR1060 [C], RR1107 [D], 9.1 [A], 9.6 [C], 9.7A [D], 9.17 [D], 11.2 [N], 11.12 [N], AP30/30A-Articles 2A, 4 \& 5 [B], AP30B-Articles 6 \& 7 [P], AP30B-Article 8 [N] or Res 49 [U]	The software looks a value that is 'C' or ' N '
st_cur	Text	XX	Current processing status of the notice	The software looks for a value that is ' 50 ' in the Article 9.7A check

Non-geo

Data Item	Data Type	Format	Description	Validation
ntc_id	Number	$9(9)$	Unique identifier of the notice	Primary Key
sat_name	Text	$X(20)$	Name of the satellite	

orbit

Data Item	Data Type	Format	Description	Validation
ntc_id	Number	$9(9)$	Unique identifier of the notice	Foreign Key
orb_id	Number	99	Sequence number of the orbital plane	Primary Key
nbr_sat_pl	Number	99	Number of satellites per non- geostationary orbital plane	value != Null \&\& value >0
right_asc	Number	999.99	Angular separation in degrees between the ascending node and the vernal equinox	value != Null
inclin_ang	Number	999.9	Inclination angle of the satellite orbit with respect to the plane of the Equator	value != Null
apog	Number	$9(5) .99$	The farthest altitude of the non- geostationary satellite above the surface of the Earth or other reference body - expressed in kilometres Distances >99999 km are expressed as a product of the values of the fields "apog" and "apog_exp" (see below) e.g. $125000=1.25 \times 10^{5}$	value != Null \&\& value >0
apog_exp	Number	99	Exponent part of the apogee expressed in power of 10 To indicate the exponent; give 0 for $10^{0}, 1$ for $10^{1}, 2$ for 10^{2}, etc.	value != Null \&\& value >=0

orbit (continued)

Data Item	Data Type	Format	Description	Validation	
perig	Number	9(5). 99	The nearest altitude of the nongeostationary satellite above the surface of the Earth or other reference body - expressed in kilometres Distances > 99999 km are expressed as a product of the values of the fields "perigee" and "perig_exp" (see below) e.g. $125000=1.25 \times 10^{5}$	value ! $=$ Null \& \& value > 0	
perig_exp	Number	99	Exponent part of the perigee expressed in power of 10 To indicate the exponent; give 0 for $10^{0}, 1$ for $10^{1}, 2$ for 10^{2}, etc.	value != Null \& \& value >= 0	
perig_arg	Number	999.9	Angular separation (degrees) between the ascending node and the perigee of an elliptical orbit. If RR No. 9.11A applies		
op_ht	Number	99.99	Minimum operating height of the non-geostationary satellite above the surface of the Earth or other reference body - expressed in kilometres Distances $>99 \mathrm{~km}$ are expressed as a product of the values of the fields "op_ht" and "op_ht_exp" (see below) e.g. $250=2.5 \times 10^{2}$	value ! $=$ Null \& \& value > 0	
op_ht_exp	Number	99	Exponent part of the operating height expressed in power of 10 To indicate the exponent; give 0 for $10^{0}, 1$ for $10^{1}, 2$ for 10^{2}, etc.	value != Null \& \& value >= 0	
f_stn_keep	Text	X	Flag indicating if the space station uses [Y$]$ or does not use $[\mathrm{N}$] stationkeeping to maintain a repeating ground track	$\begin{aligned} & \text { value ! }=\text { Null \&\& (value }==\text { ' } \mathrm{Y} \text { ' } \\| \\ & \text { ' } \mathrm{N} \text { ') } \end{aligned}$	
rpt_prd_dd	Number	999	Day part of constellation repeat period (s)		
rpt_prd_hh	Number	99	Hour part of constellation repeat period (s)		
rpt_prd_mm	Number	99	Minute part of constellation repeat period (s)		
rpt_prd_ss	Number	99	Second part of constellation repeat period (s)		
f_precess	Text	X	Flag indicating if the space station should [Y$]$ or should not [N] be modelled with specific precession rate of the ascending node of the orbit instead of the J2 term	$\begin{gathered} \text { value != Null \&\& } \\ \text { (value }==' \mathrm{Y} ' \\| \text { ' } \mathrm{N} \text { ') } \end{gathered}$	
precession	Number	999.99	For a space station that is to be modelled with specific precession rate of the ascending node of the orbit instead of the J 2 term, the precession rate in degrees/day measured counterclockwise in the equatorial plane	If f _precess $==$ ' Y ' then value != Null \& \& value > $=0$	

orbit (end)

Data Item	Data Type	Format	Description	Validation
long_asc	Number	999.99	Longitude of the ascending node for the jth orbital plane measured counter-clockwise in the equatorial plane from the Greenwich meridian to the point where the satellite orbit makes its south-north crossing of the equatorial plane ($0^{\circ}=\mathrm{j}<360^{\circ}$)	value != Null \& \& value > = 0
keep_rnge	Number	99.9	Longitudinal tolerance of the longitude of the ascending node	If f_stn_keep $==$ ' Y ' then value != Null \& \& value > = 0

Phase

Data Item	Data Type	Format	Description	Validation
ntc_id	Number	$9(9)$	Unique identifier of the notice	Foreign Key
orb_id	Number	99	Sequence number of the orbital plane	Foreign Key
orb_sat_id	Number	99	Satellite sequence number in the orbital plane	value != Null \&\& value $>=0$
phase_ang	Number	999.9	Initial phase angle of the satellite in the orbital plane If RR No. 9.11A applies	value != Null \&\& value $>=0$

Grp

Data Item	Data Type	Format	Description	Validation	
ntc_id	Number	9(9)	Unique identifier of the notice	Foreign Key	
grp_id	Number	9(9)	Unique identifier of the group	Primary Key	
emi_rcp	Text	X	Code identifying a beam as either transmitting [E] or receiving [R]	$\begin{aligned} & \text { value != Null \&\& } \\ & \text { (value }==' E ' \\| \text { 'R') } \end{aligned}$	
beam_name	Text	X (8)	Designation of the satellite antenna beam		
elev_min	Number	S9(3).99	Minimum elevation angle at which any associated earth station can transmit to a non-geostationary satellite or minimum elevation angle at which the radio astronomy station conducts single-dish or VLBI observations	value != Null \& \& value > = 0	
freq_min	Number	9(6).9(6)	Minimum frequency in MHz (assigned frequency - half bandwidth) (of all frequencies for this group)	value != Null \& \& value > 0	
freq_max	Number	9(6).9(6)	Maximum frequency in MHz (assigned frequency + half bandwidth) (of all frequencies for this group)	value != Null \& \& value > 0	
d_rcv	Date/Time	9(8)	Date of receipt of the list of frequency assignments pertaining to the group		
noise_t	Number	9(6)	Receiving system noise temperature	Only validated for 9.7A/B checks	

srv_cls

Data Item	Data Type	Format	Description	Validation
grp_id	Number	$9(9)$	Unique identifier of the group	Foreign Key
seq_no	Number	$9(4)$	Sequence number	value $!=$ Null \&\& value > = 0
stn_cls	Text	XX	Class of station	

Mask_info

Data Item	Data Type	Format	Description	Validation		
ntc_id	Number	9(9)	Unique identifier of the group	Foreign Key		
mask_id	Number	9(4)	Sequence number	Foreign Key		
f_mask	Text	X	Code identifying a mask as either earth station e.i.r.p. [E] or space station e.i.r.p. [S] or space station pfd [P]	$\begin{gathered} \text { value != Null \&\& } \\ \left(\text { value }==\text { ' } E \text { ' } \\| \text { 'S'\\| }{ }^{\prime} P\right. \text { ') } \end{gathered}$		

e_as_stn

Data Item	Data Type	Format	Description	Validation	
grp_id	Number	$9(9)$	Unique identifier of the group	Foreign Key	
seq_no	Number	$9(4)$	Sequence number	value != Null \&\& value >=0	
stn_name	Text	$\mathrm{X}(20)$	Name of the transmitting or receiving station		
stn_type	Text	X	Code indicating if the earth station is specific [S] or typical [T]	value != Null \&\& (value $==$ ' ' S ' $\\|$	
' T ' $)$					

mask_Ink1

Data Item	Data Type	Format	Description	Validation
grp_id	Number	$9(9)$	Unique identifier of the group	Foreign Key
mask_id	Number	$9(4)$	Unique identifier of the mask	Foreign Key
orb_id	Number	99	Sequence number of the orbital plane	Foreign Key
sat_orb_id	Number	99	Satellite sequence number in the orbital plane	value != Null \&\& value > = 0

mask_lnk2

Data Item	Data Type	Format	Description	Validation
grp_id	Number	$9(9)$	Unique identifier of the group	Foreign Key
seq_e_as	Number	$9(4)$	Sequence number of the associated earth station	Foreign Key
mask_id	Number	$9(4)$	Unique identifier of the mask	Foreign Key

mask_Ink3

Data Item	Data Type	Format	Description	Validation
ntc_id	Number	$9(9)$	Unique identifier of the notice	Foreign Key
param_id	Number	$9(4)$	Unique identifier of the system operating parameters	Foreign Key

Tables used in the Article 9.7A/9.7B calculations
e_stn

Data Item	Data Type	Format	Description	Validation
ntc_id	Number	$9(9)$	Unique identifier of the notice	Foreign Key
stn_name	Text	$\mathrm{X}(20)$	Name of the earth station	value != Null
sat_name	Text	$\mathrm{X}(20)$	Name of the associated space station	value != Null
lat_dec	Number	S9(2).9(4)	Latitude in degrees with four decimals	value != Null
long_dec	Number	S9(2).9(4)	Longitude in degrees with four decimals	value != Null
long_nom	Number	S999.99	Nominal longitude of the associated space station, give ' - ' for West, ' + ' for East	value != Null

e_ant

Data Item	Data Type	Format	Description	Validation
ntc_id	Number	$9(9)$	Unique identifier of the notice	Foreign key
emi_rcp	Text	X	Code identifying a beam as either transmitting $[\mathrm{E}]$ or receiving $[\mathrm{R}]$	value ! Null
bmwdth	Number	999.99	Beamwidth of the earth station antenna	
gain	Number	S99.9	Maximum isotropic gain of the earth station antenna	

PART C

Generation of pfd/e.i.r.p. masks

C1 Definition

The purpose of generating pfd/e.i.r.p. masks is to define an envelope of the power radiated by the non-GSO space stations and the non-GSO earth stations so that the results of calculations encompass what would be radiated regardless of what resource allocation and switching strategy are used at different periods of a non-GSO system life.
The concept of satellite-based reference angle could be used to calculate the pfd mask.
These masks are regulatory constraints in that the non-GSO FSS system should not exceed those values at any time and could be derived using the methodology below. They represent an envelope of the power produced by a system which will constrain how rapidly the pfd or e.i.r.p. can change between data points and how low values for the extreme points in arrays can get. Note that it is feasible for a system not to transmit at certain latitudes: in this case a null value of -1000 dBW should be used.

C2 Generation of satellite pfd masks

C2.1 General presentation

The satellite pfd mask is defined by the maximum pfd generated by any space station in the interfering non-GSO system as seen from any point at the surface of the Earth. A four dimensional pfd mask is recommended for use by the BR verification software and is defined following one of the two options:

Option 1: As a function of:

- the non-GSO satellite;
- the latitude of the non-GSO sub-satellite point;
- the separation angle α (or X) between this non-GSO space station and the GSO arc, as seen from any point on the surface of the Earth (at the satellite), as defined in § D6.4.4;
- the difference ΔL in longitude between the non-GSO sub-satellite point and the point on the GSO arc where the α (or X) angle is minimized, as defined in § D6.4.4.

Option 2: As a function of:

- the non-GSO satellite;
- the latitude of the non-GSO sub-satellite point;
- the non-GSO satellite azimuth angle, defined in § D6.4.5;
- the non-GSO satlellite elevation angle, defined in § D6.4.5.

Whatever parameters are used to generate the pfd mask, the resulting pfd mask should be converted to one of the format options above.

Because the non-GSO space station can generate simultaneously a given maximum number of beams, it should be taken into account in order to better fit the system design and not be too constraining for non-GSO systems.

The mitigation techniques used by the non-GSO system, such as the GSO arc avoidance, are implemented in the calculation of the pfd mask. The GSO arc avoidance defines a non-operating zone on the ground in the field of view of a non-GSO space station. The location of this non-operating
zone on the ground will move as a function of the latitude of the non-GSO sub-satellite point. To get a more accurate model of a non-GSO system, the latitude of the non-GSO sub-satellite point is taken as a parameter to the pfd mask calculation.

C2.2 Mitigation techniques description

The mitigation technique implemented within the non-GSO system should be accurately explained in this section in order to be fully modelled in the calculation of the epfd \uparrow.
With regard to the use of a non-operating zone around the GSO arc, there are at least three different ways of modelling a non-GSO system based on a cell architecture:

- Cell-wide observance of a non-operating zone: a beam of a non-GSO space station is switched off if the separation angle between this non-GSO space station and the GSO arc, at any point of the non-GSO cell, is less than α_{0} (GSO arc avoidance angle).
- Cell-centre observance of a non-operating zone: a beam of a non-GSO space station is switched off when the centre of the cell sees this non-GSO space station at less than α_{0} from the GSO arc.
- A satellite-based reference: a beam of a non-GSO space station turns off when a satellite-based reference angle, X, is less than X_{0}. The reference angle, X, is the angle between a line projected from the GSO arc through the non-GSO space station to the ground and a line from the non-GSO space station to the edge of the non-GSO beam.

Other mitigation techniques may be used by a non-GSO system which are not listed here. Information on these techniques will be provided by the non-GSO administration for the description and verification of the pfd mask.
Note that these exclusion zone types are different from the MIN_EXCLUDE angle used in the epfd calculation which is always based upon the angle at the non-GSO ES.
Figure 3 shows a satellite-based reference with beam switch off inside an X angle based exclusion zone.

FIGURE 3
Overhead beam view of satellite-based exclusion angle

x : beam turned off when edge within GSO projection zone

C2.3 pfd calculation

C2.3.1 pfd calculation

The pfd radiated by a non-GSO space station at any point on the Earth's surface is the sum of the pfd produced by all illuminating beams in the co-frequency band.
Some non-GSO systems have tracking antennas which point to cells fixed on the Earth's surface and do not move with the spacecraft. However, since the pfd mask is generated with respect to the non-GSO location, assumptions must be made in the development of the pfd mask. Making the simplifying assumption that the cells move with the spacecraft can lead to inaccurate geographic distributions of epfd levels.

As non-GSO systems use mitigation techniques, there will be no main beam-to-main beam alignment. Therefore, de-polarization effects mean that both co-polarization and cross-polarization contributions must be included as sources of interference.
The implementation of the pfd mask explicitly accounts for both co-polarization and cross-polarization from non-GSO satellites into GSO earth stations for like types of polarization (circular-to-circular or linear-to-linear). Isolation between systems of different types of polarization (circular-to-linear) is not directly covered. A study has shown that the average total interference power over all axial ratios and polarization ellipse orientations is a very small net increase in the received interference power in the BSS antenna of 0.048 dB . The bounds of any cross-polarization contributions, that are very unlikely to be reached, are from -30 dB to +3 dB .

Then:

$$
p f d=10 \log \left(\sum_{i}^{N_{c o}} 10^{p^{c} d_{-} c o_{i} / 10}+\sum_{j}^{N_{c r o s s}} 10^{\text {pfd_cross }_{j} / 10}\right)
$$

where:
$p f d$: pfd radiated by a non-GSO space station $\left(\mathrm{dB}\left(\mathrm{W} / \mathrm{m}^{2}\right)\right)$ in the reference bandwidth i : index of the beams illuminated in the polarization considered
$N_{c o}$: maximum number of beams which can be illuminated simultaneously in the polarization considered
pfd_co ${ }_{i}$: pfd produced at the point considered at the Earth's surface by one beam in the polarization considered $\left(\mathrm{dB}\left(\mathrm{W} / \mathrm{m}^{2}\right)\right)$ in the reference bandwidth
j : index of the beams illuminated in the opposite polarization to the polarization considered
$N_{\text {cross: }}$ maximum number of beams which can be illuminated simultaneously in the opposite polarization to the polarization considered
pfd_crossj: pfd produced at the point considered at the Earth's surface by one beam in the opposite polarization to the polarization considered $\left(\mathrm{dB}\left(\mathrm{W} / \mathrm{m}^{2}\right)\right)$ in the reference bandwidth
and

$$
p f d_{-} c o_{i}=P_{i}+G_{i}-10 \log _{10}\left(4 \pi d^{2}\right)
$$

where:
P_{i} : maximum power emitted by the beam i in the reference bandwidth $\left(\mathrm{dB}\left(\mathrm{W} / \mathrm{BW}_{\text {reff }}\right)\right)$
$\mathrm{BW}_{\text {ref: }}$ reference bandwidth (kHz)
G_{i} : gain generated by the beam i in the polarization considered at the point considered at the Earth's surface (dBi)
d : distance between the non-GSO space station and the point considered at the Earth's surface (if the non-GSO satellite antenna gain is in isoflux, d is the altitude of the non-GSO space station) (m)
and

$$
p f d_{-} \text {cross }_{j}=P_{j}+G_{-} \text {cross }_{j}-10 \log _{10}\left(4 \pi d^{2}\right)
$$

where:
G_crossj: cross-polarization gain generated by the beam j illuminated in the opposite polarization to the polarization considered, at the point considered at the Earth's surface (dBi).
It is expected that the parameters used to generate the $\mathrm{pfd} / \mathrm{ei} . \mathrm{r} . \mathrm{p}$. mask correspond to the performance of the non-GSO satellite over its anticipated lifetime. The pfd levels should be an envelope over all possible traffic and beam combinations and represent the peak pfd in the given direction feasible over the lifetime of the system. Non-GSO satellite systems that employ adaptive antennas in which the beam size and sidelobe can be adjusted should take the combination that would result in the highest pfd expected during the anticipated lifetime in each direction when generating the pfd mask. The pfd for all angles for which the satellite operates will therefore be the highest pfd that would be generated, for example, when there is a traffic hot spot in that direction. This approach is consistent with the algorithm in Part D to calculate the epfd which takes account of frequency re-use constraints within the non-GSO system.

C2.3.2 Satellite antenna gain at the point considered at the Earth's surface

The objective of this section is to determine the gain in the direction of a point M at the Earth's surface when the satellite antenna points towards a cell i. The antenna coordinate can be defined by four ways of the coordinate system:

$$
\begin{aligned}
\varphi: & \text { spherical coordinate } \\
\mathrm{v}: & \mathrm{u}=\sin \theta \cos \varphi, \mathrm{v}=\sin \theta \sin \varphi \\
\mathrm{B}: & \mathrm{A}=\theta \cos \varphi, \mathrm{B}=\theta \sin \varphi \\
(\mathrm{Az}, \mathrm{El}): & \sin (\mathrm{El})=\sin \theta \sin \varphi, \tan (\mathrm{Az})=\tan \theta \cos \varphi
\end{aligned}
$$

As an example, the following calculations are performed in the antenna reference (A, B).
The sampling of the non-GSO antenna pattern should be adapted so that interpolation does not lead to gain level significantly different from real values.
Figure 4 presents the geometry in the antenna plane (A, B).

FIGURE 4
Antenna plane (A, B)

The coordinates of the point M at the Earth's surface are (a, b) in the antenna plane (A, B), corresponding to $\left(\theta_{M}, \varphi_{M}\right)$ in the polar reference.

The coordinates of the point C centre of the cell i, are $\left(\mathrm{A}_{c}, \mathrm{~B}_{c}\right)$ in the antenna plane (A, B), and $\left(\theta_{c}, \varphi_{c}\right)$ in the spherical reference.
For satellite antenna gain patterns with functional descriptions (i.e. equations), the gain into the point M may be computed directly from the coordinates $\mathrm{C}\left(\mathrm{A}_{c}, \mathrm{~B}_{c}\right)$ and $\mathrm{M}(a, b)$. For other patterns, the satellite antenna gains are provided in a grid of (A, B) points, and the point $\mathrm{M}(a, b)$ may be located between four points of the grid (A, B).
In general, it is therefore necessary to undertake interpolation between data points. Consider a grid of values P for a range of x values $=\left\{x_{1}, x_{2}, \ldots\right\}$ and y values $=\left\{y_{1}, y_{2}, \ldots\right\}$ as in Fig. 5 .

FIGURE 5
Interpolation between data points

The value of parameter P at point (x, y) can be derived by identifying the bounding values and hence:

$$
\begin{aligned}
& \lambda_{x}=\frac{x-x_{1}}{x_{2}-x_{1}} \\
& \lambda_{y}=\frac{y-y_{1}}{y_{2}-y_{1}}
\end{aligned}
$$

Then P can be interpolated using:

$$
P=\left(1-\lambda_{x}\right)\left(1-\lambda_{y}\right) P_{11}+\lambda_{x}\left(1-\lambda_{y}\right) P_{21}+\left(1-\lambda_{x}\right) \lambda_{y} P_{12}+\lambda_{x} \lambda_{y} P_{22}
$$

The sampling of the non-GSO satellite antenna pattern should be adapted so that interpolation does not lead to significant approximation.
The same criteria should be used when sampling the pfd mask.

C2.4 Methodology

The pfd mask is defined by the maximum pfd generated by any space station in the interfering non-GSO system and as a function of the parameters defined either in option 1 or option 2 . For the generation of the pfd mask, the cells in the non-GSO satellite footprint are located according to the beam pointing utilized by the non-GSO system. For satellites with steerable antennas, the satellite can point to the same area of the Earth throughout its track through the sky.
These cells are fixed relative to the Earth's surface. For satellites that have antenna-pointing angles fixed relative to the satellite, the cell pattern is the same relative to the satellite but is moving relative to the Earth.

C2.4.1 Option 1

Option 1 has been described for a pfd mask defined as a function of the separation angle α, as an example. If the pfd mask is provided as a function of the X angle, the following calculation remains the same replacing α with X angle.
The pfd mask is defined as a function of the separation angle α between this non-GSO space station and the GSO arc, as seen from any point on the surface of the Earth, and the difference ΔL in longitude between the non-GSO sub-satellite point and the GSO satellite.
The angle α is therefore the minimum topocentric angle measured from this particular earth station between the interfering non-GSO space station and any point in the visible GSO arc.
The objective of the mask is to define the maximum possible level of the pfd radiated by the non-GSO space station as a function of the separation angle between the non-GSO space station and the GSO arc at any point on the ground, per interval of ΔL.
At each point of the non-GSO satellite footprint, the pfd value depends on:

- the configuration of the spot beams which are illuminated by the satellite;
- the maximum number of co-frequency beams which can be illuminated simultaneously;
- the maximum number of co-frequency, co-polarization beams which can be illuminated simultaneously;
- the maximum power available at the satellite repeater.

The proposed methodology for the generation of the pfd mask is explained in the following steps:
Step 1: At any given time, in the field of view of a non-GSO space station, $N_{\text {total }}$ is the maximum number of cells that can be seen with the minimum service elevation angle.
Step 2: In the field of view of the non-GSO space station, it is possible to draw iso- α lines, i.e. the points on the surface of the Earth which share the same value of α (see Figs 6 and 7).

FIGURE 6
Field of view of a non-GSO space station (Option 1)

Step 3: Along the iso- α line, define intervals of ΔL : difference in longitude between the non-GSO sub-satellite point and the point on the GSO arc where the α ($\operatorname{or} X$) angle is minimized.
Step 4: Per each interval of ΔL, the iso- α line can be defined by a set of n points $\mathrm{M}_{\alpha, k}$ for $k=1,2, \ldots n$. To determine the maximum pfd corresponding to a given value of α, it is necessary to calculate the maximum pfd at each of the points $\mathrm{M}_{\alpha, k}$ for $k=1,2, \ldots n$. The maximum pfd at a given $\mathrm{M}_{\alpha, k}$ is determined by first finding the pfd contributed by each cell i toward $\mathrm{M}_{\alpha, k}$ taking into account the dependency of the sidelobe patterns on the beam tilt angle. The maximum pfd contributions toward $\mathrm{M}_{\alpha, k}$ are then summed, with the number of contributions constrained by the physical limitations of the space station:

- Out of the $N_{\text {total }}$ cells that can be seen within the coverage area of the space station under a minimum elevation angle for communication, only $N_{c o}$ can be illuminated at the same frequency bandwidth, in one sense of polarization, and $N_{\text {cross }}$ in the other sense of polarization. This characterizes the limitation of the antenna system on the non-GSO space station. To calculate the mask in one polarization, the cells which can be illuminated in the polarization concerned are identified, and the cross-polarization level is considered for other cells.
- Out of these $N_{c o}$ and $N_{\text {cross }}$ cells, only a given number can be powered simultaneously. This characterizes the limitation of the repeater system of the non-GSO space station.
- If applicable, the limitations in terms of frequency reuse pattern and polarization reuse pattern also need to be clarified.
- If applicable the power allocated to one cell may vary taking into account the elevation angle relative to this cell, for example.

FIGURE 7
View in 3D of the iso- α line

Step 5: The generation of the pfd mask also needs to take into account accurately the mitigation technique implemented within the non-GSO system.

With regard to the use of a non-operating zone around the GSO arc, there are three different ways of modelling a non-GSO system based on a cell architecture:

- cell-wide observance of a non-operating zone: a beam is switched off when one point on the Earth sees a non-GSO satellite within α_{0} of the GSO arc. In this particular case, any beam illuminating a cell which is crossed by an iso- α line corresponding to a value $|\alpha| \leq \alpha_{0}$ is switched off;
- cell-centre observance of a non-operating zone: a beam is switched off when the centre of the cell sees a non-GSO satellite within α_{0} of the GSO arc. In this case, any beam illuminating a cell with its centre inside the non-operating zone bounded by the two iso- α_{0} lines is switched off;
- if a satellite-based reference is chosen: a beam of a non-GSO space station turns off when the angle, X, is less than X_{0}. The reference angle X is the angle between a line projected from the GSO arc through the non-GSO space station to the ground and a line from the non-GSO space station to the edge of the non-GSO beam.
Note that these exclusion zone types are different from the MIN_EXCLUDE angle used in the epfd calculation which is always based upon the angle at the non-GSO ES.
Step 6: The maximum pfd value corresponding to a given value α within an interval of ΔL is:

$$
\operatorname{pfd}(\alpha, \Delta L)=\max _{k=1,2 \ldots n}\left(p f d\left(\mathbf{M}_{\alpha, k}\right)\right)
$$

Step 7: The location of an iso- α line, hence the value of the maximum pfd along this line depends on the latitude of the non-GSO sub-satellite point. Therefore, a set of pfd masks will need to be provided, each corresponding to a given latitude of the sub-satellite point.
Step 8: A set of pfd masks may be needed (one per non-GSO satellite).

C2.4.2 Option 2

The pfd mask is defined in a grid in azimuth and elevation, per latitude of the non-GSO sub-satellite as shown in Fig. 8.

The objective of the mask is to define the maximum possible level of the pfd radiated by the non-GSO space station in this azimuth elevation grid.

At each point of the non-GSO satellite footprint, the pfd value depends on:

- the configuration of the spot beams which are illuminated by the satellite;
- the maximum number of co-frequency beams which can be illuminated simultaneously;
- the maximum number of co-frequency, co-polarization beams which can be illuminated simultaneously;
- the maximum power available at the satellite repeater.

FIGURE 8
Field of view of a non-GSO space station (Option 2)

S. 1503.08

The proposed methodology for the generation of the pfd mask is explained in the following steps:
Step 1: At any given time, in the field of view of a non-GSO space station, $N_{\text {total }}$ is the maximum number of cells that can be seen with the minimum service elevation angle.

Step 2: For each point $\mathrm{M}(\mathrm{Az}, \mathrm{El})$, determine the maximum pfd . The maximum pfd at a given $\mathrm{M}_{\alpha, k}$ is determined by first finding the pfd contributed by each cell ${ }_{i}$ toward $\mathrm{M}(\mathrm{Az}, \mathrm{El})$ taking into account the dependency of the sidelobe patterns on the beam tilt angle. The maximum pfd contributions toward $\mathrm{M}_{\alpha, k}$ are then summed, with the number of contributions constrained by the physical limitations of the space station:

Out of the $N_{\text {total }}$ cells that can be seen within the coverage area of the space station under a minimum elevation angle for communication, only $N_{c o}$ cells can be illuminated at the same frequency bandwidth, in one sense of polarization, and $N_{\text {cross }}$ cells in the other sense of polarization. This characterizes the limitation of the antenna system on the non-GSO space station. To calculate the mask in one polarization, the cells which can be illuminated in the polarization concerned are identified, and the cross-polarization level is considered for other cells.

- \quad Out of these $N_{c o}$ and $N_{\text {cross }}$ cells, only a given number can be powered simultaneously. This characterizes the limitation of the repeater system of the non-GSO space station.
- If applicable, the limitations in terms of frequency reuse pattern and polarization reuse pattern also need to be clarified.
- If applicable the power allocated to one cell may vary taking into account the elevation angle relative to this cell, for example.
Step 3: The generation of the pfd mask also needs to take into account accurately the mitigation technique implemented within the non-GSO system.
With regard to the use of a non-operating zone around the GSO arc, there are three different ways of modelling a non-GSO system based on a cell architecture:
- cell-wide observance of a non-operating zone: a beam is switched off when one point on the Earth sees a non-GSO satellite within α_{0} of the GSO arc. In this particular case, any beam illuminating a cell which is crossed by an iso- α line corresponding to a value $|\alpha| \leq \alpha_{0}$ is switched off;
- cell-centre observance of a non-operating zone: a beam is switched off when the centre of the cell sees a non-GSO satellite within α_{0} of the GSO arc. In this case, any beam illuminating a cell with its centre inside the non-operating zone bounded by the two iso- α_{0} lines is switched off;
- if a satellite-based reference is chosen: a beam of a non-GSO space station turns off when the angle, X, is less than X_{0}. The reference angle X is the angle between a line projected from the GSO arc through the non-GSO space station to the ground and a line from the non-GSO space station to the edge of the non-GSO beam.
Note that these exclusion zone types are different from the MIN_EXCLUDE angle used in the epfd calculation which is always based upon the angle at the non-GSO ES.
Step 4: A set of pfd masks may need to be provided as a function of the latitude of the sub-satellite point.
Step 5: A set of pfd masks may be needed (one per non-GSO satellite).

C3 Generation of e.i.r.p. masks

C3.1 Generation of earth station e.i.r.p. masks

C3.1.1 General presentation

The earth station e.i.r.p. mask is defined by a set of tables of the maximum e.i.r.p. as a function of the offaxis angle in the direction of the GSO arc as generated by an earth station. There can be different such e.i.r.p. tables applicable at different latitudes.
The non-GSO earth station is located in a non-GSO cell which is served by a maximum number of non-GSO space stations. The density of non-GSO earth stations which can operate co-frequency simultaneously is also used as an input to the calculation.

C3.1.2 Mitigation techniques description

The mitigation technique implemented within the non-GSO system should be accurately explained in this section in order to be fully modelled in the calculation of the epfd \uparrow (see § C 2.2).

C3.1.3 Earth station antenna pattern

The earth station antenna pattern used needs to be identified to calculate the earth station e.i.r.p. mask.

C3.1.4 Methodology

Step 1: The earth station e.i.r.p. mask is defined by the maximum e.i.r.p. radiated in the reference bandwidth by the earth station as a function of the offaxis angle, and is given by:

$$
\text { ES_e.i.r.p. }(\theta)=G(\theta)+P
$$

where:
ES_e.i.r.p.: equivalent isotropic radiated power in the reference bandwidth ($\mathrm{dB}\left(\mathrm{W} / \mathrm{BW}_{\text {ref }}\right)$)
θ : offaxis angle at the non-GSO earth station between the boresight line towards non-GSO space station and a point on the GSO (e.g. the GSO space station) (degrees)
$G(\theta)$: earth station directional antenna gain (dBi)
P : maximum power delivered to the antenna, in the reference bandwidth $\left(\mathrm{dB}\left(\mathrm{W}^{\prime} / \mathrm{BW}_{r a f}\right)\right)$
$\mathrm{BW}_{r a f}$. reference bandwidth (kHz).
Step 2: Assuming that the non-GSO cells are uniformly distributed on the Earth's surface, the simultaneous co-frequency transmit non-GSO earth stations are evenly distributed over the cell. Therefore the interferer can be located at the centre of the cell to perform the simulation.
This exercise would be repeated for all latitudes for which the ES_e.i.r.p. could be different.

C3.2 Generation of space station e.i.r.p. masks

The space station e.i.r.p. mask is defined by the maximum e.i.r.p. generated by a non-GSO space station as a function of the angle seen from the non-GSO space station between the line to the subpoint of the non-GSO space station considered and a point on the GSO arc.
The space station e.i.r.p. mask is defined by the maximum e.i.r.p. radiated in the reference bandwidth by the space station as a function of this angle, and is given by:

$$
\text { NGSO_SS_e.i.r.p. }(\theta)=G(\theta)+P
$$

where:
NGSO_SS_e.i.r.p.: equivalent isotropic radiated power in the reference bandwidth $\left(\mathrm{dB}\left(\mathrm{W} / \mathrm{BW}_{\text {ref }}\right)\right)$
θ : angle seen from the non-GSO space station between the line to the sub-point of the non-GSO space station considered and a point on the GSO arc (degrees)
$G(\theta)$: space station antenna gain pattern (dBi) corresponding to the aggregation of all beams
$P: \quad$ maximum power, in the reference bandwidth $\left(\mathrm{dB}\left(\mathrm{W} / \mathrm{BW}_{r i f}\right)\right)$
$\mathrm{BW}_{\text {rif. }}$ reference bandwidth (kHz).

C4 pfd and e.i.r.p. mask format

C4.1 General structure of masks

The pfd and e.i.r.p. masks are key inputs to Recommendation ITU-R S. 1503 with format:

- For epfd(down) runs, the pfd mask(s), containing tables of $\operatorname{pfd}(\alpha$ or X, Δ long $)$ or of $\operatorname{pfd}($ azimuth, elevation) together with the latitude for which each table is valid.
- For epfd(up) runs, the non-GSO earth station e.i.r.p. mask(s), each one contains tables of e.i.r.p. (θ) together with the latitude for which each table is valid.
- For epfd(IS) runs, the non-GSO satellite e.i.r.p. masks, each one contains tables of e.i.r.p. (θ) together with the latitude for which each table is valid.
During the simulation, the software will calculate the relevant parameters, such as latitude and offaxis angle or α angle, and then use the mask to calculate a pfd or e.i.r.p. using the following approach:

1) The array of \{Latitude, Table\} is searched and the table which has the nearest latitude to the value calculated in the simulation is selected.
2) Using the selected table, the pfd or e.i.r.p. is then calculated by interpolation using:
a) pfd: calculated using bi-linear interpolation in either $\operatorname{pfd}(\alpha$ or X, Δ long $)$ or $\mathrm{pfd}($ azimuth, elevation);
b) e.i.r.p.: calculated using linear interpolation in e.i.r.p. (θ).

Each table is independent i.e. at different latitudes it can use a different grid resolution and range. The mask does not need to cover the whole range: outside the supplied values the last valid value is assumed to be used.

However, it should be noted that for latitude and \{azimuth, elevation, α or $\mathrm{X}, \Delta \mathrm{long}\}$ regions where no actual pfd is produced, in order to avoid using nearest latitude table containing operational pfd values it is advisable to provide extremely low pfd values for these ranges to simulate no transmission scenario.
The pfd mask table is not assumed to be symmetric in \{azimuth, elevation, α, Δ long \} and should be given for the full range from positive to negative extremes. In the case that the \{azimuth, elevation, α, Δ long, offaxis angle $\}$ calculated in the simulation is outside the ranges given in the pfd or e.i.r.p. masks, then the last valid value should be used.

For the ES e.i.r.p. masks, there is the option to specify the position by (latitude, longitude) rather than density via a reference to a specific ES in the SRS. Note that it is not permitted to mix types: either all non-GSO ES are to be defined via specific ES or all via the density field.
Each mask has header information giving:

- Notice ID
- Satellite name
- Mask ID
- Lowest frequency mask is valid in MHz
- Highest frequency mask is valid in MHz
- \quad Reference bandwidth of mask in kHz
- Mask type
- Parameters of mask.

The reference bandwidth of the mask is required as there are more than one bandwidth in the epfd thresholds in Article 22 of the Radio Regulations. The mask is scaled assuming the pfd or e.i.r.p. has a constant spectral power density, so that the pfd or e.i.r.p. to use in the calculations is:

$$
\text { pfd_Calc }=\text { pfd_Mask }+10 \log 10[\text { Threshold_Bandwidth / refbw_khz] }
$$

If no refbw_khz is present in the mask than ref_bw_khz=40 is assumed.

$$
\text { e.i.r.p._Calc }=\text { e.i.r.p._Mask }+10 \log 10[\text { Threshold_Bandwidth / refbw_khz] }
$$

The pfd and e.i.r.p. levels can vary by latitude: at least one latitude value (by default, 0 degree) should be given.
Each XML file should contain one mask (pfd or e.i.r.p.).

The masks relationships are shown in Figs 9 to 11.

FIGURE 9
Structure of pfd mask data for epfd(down)

S.1503-09

FIGURE 10
Structure of e.i.r.p. mask data for epfd(up)

FIGURE 11
Structure of e.i.r.p. mask data for epfd(IS)

S. 150341

The pfd masks are to be provided to the ITU BR in XML format as:

- It is both machine readable and human readable
- Allows both format and type checking
- Is an international standard for exchange of data.

The XML format is plain text with opening and closing blocks, as in
<satellite_system>
</satellite_system>
Within each section there are then fields relevant to that block. All angles should be given in degrees.
At the top level the satellite system is identified via its notice ID and name using:
<satellite_system ntc_id="NNNNNNN" sat_name="NAME">
[Header]
[Tables]
</satellite_system>
Within this structure there is the header followed by each of the tables.
The format for each mask is described in more detail in the sections below.

C4.2 pfd mask for epfd(down)

The header format of the pfd mask is as follows:

$$
\begin{aligned}
& \text { <pfd_mask mask_id="N" low_freq_mhz="F1" high_freq_mhz="F2" refbw_khz="BW" } \\
& \text { type="Type" } a _n a m e=" l a t i t u d e " ~ b _n a m e=" B " ~ c _n a m e=" C ">
\end{aligned}
$$

where (see Table 5):

TABLE 5
pfd mask header format

Field	Type or range	Units	Example
mask_id	Integer	-	3
low_freq_mhz	Double precision	MHz	10000
high_freq_mhz	Double precision	MHz	12000
refbw_khz	Double precision	kHz	40
type	\{alpha_deltaLongitude, azimuth_elevation $\}$	alpha_deltaLongitude	
a_name	\{latitude \}	-	latitude
b_name	\{alpha, X, azimuth $\}$	-	alpha
c_name	$\{$ deltaLongitude, elevation $\}$	-	deltaLongitude

For each of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ there are then arrays of values, such as:
<by_a $a=" N$ " $>$
</by_a>
The values within that open/close structure then all relate to $\mathrm{a}=\mathrm{N}$: a similar structure is used for b values.

The innermost group gives the actual pfd value, such as:

$$
\langle p f d c=" 0 ">-140</ p f d>
$$

An example pfd mask would therefore be:

```
<satellite_system ntc_id="12345678" sat_name="MySatName">
<pfd_mask mask_id="3" low_freq_mhz="10000" high_freq_mhz="40000" refbw_khz =
"40" type="alpha_deltaLongitude" a_name="latitude" b_name="alpha"
c_name="deltaLongitude">
<by_a a="0">
    <by_b b="-180">
        <pfd c="-20">-150</pfd>
        <pfd c="0">-140</pfd>
        <pfd c="20">-150</pfd>
    </by_b>
    <by_b b="-8">
        <pfd c="-20">-165</pfd>
        <pfd c="0">-155</pfd>
        <pfd c="20">-165</pfd>
    </by_b>
    <by_b b="-4">
        <pfd c="-20">-170</pfd>
```

```
    <pfd c="0">-160</pfd>
    <pfd \(c=" 20\) " >-170</pfd>
    </by_b>
    <by_b b="0">
        \(<p f d c="-20 ">-180</ p f d>\)
        <pfd \(c=" 0 ">-170</ p f d>\)
        <pfd c="20">-180</pfd>
</by_b>
<by_b b="4">
        \(<p f d c="-20 ">-170</ p f d>\)
        <pfd c="0">-160</pfd>
        <pfd \(c=" 20 ">-170</ p f d>\)
</by_b>
<by_b b="8">
        <pfd \(c="-20 ">-165</ p f d>\)
        <pfd \(c=" 0 ">-155</ p f d>\)
    <pfd \(c=\) " 20 " >- 165 〈/pfd>
</by_b>
<by_b b="180">
    <pfd \(c="-20 ">-150</ p f d>\)
    <pfd c="0">-140</pfd>
    <pfd c="20">-150</pfd>
</by_b>
</by_a>
</pfd_mask>
</satellite_system>
```

The XML format can be used to submit a shorthand form to avoid duplicated data but the table will be completed by interpolation or repeated use of the previous value in an array. The form of the pfd mask used by the epfd calculation algorithm in Part D is a grid at each latitude of $\operatorname{pfd}(x, y)$ where (x, y) are the two variables of the mask.
At each latitude there will be an array of x and y values:

$$
\begin{aligned}
x_{\mathrm{i}} & =\left\{x_{1}, x_{2}, . . x_{n}\right\} \\
y_{\mathrm{i}} & =\left\{y_{1}, y_{2}, . . y_{n}\right\}
\end{aligned}
$$

These arrays can vary between latitudes.

Then for each $\left(x_{\mathrm{i}}, y_{\mathrm{i}}\right)$ there is an associated pfd value and hence there are $n \times m \mathrm{pfd}$ values in the table, as in the simplified 4×4 table below:

$(\boldsymbol{x}, \boldsymbol{y})$ array	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$
y_{1}	$\operatorname{pfd}(1,1)$	$\operatorname{pfd}(2,1)$	$\operatorname{pfd}(3,1)$	$\operatorname{pfd}(4,1)$
y_{2}	$\operatorname{pfd}(1,2)$	$\operatorname{pfd}(2,2)$	$\operatorname{pfd}(3,2)$	$\operatorname{pfd}(4,2)$
y_{3}	$\operatorname{pfd}(1,3)$	$\operatorname{pfd}(2,3)$	$\operatorname{pfd}(3,3)$	$\operatorname{pfd}(4,3)$
y_{4}	$\operatorname{pfd}(1,4)$	$\operatorname{pfd}(2,4)$	$\operatorname{pfd}(3,4)$	$\operatorname{pfd}(4,4)$

The data submitted can be a subset of this, for example:

$(\boldsymbol{x}, \boldsymbol{y})$ array	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{x}_{\mathbf{4}}$
y_{1}	-	$\operatorname{pfd}(2,1)$	$\operatorname{pfd}(3,1)$	-
y_{2}	$\operatorname{pfd}(1,2)$	-	-	$\operatorname{pfd}(4,2)$
y_{3}	$\operatorname{pfd}(1,3)$	-	-	$\operatorname{pfd}(4,3)$
y_{4}	-	$\operatorname{pfd}(2,4)$	$\operatorname{pfd}(3,4)$	-

In this case the pfd table would be completed by a combination of assumptions. Firstly, if there are edge of table values not specified, to extend the mask by using the nearest defined value and assuming it continues:

$$
\begin{aligned}
& \operatorname{pfd}(1,1)=\operatorname{pfd}(2,1) \\
& \operatorname{pfd}(4,1)=\operatorname{pfd}(3,1) \\
& \operatorname{pfd}(1,4)=\operatorname{pfd}(2,4) \\
& \operatorname{pfd}(4,4)=\operatorname{pfd}(3,4)
\end{aligned}
$$

Then if there are central table values not specified, to complete using linear interpolation from the surrounding values as follows:

$$
\begin{aligned}
& \operatorname{pfd}(2,2)=\operatorname{Interpolate}\left\{x_{2}, \operatorname{pfd}(1,2), \operatorname{pfd}(4,2), x_{1}, x_{4}\right\} \\
& \operatorname{pfd}(2,3)=\operatorname{Interpolate}\left\{x_{3}, \operatorname{pfd}(1,2), \operatorname{pfd}(4,2), x_{1}, x_{4}\right\} \\
& \operatorname{pfd}(3,2)=\operatorname{Interpolate}\left\{x_{2}, \operatorname{pfd}(1,3), \operatorname{pfd}(4,3), x_{1}, x_{4}\right\} \\
& \operatorname{pfd}(3,3)=\operatorname{Interpolate}\left\{x_{3}, \operatorname{pfd}(1,3), \operatorname{pfd}(4,3), x_{1}, x_{4}\right\}
\end{aligned}
$$

This completion of the pfd mask could be undertaken when it is read in or on-the-fly during the calculation of the pfd for a specific geometry.

C4.3 e.i.r.p. mask for epfd(up)

The header format of the e.i.r.p.(up) mask is as follows:
<eirp_mask_es mask_id="N" low_freq_mhz="F1" high_freq_mhz="F2" refbw_khz= "BW" a_name="latitude" b_name = "offaxis angle" ES_ID = "-1">
where (see Table 6):

TABLE 6

Non-GSO ES e.i.r.p. mask header format

Field	Type or range	Units	Example
mask_id	Integer	-	1
low_freq_mhz	Double precision	MHz	10000
high_freq_mhz	Double precision	MHz	12000
refbw_khz	Double precision	kHz	40
a_name	\{latitude $\}$	-	latitude
b_name	\{offaxis angle $\}$	-	angle
ES_ID	Integer	-	12345678 -1 if not specific ES

There are then for each relevant latitude arrays of e.i.r.p. values for given offaxis angles, such as:
<eirp b="0">30.0206</eirp>
The e.i.r.p. mask should be monotonically decreasing.
An example e.i.r.p.(up) mask would therefore be:

```
<satellite_system ntc_id="12345678" sat_name="MySatName">
<eirp_mask_es mask_id="l" low_freq_mhz="10000" high_freq_mhz="40000" refbw_khz
= "40" a_name = "latitude" b_name="offaxis angle", ES_ID=-1>
<by_a a="0">
<eirp b="0">30.0206</eirp>
<eirp b="1">20.0206</eirp>
<eirp b="2">12.49485</eirp>
<eirp b="3">8.092568</eirp>
<eirp b="4">4.9691</eirp>
<eirp b="5">2.54634976</eirp>
<eirp b="10">-4.9794</eirp>
<eirp b="15">-9.381681</eirp>
<eirp b="20">-12.50515</eirp>
<eirp b="30">-16.90743</eirp>
<eirp b="50">-18.9471149</eirp>
<eirp b="180">-18.9471149</eirp>
</by_a>
</eirp_mask_es>
</satellite_system>
```


C4.4 e.i.r.p. mask for epfd(IS)

The header format of the e.i.r.p.(IS) mask is as follows:
<eirp_mask_ss mask_id="N" low_freq_mhz="F1" high_freq_mhz="F2" refbw_khz= "BW" a_name= "latitude" b_name="offaxis angle">
where (see Table 7):

TABLE 7
Non-GSO satellite e.i.r.p. mask header format

Field	Type or Range	Units	Example
mask_id	Integer	-	1
low_freq_mhz	Double precision	MHz	10000
high_freq_mhz	Double precision	MHz	12000
refbw_khz	Double precision	kHz	40
a_name	\{latitude $\}$	-	latitude
b_name	\{angle $\}$	-	angle

There are then for each relevant latitude arrays of e.i.r.p. values for given offaxis angles, such as:

```
    <eirp b="0">30.0206</eirp>
```

The e.i.r.p. mask should be monotonically decreasing.
An example e.i.r.p.(IS) mask would therefore be:

```
<satellite_system ntc_id="12345678" sat_name="MySatName">
<eirp_mask_ss mask_id="2" low_freq_mhz="10000" high_freq_mhz="40000" refbw_khz
= "40" a_name = "latitude" b_name="offaxis angle">
<by_a a="0">
<eirp b="0">30.0206</eirp>
<eirp b="1">20.0206</eirp>
<eirp b="2">12.49485</eirp>
<eirp b="3">8.092568</eirp>
<eirp b="4">4.9691</eirp>
<eirp b="5">2.54634976</eirp>
<eirp b="10">-4.9794</eirp>
<eirp b="15">-9.381681</eirp>
<eirp b="20">-12.50515</eirp>
<eirp b="30">-16.90743</eirp>
<eirp b="50">-18.9471149</eirp>
<eirp b="180">-18.9471149</eirp>
</by_a>
</eirp_mask_ss>
</satellite_system>
```


PART D

Software for the examination of non-GSO filings

D1 Introduction

D1.1 Scope

The scope of this section is to specify part of a software requirements document (SRD) for a computer program that can be used by the BR to calculate whether a specific non-GSO system proposed by an administration meets epfd limits.

There are three key tasks that the software must complete as identified in Fig. 1:

1) determination of the runs to execute;
2) for each run, determination of worst case geometry;
3) for each run, calculation of epfd statistics and checking compliance with the limits.

D1.2 Background

This section assumes that the following approaches are used:
$e p f d \downarrow$ calculation: Each non-GSO satellite has a pfd mask and the pfd for each satellite is used to calculate the aggregate epfd \downarrow at an earth station of a GSO system. This is repeated for a series of time steps until a distribution of epfd \downarrow is produced. This distribution can then be compared with the limits to give a go/no go decision.
epfd calculation: The Earth is populated with a distribution of non-GSO earth stations. Each earth station points towards a non-GSO satellite using pointing rules for that constellation, and transmits with a defined e.i.r.p.. From the e.i.r.p. mask for each earth station, the epfd \uparrow at the GSO can be calculated. This is repeated for a series of time steps until a distribution of epfd \uparrow is produced. This distribution can then be compared with the limits to give a go/no go decision.
 can be calculated. This is repeated for a series of time steps a distribution of epfd is is produced. This distribution can then be compared with the limits to give a go/no go decision.
The SRD provides detailed algorithms that would allow it to be implemented in software by any interested parties without reference to any specific development methodology.

D1.3 Overview

This Part D is structured into the following sections:
Section D2: Determination of runs to execute
Section D3: Determination of worst case geometry for each run
Section D4: Calculation of time step size and number of time steps
Section D5: Calculation of epfd statistics and limit compliance checking
Section D5.1: Defines the epfd \downarrow algorithm
Section D5.2: Defines the epfd \uparrow algorithm
Section D5.3: Defines the epfd ${ }_{\text {is }}$ algorithm
Section D6: Defines the core geometry and algorithms used by both epfd calculations including gain patterns

Section D7: Specifies the output formats and process to obtain a go/no-go decision.
Note that where square brackets are included as part of a parameter name, this indicates an index into an array, not tentative text.

D1.4 General assumptions and limitations

A general limitation on the generation of epfd statistics is:
Bin size: $\quad S_{B}=0.1 \mathrm{~dB}$
To be consistent with the evaluation algorithm in § D7.1.3 epfd values calculation for each time step should be rounded to the lower values with a maximum precision of 0.1 dB .
The calculation of angle to GSO arc, α and X, as described in \S D6.4.4 should, where feasible, be calculated using the analytic method. If this method is unable to provide a solution then the iterative approach may be used based upon a number of test points, with specified separation between them:

Separation between GSO test points: 1e-6 radians.
The test points should be a located at integer multiples of 1e-6 radians.

D1.5 Database and interface

Automatic verification analysis should take input data from the SRS or other databases, combined with BR resources such as DLLs to define epfd limits and calculate antenna gains. Custom analysis can request some parameters, such as GSO satellite and ES locations, from the user.

D2 Determination of runs to execute

D2.1 Article 22 runs

For an Article 22 run a key task is to determine which runs to execute given a non-GSO filing and the epfd limits specified in the RR.
In any direction, if there are no masks, whether pfd or e.i.r.p., then it is not necessary to undertake any runs.
It is necessary to look in the SRS grp, freq tables to:

- Identify the date involved
- Identify the list of frequencies.

It is also necessary to check the frequencies of the system operating table: if there are different sets of parameters at different frequencies then a run will have to be executed for each unique set of pfd/e.i.r.p. mask, orbit elements and system operating characteristics.

For each \{freq_min, freq_max, date\} combination is used to call the LimitsAPI. If there are duplicate limits returned, then only the minimum frequency case need be run.

```
For all unique Satellite {freq_min, freq_max, date} in non-GSO notice
{
    From LimitsAPI request all FSS epfd(down) limits for {freq_min, freq_max,
date}
    For all unique epfd(down) limits returned
    {
        Set FrequencyRun = max (fmin}(mask), fmmin(limits)) + RefBW/2
        CreateRun:
            Direction = Down
```

```
            Service = FSS
            Frequency = FrequencyRun
                ES_DishSize = From Limits API
                ES_GainPattern = From Limits API
                epfd_Threshold = From Limits API
                Ref_BW = From Limits API
    }
    From LimitsAPI request all BSS epfd(down) limits for {freq_min, freq_max,
date}
    For all unique epfd(down) limits returned
    {
        Set FrequencyRun = max (fmin}(mask), fmmin (limits)) + RefBW/2
            CreateRun:
                    Direction = Down
                    Service = BSS
                    Frequency = FrequencyRun
                    ES_DishSize = From Limits API
                    ES_GainPattern = From Limits API
                    epfd_Threshold = From Limits API
                    Ref_BW = From Limits API
    }
}
For all unique ES {freq_min, freq_max} in non-GSO notice
{
    From LimitsAPI request all epfd(up) limits for {freq_min, freq_max, date}
    For all unique epfd(up) limits returned
    {
            Set FrequencyRun = max (fmin}(mask), fmin (limits)) + RefBW/2
            CreateRun:
                    Direction = Up
                    Frequency = FrequencyRun
                    Sat_Beamwidth = From Limits API
                    Sat_GainPattern = From Limits API
                    epfd_Threshold = From Limits API
                    Ref_BW = From Limits API
    }
}
For all unique Satellite {freq_min, freq_max, date} in non-GSO notice
{
    From LimitsAPI request all epfd(is) limits for {freq_min, freq_max, date}
    For all unique epfd(is) limits returned
    {
            Set FrequencyRun = max (fmin}(mask), fmmin (limits)) + RefBW/2
            CreateRun:
                    Direction = Intersatellite
                    Frequency = FrequencyRun
                    Sat_Beamwidth = From Limits API
                    Sat_GainPattern = From Limits API
                    epfd_Threshold = From Limits API
                    Ref_BW = From Limits API
    }
}
```


D2.2 Article 9.7A

For Article 9.7A runs the criteria and threshold is defined in Appendix 5 of the Radio Regulations and runs are generated as follows:

```
If the selected earth station meets the criteria in Appendix 5
{
    Get the frequency range of the selected ES (fmin},\mp@subsup{f}{\mathrm{ max }}{}
    Get all non-GSO networks in the SRS that overlap that frequency range
    For each non-GSO network returned
    {
        Query Limits API with the selected ES( (fmin
        {
            Get RefBW from Appendix 5 Data
                Set FrequencyRun = max(ES_ fmin, Mask_ fmin})+RefBW/
                CreateRun:
                            Direction = Down
                            Frequency = FrequencyRun
                ES_DishSize = From ES filing
                ES_GainPattern = From ES filing
                epfd_Threshold = From Appendix 5
                Ref_BW = From Appendix 5
            }
    }
}
```


D2.3 Article 9.7B

For Article 9.7B runs the criteria and threshold is defined in Appendix 5 of the Radio Regulations and runs are generated as follows:

```
Get ( fmmin
{
    Get all ES in the SRS that overlap that frequency range
    For each ES returned
    {
        If the earth station meets the criteria in Appendix 5
        {
            Query Limits API with ES(fmin, fmax )
            Get RefBW from Appendix 5 Data
            Set FrequencyRun = max(ES_ fmin, Mask_ fmin}) + RefBW/
            CreateRun:
                        Direction = Down
                        Frequency = FrequencyRun
                        ES_DishSize = From ES filing
                        ES_GainPattern = From ES filing
                        epfd_Threshold = From Appendix 5
                        Ref_BW = From Appendix 5
            }
        }
    }
}
```


D3 Worst case geometry

The epfd limits in Article $\mathbf{2 2}$ are applicable for all GSO ESs and all pointing angles towards that part of the GSO arc visible from that ES. It is, however, not feasible to model all such geometries within the verification software. The worst case geometry (WCG) is a reference GSO satellite location and either an ES or boresight of the GSO satellite's beam which is used when examining a non-GSO sytem for compliance with the epfd limits in Article 22. It remains necessary for the non-GSO operator to meet the epfd limits in Article 22 for all other geometries including the testing of specific GSO networks as noted in § A1.3.
The WCG is selected by an algorithm, the worst case geometry algorithm (WCGA), which undertakes an examination of the pfd/e.i.r.p. masks together with the non-GSO satellite orbital parameters to identify the highest single entry epfd value. Where there are multiple geometries with the same highest single entry epfd value, then the geometry is selected that should have this highest single entry epfd for the greatest percentage of time, identified by considering the angular velocity or elevation angle. These assumptions are based on the critical epfd levels being the highest ones which are those that are most readily measureable.
The WCGA is based upon iterating over a set of positions, typically of the non-GSO satellite. The geometry is assumed to be symmetric in longitude and the satellite can be set at the required latitude exactly using a simple point-mass model. However the epfd calculation engine described in § D5 can use a range of orbit models with a specific time step and therefore the longitude at which a satellite reaches a specified latitude will be different from that in the WCGA. Hence an additional stage is required which for the non-GSO satellite that results in the highest single entry epfd the difference in longitude is calculated between:

- The longitude of the non-GSO satellite when it reaches the specified latitude using a point mass model in the WCGA, converting to (latitude, longitude) using a static time $t=$ simulation start time (e.g. relative time $=0$).
- The longitude at which the non-GSO satellite is closest to the specified latitude using the full orbit model and the fine time step calculated for the given run, converting to (latitude, longitude) using the relevant simulation time.
This difference in longitude is shown in Fig. 12 below:

FIGURE 12

This difference in longitude is then used to adjust the position of the GSO satellite and ES calculated in the WCGA so that the non-GSO satellite with the pfd mask that causes the highest epfd goes through the geometry that causes this epfd value during its first orbit. When iterating for latitude using the time step, the time step that gives the nearest latitude is used in the longitude calculation.
Note that the algorithm in this Recommendation is not designed to take account of either ITU-R Regions or specific longitudes as the epfd limits in Article 22 are meant to be applicable for all GSO ES locations and visible parts of the GSO arc.
Care is required when comparing floating point numbers to check for rounding errors. In the WCGA it is acceptable to round to the nearest 0.1 dB rather than round up. The search grid is in steps of 0.1° and binary seach routines terminate when the difference in angles is less than 1e-5 radians.

D3.1 WCG epfd \downarrow

D3.1.1 Inputs

The inputs to the algorithm include:

$$
\begin{aligned}
\text { pfd_mask: } & \text { the pfd mask to check } \\
\alpha_{0}[\text { lat }]: & \text { the GSO arc avoidance angle of the non-GSO satellite by latitude } \\
h: & \text { the minimum operating height of the non-GSO satellite } \\
\varepsilon_{0}[\text { lat, az }]: & \text { the minimum elevation angle of the non-GSO satellite by latitude and azimuth } \\
\{a, e, i\}: & \text { the orbit parametres of the non-GSO system } \\
\mathrm{ES}: & \text { the parameters of the ES including gain pattern. }
\end{aligned}
$$

D3.1.2 Algorithm

This section describes the algorithm to determine the Worst Case Geometry (WCG) for the epfd(down) direction.

Note that there could be different ranges of frequency in the pfd masks: this process is assumed to be repeated for each valid frequency range. For each valid frequency ranges there could be different pfd masks, multiple sets of $\{a, e, i\}$ or system operating parameters (e.g. GSO avoidance angles that vary by non-GSO satellite): the process should be repeated over each such set.
The WCG is based upon search in (θ, ϕ) as seen by the non-GSO satellite, with particular care taken for the region $\left(-\alpha_{0},+\alpha_{0}\right)$ including $\alpha=0$. This search is repeated at a number of test non-GSO satellite latitudes. In addition, specific checks are made for the highest latitudes for which $\alpha=\left\{-\alpha_{0}, 0,+\alpha_{0}\right\}$ to ensure compatibility with the methodology in Recommendation ITU-R S.1714.

For each test point considered, the algorithm calculates the epfd using the pfd mask and receive antenna gain, and compares that to the threshold for the relevant latitude. The gain is calculated using the α angle for the offaxis angle φ : for the BSS ES antenna gain pattern, which might not be symmetric around the boresight, the θ should be the value calculated assuming the ES points at the location at the point correspond to the α angle. Note that the algorithm can be implemented in a way that calculates the WCG for multiple dish sizes using vectorisation.

It is likely that multiple test points will result in the same difference between epfd level and threshold. To assess which should be used as the WCG, the angular velocity of the non-GSO satellite as seen by the ES is calculated, and the geometry selected is that:

1. Gives the highest difference between epfd level and threshold to the resolution of the resulting statistics (0.1 dB).
2. If multiple geometries meet point 1 , select the one that would result in geometry that gives the lowest angular velocity of the satellite as seen by the ES.

The search algorithm is shown in Figs 13 and 14 where:

$$
\begin{gathered}
\Delta \alpha=\alpha-\alpha_{0}[\text { lat }] \\
\Delta \varepsilon=\varepsilon-\varepsilon_{0}[l a t, a z]
\end{gathered}
$$

FIGURE 13
$\operatorname{Search}(\theta, \varphi)$ grid for WCGD_CalcAtLat

FIGURE 14

Geometry for WCGD_CheckExtremeCase

S.1503- 14

The algorithm is described in the following pseudo code for specified GSO ES type:

```
WCGA_Down:
    Set WorstEPFDBin = -9999
    Set WorstAngularVelocity = +9999
    Identify }\mp@subsup{\varepsilon}{0,min}{}= minimum value over all values in the \mp@subsup{\varepsilon}{0}{\prime[lat, az] table
    For all satellites in the order listed in ITU DB
    {
        Determine PFD mask to use for this satellite
        If this PFD mask has not been checked so far then or this satellite uses
a different \alphao[lat] then
            Call GetWCGA_Down(PFD_Mask, 人o[lat], \varepsilono[lat, az], ES, OrbitParams)
    End if
}
Next satellite
GetWCGA_Down (PFD_Mask, \alphao[lat], \varepsilon
```

```
StepSize = 0.1 }\mp@subsup{}{}{\circ
```

StepSize = 0.1 }\mp@subsup{}{}{\circ
If (i = 0)
If (i = 0)
{
{
WCGD_CalcAtLat(latitude = 0)
WCGD_CalcAtLat(latitude = 0)
}
}
Else
Else
{
{
LatNumSteps = RoundUp(i / StepSize)

```
        LatNumSteps = RoundUp(i / StepSize)
```

```
        For n = O to LatNumSteps inclusive
        {
            latitude = i * n / LatNumSteps
            WCGD_CalcAtLat(latitude)
            If (n > 0)
            {
                WCGD_CalcAtLat(-latitude)
            }
        }
        WCGD_CheckExtremeCase(0, }0=+\pi/2
        WCGD_CheckExtremeCase(0, 0 = - / /2}
        WCGD_CheckExtremeCase(+1, 0 = +\pi/2}
        WCGD_CheckExtremeCase(-1, }0=-\pi/2
        WCGD_CheckExtremeCase(+1, 0 = +\pi/2}
        WCGD_CheckExtremeCase(-1, 0 = - |/2}
    }
}
WCGD_CalcAtLat(latitude):
    Locate non-GSO satellite at latitude
    Calculate height of non-GSO satellite
    If height of non-GSO satellite < minimum operating height then return
    Calculate 的 for elevation angle }\mp@subsup{\varepsilon}{0}{},m,m\mp@code{and radius r
    WCGD_CheckCase(latitude, }0=0,\phi=0
    NumPhiSteps = RoundUp(\phi0 / StepSize)
    PhiStepSize = ф0 / NumPhiSteps
    For \phi = PhiStepSize to \phio inclusive in NumPhiSteps steps
    {
        ThetaMin = - //2
        ThetaMax = +3\pi/2
        If the PFD mask is symmetric in DeltaLong or Azimuth and elevation table
is also symmetric between east and west
            {
        ThetaMax = \pi/2
    }
    NumThetaSteps = max(16, RoundUp(2\pi\phi/PhiStepSize))
    ThetaStepSize = (ThetaMax-ThetaMin)/NumThetaSteps
    For ThetaStep = 0 to NumThetaSteps inclusive
    {
        0 = ThetaMin + ThetaStep*ThetaStepSize
        WCGD CheckCase(latitude, 0, \phi)
    }
    WCGD_CheckAlphaPhiCase(latitude, \phi, 0, RHS)
    WCGD_CheckAlphaPhiCase(latitude, \phi, +1, RHS)
    WCGD_CheckAlphaPhiCase(latitude, \phi, -1, RHS)
    If the PFD masks is not symmetric then
    {
        WCGD_CheckAlphaPhiCase(latitude, \phi, 0, LHS)
        WCGD_CheckAlphaPhiCase(latitude, \phi, +1, LHS)
        WCGD_CheckAlphaPhiCase(latitude, \phi, -1, LHS)
```

```
    }
    }
    WCGD_CheckAlphaElevCase(latitude, 0, RHS)
    WCGD_CheckAlphaElevCase(latitude, +1, RHS)
    WCGD_CheckAlphaElevCase(latitude, -1, RHS)
    If the PFD mask is not symmetric then
    {
        WCGD_CheckAlphaElevCase(latitude, 0, LHS)
        WCGD_CheckAlphaElevCase(latitude, +1, LHS)
        WCGD_CheckAlphaElevCase(latitude, -1, LHS)
    }
WCGD_CheckCase(latitude, 0, \phi):
    Convert ( }0,\phi)\mathrm{ to (az, el) in the satellite reference frame
    Create line from non-GSO satellite N in direction (az, el)
    Identify point P in which line intersects Earth
    Calculate the latitude of P, latp
    If Absolute(latp) > 81.2 degrees then exit this function
    If latp < ES_LAT_MIN then exit this function
    If latp > ES_LAT_MAX then exit this function
    If number of non-GSO satellites that operate at this latitude is zero then
exit this function
    Calculate the (a\mp@subsup{Z}{nGSO, el nGSo) of the non-GSO satellite as seen by the ES}{}\mathrm{ (t)}
    Find the nearest latitude to latp in the \mp@subsup{\varepsilon}{0}{\prime[latp, Azngso] table}
    At point P calculate ( }\alpha,X,\Deltalong) angles wrt point 
    At point P calculate AngularVelocity using methodology below
    Calculate PFD from mask, latitude & (az, el, \alpha, X, \Deltalong)
    Calculate G(\alpha) and G(\alphao[latp])
```



```
    {
        Calculate EPFDThreshold from latitude of point P on the Earth's surface
        Calculate EPFDMargin = PFD + Grel (\alpha) - EPFDThreshold
        Calculate EPFDbin = EPFDMargin/BinSize
        If WorstEPFDBin < EPFDBin
        {
        WorstEPFDBin = EPFDBin
        Worst AngularVelocity = AngularVelocity
        Store this (N, P)
    }
    Else if (WorstEPFDBin = EPFDBin &&
                WorstAngularVelocity > AngularVelocity)
    {
            WorstAngularVelocity = AngularVelocity
            Store this (N, P)
    }
}
```

WCGD_CheckAlphaPhiCase(Latitude, ϕ, Sign, Side):
Set θ range according to side to check (left or right)
If bracket $\delta \alpha=0$ then
\{

```
        Use binary search to iterate on 0 until WCGD_GetDeltaAlpha(Sign, 0, \phi)
= 0
        WCGD_CheckCase(latitude, 0, \phi)
    }
```

WCGD_CheckAlphaElevCase(Latitude, Sign, Side):
Set θ range according to side to check (left or right)
If bracket $\delta \alpha=0$ then
\{
Use binary search to iterate on θ until within $1 e-5$ radians
\{
For each θi
\{
Call WCGD_CalcPhiFromThetaElev (θi i) to determine ϕi
Call WCGD_GetDeltaAlpha(Sign, $\theta i \operatorname{\phi i})$ to determine $\delta \alpha i$
\}
\} selecting θ that brackets $\delta \alpha=0$
WCGD_CheckCase(latitude, θ, ϕ)
\}
WCGD_CalcPhiFromThetaElev($\varepsilon_{0}[l a t, a z]$, ThetaTest, PhiMax):
$\phi 0=0$
$\phi 1=$ PhiMax
Use binary search to iterate on ϕ until within le-5 radians
\{
For each ϕ i
\{
Call WCGD_CalcDeltaElev(ThetaTest, $\phi i)$
\}
\} selecting ϕ that brackets $\delta \varepsilon=0$
Return ϕ
WCGD_GetDeltaAlpha (Sign, $\theta, \phi)$:
Convert (θ, ϕ) to (az, el)
Create line in direction (az, el) from non-GSO satellite
Identify point P where line intersects Earth
Calculate latitude of P, lat
Determine exclusion zone size at this point, $\alpha_{0}\left[l^{l} t_{p}\right]$
At point P calculate α
deltaA $=$ Sign* $\alpha_{0}\left[\right.$ lat $\left._{P}\right]$
Return α - deltaA

WCGD_GetDeltaElev (θ, ϕ) :

Convert (θ, ϕ) to (az, el)
Create line in direction (az, el) from non-GSO satellite
Identify point P where line intersects Earth
Calculate latitude of P, lat
Calculate ($a z_{\text {nGSO }}, ~ e l_{n G S O}$) of non-GSO satellite as seen by point P
At point P calculate $\varepsilon_{0}[l a t, ~ a z]$

```
    Return elngso - &o[lat, az]
WCGD_CheckExtremeCase(Signo, 0) :
    Set latitude range according to sign (north or south hemisphere)
    If bracket }\delta\alpha=0\mathrm{ then
    {
        Use binary search to iterate until latitude range less than le-5 radians
        {
            For each test latitude, Lat
            {
                            Call WCGD_CalcDeltaAlphaFromLatElev(Lat, Sign, 0i) to
determine \delta\alphai and corresponding \phii
            }
        } Selecting latitudes that bracket }\delta\alpha=
        WCGD_CheckCase(latitude, 0, \phi)
    }
WCGD_CalcDeltaAlphaFromLatElev(Latitude, Sign, 0) :
    Set satellite at Latitude
    Get \phi using WCGD_CalcPhiFromThetaElev(\mp@subsup{\varepsilon}{0}{}[lat, az], 0, PhiMax)
    Calculate \delta\alpha from WCGD_CalcDeltaAlpha(Sign, 0, \phi)
    Return \delta\alpha, \phi
```

The algorithm uses the geometry given in the sections below.

D3.1.3 Geometry

D3.1.3.1 Conversion between (az, el) and ($\theta, \phi)$

The following equations can be used:

$$
\begin{aligned}
& \cos (\phi)=\cos (a z) \cos (e l) \\
& \sin (e l)=\sin (\theta) \sin (\phi)
\end{aligned}
$$

Note that it is necessary to check the sign of the $a z$ or ϕ to ensure that the \arccos / \arcsin is calculated correctly.

D3.1.3.2 Setting satellite at latitude

Key steps in this algorithm are the calculation of the position and velocity vectors of the non-GSO satellite and ES. For circular orbit systems the latitude can be used to derive the true anomaly, v, using:

$$
\sin (\omega+v)=\frac{\sin l a t}{\sin i}
$$

For elliptical systems, it is necessary to use binary search. Assuming the system is designed to have with argument of perigee $= \pm \pi / 2$, then the satellite will go from minimum to maximum latitude when the mean anomaly varies from $[0, \pi]$. Therefore, the binary search can start with $M=(0, \pi)$ and iterate from there.

To derive the position and velocity vectors, the following equations could be used:
In the satellite plane:

$$
\begin{gathered}
\underline{r}_{s a t}=r_{s a t}(\cos v \underline{P}+\sin v \underline{Q}) \\
\underline{v}_{s a t}=\sqrt{\frac{\mu}{p}}(-\sin v \underline{P}+(e+\cos v) \underline{Q})
\end{gathered}
$$

where:
$P, Q: \quad$ unit vectors in the orbit plane with origin the centre of the Earth and P aligned
with the orbit's major axis as described in § D6.3.2
$a, e, v: \quad$ orbital elements.

Also:

$$
\begin{aligned}
r_{s a t} & =\frac{p}{1+e \cos v} \\
p & =a\left(1-e^{2}\right)
\end{aligned}
$$

The non-GSO's position and velocity vectors can then be converted from the PQW orbit plane based frame to Earth centred vectors using the standard rotation matrix via the (Ω, ω, i) orbital elements. For the WCG calculation it can be assumed that second order effects including the J_{2} factor need not be considered.

The position vector equation can also be used to calculate a latitude from a true anomaly, v, and hence by iteration locate the satellite at the required latitude.

D3.1.3.3 Calculation of maximum ϕ in satellite viewpoint

For a given latitude and hence satellite radius, the maximum angle at the satellite from sub-satellite point ϕ_{0} can be derived from the elevation angle ε using:

$$
\sin \left(\phi_{0}\right)=\frac{R_{e}}{r_{\text {sat }}} \sin \left(\frac{\pi}{2}+\varepsilon\right)
$$

D3.1.3.4 Calculation of angular velocity

The inputs are as follows:

ES position vector:	$\underline{r}_{e s}$
ES velocity vector:	$\underline{\mathrm{v}}_{e s}$
Non-GSO satellite position vector:	$\underline{r}_{s a t}$
Non-GSO satellite velocity vector:	$\underline{\mathrm{v}}_{s a t}$

From these, it is possible to calculate the apparent velocity and vector from the ES to the satellite:

$$
\begin{aligned}
& \underline{r}=\underline{r}_{s a t}-\underline{r}_{\mathrm{es}} \\
& \underline{\mathrm{v}}=\underline{\mathrm{v}}_{s a t}-\underline{\mathrm{v}}_{e s}
\end{aligned}
$$

The angle between these two vectors can then be calculated:

$$
\cos \psi=\frac{r \cdot v}{r v}
$$

The instantaneous angular velocity is then:

$$
\theta=\frac{\nu}{r} \sin \psi
$$

The various terms are shown in Fig. 15:

FIGURE 15
Vectors to calculate non-GSO satellite apparent angular velocity

S. 1503-15

Note that a low angular velocity will result in higher likelihoods of interference and hence for a given epfd value the WCG that gives the least apparent angular velocity would be the one to use.
The ES's velocity vector can be derived from its position vector (x, y, z) as follows:

$$
\underline{v}_{e s}=w_{e}\left(\begin{array}{c}
-y \\
x \\
\mathbf{0}
\end{array}\right)
$$

Where w_{e} is the Earth's angular velocity in radians per second.

D3.2 WCG epfd \uparrow

Note that as the epfd limits in Article 22 are for 100% of the time there is no need to consider the likelihood of particular geometries, only the maximum epfd(up) value.
If there are multiple sub-constellations with alternative orbital elements or some satellites use different exclusion zone angles then the process should be repeated for each unique set.

D3.2.1 Inputs

The inputs to the algorithm are as follows:
ES_eirp : the non-GSO ES e.i.r.p. mask to check. This could vary by latitude, with each latitude range having an e.i.r.p. pattern, defined as a table of e.i.r.p. vs. offaxis angle towards the GSO arc
$\theta_{\mathrm{a} d B}$: the GSO satellite's beam half power beamwidth
$\varepsilon_{0, G S O}$: the minimum elevation angle of the GSO system
$\varepsilon_{0}[$ lat, az] : the minimum elevation angle of the non-GSO system, which could vary by latitude and azimuth
α_{0} [lat]: the minimum exclusion angle of the non-GSO system, which could vary by latitude and non-GSO satellite
N_{co} [lat]: the number of non-GSO satellites that can provide co-frequency service at a specific location on the Earth's surface, which could vary by latitude
ES_DISTANCE, ES_DSENSITY : the average distance on the Earth's surface between co-frequency beams from the non-GSO system (km) and density of co-frequency non-GSO ES or:
ES(lat, long): the latitude and longitude of the specific ES of the non-GSO system
$\{a, i, e, \Omega, \omega, v\}$: the orbit parameters of the non-GSO system including whether the system's ground track repeats and if so the repeat time

D3.2.2 GSO System Parameters

It is assumed that the GSO system's minimum operating elevation angle and beamwidth are as in the Table below.

TABLE 8

WCG(up) GSO System Parameters

Frequency band	$\boldsymbol{f}<\mathbf{1 0} \mathbf{~ G H z}$	$\mathbf{1 0} \mathbf{~ G H z} \leq \boldsymbol{f}<$ $\mathbf{1 7} \mathbf{~ G H z}$	$f \geq \mathbf{1 7} \mathbf{~ G H z}$
Beamwidth (degrees)	1.5	4	1.55
Minimum elevation angle (degrees) $\varepsilon_{\text {EOC }}$	10	10	20

The table below shows the geocentric angle that corresponds to the minimum elevation angle and hence the maximum angle at the GSO satellite towards the beam boresight ϕ_{BS} :

TABLE 9
WCG(up) Derived Minimum and Maximum Values

Frequency band	$\boldsymbol{f}<\mathbf{1 0} \mathbf{~ G H z}$	$\mathbf{1 0} \mathbf{~ G H z} \leq \boldsymbol{f}<$ $\mathbf{1 7} \mathbf{~ G H z}$	$f \geq \mathbf{1 7} \mathbf{~ G H z}$
$\phi_{\text {EOC }}$ at GSO satellite (degrees)	8.567	8.567	8.172
$\phi_{\text {BS }}$ at GSO satellite (degrees)	7.817	6.567	7.397
Geocentric angle χ for $\phi_{\text {BS }}$ (degrees)	56.230	42.552	50.934

These were generated using the geometry in Fig. 16 and the following equations.

FIGURE 16

S.1503-1

Here the $\phi_{B S}$ can be derived as follows:

$$
\begin{aligned}
\sin \phi_{E O C} & =\frac{R_{e}}{R_{g e o}} \sin \left(\frac{\pi}{2}+\varepsilon\right) \\
\phi_{B S} & =\phi_{E O C}-\frac{\theta_{3 d B}}{2}
\end{aligned}
$$

Then, noting that as $\psi>\pi / 2$:

$$
\sin (\pi-\psi)=\frac{R_{g e o}}{R_{e}} \sin \left(\phi_{B S}\right)
$$

Hence:

$$
\chi_{B S}=\pi-\phi_{B S}-\psi
$$

D3.2.3 Algorithm

The WCGA for the epfd(up) case is as follows:

```
WCGA_UP:
    Calculate }\mp@subsup{\phi}{\mathrm{ BS }}{}\mathrm{ from }\mp@subsup{\varepsilon}{\mathrm{ EOC }}{
    From }\mp@subsup{\phi}{BS}{}\mathrm{ calculate }\mp@subsup{\chi}{BS}{
    If ES from density
            Call WCGA_UP_General
    Else
            If non-GSO satellite repeats
                Call WCGA_UP_SpecifcES_Repeating
            Else
                Call WCGA_UP_SpecifcES_NonRepeating
            Endif
    Endif
```

The various cases, their functions and geometries are described in the following sections.

D3.2.3.1 Aggregate epfd calculation

In the general case the aggregate epfd(up) can be calculated using:

$$
\operatorname{epfd}(u p)=\sum_{i=1}^{i=N_{E S}} \text { e.i.r.p. }(\varphi, l a t)-L_{S}+G_{r e l, r x}+10 \log _{10}\left(N U M_{E S}\right)+10 \log _{10}\left(N_{c o, E S}(l a t)\right)
$$

Note the summation is in absolute though the equation is given in dB terms with addition and where:
e.i.r.p. $(\varphi$, lat $) \quad$ is the e.i.r.p. at the appropriate offaxis angle φ towards the GSO for the given non-GSO ES latitude
L_{S} is the spreading factor
Grel, $r x$ is the relative gain at the GSO satellite using the Rec. ITU-R S. 672 gain pattern
NUM_ES is a factor for systems using density rather than specific ES (and which typically relates to the access method) derived from the non-GSO system's density and distance fields as given in § D5.2.5
NUM_ES = ES_DISTANCE * ES_DISTANCE * ES_DENSITY
$N_{c o, E S}($ lat $) \quad$ is the maximum number of co-frequency non-GSO ES that can transmit at a given location.
The summation is over the $N_{E S}$ non-GSO deployed within the GSO satellites 15 dB beamwidth footprint using the algorithm in § D5.2.5. This depends upon the separation distance between co-frequency beams which is a parameter provided by the non-GSO system.
For the WCG(up) calculation, it is assumed that the aggregate epfd is dominated by the single entry epfd at the boresight plus an aggregation factor and so this can be estimated by extracting the non-GSO parameters from the summation as in:

$$
e p f d(u p) \cong e . i . r . p .(\varphi, l a t)+10 \log _{10}\left(N U M_{-} E S\right)+10 \log _{10}\left(N_{c o, e s}(l a t)\right)+\sum_{i=1}^{i=N_{E S}} G_{r e l, r x}-L_{S}
$$

This last term is only dependent upon the geometry (in particular the geocentric angle, χ) and the gain pattern in Recommendation ITU-R S. 672 but not upon any of the non-GSO parameters and hence can be pre-computed.

$$
F_{672}(x)=\sum_{i=1}^{i=N_{E S}} G_{r e l, r x}-L_{S}
$$

A method to calculate based upon an assumed non-GSO ES separation distance ES_DISTANCE $=$ $D_{E S}=100 \mathrm{~km}$ is via the following Pade approximation:

$$
y=a+\frac{b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}}{1+g x+h x^{2}}
$$

where:

TABLE 10
F672 Pade approximation parameters

Parameter	Beamwidth $=4^{\circ}$	$\begin{aligned} & \text { Beamwidth = } \\ & 1.55^{\circ} x<35^{\circ} \end{aligned}$	$\begin{aligned} & \text { Beamwidth }= \\ & 1.55^{\circ} x>35^{\circ} \end{aligned}$	Beamwidth $=1.5^{\circ}$
a	-133.536851	-133.323814	-133.323814	-142.1952459
b	0.001384021	0.017909858	0.02314611	-0.001235207
c	0.000637798	-0.011981864	-0.001336397	0.00121213
d	$6.9531 \mathrm{E}-07$	0.002350044	$2.26511 \mathrm{E}-05$	-4.77102E-05
e	-1.94494E-07	-4.61428E-05	-6.95017E-08	$6.5926 \mathrm{E}-07$
f	$1.41944 \mathrm{E}-09$	-3.30E-07	-7.75011E-10	-2.83069E-09
g	-0.033027982	-0.408584467	-0.036720978	-0.033787173
h	0.000434998	0.054553642	0.000370144	0.000306156

For the specific ES case the $D_{E S}$ is not defined and so a value of 100 should be used while NUM_ES set to 1 so this term does not contribute.

Given the F_{672} factor, the epfd(up) for a given geometry can be estimated using:

$$
\operatorname{epdf}(u p) \cong \operatorname{eirp}(\theta, l a t)+10 \log _{10}\left(N U M_{-} E S\right)+10 \log _{10}\left(N_{c o}(l a t)\right)+\left(\frac{D_{E S}}{100}\right)^{2} F_{672}(\chi)
$$

D3.2.3.2 Worst Pointing

The epfd calculation above relies on their being available an offaxis angle at the non-GSO ES, φ. If the e.i.r.p. mask is monotonically decreasing then the largest e.i.r.p. should be the smallest offaxis angle between the non-GSO ES pointing a non-GSO satellite and the test GSO location, assuming the non-GSO ES is located at the test GSO boresight. This angle will depend upon the non-GSO system's orbit parameters.

Therefore, to be able to determine the maximum epfd(up) it is necessary to identify $\varphi_{\text {min }}=$ worst case offaxis angle at the non-GSO ES, i.e. the minimum φ, assuming the e.i.r.p. mask is monotonically decreasing in the offaxis angle φ. This will depend upon a number of factors including:

- Latitude of the non-GSO ES
- Minimum elevation angle(s) at that latitude $\varepsilon_{0}[a z$, lat $]$
- \quad Exclusion zone size $\alpha_{0}[$ lat $]$
- Constellation (or sub-constellation) orbit parameters

The influence of some of the factors can be seen in the examples below assuming the non-GSO ES is in the northern hemisphere so that the centre of the figure is pointing south.

Equatorial orbit, low latitude

FIGURE 17
Equatorial orbit low latitude

Here the non-GSO satellite never intersects the GSO orbit or the exclusion zone and so the $\varphi_{\text {min }}$ is the angle at the non-GSO ES between the equatorial orbit and GSO arc in the azimuth of consideration.

Note that a purely equatorial orbit would be repeating so would be handled by a separate case within the WCG. However it is included to show the edge case and gain an understanding of the geometry involved.

Equatorial orbit, high latitude

FIGURE 18
Equatorial orbit high latitude

Here again the non-GSO satellite orbit never intersects the GSO orbit or exclusion zone but for the azimuth of the GSO satellite the non-GSO satellite would not be active as it is below the minimum elevation angle. Hence the $\varphi_{\text {min }}$ is between the nearest azimuth for which the non-GSO satellite would be above the horizon. However this point would be considered as the applicable point for another position on the GSO satellite where the minimum offaxis angle would be smaller and hence e.i.r.p. larger. It is therefore suggested that if the non-GSO satellite is below the minimum elevation angle for that azimuth it need not be considered.

Polar orbit, low latitude

FIGURE 19
Polar orbit low latitude

In this case the polar orbiting satellite could be located at any pointing angle ($a z, e l$) as seen by the non-GSO ES. The limiting case is then the edge of the exclusion zone, so that $\varphi_{\min }=\alpha_{0}[l a t]$.

Polar orbit, high latitude

FIGURE 20
Polar orbit high latitude

In this case the GSO arc is always below the minimum elevation angle and hence the minimum offaxis angle $\varphi_{\text {min }}$ is the difference between the minimum elevation angle and elevation angle of the GSO arc in the azimuth / latitude of interest.
Note this also the case for the previous scenario (polar orbit, low latitude) for the extreme edge case where the GSO arc has a low elevation angle as seen by the non-GSO ES.

Low inclination, no in-line geometry

FIGURE 21
Low inclination, no in-line geometry

S. 1503-21

This example is similar to the equatorial case in that there is no in-line geometry, and hence the $\varphi_{\text {min }}$ angle to use is the angular separation between the edge of the visible zone and GSO arc or the exclusion zone angle $\alpha_{0}[l a t]$, which ever is larger.

Low inclination with in-line geometry

FIGURE 22
Low inclination with in-line geometry

This is an extension of the previous case with the inclination increased until the visible zone spreads either side of the GSO arc. The minimum offaxis angle is then the exclusion zone size so that $\varphi_{\text {min }}=\alpha_{0}[l a t]$.

General case

The geometry of the general case is shown in Fig. 23 below.

FIGURE 23

General case with orbit shell

S.1503-23

The general method iterates over the field of view of the GSO satellite and determines the associated ES location. Then given:

- GSO satellite longitude
- Non-GSO ES (latitude, longitude)
- Maximum or minimum latitude of the non-GSO satellite
- \quad Radius of the non-GSO satellite when at the maximum/minimum latitude.

It is then possible to iterate on the longitude of the non-GSO satellite which minimises the angle to the GSO satellite as seen at the ES. This is the converse of the α angle and hence is called the β angle. This can be derived using iteration or the analytic method as described in § D6.4.4.4. There will be two positions, the β_{+}associated with the maximum latitude and the β - associated with the minimum latitude of the non-GSO system.
It is also possible to determine points that are in the direction of the β_{+}and β. points with angle α_{0} from the GSO satellite as in Figs 24, 25 and 26. This results in points $\{a, b, c, d\}$ that can then be checked to see if they are valid, in particular that:

- \quad They are at least α_{0} away from the GSO satellite (arc)
- \quad They are within the $\left[\beta_{+}, \beta\right.$.] range of the non-GSO satellite as seen by the ES
- They are above the minimum non-GSO elevation angle for the non-GSO ES latitude and azimuth of the test point.
If they are valid then they can be considered as possible options for the minimum offaxis angle towards the GSO satellite at the non-GSO ES when pointing at a non-GSO satellite.

FIGURE 24
WCG(up) general case when $[\beta+, \beta$-] bracket the GSO arc

FIGURE 25
WCG(up) general case when $[\beta+, \beta-]$ do not bracket the GSO arc or intersect minimum α

FIGURE 26
WCG(up) general case when $\left[\beta_{+}, \beta\right.$-] do not bracket the GSO arc but does intersect minimum α

There is also a fifth test point $\{\mathrm{e}\}$ to handle the case when the GSO arc is below the minimum elevation angle as shown in Fig. 27.

FIGURE 27
WCG(up) general case when $[\beta+, \beta$] bracket the GSO arc but it is below the minimum elevation angle

D3.2.3.3 WCG_Up_General

The general case iterates over the field of view of the victim GSO satellite as shown in Fig. 28.

FIGURE 28
Search of GSO satellite field of view

S. 1503-28

The search is undertaken in (θ, ϕ) as described below:

```
WCGA_UP_General:
    CheckCaseUpGeneral(0, 0)
    NumberOfPhiSteps = Integer(Degrees(\phi0)/ 0.1)
    For PhiStep = 1 to NumberOfPhiSteps inclusive
        \phi = \mp@subsup{\phi}{0}{* * PhiStep / NumberOfPhiSteps}
        ThetaStepSizeDegrees = 0.1 * 的 / \phi
        NumberOfThetaSteps = max(16, Integer(360 / ThetaStepSizeDegrees))
        For ThetaStep = 0 to NumberOfThetaSteps-1 inclusive
            0 = radians(ThetaStepSizeDegrees * ThetaStep)
            CheckCaseUpGeneral( }0,\phi
        Next ThetaStep
    Next PhiStep
```

CheckCaseUpGeneral (θ, ϕ) :
Convert (θ, ϕ) to (az, el) at a GSO satellite set at longitude $=0$ Use (az, el) to create line from the GSO satellite
Calculate the intersection point of that line and the spherical Earth Calculate the (lat, long) of the non-GSO ES at the intersection point
Check that the latitude is in the range of the non-GSO system i.e between ES_LAT_MIN and ES_LAT_MAX
Check that the N_{co} (lat) > 0
If the latitude is ok then
For this (lat, long) calculate the geocentric angle χ
For the GSO system's beamwidth, calculate the $\mathrm{F}_{672}(\chi)$
Call CalcMinOffaxisAngle to calculate φ for this location
If find a minimum offaxis angle then calculate the EPFD(up) using:
$E P F D(u p)=E \operatorname{IRP}(\varphi, l a t)+10 \log _{10}\left(N U M_{-} E S\right)+10 \log _{10}\left(N_{c o}(l a t)\right)+\left(\frac{D_{E S}}{100}\right)^{2} F_{672}(\chi)$
If this is the highest EPFD(up) then store this value and (θ, ϕ) Endif

Note that the method to calculate the maximum latitude of the non-GSO system is given in $\S(D 3.2 .3 .6$.

CalcMinOffaxisAngle (non-GSO ES lat, long)

Calculate the ($a Z_{G S O}, \varepsilon_{G S O}$) of the GSO satellite as seen by the non-GSO ES Determine the radius $R_{n,+}$ of the non-GSO satellite when its lat $=+i$ Determine the radius R_{n}, - of the non-GSO satellite when its lat $=-i$ If $R_{n,+}$ or $R_{n,-}$ are below the minimum operating height then determine the latitude of the non-GSO satellite when at this height and use this instead For each of $\left\{R_{n,+}, R_{n,+}\right\}$ and $\left\{l a t_{+}\right.$, lat $\}$, calculated the $\left\{\beta_{+}, \beta_{-}\right\}$angles and associated non-GSO satellite positions identified as (a, b) in Figs 24-26 For each of the $\left\{\beta_{+}, \beta_{-}\right\}$positions, use spherical geometry to derive points (c, d) which have angle at the ES of α_{0} along the lines to point (a, b) respectively
For each of (a, b, c, d) points, calculate the (azimuth, elevation) as seen by the ES
Set the MinimumAngle to be +9999
For each of points (a, b, c, d):
If point is within $\left\{\beta_{+}, \beta_{-}\right\}$range and at least α_{0} away from GSO satellite and above the ε_{0} (lat, azimuth) then
\{
MinimumAngle $=\min ($ MinimumAngle, angle for this point)
\}
Next point
If $\left\{\beta_{+}, \beta_{-}\right\}$bracket the GSO arc and the elevation of the GSO satellite is less than the minimum elevation angle for the GSO satellite azimuth then \{

MinimumAngle $=\min \left(\right.$ MinimumAngle, $\max \left(\alpha_{0}, \varepsilon_{0}\left[\right.\right.$ Lat, $\left.\left.\left.A z_{G S O}\right]-\varepsilon_{G S O}\right)\right)$
\}
Return MinimumAngle or if not found, an error code

D3.2.3.4 WCGA_UP_SpecifcES_Repeating

If there are specific ES locations and the non-GSO satellite network using a repeating track orbit then there will be a highly limited number of geometries that are feasible. It is therefore possible to fly the satellite for the repeat period and then, for each ES, for each non-GSO satellite, calculate the α. If $\alpha \leq \alpha_{0}$, or the elevation angle is below the minimum, then the ES would not transmit, otherwise the epfd towards that location can be derived.
Not all geometries will be feasible. For example:

- \quad Non-GSO ES above $81.29^{\circ} \mathrm{N}$ or S will not see the GSO arc and so can be excluded.
- There will be a maximum difference in longitude between that of the non-GSO ES determined by the edge of coverage (EOC) elevation angle of the GSO system.
- The non-GSO ES will not transmit to the non-GSO satellite when it is within the exclusion zone defined by $\alpha<\alpha_{0}$.
- The non-GSO ES will not transmit to the non-GSO satellite when its elevation angle is below the minimum $\varepsilon<\varepsilon_{0}[l a t, \mathrm{az}]$.
- \quad The non-GSO satellite is below the minimum operating height $h_{\text {min. }}$.
- The number of non-GSO satellites that can see the ES at this latitude is zero.
- These are therefore checked in the following algorithm:

```
WCGA_UP_SpecifcES_Repeating
    Calculate time step according to algorithm in § D4.3
    For t = 0 to repeat time of constellation
        Update positions of non-GSO satellites for this time step
        For each non-GSO ES
            If the non-GSO ES lat is <+81.29' && >-81.29' && Nco[Lat] > 0 then
                For each non-GSO satellite
                If satellite is visible and above minimum operating height
                        Calculate the elevation angle \varepsilon and azimuth
                        Calculate the exclusion zone angle \alpha
                        If (\varepsilon \geq & [lat, az] and \alpha \geq 人o[lat) then
                                    EPFD (up) = EIRP (\alpha,lat) + 10log
                                    If this is the worst EPFD so far then store this
    geometry
```

 Endif
 Endif
 Next satellite
 Endif
 Next ES
 Next time step

D3.2.3.5 WCGA_UP_SpecifcES_NonRepeating

For the non-repeating case the non-GSO satellites will populate an orbit shell but only some of the geometries considered in the general case will be feasible as the non-GSO ES will only be at specific
latitudes. Therefore this approach searches across the GSO arc as seen by each of the non-GSO ES then takes a similar approach to the general case.

```
WCGA_UP_SpecifcES_NonRepeating:
    For each non-GSO ES
        If the non-GSO ES latitude is <+81.29' or >-81.29' then
            Calculate MaxDeltaLong = acos((Re/Rgeo)/cos(ES_lat))
            NumLongSteps = (integer)(degrees (MaxDeltaLong)/0.1 %)
            For DeltaLongStep = -NumLongSteps to +NumLongSteps
                DeltaLong = MaxDeltaLong * DeltaLongStep / NumLongSteps
                GSO_Long = ES_Long + DeltaLong
                Calculate (az, el) of ES as seen by GSO satellite
                Convert (az, el) to ( }0,\phi
                Call CheckCaseUpGeneral ( }0,\phi
            Next DeltaLongStep
        Endif
    Next ES
```


D3.2.3.6 Range in latitude

When calculating the WCG(up) and also the epfd(up), it is necessary to identify where the ES could be located. While most systems in types A and B have global coverage, non-GSO networks of type C will be limited in the latitude range. For systems with multiple sub-consellations, this range could vary between sub-constellations.

The latitude range can be derived from the satellite's height, its inclination angle and the minimum operating elevation angle for the ES, as in Fig. 29 below:

FIGURE 29
Calculation of maximum latitude for ESs

For elliptical systems, there will be two values, one for the apogee and another for the perigee, and so the inputs would be:

Semi-major axis of orbit (km):	a
Eccentricity of orbit:	e
Minimum elevation angle (radians):	ε
Inclination angle (radians):	i

From these parameters, the following calculations can be undertaken:

$$
\begin{gathered}
r_{a}=a(1+e) \\
\psi=\frac{\pi}{2}+\varepsilon \\
\phi_{a}=\sin ^{-1}\left(\frac{R_{e}}{r_{a}} \sin \psi\right) \\
\theta_{a}=\pi-\left(\psi+\phi_{a}\right)
\end{gathered}
$$

Then:

$$
L a t_{\max }=i+\theta_{a}
$$

Similarly, using:

$$
r_{p}=a(1-e)
$$

Using the same equations but replacing suffix (a) with (p), the following can be derived:

$$
L a t_{\min }=-i-\theta_{p}
$$

This assumes that for elliptical systems, the apogee is in the northern hemisphere, i.e. that one of the following is true:

$$
\begin{aligned}
& e=0 \\
& \omega=270^{\circ}
\end{aligned}
$$

where:
$\omega: \quad$ argument of perigee.
In the case that:

$$
\begin{aligned}
& e>0 \\
& \omega=90^{\circ}
\end{aligned}
$$

Then the following adjustments should be made:

$$
\begin{aligned}
& L a t_{\text {max }}^{\prime}=-L a t_{\text {min }} \\
& L a t_{\text {min }},=-L a t_{\text {max }}
\end{aligned}
$$

In the case that the orbit inclination is zero and eccentricity zero (i.e. for an equatorial circular orbit) then these equations reduce to:

$$
\begin{gathered}
L a t_{\max }=\theta \\
L a t_{\min }=-\theta
\end{gathered}
$$

D3.3 WCG epfdis

D3.3.1 Inputs

The inputs to the algorithm are as follows:
SS_eirp : the satellite e.i.r.p. mask to check
$\theta_{\mathrm{a} d B}$: the GSO satellite's beam half power beamwidth
ε : the minimum elevation angle of the GSO system
$a, i, e, \Omega, \omega, v: \quad$ the orbit parameters of the non-GSO system.
The GSO satellite's beam half power beamwidth and minimum elevation angle can be selected using the same method as in § D3.2.2 for the WCG epfd(up).
If there are multiple sub-constellations with alternative orbital elements then the process should be repeated for each unique set of $\{a, e, i\}$

D3.3.2 Algorithm

```
WCGA_IS:
    From the EPFD limits get the gain pattern to use
    From the EPFD limits get the GSO beamwidth }\mp@subsup{0}{a}{
    From }\mp@subsup{0}{adB calculate }{|}\mp@subsup{|}{1}{},\mp@subsup{\phi}{2}{
    Using the gain pattern calculate Grel ( }\mp@subsup{\phi}{i}{})\mathrm{ for i = 1,2
    From \phi calculate LatBS
    If for all satellites i = 0 then
    {
        Worst Case Geometry:
            BS.Latitude = 0
            BS.Longitude = Lat BS
            GSO.Longitude = 0
    }
    Else
    {
        Set WorstEPFDBin = -9999
        Set WorstAngularVelocity = +9999
        For all satellites in the order listed in ITU DB
        {
            Determine EIRP mask to use for this satellite
            If this EIRP mask has not been checked so far then
            Call GetWCGA_IS(EIRP_mask, i)
        End if
    Next satellite
    }
    If no solution has been found then
    {
    Convert ( }0=i,\phi=\phi1) to (az, el
    Using (az, el), create line from the GSO satellite
    Put the ES at the first intersection point with the Earth
}
Rotate GSO, BS in longitude to ensure inline event
```

```
GetWCGA_IS(EIRP_Mask, i):
    LatStep = i / RoundUp(i) in degrees
    For lat=-i to +i in LatStep steps
    {
        Set satellite at latitude to calculate \underline{r}, \underline{v}
        If satellite is above minimum operating height
        {
            From r, \phii calculate \psii
            From \phii, \psii calculate Di, }\mp@subsup{0}{i}{
            Try to calculate \Deltalongi
            In the cases that the geometries are feasible
            {
                From the GSO gain pattern calculate Grel(}\mp@subsup{\phi}{i}{}
                From the EIRP mask calculate EIRP(\psii)
                Calculate EPFDi
                Calculate rgso, \underline{vgso}
                Calculate 0 of non-GSO satellite as seen by GSO
                If EPFDi is higher than WorstEPFD
            {
                    Store this geometry
                            WorstAngularVelocity = 0
                            WorstEPFD = EPFDi
                }
                Else if EPFDi is the same bin as WorstEPFD
            {
                    If 0 is lower than WorstAngularVelocity
                    {
                            Store this geometry
                            WorstAngularVelocity = 0
                            }
            }
            }
    }
}
```


D3.3.3 Geometry

There are two potentially significant geometries, which is when the non-GSO satellite just becomes visible as seen by the GSO satellite and when it traverses the GSO satellite beam, as in Fig. 30 below:

FIGURE 30
Two WCG(IS) non-GSO satellite locations

S. 150330

In some cases, the same WCG location will handle both geometries - e.g. for an equatorial satellite system a beam at the extreme in azimuth will be aligned for both geometries.
From the radius of the non-GSO satellite at each of the positions, it is possible to calculate the offaxis angle at the satellite and hence e.i.r.p.(θ) together with the distance as in Fig. 31:

FIGURE 31
Two WCG(IS) calculation of satellite offaxis angle

where:

$$
\begin{gathered}
\phi_{1}=\phi_{B S}(\text { from above }) \\
\sin \phi_{2}=\frac{R_{e}}{R_{g s o}}
\end{gathered}
$$

Hence:

$$
\sin \psi_{i}=\frac{R_{g e o}}{R_{n g s o, i}} \sin \phi_{i}
$$

Where $i=\{1,2\}$ noting that $\Psi_{1}>\frac{\pi}{2}$ and that $\Psi_{2}<\frac{\pi}{2}$ so that:

$$
\begin{aligned}
\psi_{1} & =\pi-\sin ^{-1}\left[\frac{R_{g e o}}{R_{n g s o, 1}} \sin \phi_{1}\right] \\
\psi_{2} & =\sin ^{-1}\left[\frac{R_{\text {geo }}}{R_{n g s o, 2}} \sin \phi_{2}\right]
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \theta_{i}=\pi-\phi_{i}-\psi_{i} \\
& D_{i}=R_{n g s o, i} \frac{\sin \theta_{i}}{\sin \phi_{i}}
\end{aligned}
$$

Hence given a non-GSO satellite with radius distance $R_{n g s o, i}$ at the two specified geometries, the two single entry epfd levels can be calculated as:

$$
e p f d_{i}=\operatorname{eirp}\left(\Psi_{i}\right)+G_{r e l, i}-10 \log _{10}\left(4 \pi D_{i}^{2}\right)
$$

Note that $G_{\text {rel, } 1}=0$ and $G_{r e l, 2}=\mathrm{G}_{\text {rel }}\left(\phi_{2}-\phi_{1}\right)$ and D is in metres.
By setting the non-GSO satellite at a specified latitude, lat, (where it has longitude long), it is therefore possible to derive the single entry epfd from the radius vector and the two geometries identified above.
In some cases, there will be no in-line geometry - for example for elliptical systems at apogee the line from the non-GSO satellite to the GSO arc will at no point intersect the Earth. This can be checked by calculating the difference in longitude between the non-GSO satellite and the point on the GSO arc from the geometry above and the non-GSO satellite's latitude using:

$$
\cos \Delta \text { long }_{i}=\frac{\cos \theta_{i}}{\cos l a t_{i}}
$$

If there is no solution to this equation, then there is no position that meets the required geometry. Other positions could be excluded if the non-GSO satellite was below the minimum operating height.
If there is a solution then the position of the non-GSO and GSO satellite can be calculated from:

$$
\begin{aligned}
& \underline{r}_{\text {ngso }}=R_{\text {ngso }}\left(\begin{array}{c}
\cos (\text { lat }) \cos (\text { long }) \\
\cos (\text { lat }) \sin (\text { long }) \\
\sin (\text { lat })
\end{array}\right) \\
& \underline{r}_{g s o}=R_{\text {gso }}\left(\begin{array}{c}
\cos (\text { long }-\Delta \text { long }) \\
\sin (\text { long }-\Delta l o n g) \\
0
\end{array}\right)
\end{aligned}
$$

For the $i=1$ case the boresight is where the line \underline{L} from the GSO to non-GSO satellite intersects the Earth's surface.

$$
\underline{L}_{1}(\lambda)=\underline{r}_{g s o}+\lambda\left(\underline{r}_{n g s o}-\underline{r}_{g s o}\right)
$$

For the $i=2$ case the boresight is on a line created using an adjusted non-GSO satellite position, calculated using:

$$
R_{n g s o, 2}^{\prime}=R_{\text {geo }} \frac{\sin \phi}{\sin \psi_{2}^{\prime}}
$$

Where:

$$
\psi^{\prime}{ }_{2}=\pi-\varphi_{1}-\theta_{2}
$$

Given multiple locations with the same single entry epfd, then the one to use would be the one with the lowest angular velocity, using the same method as for WCGA(down), noting that the velocity vector of the GSO satellite can be derived in the same way as for earth stations, i.e.:

$$
\underline{v}_{g s o}=w_{e}\left(\begin{array}{c}
-y \\
x \\
\mathbf{0}
\end{array}\right)
$$

The position of the GSO satellite would be chosen such that one of the non-GSO satellites with the e.i.r.p. mask identified traverses the critical geometry during its first orbit, using the same methodology as for the WCGA(up).
Additional geometry for the WCG for epfd(IS) is described in §§ D3.1.3 and D3.2.3 above.

D4 Calculation of time step size and number of time steps

D4.1 Simulation time increment and accuracy

The simulation time increment is one of the most important parameters for the determination of a distribution function of interference from non-GSO networks on the basis of the simulation model. Its specified value should guarantee absence of cases when high-level short-term interference exceeding an acceptable level is missed and is not considered. Otherwise results of simulation analysis will be inaccurate and sometimes erroneous. The decrease of a simulation time increment allows to increase accuracy of obtained results but at the same time results in increase of total number of simulation time increments and amount of required calculations.

The description of calculation algorithms for simulation time increment in uplink, downlink and intersatellite cases are shown below.

The algorithms are based upon a set of orbital characteristics, such as the inclination angle. If there are multiple sets, e.g. for multiple sub-constellations, then the longest run time and smallest time step over all sub-constellations should be used.

In order to reduce run times, the following procedure should be used to adjust the time step size for non-repeating orbits cases where the number of time steps exceeds 1e8:

```
Calculate time step and run time using Nhit = 16
If orbit is non-repeating
    If number of time steps exceeds 1e8 then:
    N
    Re-calculate time step and run time
```

$$
\begin{aligned}
& \qquad N_{\text {course }}^{\prime}=\text { floor }\left(\frac{N_{\text {hit }}^{\prime}}{N_{\text {hit }}} N_{\text {course }}\right) \\
& \quad T S_{\text {course }}^{\prime}=T S^{\prime} . N_{\text {course }}^{\prime} \\
& \text { Endif } \\
& \text { Endif }
\end{aligned}
$$

D4.2 Description of the procedure for the determination of minimum downlink simulation time increment

The value of simulation time increment should guarantee acquisition and description of the most short-term interference scenarios with the required accuracy. The high-level short-term interference is caused by emission of a non-GSO space station which is in-line situation (a non-GSO satellite passes through the main beam of a GSO earth station antenna). Therefore, the method for determining a simulation time increment $\Delta t_{\text {ref }}$ is based on ensuring the required number $N_{h i t}$ of epfd \downarrow estimations during the time interval Δt when a non-GSO satellite passes through the main beam of a GSO earth station antenna:

$$
\begin{equation*}
\Delta t_{r e f}=\frac{\Delta t}{N_{h i t}} \tag{1}
\end{equation*}
$$

$\Delta t_{\text {ref }}$ should be rounded to the nearest non-zero millisecond.
The time required for a non-GSO satellite passing through the main beam of a GSO earth station antenna depends on mutual location of the earth and space stations of the GSO network as well as on orbital parameters of the non-GSO network. The value of Δt should be computed at the location where the time for a non-GSO satellite to pass through the GSO main beam is smallest. Since this occurs when a GSO earth station is located directly under a GSO space station, pass time Δt is determined by equations (2) and (3) (see Fig. 32):

$$
\begin{equation*}
\Delta t=\frac{2 \varphi}{\omega} \tag{2}
\end{equation*}
$$

where:

$$
\begin{gather*}
\varphi=\frac{1}{2} \theta_{3 \mathrm{~dB}}-\arcsin \left[\frac{R_{e}}{R_{e}+h} \sin \left(\frac{1}{2} \theta_{3 \mathrm{~dB}}\right)\right] \\
\omega=\sqrt{\left(\omega_{s} \cos (i)-\omega_{e}\right)^{2}+\left(\omega_{s} \sin (i)\right)^{2}} \tag{3}\\
\omega_{s}=\frac{0.071}{\left[\left(R_{e}+h\right) / R_{e}\right]^{1.5}}
\end{gather*}
$$

ω_{s} : non-GSO satellite angular velocity of rotation around the Earth at the minimum operational altitude (degrees/s); for multiple orbits, the greatest such ω_{s} should be selected
$\omega_{e}: \quad$ Earth rotation angular velocity at the equator (degrees/s)
i : orbit inclination (degrees)
$\theta_{3 \mathrm{~dB}}$: GSO earth station antenna 3 dB beamwidth (degrees)
R_{e} : Earth radius (km)
h : orbit altitude (km) (see Note 1).
NOTE 1 - In the case that the constellation has multiple values of h for different sub-constellations or planes, the lowest value should be used. In the case of elliptical orbits the minimum operating height should be used.

FIGURE 32
Calculation of epfd(down) time step size

The $N_{h i t}$ value defines simulation accuracy. The higher the $N_{\text {hit }}$ value the higher the accuracy of the final results.
$N_{h i t}$ should be set to 16 as derived in § D4.5. In a case when a non-GSO network satellite constellation consists of satellites with different orbital parameters it is necessary to determine a simulation time increment for each type of the orbits concerned and to define a minimum one.

TABLE 11

Input data

Parameter	Designation	Units
Orbit inclination	i	degrees
Orbit altitude or for elliptical orbits the minimum operating height	h	km
GSO earth station antenna 3 dB beamwidth	$\theta_{3 \mathrm{~dB}}$	degrees
Number of epfd \downarrow calculations required during the time a non-GSO satellite is passing through the main beam of a GSO earth station antenna	$N_{\text {hit }}$	-

D4.3 Description of the procedure for the determination of minimum uplink simulation time increment

High-level short-term uplink interference would be caused by emissions from a non-GSO earth station during an in-line event (when a GSO SS is in the main beam of a non-GSO earth station antenna). The required number $N_{\text {hit }}$ of epfd \uparrow measurements should be effected within the period of the GSO satellite staying in the main beam of the non-GSO earth station antenna to ensure acquisition and definition of the in-line event. If the non-GSO earth station were directly below the GSO satellite (see Fig. 33) then the value of the minimum simulation time increment could be calculated using equations (1) and (2). In that case a width of the non-GSO earth station antenna main beam should be taken instead of that of the GSO earth station antenna main beam.

FIGURE 33
Calculation of epfd(up) time step size

TABLE 12
Input data

Parameter	Designation	Units
Orbit inclination	i	degrees
Orbit altitude	h	km
Non-GSO earth station antenna 3 dB beamwidth	$\theta_{3 \mathrm{~dB}}$	degrees
Number of epfd calculations required during the time a GSO satellite is passing through the main beam of a non-GSO earth station antenna	$N_{\text {hit }}$	-

D4.4 Description of the procedure for the determination of minimum inter-satellite simulation time increment

The time step size for epfdis calculations is derived by considering that there should be at least $N_{\text {hit }}$ time steps during which the non-GSO satellite is within the main beam of the GSO satellite. Given that the shortest time step is when the beam at the GSO is pointed as far as possible away from the sub-satellite point, and given the following:
R_{e} : radius of the Earth
h : height of non-GSO orbit
$R_{g e o}$: radius of geostationary orbit
$\theta_{3 \mathrm{~dB}}$: half power beamwidth of GSO beam.
For elliptical orbit systems, calculate the height when the non-GSO satellite crosses the equator, i.e. when $v=-\omega$ or $+\omega$ such that $(v+\omega)=0$ or integer multiples of π. In addition, it is necessary to consider the minimum operating height, so that the height to use is the maximum of \{minimum operating height, height when crossing the equator $\}$.
Then the time step can be calculated using the following algorithm (see Fig. 34).

Geometric parameters involved in the equations

Calculate:

$$
\begin{gathered}
\theta_{1}=\arcsin \left(\frac{R_{e}}{R_{g e o}}\right) \\
\theta_{2}=180-\arcsin \left(\sin \left(\theta_{1}\right) \frac{R_{g e o}}{R_{e}+h}\right) \\
\theta_{3}=180-\left(\theta_{1}+\theta_{2}\right) \\
D_{1}=\left(R_{e}+h\right) \frac{\sin \theta_{3}}{\sin \theta_{1}} \\
D_{2}=2 D_{1} \sin \left(\frac{\theta_{3 \mathrm{~dB}}}{2}\right) \\
D_{3}=D_{2} \cos \left(180-\theta_{2}\right)
\end{gathered}
$$

Then calculate the value:

$$
\begin{equation*}
\varphi=2 \arctan \left[\frac{D_{3} / 2}{\left(R_{e}+h\right)-\left(D_{2} / 2\right) \sin \left(180-\theta_{2}\right)}\right] \tag{4}
\end{equation*}
$$

which can be used in equation (2) to calculate the step size to use.

D4.5 Derivation of $\boldsymbol{N}_{\text {hit }}$

The time step size is selected to ensure there is sufficient resolution of the epfd within the victim's main beam. The necessary resolution is driven by the bin size of 0.1 dB and from this the number of steps within the main beam can be derived.
$N_{h i t}$ should be selected so that the highest epfd will be detected in the simulation and identified to be within the right bin. This implies a resolution in the calculations of $(0.1 \mathrm{~dB}) / 2=0.05 \mathrm{~dB}$.
The greatest error would occur when two time steps are located equally spaced on either side of the main beam, as in Fig. 35:

FIGURE 35
Calculation of $\boldsymbol{N}_{\text {hits }}$

The spacing between samples will be:

$$
\Delta \theta=\frac{\theta_{3 \mathrm{~dB}}}{N_{h i t}}
$$

The gain pattern within the main beam can be assumed to be parabolic and hence following:

$$
G_{r e l}=12\left(\frac{\theta}{\theta_{3 \mathrm{~dB}}}\right)^{2}
$$

The slope on this curve is:

$$
\frac{d G_{r e l}}{d \theta}=\frac{24}{\theta_{3 \mathrm{~dB}}{ }^{2}} \theta
$$

Hence we can derive $N_{h i t}$ required for a difference in gain of 0.05 dB as follows:

$$
\Delta G_{r e l}=0.05=24 \cdot \frac{\theta}{\theta_{3 \mathrm{~dB}}} \cdot \frac{\Delta \theta}{\theta_{3 \mathrm{~dB}}}=24 \cdot \frac{\theta}{\theta_{3 \mathrm{~dB}}} \cdot \frac{1}{N_{\text {hit }}}
$$

So:

$$
N_{h i t}=480 \cdot \frac{\theta}{\theta_{3 \mathrm{~dB}}}
$$

Therefore for the time step nearest the main beam when:

$$
\theta=\frac{1}{2} \frac{\theta_{3 d B}}{N_{h i t}}
$$

Then:

$$
N_{h i t}=\operatorname{RoundUp}[\sqrt{240}]=16
$$

This approach can also be used for cross-track sampling, and hence $N_{\text {track }}=N_{\text {hit }}=16$.

D4.6 Total simulation run time

This section describes the calculation of number of time steps for the epfd \downarrow and epfd \uparrow algorithms specified in § D5. The basic approach first considers constellations with repeating and non-repeating ground track separately, where systems that use repeating ground tracks use station keeping to ensure that the satellites follow a single Earth trace. For example there will be minor launch errors and perturbations that would make the orbit drift unless station keeping was used operationally to ensure the track repeats. Administrations therefore must indicate to the BR whether station keeping is used to maintain a single track.
Some constellations have different values for inclination, height, or eccentricity between the planes. In this case, it is assumed that, to maintain coverage, the constellation would be designed so that the separation between planes does not change significantly. For the case of repeating ground tracks, this means that there will be a single repeat period for the constellation. This is the time for all satellites within the constellation to return to the same position relative to the Earth and each, within the constraints of station keeping. For the case of non-repeating ground tracks, there will be a single period for all the orbit planes to process around the equator.
This approach is to be used for constellations with both circular and elliptical orbits with orbit inclination non-zero. For equatorial orbit constellations in which all satellites have the same altitude, then it is sufficient to run for a single repeat period. This can be calculated as follows:

$$
\begin{gathered}
T_{\text {run }}=\frac{2 \pi}{w_{s}-w_{e}} \\
N_{\text {steps }}=\text { RoundDown } \frac{T_{\text {run }}}{T_{\text {step }}}
\end{gathered}
$$

Where w_{s} and w_{e} are the rotation angular velocities of the satellite and Earth as given in § D2.
Table 13 shows the input parameters used in all other constellation types.

TABLE 13

Input data

Parameter	Designation	Units
Constellation repeats yes/no	Type	-
Minimum samples taken to get statistical significance	$N_{S}=10$	-

In both cases the time step can be calculated using the method described above. The number of time steps should be at least:

$$
\begin{aligned}
& N_{\text {min }}=N_{S} \times 100 /(100-\text { (maximum \% in the Tables of Article } 22 \text { of the RR less than } \\
& 100 \%) \text {) }
\end{aligned}
$$

So for example for the 99.999% case the number of steps would be:

$$
N_{\min }=1000000
$$

D4.6.1 Repeating orbits

For those orbits specified as being repeating, the orbit predictor has to be accurate to ensure repeatability. Thus, there is an option for administrations to specify the exact longitude precession rate with respect to a point mass orbit predictor that ensures the orbit would repeat. The definition and use of this parameter is described in § D6.3.
With this parameter, a simulated orbit would be repeated but in reality there would be a slight drift due to longitudinal station keeping errors. It is expected that station keeping changes within the orbit plane would make no difference and so are not included.
The result should be as shown in Fig. 36:

FIGURE 36
Track of repeating orbit non-GSO satellite through GSO ES beam

S.1503-36

In Fig. 36, it can be seen that the result would be a series of samples within the main beam of the GSO earth station that is sufficiently fine to resolve the main beam, includes station keeping drift and produces sufficient samples to generate the required statistics.

TABLE 14

Input data

Parameter	Designation	Units
Constellation repeat period	Prepeat	s

Given the following parameters:
$N_{m i n}$: minimum number of time steps required for statistical significance
$P_{\text {repeat: }} \quad$ time period that the constellation repeats (s)
$T_{\text {step: }}$ time step (s)
$N_{\text {tracks: }}$ number of tracks through the main beam, $=16$, as specified in § D4.5.
For this case the time step should not exactly divide the constellation repeat period. If:

$$
N_{\text {repsteps }}=P_{\text {repeat }} T_{\text {step }}
$$

is an integer, then calculate a revised time step (used in the following equations in place of $T_{\text {step }}$) equal to:

$$
T_{\text {step }}^{\prime}=T_{\text {step }}\left(1+N_{\text {repsteps }}\right) / N_{\text {repsteps }}
$$

Calculate the time period required to get the minimum number of time steps for statistical significance:

$$
T_{\text {sig }}=N_{\text {min }} \cdot T_{\text {step }}
$$

This corresponds to the following number of constellation repeats:

$$
N_{\text {rep }}=\text { round }\left(T_{\text {sig }} / P_{\text {repeat }}\right) \text { to nearest integer above. }
$$

The number of repeats of the constellation is the largest of $N_{\text {rep }}$ or $N_{\text {tracks }}$ i.e.

$$
N_{r u n}=\max \left(N_{\text {rep }}, N_{\text {tracks }}\right)
$$

Then the total run time is:

$$
T_{\text {run }}=N_{\text {run }} \cdot P_{\text {repeat }}
$$

So the number of time steps is then:

$$
\begin{gathered}
N_{\text {steps }}=\operatorname{round}\left(T_{\text {run }} / T_{\text {step }}\right) \text { to nearest integer below } \\
T_{\text {run }}=N_{\text {steps }} * T_{\text {step }}
\end{gathered}
$$

D4.6.2 Non-repeating orbits

In this case the longitudinal spacing between successive ascending node passes must be examined so that there are sufficient tracks within the main beam. The time step size and number of time steps can be used to determine how far a particular orbit will have processed within the run. The same numbers can be used to determine how many time steps are required for the orbit to drift around the equator. The orbit period can then be used to work out the difference between tracks.

The constant that specifies the required number of points within the main beam can be used to specify the number of tracks though the main beam required (i.e. $N_{\text {track }}=N_{\text {hits }}$). If the gap between tracks is too large or too fine (resulting in either insufficient samples or excessive run times respectively) then artificial precession can be used.
It is expected that station keeping drift should cancel out in the long term and so would not be required for these calculations.
The result should be as shown in Fig. 37.

FIGURE 37
Track of non-repeating orbit non-GSO satellite through GSO ES beam

S. 150337

In Fig. 37, it can be seen that the result would be a series of tracks within the main beam of the GSO earth station that is sufficiently fine to resolve the main beam and produces sufficient samples to generate the required statistics.

TABLE 15
Input data

Parameter	Designation	Units
Orbit inclination	i	degrees
Orbit semi-major axis	a	km
GSO earth station antenna 3 dB beamwidth ${ }^{(1)}$	$\varphi_{3 \mathrm{~dB}}$	degrees
Required number of tracks of a non-GSO satellite passing through the main beam of a GSO earth station antenna	$N_{\text {tracks }}$	-

${ }^{(1)}$ In the case of calculating run length for epfd \downarrow. In the case of epfd ${ }_{i s}$ and epfd \uparrow :
epfd \uparrow :calculate φ using the beamwidth of the non-GSO earth station as specified in its e.i.r.p. mask using the calculation in equation (3)
epfd $_{\text {is }}$:calculate φ using the beamwidth of the GSO satellite in the calculation in equation (4).

Two parameters are required:
$S_{\text {pass: }} \quad$ longitudinal spacing between successive ascending passes through the equatorial plane
$S_{\text {req }}$: required resolution of passes through the equatorial plane based upon GSO earth station beam size.

These are calculated using the following steps:
Step 1: Using the equations in § D6.3.2, calculate the $\bar{n}, \Omega_{r}, \omega_{r}$ in radians / second
Step 2: Convert the $\bar{n}, \Omega_{r}, \omega_{r}$ into degrees per minute
Step 3: Calculate the nodal period of the orbit in minutes using:

$$
P_{n}=\frac{360}{w_{r}+\bar{n}}
$$

Step 4: Calculate the longitudinal spacing between successive ascending passes through the equatorial plane, S, given the Earth's rotation rate $\left(\Omega_{e}=0.250684\right.$ degrees $\left./ \mathrm{min}\right)$:

$$
S_{\text {pass }}=\left(\Omega_{e}-\Omega_{r}\right) P_{n} \quad \text { degrees }
$$

The equations above apply to circular orbits. For elliptical orbit systems where the calculations above would be significantly different, the value of $S_{\text {pass }}$ should be supplied by the administration.
Step 5: From the GSO earth station beamwidth and height, $S_{\text {req }}$ can be calculated using equation (3):

$$
S_{\text {req }}=\frac{2 \varphi}{N_{\text {tracks }}}
$$

Step 6: Calculate the number of orbits to fully populate around the equator, taking into account that each plane has ascending and descending nodes:

$$
N_{\text {orbits }}=\frac{180}{S_{\text {req }}}
$$

Step 7: Round $N_{\text {orbits }}$ to next highest integer.
Step 8: Calculate total angle orbit has rotated round during this time:

$$
S_{\text {total }}=N_{\text {orbits }} \cdot S_{\text {pass }}
$$

Step 9: Calculate the number of multiples of 360° that this corresponds to, rounding to nearest integer below:

$$
N_{360}=\operatorname{int}\left(\frac{S_{\text {total }}}{360}\right)
$$

Step 10: Calculate the separation between planes that this corresponds to:

$$
S_{\text {actual }}=\frac{360 N_{360}}{N_{\text {orbits }}}
$$

Step 11: To ensure that the orbit drifts with the required precession rate, the following additional artificial precession should be included:

$$
S_{\text {artificial }}=S_{\text {actual }}-S_{\text {pass }} \quad \text { degrees/orbit }
$$

or:

$$
D_{\text {artificial }}=\frac{S_{\text {artificial }}}{T_{\text {period }}} \quad \text { degrees } / \mathrm{s}
$$

Step 12: Part D gives more information on how this parameter is used. The total run time is then the time to process around the equator using the orbit period from either §§ D6.3.1 or D6.3.2 depending upon or bit model, namely:

$$
T_{\text {run }}^{\prime}=T_{\text {period }} \cdot N_{\text {orbits }}
$$

Step 13: The total number of time steps is then:

$$
\begin{gathered}
N_{\text {steps }}=\operatorname{Round}\left(T_{\text {run }}^{\prime} / T_{\text {step }}\right) \text { to nearest integer below } \\
T_{\text {run }}=N_{\text {steps }} * T_{\text {step }}
\end{gathered}
$$

D4.7 Dual time step option

D4.7.1 Dual time step option epfd(down)

In order to improve simulation performance an option to the algorithm is to implement two time steps. A coarse time step would be used except when any non-GSO satellite is near the main beam of the GSO ES or edge of exclusion zone, defined as:

$$
G_{R X}(\varphi)>\min \left[G \max -30 \mathrm{~dB}, G_{R X}\left(\alpha_{0}[\text { Latitude }]\right]\right)
$$

Figure 38 shows where to use the finer time step:

FIGURE 38
Use of fine time step when at with GSO ES main beam

A coarse step size is used for non-critical regions far from the GSO earth station main beam. This step size is defined as a topocentric angle:

$$
\varphi_{\text {coarse }}=1.5^{\circ}
$$

This coarse step size is used for all antenna beamwidths and all non-GSO systems.
The size of the coarse step needs to be an integer multiple of fine steps for statistical purposes. Since the coarse step size is constant, the ratio of coarse steps to fine steps is dependent only upon the beamwidth of the GSO earth station $\left(\varphi_{3 \mathrm{~dB}}\right)$. This ratio is defined as:

$$
N_{\text {coarse }}=\text { Floor }\left(\left(N_{\text {hits }} * \varphi_{\text {coarse }}\right) / \varphi_{3 \mathrm{~dB}}\right)
$$

where floor is a function that truncates the decimal part of the ratio and outputs the integer part of the ratio. This produces a conservative ratio of fine steps to coarse steps to ensure that a coarse step is never larger than the target topocentric size of 1.5°.

D4.7.2 Dual time step option epfd(up)

In order to improve simulation performance an option to the algorithm is to implement two time steps. A coarse time step would be used except when the gain from any non-GSO ES towards the GSO satellite is greater than -30 dB .
A coarse step size is used for non-critical regions when the non-GSO earth station main beam is pointing away from the GSO satellite. This step size is defined as a topocentric angle:

$$
\varphi_{\text {coarse }}=1.5^{\circ}
$$

This coarse step size is used for all antenna beamwidths and non-GSO systems.
The size of the coarse step needs to be an integer multiple of fine steps for statistical purposes. Since the coarse step size is constant, the ratio of coarse steps to fine steps is dependent only upon the beamwidth of the non-GSO earth station $\left(\varphi_{3 \mathrm{~dB}}\right)$. This ratio is defined as:

$$
N_{\text {coarse }}=\text { Floor }\left(\left(N_{\text {hits }} * \varphi_{\text {coarse }}\right) / \varphi_{3 \mathrm{~dB}}\right)
$$

where floor is a function that truncates the decimal part of the ratio and outputs the integer part of the ratio. This produces a conservative ratio of fine steps to coarse steps to ensure that a coarse step is never larger than the target topocentric size of 1.5 degrees.

D5 epfd calculation description

D5.1 epfd \downarrow software description

This section describes the algorithm to calculate the epfd \downarrow from a non-GSO constellation into a GSO downlink. It is assumed that each non-GSO satellite has a pfd mask. From the pfd for each satellite the aggregate epfd \downarrow at an earth station of a GSO system is calculated. This is repeated for a series of time steps until a distribution of epfd \downarrow is produced. This distribution can then be compared with the limits to give a go/no go decision.
Figure 39 shows the geometry with constellation of non-GSO satellites and test GSO satellite transmitting to a GSO earth station.

D5.1.1 Configuration parameters

These run definition parameters are:

Parameter name	Parameter value	Parameter units and ranges
Frequency	F_DOWN	MHz
GSO satellite longitude	GSO_LONG	degrees
GSO earth station latitude	GSO_ES_LAT	degrees
GSO earth station longitude	GSO_ES_LONG	degrees
GSO earth station dish size	GSO_ES_D_ANT	m
GSO earth station gain pattern	GSO_ES_PATTERN	One of those in § D6.5
Reference bandwidth	REFBW	kHz
Number of epfd \downarrow points	Nepfd_DOWN	-
Array of Nepfd_DOWN epfd \downarrow values	epfd_DOWN[I]	$\mathrm{dB}\left(\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{BW}_{\text {ref })}\right)\right.$
Array of Nepfd_DOWN percentages	PC[I]	$\%$

D5.1.2 Non-GSO system parameters

The following parameters, as specified in § B3.1 would be used.

Parameter description	Parameter name	Parameter units
Satellite pfd mask	See Part C for definition and format	
Number of non-GSO satellites	$N_{\text {sat }}$	-
Transmit centre frequency ${ }^{(1)}$	F_DOWN $_{\text {sat }}$	MHz
Exclusion zone angle by latitude, potentially varying by satellite	MIN_EXCLUDE[Latitude] $^{\text {MIN_DURATION }}$degrees Minimum satellite tracking duration by latitude	seconds
Maximum number of satellites operating co-frequency at Earth location, potentially varying by latitude	MAX_CO_FREQ [Latitude]	-
Orbit has repeating ground track maintained by station keeping	Yes or No	-
Administration is supplying specific node precession rate	Yes or No	-
Station keeping range for ascending node as half total range	$W_{\text {delta }}$	degrees
Minimum operating height	H_MIN	km
Mininum operating elevation angle by latitude and azimuth	ES_MINELEV[Latitude] [Azimuth]	degrees

For each satellite the following parameters specified in § B3.2 - Parameters provided by administration of the non-GSO system, would be used, where the definitions of the parameters are specified in § D6.3.1 at the time of the start of the simulation.
Note that in the Table below, the indices $[N]$ are present to indicate that there would be a different value for each satellite, and the N-th value corresponds to the N-th satellite. For the pfd mask it indicates that the pfd data is structured in such a way that the $\operatorname{pfd}[N]$ entry is a reference that points to a particular sub-set. For example each satellite in the constellation could reference the same pfd(lat, az, el), pfd(lat, X, Δ long), or $\operatorname{pfd}($ lat, α, Δ long $)$ table.

Parameter description	Parameter name	Parameter units
pfd mask to use	$\operatorname{pfd}[N]$	-
Semi-major axis	$\mathrm{A}[N]$	km
Eccentricity	$\mathrm{E}[N]$	-
Inclination	$\mathrm{I}[N]$	degrees
Longitude of ascending node	$\mathrm{O}[N]$	degrees
Argument of perigee	$\mathrm{W}[N]$	degrees
True anomaly	$\mathrm{V}[N]$	degrees

D5.1.3 Run time step parameters

The following run parameters should be calculated using the algorithm in § D4:

Parameter description	Parameter name	Parameter units
Time step	TSTEP	s
Number of time steps	NSTEPS	-

The time step and statistics take account of the time windows as shown in Fig. 40 below.

FIGURE 40

The following are calculated in § D4:

- Run duration
- Fine time step
- Course time step

The MIN_DURATION is provided for the constellation (possibly dependent upon latitude, which in this case of the ES). The length of the time window in fine time steps is calculated as the integer ratio of this track duration divided by fine time step size. The MIN_SLIDING_TIME is also calculated as an integer number of fine time steps.
The minimum sliding time is:

$$
\text { MIN_SLIDING_TIME }=\max \left\{1 \text { second }, \frac{\text { MinimumOrbitalPeriod }}{100 . N_{\text {satellites }}}\right\}
$$

Where MinimumOrbitalPeriod is the smalleset orbit period over all sub-constellations.

The run duration is derived in § D4 so that the constellation has returned to the initial conditions and hence statistics are complete. This could require that the last time window is only partially included: i.e. only those time steps within the run duration would be included in the epfd statistics. However the simulation would continue until the time window is complete to determine the satellites to track. In addition, as each window starting time is offset it is necessary to run for other windows additional steps beyond that used by the first time window.
The length of the sliding window in number of fine time steps is:

$$
\left.N_{S W}=\text { RoundDown(MIN_DURATION } / T_{\text {fine }}\right)
$$

The number of fine time steps for the MIN_SLIDING_TIME can be calculated as:

$$
\left.N_{M S L}=\text { RoundUp(MIN_SLIDING_TIME / } T_{\text {fine }}\right)
$$

The number of time windows to use in the calculations is then:

$$
N_{T W}=\operatorname{RoundUp}\left(N_{s w} / N_{M S L}\right)
$$

The number of repeats of the time window for the run duration is then:

$$
N_{\text {Repeat }}=\operatorname{RoundUp}\left(N_{\text {step }} / N_{S W}\right)
$$

The total number of fine time steps required to simulate is the run duration plus the time required to complete all the time windows, namely:

$$
N_{\text {Totalsteps }}=N_{\text {repeat }} * N_{S W}+\left(N_{T W}-1\right) * N_{M S L}
$$

The total run duration required to get all the sliding windows to complete is then:

$$
T_{\text {TotalDuration }}=N_{\text {Totallteps }} * T_{\text {fine }}
$$

D5.1.4 Algorithms and calculation procedures

The operating non-GSO satellites are those outside the exclusion zone, above their minimum operating elevation angle and transmitting towards (i.e. height above or equal to MIN_OPERATING_HEIGHT) the GSO earth station. The maximum number of operating non-GSO satellites is the maximum number of non-GSO satellites allowed to transmit co-frequency towards the same area on the ground.
To calculate epfd \downarrow values from one non-GSO system into one GSO system earth station the following algorithm should be used. The algorithm can be used on multiple GSO systems in parallel if required.
Step 1: \quad Read in parameters for non-GSO system as specified in § D5.1.2.
Step 2: Read in GSO parameters as specified in § D5.1.1.
Step 3: If required, calculate the maximum epfd GSO location using the algorithm in § D3.1 otherwise use the GSO satellite and ES location requested.
Step 4: Calculate the number of time steps and time step size using algorithm in § D4 and hence calculate end time. As described in § D5.1.3, adjust the MIN_SLIDING_TIME and MIN_DURATION to be an integer number of fine time step and hence calculate the NUM_SLIDE_WINDOWS. Increment the run duration by the integer number of fine time steps so that all sliding windows will have complete statistics.
Step 4bis: Initialize statistics by zeroing all bins of epfd \downarrow values for each of the NUM_SLIDE WINDOWS.
Step 5: If a dual time step algorithm is included then use Sub-step 5.1, otherwise $N_{\text {coarse }}=1$ all the time.
Sub-step 5.1: \quad Calculate coarse step size $T_{\text {coarse }}=T_{\text {fine }} * N_{\text {coarse }}$.

Step 6: If a dual time step algorithm is included then repeat Sub-step 6.1 to Step 22 until end time is reached, otherwise repeat Steps 7 to 22 until end time is reached.
Sub-step 6.1: If it is the first time step then set $T_{\text {step }}=T_{\text {fine }}$.
Sub-step 6.2: Otherwise if there are less than $N_{\text {coarse }}$ steps remaining then set $T_{\text {step }}=T_{\text {fine }}$.
Sub-step 6.3: Otherwise, if any of the $G_{R X}(\varphi)$ for the last time step were within 30 dB of peak then set $T_{\text {step }}=T_{\text {fine }}$; otherwise, set $T_{\text {step }}=T_{\text {coarse }}$.
Step 7: Update position vectors of all earth stations based on coordinate system in § D6.1.
Step 8: Update position vectors of all GSO satellites based on coordinate system in § D6.2.
Step 9: Update position and velocity vectors of all non-GSO satellites based on coordinate system, orbit prediction model and station keeping algorithm in § D6.3.
Step 10: \quad Set epfd $\downarrow=0$.
Step 11: Select all non-GSO satellites visible to the GSO earth station using the algorithm in § D6.4.1.

Step 12: Repeat Steps 13 to 18 for each visible non-GSO satellite.
Step 13: Calculate the parameters required by the pfd mask, either (lat, α or X, Δ long) or (lat, azimuth, elevation) as required, using the definition of angles in § D6.4.4 or § D6.4.5.
Step 13bis: Calculate the (Azimuth $_{\text {NGSO }}, \varepsilon_{\mathrm{NGSO}}$) of the non-GSO satellite as seen at the GSO ES location using the definition of angles in § D6.4.4.
Step 14: Using the pfd mask for the selected non-GSO satellite, calculate pfd(lat, α or X, Δ long) or pfd(lat, azimuth, elevation) at the GSO earth station using the non-GSO satellite pfd mask as specified in § D5.1.5.
Step 15: Calculate the offaxis angle φ at GSO earth station between line to the GSO satellite and the non-GSO satellite.
Step 16: Calculate $G_{R X}(\varphi)=$ Receive gain (dB) at GSO earth station using relevant gain pattern specified in algorithms in § D6.5.
Step 17: Calculate epfd \downarrow_{i} for this non-GSO satellite using:

$$
e p f d \downarrow_{i}=p f d+G_{R X}(\varphi)-G_{\max }
$$

where $G_{m a x}$ is the peak gain of the GSO earth station antenna.
Step 18: Store the epfd \downarrow_{i} entries for each satellite that either meets the minimum $\alpha_{0}[$ latitude] for that satellite, $\varepsilon_{0}\left[\right.$ latitude][Azimuth ${ }_{\text {NGSO }}$] requirements or for which $G_{R X}(\varphi)>\min \left[G_{\max }-\right.$ $30 \mathrm{~dB}, G_{R X}\left(\alpha_{0}[\right.$ Latitude]] $)$, identifying which is the case.
Step 19: If a window is closing this time step then identify which non-GSO satellites met the α_{0}, ε_{0} constraints for the full duration of the window.
Step 19bis: For each of those satellites that met the $\alpha_{0}, \varepsilon_{0}$ constraints for the full duration of the window, calculate the highest epfd $\downarrow[\mathrm{nSat}]$ over the time window and sort this list of satellites by maximum epfd $\downarrow[\mathrm{nSat}]$ per satellite.
Step 20: Repeat Steps 21 and 22 for each time step in the window for the MAX_CO_FREQ[lat] satellite's epfd $\downarrow[\mathrm{nSat}]$ contributions on this list plus those satellites for which $G_{R X}(\varphi)$ > $\min \left[G_{\max }-30 \mathrm{~dB}, G_{R X}\left(\alpha_{0}[\right.\right.$ Latitude] $\left.]\right)$, where MAX_CO_FREQ[lat] is the maximum number of operating non-GSO satellites at the latitude of GSO_ES considered corresponding to the maximum number of satellites allowed to transmit at the same
frequency towards the same area on the ground, fulfilling the GSO exclusion zone and minimum elevation angle requirements as defined by for the non-GSO system.
Step 21: Increment epfd \downarrow by the epfd \downarrow_{i} value.
Step 22: Increment epfd \downarrow statistics for the relevant slide window by epfd \downarrow for this time step by ($\left.T_{\text {step }} / T_{\text {fine }}\right)$ entries. If last time step was a course time step and the window closed during that time step, then the epfd \downarrow statistics should be updated by that part of $T_{\text {step }}$ that was in the window and the remaining part stored for the following window. If the run since start time for this slide window exceeds the run duration then only include that part of the time window that is within the run duration in the statistics.
Step 23: Generate the epfd \downarrow CDF for all slide windows from the epfd \downarrow PDF using the algorithm in § D7.1.2.
Step 24: Compare epfd \downarrow statistics for all slide windows with limits using the algorithm in § D7.1.
Step 25: Output results in format specified in § D7.3.

D5.1.5 pfd mask calculation

The pfd mask is defined as a table of pfd values for various angles and latitudes.
Note that the latitude range should be:

$$
\begin{array}{ll}
\text { Minimum: } & -i \\
\text { Maximum: } & +i
\end{array}
$$

where i is the inclination of the non-GSO satellite's orbit.
In general, the (azimuth, elevation) or (α, or X) angles calculated at each time step will be between two values in the arrays. In this case bilinear interpolation between pfd values should be used with equations:

$$
p f d=\left(1-\lambda_{x}\right)\left(1-\lambda_{y}\right) p f d_{11}+\lambda_{x}\left(1-\lambda_{y}\right) p f d_{21}+\left(1-\lambda_{x}\right) \lambda_{y} p f d_{12}+\lambda_{x} \lambda_{y} p f d_{22}
$$

where:

$$
\begin{aligned}
& \lambda_{x}=\frac{x-x_{1}}{x_{2}-x_{1}} \\
& \lambda_{y}=\frac{y-y_{1}}{y_{2}-y_{1}}
\end{aligned}
$$

And (x, y) are the two dimensions of the pfd mask.
If the angles are outside the pfd mask, the software calculates pfd from the highest angle in the mask (i.e. at the mask edge).

The mask that is closer in latitude to that of the reference satellite should be used. Part C gives more information about the format and sampling of the pfd mask.

D5.1.6 Outputs

The result of the algorithm is two arrays in format:

Array of epfd \downarrow values	epfd_DOWN_CALC[I]	$\mathrm{dB}\left(\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{BW}_{\text {ref }}\right)\right)$
Array of percentages	PC_CALC[I]	$\%$

where PC_CALC[I] is the percentage of time epfd_DOWN_CALC[I] is exceeded.

D5.2 epfd \uparrow software description

This section describes the algorithm to calculate epfd \uparrow from non-GSO earth stations into a GSO uplink. The locations of the ES can be defined in one of two ways:

1) It is assumed that the Earth is populated with a uniform distribution of non-GSO earth stations. In this case the ES_ID in the e.i.r.p. mask should be set to -1 .
2) The locations of specific ES are used via a field in the ES e.i.r.p. mask. In this case the density field is not used.
Each earth station points towards a non-GSO satellite using pointing rules for that constellation, and transmits with a defined e.i.r.p. From the e.i.r.p. and offaxis gain pattern for each earth station, the epfd \uparrow at the GSO can be calculated. This is repeated for a series of time steps until a distribution of epfd \uparrow is produced. This distribution can then be compared with the limits to give a go/no go decision.

Figure 41 shows the geometry with population of non-GSO earth stations transmitting to a constellation of non-GSO satellites, together with a test GSO satellite receiving from a GSO earth station.

FIGURE 41
Example of epfd(up) scenario

D5.2.1 Configuration parameters

This sub-section specifies the parameters required for all epfd \uparrow calculations defined in the RR. This would be a data-set of N sets of limits that can be shared between runs. The Table could be queried so that the required values can be used depending upon non-GSO system frequency.
For each set of limits the following would be defined as generated by in § D2.1.

Parameter name	Parameter value	Parameter units and ranges
Frequency	FREQ	MHz
GSO gain pattern	FEND_UP	One of those in § D6.5
GSO peak gain	GSO_SAT_PEAKGAIN	dBi
GSO half power beamwidth	GSO_SAT_BEAMWIDTH	degrees
Reference bandwidth	RAFBW	kHz
Number of epfd \uparrow points	Nepfd_UP	-
Array of Nepfd_UP epfd \uparrow values	epfd_UP[I]	$\mathrm{dB}\left(\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{BW}_{\text {reff }}\right)\right)$
Array of Nepfd_UP percentages	PC_UP[I]	$\%$

D5.2.2 Determination of maximum epfd configuration

The maximum epfd location of the GSO satellite and beam centre is defined in § D3.2.

D5.2.3 Calculation of run steps

The time step and number of time steps are calculated using the algorithm in § D4 which also describes the optional dual time step option.

D5.2.4 Inputs

D5.2.4.1 Input parameters

This section defines the input parameters for a particular non-GSO system scenario. In this case, input is a generic term that could include files or user input. Information is required for:

- non-GSO system;
- GSO system;
- run configuration.

D5.2.4.2 Non-GSO system parameters

The following parameters, as specified in § B3.1 would be used:

Parameter description	Parameter name	Parameter units
Number of non-GSO satellites	$N_{\text {sat }}$	-
Orbit has repeating ground track maintained by station keeping	Yes or No	-
Administration is supplying specific node precession rate	Yes or No	-
Station keeping range for ascending node as half total range	$W_{\text {delta }}$	degrees

For each satellite the following parameters specified in § B3.2, would be used, where the definitions of the parameters are specified in § D6.3.1 at the time of the start of the simulation.
Note that in the Table below, the indices $[N]$ are present to indicate that there would be a different value for each satellite, and the N-th value corresponds to the N-th satellite.

Parameter description	Parameter name	Parameter units
Semi-major axis	$\mathrm{A}[N]$	km
Eccentricity	$\mathrm{E}[N]$	-
Inclination	$\mathrm{I}[N]$	degrees
Longitude of ascending node	$\mathrm{O}[N]$	degrees
Argument of perigee	$\mathrm{W}[N]$	degrees
True anomaly	$\mathrm{V}[N]$	degrees

Each satellite must have an independent set of six orbital parameters for orbit definition and subsequent propagation.
To define the characteristics of non-GSO earth stations, the following parameters, as specified in § B4.2 would be used:

Parameter description	Parameter name	Parameter units
Maximum number of co-frequency tracked non- GSO satellites	MAX_CO_FREQ [Latitude]	-
Earth station ei.r.p. mask by latitude	ES_EIRP[lat][φ]	$\mathrm{dB}\left(\mathrm{W} / \mathrm{BW}_{\text {ref }}\right)$
Minimum elevation angle	ES_MINELEV[Latitude] [Azimuth]	degrees
Minimum angle to GSO arc	MIN_EXCLUDE [Latitude]	degrees
Average number of non-GSO ES active at the same time per km		
Average distance between cell or beam foot- print centres	ES_DENSITY	km^{2}

Note that the minimum track duration is not used for the epfd(up) case.

D5.2.4.3 GSO system parameters

The GSO system can be either calculated or use worst-case parameters using the algorithm in § D3.2 or entered values. The required parameters as specified are:

Parameter description	Parameter name	Parameter units
GSO satellite longitude	GSO_SAT_LONG	degrees
GSO boresight latitude	BS_LAT	degrees
GSO boresight longitude	BS_LONG	degrees
GSO reference gain pattern	GSO_SAT_PATTERN	One of those in § D6.5

These parameters are defined in §§ D6.1 and D6.2.

D5.2.4.4 Run parameters

The following run parameters should be calculated using the algorithm in § D4:

Parameter description	Parameter name	Parameter units
Time step	TSTEP	s
Number of time steps	NSTEPS	-

D5.2.5 Production of non-GSO earth station distribution

In the case that the non-GSO ES locations are defined by a distribution, the following method should be used:
Step 1: Calculate the number of actual operating non-GSO earth stations that the representative earth station will represent using:
NUM_ES = ES_DISTANCE * ES_DISTANCE * ES_DENSITY

Step 2: Calculate e.i.r.p. to use for each representative non-GSO earth station using:

$$
\text { REP_e.i.r.p. }=\text { ES_e.i.r.p. }+10 \log _{10}(\text { NUM_ES })
$$

Step 3: Define the GSO service area as the region enclosed by the contour representing a relative gain of 15 dB .
Step 4: For every distance ES_DISTANCE in latitude and distance ES_DISTANCE in longitude within the service area defined in Step 3, locate a representative non-GSO earth station with radiating with REP_e.i.r.p.
If the supplied ES_DISTANCE is zero then in Step 1 set NUM_ES $=1$ and at Step 4 locate a single non_GSO ES at the boresight of the GSO satellite.
The NUM_ES is typically 1 for TDMA and FDMA systems and for CDMA systems equal to the number of co-frequency ES all operating on the same frequency at the same time and location. The ES_DISTANCE relates to the average distance between co-frequency beams.
The deployment method should be symmetric around the (latitude, longitude) of the GSO satellite's boresight, as shown in Fig. 42.

FIGURE 42
Deployment method for non-GSO earth stations

No non-GSO ESs should be deployed below the minimum latitude or above the maximum latitude, where these two extreme values are derived using the methodology in § D3.2.3.
The separation in latitude in radians between non-GSO ES can be calculated from the distance using:

$$
\Delta l a t=\frac{d}{R_{e}}
$$

The separation in longitude in radians between non-GSO ES can be calculated using:

$$
\Delta l o n g=\frac{d}{R_{e} \cos l a t}
$$

D5.2.6 Algorithms and calculation procedures

To calculate epfd \uparrow values from one non-GSO system into one GSO system satellite the following algorithm should be used. The algorithm can be used on multiple GSO systems in parallel if required:
Step 1: \quad Read in parameters for non-GSO system as specified in § D5.2.4.2.
Step 2: Read in GSO parameters as specified in § D5.2.4.3.
Step 3: If required calculate maximum epfd GSO location using the algorithm in § D3.2 otherwise use the GSO satellite and ES location requested.
Step 4: If required calculate locations of non-GSO earth stations using the algorithm in § D5.2.5.
Step 5: Initialize statistics by zeroing all bins of epfd \uparrow values.

Step 6: If required calculate number of time steps and time step size using the algorithm in § D4 and hence calculate end time.

If a dual time step algorithm is included then use Sub-step 6.1, otherwise $N_{\text {coarse }}=1$ all the time.

Sub-step 6.1: \quad Calculate coarse step size $T_{\text {coarse }}=T_{\text {fine }} * N_{\text {coarse }}$.
Step 7: Repeat Steps 8 to 24 for all time steps.
If a dual time step algorithm is included then repeat Sub-step 7.1 to Step 22 until end time is reached.
Sub-step 7.1: If it is the first time step then set $T_{\text {step }}=T_{\text {fine }}$.
Sub-step 7.2: Otherwise if there are less than $N_{\text {coarse }}$ steps remaining then set $T_{\text {step }}=T_{\text {fine }}$.
Sub-step 7.3: Otherwise if any of the α angles for the last time step were within $\varphi_{\text {coarse }}$ of the exclusion zone angle then set the $T_{\text {step }}=T_{\text {fine }}$; otherwise, use $T_{\text {step }}=T_{\text {coarse }}$.
Step 8: Update position vectors of all earth stations using algorithm in § D6.1.
Step 9: Update position and velocity vectors of all non-GSO satellites using algorithm in § D6.3.2.
Step 10: Update position vectors of GSO satellite using algorithm in § D6.2.
Step 11: \quad Set $\operatorname{epfd} \uparrow=0$.
Step 12: Repeat Steps 13 to 23 for all non-GSO earth stations.
Step 13: Determine if this non-GSO earth station is visible to the GSO satellite using the algorithm in § D6.4.1.
Step 14: If the non-GSO earth station is visible to the GSO satellite then do Steps 15 to 23.
Step 15: Repeat Steps 16 to 23 for the maximum number of non-GSO satellites that can be tracked at the non-GSO ES latitude, MAX_CO_FREQ[Latitude].
Step 15bis: Calculate the (Azimuth ${ }_{\text {NGSO }}, \varepsilon_{\mathrm{NGSo}}$) of the non-GSO satellite as seen at the GSO ES location using the definition of angles in § D6.4.4.
Step 16: Select the i-th satellite away from the GSO satellite (determined using the offaxis angle towards the GSO satellite at the non-GSO ES when it is pointing at the non-GSO satellite) that is above minimum elevation angle $\varepsilon_{0}\left[\right.$ latitude][Azimuth ${ }_{\text {NGSO }}$] and not inside the GSO exclusion zone $\alpha_{0}[$ latitude] for that satellite.
Step 17: If the algorithm has selected a satellite then do Steps 18 to 23.
Step 18: Calculate ES_EIRP[lat] (dB(W/BW raf $)$) of non-GSO earth station at its given latitude in direction of GSO satellite using non-GSO earth station e.i.r.p. mask in § C3.

REP_EIRP $=$ ES_EIRP[lat, offaxis angle] $+10 \log _{10}$ (NUM_ES)
Step 19: Calculate $G_{R X}=$ receive relative gain (dB) at GSO satellite using relevant gain pattern specified in the algorithms in § D6.5.
Step 20: Calculate $D=$ distance (km) between the non-GSO earth station and the GSO satellite using the algorithm in § D6.4.1.
Step 21: Calculate the spreading factor $L_{F S}=10 \log \left(4 \pi D^{2}\right)+60$.
Step 22: Calculate epfd \uparrow_{i} for this non-GSO satellite:

$$
e p f d \uparrow_{i}=\text { REP_EIRP }-L_{F S}+G_{R X}-G_{\max }
$$

Step 23: Increment epfd \uparrow by epfd \uparrow.
Step 24: Increment epfd \uparrow statistics by this epfd \uparrow.
If a dual time step algorithm is included then the step below should be used:
Sub-step 24.1: Increment epfd \uparrow statistics by the epfd \uparrow for this time step by $T_{\text {step }} / T_{\text {fine }}$ entries.
Step 25: Generate the epfd \uparrow CDF from the epfd \uparrow pdf using the algorithm in \S D7.1.2.
Step 26: Compare epfd \uparrow statistics with limits using the algorithm in \S D7.1.
Step 27: Output results in format specified in § D7.2.

D5.2.7 Outputs

The result of the algorithm is two arrays of size Nepfd \uparrow in format:

Array of Nepfd_UP epfd N values epfd_UP_CALC[I]	$\mathrm{dB}\left(\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{BW}_{\text {ref }}\right)\right)$	
Array of Nepfd_UP percentages	PC_CALC[I]	$\%$

where PC_CALC[I] is the percentage of time epfd_UP_CALC[I] is exceeded.

D5.3 epfdis software description

This section describes the algorithm to calculate epfd ${ }_{\text {is }}$ from non-GSO space stations into a GSO uplink. From the e.i.r.p. and offaxis angle for each space station, the epfd $\mathrm{is}_{\text {s }}$ at the GSO space station can be calculated. This is repeated for a series of time steps until a distribution of epfdis is produced. This distribution can then be compared with the limits to give a go/no go decision.

D5.3.1 Configuration parameters

This sub-section specifies the parameters required for all epfd $_{\text {is }}$ calculations. This would be a data-set of N sets of limits that can be shared between runs. The Table could be queried so that the required values can be used depending upon non-GSO system frequency.
For each set of limits the following would be defined as derived in § D2.1.

Parameter name	Parameter value	Parameter units and ranges
Frequency band start	FREQ	MHz
GSO gain pattern	FEND_IS	One of those in § D5.5
GSO peak gain	GSO_SAT_PEAKGAIN	dBi
GSO half power beamwidth	GSO_SAT_BEAMWIDT	degrees
Reference bandwidth	RIFBW	kHz
Number of epfd ${ }_{\text {is }}$ points	Nepfd_IS	-
Array of Nepfd_IS epfd ${ }_{\text {is }}$ values	epfd_IS[I]	$\mathrm{dB}\left(\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{BW}_{\text {rif }}\right)\right)$
Array of Nepfd_IS percentages	PC_IS[I]	$\%$

D5.3.2 Determination of maximum epfd configuration

The maximum epfd location of GSO satellite and beam centre is defined in § D3.3.

D5.3.3 Calculation of run steps

A single time step and number of time steps are calculated using the algorithm in § D4.

D5.3.4 Input parameters

This sub-section defines the input parameters for a particular non-GSO system scenario. In this case, input is a generic term that could include files or user input. Information is required for:

- non-GSO system;
- GSO system;
- run configuration.

D5.3.4.1 Non-GSO system parameters

The following parameters, as specified in § B2.1 would be used:

Parameter description	Parameter name	Parameter units
Number of non-GSO satellites	$N_{\text {sat }}$	-
Orbit has repeating ground track maintained by station keeping	Yes or No	-
Administration is supplying specific node precession rate	Yes or No	-
Station keeping range for ascending node as half total range	$W_{\text {delta }}$	degrees

For each satellite the following parameters specified in § B2.1 would be used, where the definitions of the parameters are specified in § D6.3.1 at the time of the start of the simulation.
Note that in the Table below, the indices $[N]$ are present to indicate that there would be a different value for each satellite, and the N-th value corresponds to the N-th satellite.

Parameter description	Parameter name	Parameter units
Semi-major axis	$\mathrm{A}[N]$	km
Eccentricity	$\mathrm{E}[N]$	-
Inclination	$\mathrm{I}[N]$	degrees
Longitude of ascending node	$\mathrm{O}[N]$	degrees
Argument of perigee	$\mathrm{W}[N]$	degrees
True anomaly	$\mathrm{V}[N]$	degrees

Each satellite must have an independent set of six orbital parameters for orbit definition and subsequent propagation.
To define the characteristics of non-GSO space stations, the following parameters, as specified in § B4.3 would be used:

Parameter description	Parameter name	Parameter units
e.i.r.p. per space station by latitude	non-GSO_SS_EIRP[Lat][$\varphi]$	dB $\left(W / \mathrm{BW}_{\text {rif }}\right)$
Minimum transmit frequency ${ }^{(1)}$	IS_F	GHz

[^0]
D5.3.4.2 GSO system parameters

The GSO system can either use worst-case parameters using the algorithm in § D5.2 or entered values. The required parameters are:

Parameter description	Parameter name	Parameter units
GSO satellite longitude	GSO_SAT_LONG	degrees
GSO boresight latitude	BS_LAT	degrees
GSO boresight longitude	BS_LONG	degrees
GSO reference gain pattern	GSO_SAT_PATTERN	One of those in § D5.5

These parameters are defined in §§ D6.1 and D6.2.

D5.3.4.3 Run parameters

The following run parameters should be calculated using the algorithm in § D4:

Parameter description	Parameter name	Parameter units
Time step	TSTEP	s
Number of time steps	NSTEPS	-

D5.3.5 Algorithms and calculation procedures

In the calculation of the dual time step for the epfdis computation, $N_{\text {coarse }}=1$.
To calculate epfd ${ }_{i s}$ values from one non-GSO system into one GSO system satellite the following algorithm should be used. The algorithm can be used on multiple GSO systems in parallel if required:
Step 1: Read in parameters for non-GSO system as specified in § D5.3.4.2.
Step 2: Read in GSO parameters as specified in § D5.3.4.3.
Step 3: If required calculate worst-case GSO location using algorithm in § D3.3.
Step 4: Initialize statistics by zeroing all bins of epfd $\mathrm{is}^{\text {v values. }}$
Step 5: If required calculate number of time steps and time step size using algorithm in § D4 and hence calculate end time.
If a dual time step algorithm is included then use Sub-step 5.1, otherwise $N_{\text {coarse }}=1$ all the time. Sub-step 5.1: Calculate coarse step size $T_{\text {coarse }}=T_{\text {fine }} * N_{\text {coarse }}$.
Step 6: Repeat Steps 7 to 19 for all time steps.
If a dual time step algorithm is included then repeat Sub-step 6.1 to Step 17 until end time is reached.
Sub-step 6.1: If it is the first time step then set $T_{\text {step }}=T_{\text {fine }}$.
Sub-step 6.2: Otherwise if there are less than $N_{\text {coarse }}$ steps remaining then set $T_{\text {step }}=T_{\text {fine }}$.
Sub-step 6.3: Otherwise, if any of the α angles for the last time step were within $\varphi_{\text {coarse }}$ of the exclusion zone angle then set the $T_{\text {step }}=T_{\text {fine }}$; otherwise, use $T_{\text {step }}=T_{\text {coarse }}$.
Step 7: Update position and velocity vectors of all non-GSO satellites using algorithm in § D6.3.
Step 8: Update position vectors of GSO satellite using algorithm in § D6.2.
Step 9: Set epfd ${ }_{i s}=0$.

Step 10: Repeat Steps 10 to 18 for all non-GSO space stations.
Step 11: Determine if this non-GSO space station is visible to the GSO satellite using the algorithm in § D6.4.1.
Step 12: If the non-GSO space station is visible to the GSO satellite then do Steps 13 to 18.
Step 13: Calculate e.i.r.p. $\left(\mathrm{dB}\left(\mathrm{W} / \mathrm{BW}_{\text {rif }}\right)\right.$) of non-GSO space station in direction of GSO satellite using the e.i.r.p. mask in § C3 for the non-GSO space station's latitude.
Step 14: Calculate $G_{R X}=$ receive relative gain (dB) at GSO satellite using relevant gain pattern specified in algorithms in § D6.5.
Step 15: Calculate $D=$ distance (km) between the non-GSO space station and the GSO satellite using the algorithm in § D6.4.1.
Step 16: Calculate the spreading factor $L_{F S}=10 \log \left(4 \pi D^{2}\right)+60$.
Step 17: Calculate epfd isi for this non-GSO satellite:

$$
e p f d_{i s i}=\text { e.i.r.p. }-L_{F S}+G_{R X}-G_{\max }
$$

Step 18: \quad Increment epfd $\mathrm{is}_{\text {is }}$ by epfd $\mathrm{is}_{\mathrm{s} \text {. }}$.
Sub-step 19: \quad Increment epfd ${ }_{i s}$ statistics by this epfd ${ }_{\text {is }}$.
If a dual time step algorithm is included then the step below should be used:
Sub-step 19.1: Increment epfd $\mathrm{i}_{\text {is }}$ statistics by the epfd ${ }_{\mathrm{is}}$ for this time step by $T_{\text {step }} / T_{\text {fine }}$ entries.

Step 20: \quad Generate the $\operatorname{epfd}_{i s}$ CDF from the $^{2} \operatorname{epfd}_{i s}$ pdf using the algorithm in § D7.1.2.
Step 21: Compare epfd ${ }_{i s}$ statistics with limits using algorithm in § D7.1.
Step 22: Output results in format specified in § D7.2.

D5.3.6 Outputs

The result of the algorithm is two arrays in format:

Array of Nepfd_IS epfd ${ }_{\text {is }}$ values	epfd_IS_CALC[I]	$\mathrm{dB}\left(\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{BW}_{\text {rif }}\right)\right)$
Array of Nepfd_IS percentages	PC_CALC[I]	$\%$

where PC_CALC[I] is percentage of time epfd_IS_CALC[I] is exceeded.

D6 Geometry and algorithms

This section describes the geometry that defines the core algorithms used in the software. One aspect is the conversion into a generic cartesian vector-based coordinate system. The precise orientation of the X vector is not specified in this Recommendation to allow alternative implementations by developers. The axis chosen should not impact the results as satellite and Earth coordinates are defined relative to the Earth.

To aid developers examples coordinate systems are used to show how to convert to and from generic vectors.

D6.1 Earth coordinates system

Figure 43 shows the reference coordinate system for earth stations.

FIGURE 43
Definition of latitude

The Earth is defined as a sphere with radius as specified in \S A2.2 $=R_{e}$. The Earth rotates around an axis, the Z axis, at a rate defined in $\S \mathrm{A} 2.2=\Omega_{e}$. Perpendicular to the Z axis, crossing the Earth at the Equator, is the XY plane.
Earth stations are located on this sphere based upon two angles:
Latitude: angle between line from centre of Earth to earth station and XY plane;
Longitude: angle as shown in Fig. 44.

FIGURE 44
Definition of longitude

Earth stations are assumed to have constant (latitude, longitude) positions in time.
The orientation within the XY plane of the X and Y axes is not specified in this Recommendation as all locations are referenced to the Earth rather than one particular inertial frame. This allows different implementations to use different reference points if required without impacting on the results.

One possible implementation is what is described as the geocentric inertial system. For this example case, conversion from geographic coordinates is achieved using:

$$
\begin{equation*}
\text { Long }=\arccos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) \quad \text { if } y \geq 0 \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
\text { Long }=-\arccos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) \quad \text { if } y<0 \tag{6}\\
\text { Lat }=\arctan \left(\frac{z}{\sqrt{x^{2}+y^{2}}}\right) \tag{7}
\end{gather*}
$$

If this example coordinate system is used, then the conversion from geographic coordinates into geocentric inertial system coordinates is:

$$
\begin{gather*}
x=R_{e} \cos (\text { lat }) \cos (\text { long }) \tag{8}\\
y=R_{e} \cos (\text { lat }) \sin (\text { long }) \tag{9}\\
z=R_{e} \sin (\text { lat }) \tag{10}
\end{gather*}
$$

where:
(x, y, z) : coordinates in the geocentric inertial system
long: geographic longitude
lat: geographic latitude.
In this example geocentric inertial reference system, the equation for motion of a mass point on the Earth's surface would be as:

$$
\left[\begin{array}{l}
x \tag{11}\\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
R_{e} \cos (\text { lat }) \cos \left(\text { lon }+\Omega_{e} t\right) \\
R_{e} \cos \left(\text { lat } \sin \left(\text { lon }+\Omega_{e} t\right)\right. \\
R_{e} \sin (\text { lat })
\end{array}\right]
$$

where:
lat: geographic latitude of the mass point on the Earth's surface
lon: geographic longitude of the mass point on the Earth's surface
t : time
Ω_{e} : angular rate of rotation of the Earth.

D6.2 GSO satellite coordinate system

The geostationary arc is a circle in the XY plane at a distance of $R_{g e o}$ from the Earth's centre where $R_{\text {geo }}$ is specified in § A2.2. Individual geostationary satellites have location on this circle defined by a longitude as shown in Fig. 45.

FIGURE 45
Definition of GSO satellite longitude

Geostationary satellites are assumed to have constant longitude in time. The conversion to and from vectors can use the same algorithms as in the section above by setting the latitude to zero.

D6.3 Non-GSO satellite coordinate system

D6.3.1 Non-GSO satellite orbit parameters

This section defines the parameters that specify an orbit for non-GSO satellites. Non-GSO satellites move in a plane as shown in Fig. 46.

FIGURE 46
Orbit plane angles

The plane of the orbit is referenced to the Earth by two angles:
Ω : longitude of ascending node: This defines where the ascending orbit plane intersects the equatorial plane. As the orbit is fixed in inertial space while the Earth rotates, a time reference for which this angle is valid must be given. In this case it is the start of the simulation
i : inclination angle: This is defined as the angle between the plane of the orbit and the equatorial plane.
The orbit and position of the non-GSO satellite within the orbit is then defined by further parameters as shown in Fig. 47.

FIGURE 47

Definition of non-GSO satellite in-plane angles

The shape of the orbit is defined by:

$$
\begin{gather*}
a=\left(R_{a}+R_{p}\right) / 2 \tag{12}\\
e=\left(R_{a}-R_{p}\right) /\left(R_{a}+R_{p}\right) \tag{13}
\end{gather*}
$$

where:
a: semi-major axis
e : eccentricity
R_{a} : distance from the centre of the Earth to the satellite at apogee
R_{p} : distance from the centre of the Earth to the satellite at perigee.
The position of the perigee within the orbit plane is defined by:
ω : argument of perigee, angle between the line of the nodes and perigee.
The position of a non-GSO satellite within the plane at a particular time is defined by:
v_{0} : angle between perigee and specified point on orbit.
For circular orbits, ω can be set to zero and v_{0} assumed to be the same as the argument of latitude defined as:

$$
\begin{equation*}
\mu_{0}=\omega+v_{0} \tag{14}
\end{equation*}
$$

Other useful terms are:

$$
\begin{gather*}
p=a\left(1-e^{2}\right) \tag{15}\\
M=E-e \sin E \tag{16}\\
\tan \frac{v}{2}=\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2} \tag{17}\\
R=\frac{p}{1+e \cos (v)} \tag{18}\\
T=2 \pi \sqrt{a^{3} / \mu} \tag{19}
\end{gather*}
$$

where:
p: focal parameter
E: eccentric anomaly
M: mean anomaly
T: period of orbit
R : distance from centre of Earth to satellite when satellite is at position v.
These can be used by the algorithm to predict the future position of the non-GSO satellite as described in § D5.

D6.3.2 Non-GSO satellite orbit predictor

Given the orbital elements in the section above, standard orbit mechanics can be used to predict the position of the satellite at future times. In addition there are three additional precession factors for the ascending node and argument of perigee as described below.
Line of nodes

$$
\begin{equation*}
\bar{n}=n_{0}\left(1+\frac{3}{2} \frac{J_{2} R_{e}^{2}}{p^{2}}\left(1-\frac{3}{2} \sin ^{2}(i)\right)\left(1-e^{2}\right)^{1 / 2}\right) \tag{20}
\end{equation*}
$$

where:

$$
\begin{aligned}
& J_{2}=0.001082636 \\
& n_{0}=\sqrt{\frac{\mu}{a^{3}}}
\end{aligned}
$$

Orbit precession in ascending node longitude.
The rate of ascending node longitude secular drift is defined as:

$$
\begin{equation*}
\Omega_{r}=-\frac{3}{2} \frac{J_{2} R_{e}^{2}}{p^{2}} \bar{n} \cos (i) \tag{21}
\end{equation*}
$$

It follows from the above that polar orbits have zero precession rate and equatorial ones have a maximum precession rate. With direct satellite motion $\left(i<90^{\circ}\right)$ the ascending node shifts to the west (to Ω decreasing) and with reverse satellite motion ($i>90^{\circ}$) it shifts to the east (to Ω increasing).

Perigee argument precession.

Perigee argument secular shift rate is defined as:

$$
\begin{equation*}
\omega_{r}=\frac{3}{2} \frac{J_{2} R_{e}^{2}}{p^{2}} \bar{n}\left(2-\frac{5}{2} \sin ^{2}(i)\right) \tag{22}
\end{equation*}
$$

Perigee argument precession rate at $i=0$ and $i=180$ is maximum. For $i_{1}=63^{\circ} 26^{\prime} 06^{\prime \prime}$ or $i_{2}=116^{\circ} 33^{\prime} 54^{\prime \prime}$ the precession rate is zero. If $i<i_{1}$ or $i>i_{2}$, then the perigee precession is along a satellite motion direction, and if $i_{1}<i<i_{2}$, then it is in the opposite direction.

Use of precession terms

Perigee argument is defined as:

$$
\begin{equation*}
\omega=\omega_{0}+\omega_{r} t \tag{23}
\end{equation*}
$$

where:
ω_{0} : perigee argument at an initial moment
ω_{r} : perigee argument precession rate.

A current value of an ascending node longitude is defined as:

$$
\begin{equation*}
\Omega=\Omega_{0}+\Omega_{r} t \tag{24}
\end{equation*}
$$

where:
Ω_{0} : ascending node longitude at an initial moment
Ω_{r} : ascending node longitude precession rate.
The revised orbit period is then:

$$
\begin{equation*}
T_{P}=\frac{2 \pi}{w_{r}+\bar{n}} \tag{25}
\end{equation*}
$$

The conversion to generic cartesian-based vector would depend upon the direction of the X vector. For an example coordinate system and for circular orbits, the satellite motion expression in the geocentric inertial reference system could be defined as:

$$
\left[\begin{array}{l}
x \tag{26}\\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
R(\cos (v+\omega) \cos (\Omega)-\sin (v+\omega) \sin (\Omega) \cos (i)) \\
R(\cos (v+\omega) \sin (\Omega)+\sin (v+\omega) \cos (\Omega) \cos (i)) \\
R \sin (v+\omega) \sin (i)
\end{array}\right]
$$

A satellite motion in an elliptical orbit is non-uniform; therefore, the Kepler expression and a concept of a mean anomaly would be used in the model to define the real anomaly as a function of time. Since an explicit dependence of the true anomaly on time is unavailable; the numerical methods of solving the below expressions were used for its definition. The expression is:

$$
\begin{equation*}
M=M_{0}+\bar{n} t \tag{27}
\end{equation*}
$$

D6.3.3 Non-GSO satellite orbit predictor

The conversion to generic Cartesian-based vector would depend upon the direction of the X vector, but an approach based upon the X vector aligned with the direction in which the ascending node longitude is zero is as follows:

1. For the relevant time t in seconds since simulation start, calculate the values of the precessing terms (ω, Ω, M) as required using the decision tree in § D6.3.5.
2. From M calculate the eccentric anomaly E using equation (16) and iteration.
3. From E calculate the true anomaly v using equation (17).
4. Hence calculate the radius vector R using equation (18).
5. Calculate the position of the satellite within the orbital plane in (P, Q) coordinates defined as in Fig. 48 below using:

$$
\left(\begin{array}{l}
p \tag{28}\\
q \\
0
\end{array}\right)=\left[\begin{array}{c}
R \cos (v) \\
R \sin (v) \\
0
\end{array}\right]
$$

6. Create the rotation matrix from satellite orbit coordinates to inertial xyz coordinates using:

$$
\tilde{R}=\left[\begin{array}{lll}
R_{11} & R_{12} & R_{13} \tag{29}\\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{array}\right]
$$

where:

$$
\begin{gather*}
R_{11}=\cos (\Omega) \cos (\omega)-\sin (\Omega) \sin (\omega) \cos (i) \tag{30}\\
R_{12}=-\cos (\Omega) \sin (\omega)-\sin (\Omega) \cos (\omega) \cos (i) \tag{31}\\
R_{13}=\sin (\Omega) \sin (\mathrm{i}) \tag{32}
\end{gather*}
$$

$$
\begin{gather*}
R_{21}=\sin (\Omega) \cos (\omega)+\cos (\Omega) \sin (\omega) \cos (i) \tag{33}\\
R_{22}=-\sin (\Omega) \sin (\omega)+\cos (\Omega) \cos (\omega) \cos (i) \tag{34}\\
R_{23}=-\cos (\Omega) \sin (i) \tag{35}\\
R_{31}=\sin (\omega) \sin (i) \tag{36}\\
R_{32}=\cos (\omega) \sin (i) \tag{37}\\
R_{33}=\cos (i) \tag{38}
\end{gather*}
$$

7. Hence calculate the position of the satellite in xyz coordinates using:

$$
\left[\begin{array}{l}
x \tag{39}\\
y \\
z
\end{array}\right]=\tilde{R}\left(\begin{array}{l}
p \\
q \\
0
\end{array}\right)
$$

FIGURE 48
Definition of satellite \mathbf{P}, \mathbf{Q} coordinates

D6.3.4 Non-GSO satellite orbit station keeping

An important aspect to station keeping is to simulate multiple passes of the non-GSO satellite through an earth station's main beam with slightly different crossing directions. As changing the position within the plane does not affect this, then the main parameter to vary is the longitude of the ascending node.

The approach proposed is to give range $\pm W_{\text {delta }}$ in longitude of ascending node. At the start of the simulation all stations in the constellation have this parameter offset by $-W_{\text {delta }}$. During the simulation this field would increase to 0 (at the run's mid-point) and then increase to $\pm W_{\text {delta }}$.
This is implemented by rotating the station's position and velocity vectors around the Z axis by the required angle as specified in § D6.3.4.

D6.3.5 Forced orbit precession

The standard orbit prediction algorithm is based upon point Earth mass plus correcting factors for J_{2} perturbations. There are two cases where this requires to be over-ridden:
a) where administrations supply a detailed value of the orbit precession rate with respect to a point Earth mass to ensure a repeat ground track;
b) for non-repeat orbits where an artificial precession rate is used to ensure the required spacing between equatorial passes.

D6.3.6 Combining the orbit models

The various options for the orbit model can be combined in three ways as shown Fig. 49:

FIGURE 49
Flowchart of orbit model options

Note that the equatorial orbit $i=0$ constellation is a special case in that there is no station keeping but the ground track of each satellite repeats just after one orbit.It should therefore be treated as Case (1) but with forced precession set to zero as described in § D4.
The three cases have their key orbit angles in radians updated as follows:

Case 1

$$
\begin{gather*}
\omega(t)=w_{0}+\omega_{r} t \tag{40}\\
\Omega(t)=\Omega_{0}+\Omega_{r} t+\frac{\pi}{180} D_{\text {artificial }} t \tag{41}\\
M(t)=M_{0}+\bar{n} t \tag{42}
\end{gather*}
$$

Case 2

$$
\begin{gather*}
\omega(t)=w_{0}+\omega_{r} t \tag{43}\\
\Omega(t)=\Omega_{0}+\Omega_{r} t+\frac{\pi}{180} \cdot W_{\text {delta }}\left(\frac{2 t}{T_{r u n}}-1\right) \tag{44}\\
M(t)=M_{0}+\bar{n} t \tag{45}
\end{gather*}
$$

Case 3

$$
\begin{gather*}
\omega(t)=w_{0} \tag{46}\\
\Omega(t)=\Omega_{0}+\frac{\pi}{180} D_{\text {admin }} t+\frac{\pi}{180} \cdot W_{\text {delta }}\left(\frac{2 t}{T_{\text {run }}}-1\right) \tag{47}\\
M(t)=M_{0}+n_{0} t \tag{48}
\end{gather*}
$$

Where:

$$
\begin{aligned}
\Omega_{r} & =J_{2} \text { precession of longitude of the ascending node in radians / second } \\
\omega_{r} & =J_{2} \text { precession of the argument of perigee in radians / second } \\
\bar{n} & =\text { orbit motion including the } J_{2} \text { term in radians / second } \\
n_{0} & =\text { orbit motion for point mass in radians / second } \\
D_{\text {artificial }} & =\text { artificial precession in degrees / second } \\
D_{\text {admin }} & =\text { admin supplied precession in degrees / second } \\
W_{\text {deta }} & =\text { station keeping range in degrees } \\
\mathrm{t} & =\text { simulation time in seconds } \\
\mathrm{T}_{\text {run }} & =\text { total run time of the simulation in seconds }
\end{aligned}
$$

D6.3.7 Mapping orbit parameters from SRS data

The following orbit parameters are given in the SRS / IFIC database:

Table orbit:

- \quad Apogee height $(\mathrm{km})=h_{a}$
- \quad Perigee height $(\mathrm{km})=h_{p}$
- Inclination angle (degrees) $=\mathrm{INC}$
- \quad Right ascension (degrees) = RA
- Longitude of ascending node (degrees) = LAN
$-\quad$ Argument of perigee (degrees) $=\mathrm{AP}$.
Table phase:
$-\quad$ Phase angle (degrees) $=$ PA.
For most of these fields it is possible to map nearly directly to the orbit parameters required, such as:

$$
\begin{gathered}
a=R_{e}+\frac{h_{a}+h_{p}}{2} \\
e=\frac{h_{a}-h_{p}}{2 a} \\
i=\mathrm{INC} \\
\Omega=\mathrm{LAN} \\
\omega=\mathrm{AP}
\end{gathered}
$$

Note that this algorithm uses the ascending node definition based upon longitude rather than right ascension to ensure the orbit is correctly referenced to earth station longitude.

The last field to define is the true anomaly, v, which can be derived from the phase angle. The phase angle is defined in RR Appendix 4 as:
A.4.b.5.b: \quad the initial phase angle $\left(\omega_{i}\right)$ of the i-th satellite in its orbital plane at reference time $t=0$, measured from the point of the ascending node ($0^{\circ} \leq \omega_{i}<360^{\circ}$)

The phase angle is shown in Fig. 50:

FIGURE 50
Definition of phase angle

S. 15035 C

The true anomaly can therefore be derived from the phase angle as follows:

$$
v_{0}=P A-\omega
$$

Or:

$$
P A=\omega+v_{0}=\mu_{0}
$$

D6.4 Geometry

D6.4.1 Distance between two stations

Given two station's position vectors in the form (x, y, z), the distance D between them can be calculated using:

$$
D=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

D6.4.2 Distance to Earth horizon

The distance to the horizon D_{h} for a station with Earth centred position vector of magnitude R can be calculated as follows:

$$
D_{h}=\sqrt{R^{2}-R_{e}^{2}}
$$

D6.4.3 Satellite visibility check

Two stations, whether earth stations or satellites, are visible if the direct distance between them is less than the sum of the distance to the horizon for each station, using the spherical Earth model described in § D6.1.

D6.4.4 Angle to GSO arc and Δ Longitude

D6.4.4.1 Definition

Figure 51 shows the definition of the α angle and X angle.

FIGURE 51
Definition of α and X angles

The Figure shows a test earth station and non-GSO satellite.
For each test point P_{i} on the GSO arc, there is a line from the earth station that intersects that point. There is then an angle α_{i} between that line and a line from the earth station to the non-GSO satellite.

The α angle is the minimum of all the test points for which the line does not intersect the Earth, i.e.

$$
\alpha=\min \left(\alpha_{i}\right)
$$

Similarly for each test point P_{i} on the GSO arc, there is a line from the non-GSO satellite that intersects that point. There is then an angle X_{i} between that line and a line from the earth station to the non-GSO satellite.

The X angle is the minimum of all the test points for which the line does not intersect the Earth, i.e.

$$
X=\min \left(X_{i}\right)
$$

The sign of α and X is determined by whether the line from the earth station to the non-GSO satellite intersects the XY plane at a distance less than or greater than the GSO radius as follows:

Given:
Earth station position vector:
$\underline{R}_{E S}$
Non-GSO satellite position vector: $\underline{R}_{N S}$

Construct line:

$$
\underline{R}=\underline{R}_{E S}+\lambda \underline{R}_{E N}
$$

where:

$$
\underline{R}_{E N}=\underline{R}_{N S}-\underline{R}_{E S}
$$

This line crosses the XY plane when:

$$
R(z)=0
$$

i.e. when

$$
\lambda_{z=0}=\frac{-R_{E S}(z)}{R_{E N}(z)}
$$

Hence:

$$
\underline{\boldsymbol{R}}_{z=0}=\underline{\boldsymbol{R}}_{E S}+\lambda_{z=0} \underline{\boldsymbol{R}}_{E N}
$$

The sign of α, X is then determined by:
In the case when the ES is in the northern hemisphere:
If $R_{z=0}<R_{\text {geo }}$ then α is positive
If $R_{z=0}=R_{\text {geo }}$ then α is zero
If $R_{z=0}>R_{\text {geo }}$ or if $\lambda_{z=0} \leq 0$ then α is negative.
In the case when the ES is in the southern hemisphere:
If $R_{z=0}>R_{\text {geo }}$ then α is positive
If $R_{z=0}=R_{\text {geo }}$ then α is zero
If $R_{z=0}<R_{\text {geo }}$ or if $\lambda_{z=0} \geq 0$ then α is positive.
From the test point identified to give the α or X angle, the Δ longitude can be calculated between the non-GSO sub-satellite point and the point on the GSO arc where the α (or X) angle is minimized, as shown in Fig. 52:

FIGURE 52

Definition of Δ longitude

Hence:
Δ Long $=$ LongAlpha - LongNGSO
The α or X iteration should use test points that meet the requirements in \S D1.4.
If there are two points on the GSO arc that give the same α or X (possibly the two edge of visibility points), then the one with the minimum absolute Δ Long should be selected. If both have the same Δ Long but with different signs, then the positive one should be used.

D6.4.4.2 Alpha Search Range

Note that the GSO arc will be visible to the non-GSO at a height of $h_{n G S O}$ and latitude $l^{\prime} t_{n G S O}$ if the difference in longitude is less than:

$$
\cos \Delta l o n g=\frac{\cos x}{\cos l a t_{n G S O}}
$$

where:

$$
x=x_{1}+x_{2}
$$

and:

$$
\begin{gathered}
\cos x_{1}=\frac{R_{e}}{R_{g s o}} \\
\cos x_{2}=\frac{R_{e}}{R_{e}+h_{n G S O}}
\end{gathered}
$$

The range of the GSO arc that will be visible to an ES can be calculated in a similar manner by setting $x_{2}=0$.

D6.4.4.3 Sign of Alpha

Figures 53 and 54 below are provided to give clarity as to the sign of α as seen from the perspective of a non-GSO satellite or non-GSO ES in the northern and southern hemispheres.
When the non-GSO satellite is in the northern hemisphere:

FIGURE 53
Sign of α as seen by non-GSO satellite in Northern Hemisphere

S. 150353

FIGURE 54
Sign of α as seen by non-GSO ES in Northern Hemisphere looking South

The geometry for the case when the non-GSO satellite is in the southern hemisphere is shown in Figs 55 and 56 below:

FIGURE 55
Sign of α as seen by non-GSO satellite in Southern Hemisphere

S. 150355

FIGURE 56
Sign of α as seen by non-GSO ES in Southern Hemisphere looking North

D6.4.4.4 Analytic Method to calculate α, X and β

This section describes an analytic method to calculate the alpha angle and also associated X and β angles.

Analytic Calculation of $\boldsymbol{\alpha}$

The analytic method to calculate α starts with the following two inputs:
$\boldsymbol{P}=$ Position vector of GSO ES, typically with magnitude $=$ radius of the Earth $=R_{e}$
$N=$ Position vector of non-GSO satellite
These are defined as:

$$
\begin{aligned}
\boldsymbol{P} & =\left(\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right) \\
\boldsymbol{N} & =\left(\begin{array}{l}
x_{n} \\
y_{n} \\
z_{n}
\end{array}\right)
\end{aligned}
$$

Then assume:
$\boldsymbol{G}=$ Position vector of a point on GSO arc specified by angle θ and radius of geostationary orbit $R_{\text {geo }}$:

$$
\boldsymbol{G}=\left(\begin{array}{c}
R_{\text {geo }} \cos \theta \\
R_{\text {geo }} \sin \theta \\
0
\end{array}\right)
$$

Then α is the minimum over all θ of the angle between the lines $\boldsymbol{P N}$ and $\boldsymbol{P G}$ where:

$$
\begin{gathered}
\boldsymbol{P N}=\left(\begin{array}{c}
x_{n}-x_{p} \\
y_{n}-y_{p} \\
z_{n}-z_{p}
\end{array}\right) \\
\boldsymbol{P G}=\left(\begin{array}{c}
R_{g e o} \cos \theta-x_{p} \\
R_{\text {geo }} \sin \theta-y_{p} \\
-z_{p}
\end{array}\right)
\end{gathered}
$$

This can be calculated using:

$$
\cos \alpha=\frac{\boldsymbol{P N} \cdot \mathbf{P G}}{|\mathbf{P N}||\boldsymbol{P G}|}
$$

This will be minimised over θ when:

$$
\frac{d \alpha}{d \theta}=0
$$

Which is also when:

$$
\frac{d}{d \theta}\left[\frac{\boldsymbol{P N} . \boldsymbol{P G}}{|\boldsymbol{P N}||\boldsymbol{P G}|}\right]=0
$$

Writing this as:

$$
\frac{d}{d \theta}\left[\frac{f}{g}\right]=0
$$

Then f can be written as:

$$
f=A+B \cos \theta+C \sin \theta
$$

where:

$$
A=-\left[\left(x_{n}-x_{p}\right) x_{p}+\left(y_{n}-y_{p}\right) y_{p}+\left(z_{n}-z_{p}\right) z_{p}\right]
$$

$$
\begin{aligned}
B & =\left(x_{n}-x_{p}\right) R_{\text {geo }} \\
C & =\left(y_{n}-y_{p}\right) R_{\text {geo }}
\end{aligned}
$$

And g can be written:

$$
g=\sqrt{E+F \cos \theta+G \sin \theta}
$$

where:

$$
\begin{aligned}
& E=R_{g e o}^{2}+R_{e}^{2} \\
& F=-2 x_{p} R_{\text {geo }} \\
& G=-2 y_{p} R_{\text {geo }}
\end{aligned}
$$

Note that $D=$ magnitude of $P N$ is not dependent upon θ and so is a constant which need not be considered further.
using:

$$
g=\sqrt{g_{r}}
$$

and noting that:

$$
\frac{d}{d \theta}\left[\frac{f}{g}\right]=0
$$

when:

$$
\frac{d}{d \theta}\left[\left(\frac{f}{g}\right)^{2}\right]=0
$$

i.e. when:

$$
\frac{d}{d \theta}\left[\frac{f^{2}}{g_{r}}\right]=0
$$

using f ' to represent f differentiated by θ, this can be expanded using standard methods as:

$$
\frac{2 f f^{\prime} g_{r}-g_{r}^{\prime} f^{2}}{g_{r}^{2}}=0
$$

This can be simplified to:

$$
2 f^{\prime} g_{r}=g_{r}^{\prime} f
$$

using:

$$
x=\sin \theta
$$

Note there is an alternative solution that uses $\cos \theta$ instead of $\sin \theta$.
Simplified using a new set of parameters $\{a, b, c, d, e\}$ this is:

$$
[a+b x]^{2}\left(1-x^{2}\right)=\left[c+d x+e x^{2}\right]^{2}
$$

where:

$$
\begin{gathered}
a=A G-2 C E \\
b=B F-C G \\
c=2 C F-B G
\end{gathered}
$$

$$
\begin{aligned}
& d=A F-2 B E \\
& e=-B G-C F
\end{aligned}
$$

This can be expanded and then re-arranged into:

$$
a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

Where:

$$
\begin{gathered}
a_{4}=e^{2}+b^{2} \\
a_{3}=2 d e+2 a b \\
a_{2}=d^{2}+2 c e+a^{2}-b^{2} \\
a_{1}=2 c d-2 a b \\
a_{0}=c^{2}-a^{2}
\end{gathered}
$$

This quartic equation can then be solved using one of a number of methods including Ferrari's or Newton-Raphson. Note that care is required to:

- \quad Select the right root (there are likely to be 2 reals ones)
- Avoid inaccuracies due to rounding errors
- Select suitable starting points if using Newton-Raphson
- Selecting the correct sign when calculating \arcsin to calculate θ from x (or \arccos if the alternative approach was used)
- Ensure the solution on the GSO arc is visible to P
- Ensure the solution is better than the points on the GSO arc just visible to P
- Calculate the sign of α.

It is also necessary to calculate the angle Δ long.
The iterative method may be used as a fall-back should these methods fail to derive suitable solutions to the quartic equation but the preferred approach is analytic.

Analytic Calculation of \boldsymbol{X}

The X angle is defined in a similar way to that for α but is the angle at the satellite, i.e.

$$
\cos X=\frac{\mathbf{G N} \cdot \boldsymbol{N} \boldsymbol{P}}{|\boldsymbol{G} \boldsymbol{N}||\boldsymbol{N P}|}
$$

Where:

$$
\begin{gathered}
\boldsymbol{G} \boldsymbol{N}=\boldsymbol{N}-\boldsymbol{G}=\left(\begin{array}{c}
x_{n}-R_{g e o} \cos \theta \\
y_{n}-R_{g e o} \sin \theta \\
z_{n}
\end{array}\right) \\
\boldsymbol{N} \boldsymbol{P}=\boldsymbol{P}-\boldsymbol{N}=\left(\begin{array}{c}
x_{p}-x_{n} \\
y_{p}-y_{n} \\
z_{p}-z_{n}
\end{array}\right)
\end{gathered}
$$

As above these can be simplified to:

$$
f=A+B \cos \theta+C \sin \theta
$$

Where:

$$
A=\left(x_{p}-x_{n}\right) x_{n}+\left(y_{p}-y_{n}\right) y_{n}+\left(z_{p}-z_{n}\right) z_{n}
$$

$$
\begin{aligned}
B & =\left(x_{n}-x_{p}\right) R_{\text {geo }} \\
C & =\left(y_{n}-y_{p}\right) R_{\text {geo }}
\end{aligned}
$$

And g can be written:

$$
g=\sqrt{E+F \cos \theta+G \sin \theta}
$$

where:

$$
\begin{aligned}
& E=R_{g e o}^{2}+R_{N}^{2} \\
& F=-2 x_{n} R_{\text {geo }} \\
& G=-2 y_{n} R_{\text {geo }}
\end{aligned}
$$

Note that $D=$ magnitude of $\boldsymbol{N P}$ is not dependent upon θ and so is a constant which need not be considered further.
It is necessary to check that the line $\boldsymbol{G N}$ does not intersect the Earth. This can be done using the geometry shown in Fig. 57.

FIGURE 57

Calculate of Earth centric angle when \boldsymbol{G} just visible to \mathbf{N}

The test point G is just visible to the non-GSO satellite N when the angle at the centre of the Earth, ψ is equal to the sum of the two angles:

$$
\psi=\cos ^{-1}\left(\frac{R_{e}}{R_{n}}\right)+\cos ^{-1}\left(\frac{R_{e}}{R_{g}}\right)
$$

Now this angle can also derived from the difference in longitude and latitude of the non-GSO satellite using:

$$
\cos (\psi)=\cos (\Delta l o n g) \cos \left(\text { lat }_{n g s o}\right)
$$

where:

$$
\text { lat }_{n g s o}=\sin ^{-1}\left(\frac{z_{n}}{R_{n}}\right)
$$

The ψ can be seen in 3D in Fig. 58.

FIGURE 58
3D geometry when \boldsymbol{N} just visible to \boldsymbol{G}

Hence:

$$
\cos (\Delta l o n g)=\frac{\cos (\psi)}{\cos \left(\text { lat }_{n g s o}\right)}
$$

If there is no solution, i.e.

$$
\left|\frac{\cos (\psi)}{\cos \left(\operatorname{lat}_{\text {ngso }}\right)}\right|>1
$$

Then the whole of the GSO arc is visible to the non-GSO satellite.

Analytic calculation of beta

The beta angle is defined in a similar way to that for α but is minimised over all possible positions of the non-GSO satellite with radius vector R_{n} and at latitude = lat but unknown longitude, for a given position of the GSO satellite.

The analytic method to calculate β starts with the following two inputs:
$\boldsymbol{P}=$ Position vector of GSO ES, typically with magnitude $R_{p}=$ radius of the Earth $=R_{e}$
$\boldsymbol{G}=$ Position vector of GSO satellite with magnitude R_{g}
These are defined as:

$$
\begin{aligned}
P & =\left(\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right) \\
G & =\left(\begin{array}{c}
x_{g} \\
y_{g} \\
0
\end{array}\right)
\end{aligned}
$$

Then assume:
$N=$ Position vector of non-GSO satellite at latitude $=$ lat and angle θ and radius of geostationary orbit R_{n} :

$$
N=\left(\begin{array}{c}
R_{n} \cos l a t \cos \theta \\
R_{n} \cos \text { lat } \sin \theta \\
R_{n} \sin l a t
\end{array}\right)
$$

Then β is the minimum over all θ of the angle between the lines $P N$ and $P G$ where:

$$
\begin{gathered}
P N=\left(\begin{array}{c}
R_{n} \cos l a t \cos \theta-x_{p} \\
R_{n} \cos l a t \sin \theta-y_{p} \\
R_{n} \sin l a t-z_{p}
\end{array}\right) \\
P G=\left(\begin{array}{c}
x_{g}-x_{p} \\
y_{g}-y_{p} \\
-z_{p}
\end{array}\right)
\end{gathered}
$$

This can be calculated using as similar approach above, with f and g_{r} functions:

$$
\begin{gathered}
f=A+B \cos \theta+C \sin \theta \\
g_{r}=E+F \cos \theta+G \sin \theta
\end{gathered}
$$

where:

$$
\begin{gathered}
A=R_{P}^{2}-\left(x_{G} x_{P}+y_{G} y_{P}+z_{p} R_{N} \sin l a t\right) \\
B=\left(x_{G}-x_{P}\right) R_{N} \cos \text { lat } \\
C=\left(y_{G}-y_{P}\right) R_{N} \cos \text { lat }
\end{gathered}
$$

and:

$$
\begin{gathered}
E=R_{N}^{2}+R_{P}^{2}-2 z_{P} R_{N} \sin \text { lat } \\
\\
F=-2 x_{P} R_{N} \cos \text { lat } \\
G=-2 y_{P} R_{N} \cos \text { lat }
\end{gathered}
$$

Note that $D=$ magnitude of $\boldsymbol{P G}$ is not dependent upon θ and so is a constant which need not be considered further.

When the parameter set $\{A, B, C, E, F, G\}$ has been defined then a similar methodology can be used to solve for θ as for α above. There can be cases, such as its use in the worst case geometry algorithm, where it is not required to check for visibility.

D6.4.5 Satellite and earth station azimuth and elevation

Figure 59 shows the definition of the azimuth and elevation angles used for the non-GSO satellite:

FIGURE 59

Definition of azimuth and elevation for non-GSO satellite

It should be noted that direction of the cartesian X, Y, Z vectors in this diagram are:
$X:+\mathrm{ve}$ in the East direction from the non-GSO satellite
Y : towards the centre of the Earth from the non-GSO satellite
Z : +ve towards the North direction from the non-GSO satellite.
For the earth station, the definition of the azimuth and elevation angles are as in Fig. 60:

FIGURE 60
Definition of azimuth and elevation for earth station

It should be noted that direction of the cartesian X, Y, Z vectors in this diagram are:
$X:+\mathrm{ve}$ in the East direction from the earth station in the horizontal plane
Y : towards the North direction from the earth station in the horizontal plane
Z: +ve towards the Zenith of the earth station perpendicular to the horizontal plane.

D6.5 Gain patterns

This section defines the gain patterns used in the algorithms for earth stations and satellites. Note that all formula include the peak gain, so where relative gain is required the peak gain should be subtracted.

D6.5.1 GSO earth station gain patterns

D6.5.1.1 FSS earth station gain pattern

The FSS earth station gain pattern to use is specified in Recommendation ITU-R S.1428.

D6.5.1.2 BSS earth station gain pattern

The BSS earth station gain pattern to use is specified in Recommendation ITU-R BO.1443.

D6.5.2 GSO satellite gain pattern

The values of peak gain and half power beamwidth and the antenna reference radiation pattern to use are specified in RR Article 22 based upon Recommendation ITU-R S.672.
The peak gain to use in analysis should be selected using the Table 16:

TABLE 16
Peak gain to use with Recommendation ITU-R S. 672

Half power beamwidth in Article 22	Peak gain to use in analysis
1.5°	41.0 dBi
1.55°	40.7 dBi
4°	32.4 dBi

D7 Structure and format of results

D7.1 Go/No-go decision

D7.1.1 Overall description of the decision process

The simulation produces a probability distribution function (PDF) of the pfd. The PDF records, for each pfd level, the number of simulation time-steps at which that pfd level occurred divided by the sum of all bins. The PDF shall be converted into a cumulative distribution function (CDF) which records for each pfd level the number of simulation time-steps at which that pfd level was exceeded normalized by the total number of simulation time steps.

Note that the term cumulative distribution function is meant to include the concept of the complementary cumulative distribution function depending upon context.

D7.1.2 Production of the CDF

The process detailed in § D5 generated a PDF of the pfd values. This PDF shall be converted into a CDF which records for each pfd level an estimate of the percentage of time during which that pfd level is exceeded.
For each pfd value, the CDF shall be calculated by:

$$
\mathrm{CDF}_{i}=100\left(1-\mathrm{SUM}\left(\mathrm{PDF}_{m i n}: \mathrm{PDF}_{i}\right)\right)
$$

where:
PDF_{x} : PDF table entry for a pfd value of $X \mathrm{~dB}$, normalized so that the total sum for all PDF_{x} is 1 .

D7.1.3 Comparison procedure

The next stage is the comparison of the pfd limit values in the RR with those in the probability table.
Step 1: Perform Steps 2 through 4 for each specification limit i.
Step 2: Read the pfd value/probability pair (J_{i} and P_{i}) from the database.
Step 3: If the pfd value J_{i} has a higher precision than S_{B} (currently 0.1 dB) round J_{i} to a lower value with a maximum precision of 0.1 dB .
Step 4: From the CDF find P_{t}, the probability that pfd value J_{i} was exceeded as obtained by the software.
Step 5: If $P_{i}<P_{t}$ then record Pass: the CDF complies with this specification point. Else record Fail: the CDF does not comply with this specification point.
The final stage is the comparison of the maximum pfd value recorded during the software run with the limit specified for 100% time (if any).
From the CDF, find the maximum pfd value recorded during the software run, $J_{\max }$. Compare it with the pfd limit specified for 100% time, J_{100}. If $J_{\max }<J_{100}$ then record Pass: the CDF complies with this specification point. If $J_{\max } \geq J_{100}$ then record Fail: the CDF does not comply with this specification point.

D7.1.4 Decision process

If a Pass result was recorded for all of the specification limits, then the non-GSO network complies with the specification. If any Fail results were recorded, then the non-GSO network does not comply with the specification.

D7.2 Background information to decision

The background information required is:

- pfd data generated in the software run (including antenna diameter) and reference antenna pattern;
- \quad table of specification limits for various antenna diameters and reference antenna pattern.

D7.3 Format for output

The output format shall be:

- \quad statement of the result of the test;
- summary table;
- CDF table (for information only).

D7.3.1 Statement of the result of the compliance test

The overall conclusion of the evaluation (Pass or Fail) as defined in § D7.1.4 shall be output.

D7.3.2 Summary table

The summary table shall show the following data (see Table 17):
TABLE 17
Summary table

Specification point		Result	Simulation point
pfd value	Probability		Probability
$J_{l} d B\left(W /\left(m^{2} \cdot B W_{r e f}\right)\right)$	P_{1}	Pass/fail	P_{y}
$:$	$:$	$:$	$:$
$J_{i} d B\left(W /\left(m^{2} \cdot B W_{r e f}\right)\right)$	P_{i}	Pass/fail	P_{y}

where:
J_{i} and P_{i} : pfd value/probability specification values from the database
Pass/fail: test result
P_{y} : probability value from the probability table.

D7.3.3 Probability table

The output shall include for information the calculated CDF which was used in the decision-making process.

PART E

Testing of the reliability of the software outputs

E1 Evaluation of the computation accuracy of the candidate software

These tests could be performed by the software developer, and the results supplied to the BR along with the candidate software.

Software functions to be evaluated:
Orbit projection - Using a set of simplified parameters which result in a defined repeat period, run the software for the required simulation interval and check the actual (satellite vectors) against the predicted values.

Offset angles - Using appropriate sets of earth station and satellite locations, check the actual beam offset angle values against the predicted values. The sets of test data should cover the most complex trigonometrical cases: for example sites around longitude zero and longitude 180°.
Time step and simulation duration - Using appropriate sets of non-GSO network parameters, check the time step and simulation duration values generated by the software against the predicted values.
CDF generation - Using sets of test input files with known CDF results, verify the CDF generation software.
Go/no-go decision process - Using sets of CDF test input files, verify the accuracy of the go/no-go decision process.
Should multiple implementations be available then sensitivity analysis could be used to evaluate them and their output can be compared to ensure consistency.

E2 Evaluation of the epfd (\downarrow / \uparrow) statistics obtained by the BR

These are tests which will be performed automatically by the software as part of each run, to confirm that the run did find the worst-case interference events.
epfd value for 100% time - the epfd \downarrow value for 100% time obtained during the run should be compared with a value calculated from analysis of the non-GSO constellation. The obtained value should be within $\pm 0 . X \mathrm{~dB}$ of the expected value.

E3 Verification of the pfd masks

The pfd masks are inputs to the BR validation tool to be provided by the notifying administration to the BR together with the software used for its calculation, the complete software description and parameters. The information required to generate the pfd mask could be made available to interested administrations to be used in case of dispute.

E4 Re-testing of the BR software after any modifications or upgrades

A set of tests should be defined for use on any occasions when the BR software or its operating environment has been modified or upgraded. Such tests could include:
a) some or all of the tests defined in § E1 for the initial evaluation of the computational accuracy of the candidate software;
b) repetition of a representative set of evaluations of actual non-GSO filings, and comparison of the results obtained by the original and modified software systems.

PART F

Software implementing this Recommendation

F1 Operating system

The software shall run on Microsoft platforms under the Windows 7 or higher operating system.

F2 Interfaces to existing software and databases

The BR captures all incoming notices related to space services into one central database for alphanumeric data (SNS) and into another database for graphical data (GIMS) such as antenna diagrams and service areas. These databases are used for the publication of the data on DVD, in the Weekly Circular and its Special Sections. They are also used to provide input data to software packages performing RR Appendix 8 and pfd examinations. Graphical Interface for Batch Calculations (GIBC) is used to carry out examination using these different modules. This guarantees that the data published are also the data used in these examinations. The BR considers this important for both the notifying administration and for administrations the services of which may be affected by the new station. For its regulatory and technical examination of satellite networks, the BR has only used so far on a regular basis software developed for GSO networks. However, when software for epfd calculations that works on non-GSO networks becomes available the same principle should apply. This is not only for the convenience of the BR, but to ensure consistency and transparency towards administrations.

F3 User manual

The purpose of the user manual is to tell the user how to run different tests to obtain certain results. Given the complexity of these tests, they need to be given in detail.

[^0]: ${ }^{(1)}$ The filing administration can supply a set of space station e.i.r.p. masks and associated frequency range for which the mask is valid.

