Rec. ITU-R P.839-1

RECOMMENDATION ITU-R P.839-1

RAIN HEIGHT MODEL FOR PREDICTION METHODS

(Question ITU-R 201/3)

(1992-1997)

The ITU Radiocommunication Assembly,

considering

a) that knowledge of the height of the 0° C isotherm during rainy conditions is required in several prediction models used in the design of space telecommunication systems,

recommends

1 that the following model be used for the global estimation of h_0 (mean 0° C isotherm height):

	$\int 5 - 0.075 (\phi - 23)$	for	φ > 23	Northern Hemisphere
	5	for $0 \leq$	$\phi \leq 23$	Northern Hemisphere
$h_0 = \langle$	5	for $0 \ge$	$\phi \ge -21$	Southern Hemisphere
	$5 + 0.1(\varphi + 21)$ 0	for $-71 \leq$	$\phi < -21$	Southern Hemisphere
	0	for	φ < -71	Southern Hemisphere

where h_0 is in km above mean sea level and φ is the latitude in degrees;

2 that for North America and Europe west of 60° E longitude the following model be used for the estimation of h_{FR} (mean 0° C isotherm height during rainy conditions):

$$h_{FR} = 3.2 - 0.075 (\varphi - 35)$$
 for $35 \le \varphi \le 70$

where h_{FR} is in km above ground;

3 that for other areas in the world, where no further information is available, h_{FR} be equated to h_0 .

NOTE $1 - h_{FR}$, in general, is different from h_0 . The sign and magnitude of the difference is dependent on climatic conditions.