CONTENTS

Annex 1
 1     Introduction
 2     Interference propagation mechanisms
 3     Clear-air interference prediction
        3.1     General comments
        3.2     Deriving a prediction
                  3.2.1     Outline of the procedure
Step 1: Input data
Step 2: Selecting average year or worst-month prediction
Step 3: Radiometeorological data
Large bodies of inland water
Large inland lake or wet-land areas
Effective Earth radius
Step 4: Path profile analysis
Step 5: Calculation of propagation predictions
 4     Clear-air propagation models
        4.1     General
        4.2     Line-of-sight propagation (including short-term effects)
        4.3     Diffraction
        4.4     Tropospheric scatter (Notes 1 and 2)
        4.5     Ducting/layer reflection
        4.6     Additional clutter losses
                  4.6.1     General
                  4.6.2     Clutter categories
                  4.6.3     The height-gain model
                  4.6.4     Method of application
        4.7     The overall prediction
                  4.7.1     Trans-horizon paths
        4.8     Calculation of transmission loss
 5     Hydrometeor-scatter interference prediction
        5.1     Introduction
        5.2     Input parameters
        5.3     The step-by-step procedure
Step 1: Determination of meteorological parameters
Step 2: Conversion of geometrical parameters to plane-Earth representation
Step 3: Determination of link geometry
Step 4: Determination of geometry for antenna gains
Step 6: Attenuation outside the rain cell
Step 7: Numerical integration of the scatter transfer function
Numerical integration: There are many methods available for numerical integration, and numerous mathematical software packages include intrinsic integration functions which can be exploited effectively. Where the user wishes to develop a dedicated package in other programming languages, methods based on iterative bisection techniques have proved effective. One such technique is the Romberg method, which is a higher-order variant of the basic trapezoidal (i.e. Simpson’s) rule for integration by successive bisections of the integration intervals.
The extended trapezoidal rule
Step 8: Determination of other loss factors
Step 9: Determination of the cumulative distribution of transmission loss
Appendix 1 to Annex 1  Radio-meteorological data required for the clear-air prediction procedure
 1     Introduction
 2     Maps of vertical variation of radio refractivity data
 3     Map of surface refractivity, N0
 4     Implementation of maps in computer database form
Appendix 2 to Annex 1  Path profile analysis
 1     Introduction
 2     Construction of path profile
 3     Path length
 4     Path classification
        4.1     Classification Step 1: Test for a trans-horizon path
        4.2     Step 2:  Test for line-of-sight with sub-path diffraction (i.e. without full first Fresnel zone clearance)
 5     Derivation of parameters from the path profile
        5.1     Trans-horizon paths
                  5.1.1     Interfering antenna horizon elevation angle, θt
                  5.1.2     Interfering antenna horizon distance, dlt
                  5.1.3     Interfered-with antenna horizon elevation angle, θr
                  5.1.4     Interfered-with antenna horizon distance, dlr
                  5.1.5     Angular distance θ (mrad)
                  5.1.6     “Smooth-Earth” model and effective antenna heights
Appendix 3 to Annex 1  An approximation to the inverse cumulative normal distribution function for x £ 0.5