

**Рекомендация МСЭ-R P.1853-2** (08/2019)

**Синтез временных рядов ухудшений в тропосфере** 

Серия Р Распространение радиоволн



### Предисловие

Роль Сектора радиосвязи заключается в обеспечении рационального, справедливого, эффективного и экономичного использования радиочастотного спектра всеми службами радиосвязи, включая спутниковые службы, и проведении в неограниченном частотном диапазоне исследований, на основании которых принимаются Рекомендации.

Всемирные и региональные конференции радиосвязи и ассамблеи радиосвязи при поддержке исследовательских комиссий выполняют регламентарную и политическую функции Сектора радиосвязи.

#### Политика в области прав интеллектуальной собственности (ПИС)

Политика МСЭ-R в области ПИС излагается в общей патентной политике МСЭ-Т/МСЭ-R/ИСО/МЭК, упоминаемой в Резолюции МСЭ-R 1. Формы, которые владельцам патентов следует использовать для представления патентных заявлений и деклараций о лицензировании, представлены по адресу: <a href="http://www.itu.int/TTU-R/go/patents/en">http://www.itu.int/TTU-R/go/patents/en</a>, где также содержатся Руководящие принципы по выполнению общей патентной политики МСЭ-Т/МСЭ-R/ИСО/МЭК и база данных патентной информации МСЭ-R.

|       | Серии Рекомендаций МСЭ-R                                                                                                             |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|
|       | (Представлены также в онлайновой форме по адресу: <a href="http://www.itu.int/publ/R-REC/en">http://www.itu.int/publ/R-REC/en</a> .) |
| Серия | Название                                                                                                                             |
| ВО    | Спутниковое радиовещание                                                                                                             |
| BR    | Запись для производства, архивирования и воспроизведения; пленки для телевидения                                                     |
| BS    | Радиовещательная служба (звуковая)                                                                                                   |
| BT    | Радиовещательная служба (телевизионная)                                                                                              |
| F     | Фиксированная служба                                                                                                                 |
| M     | Подвижные службы, служба радиоопределения, любительская служба и относящиеся к ним спутниковые службы                                |
| P     | Распространение радиоволн                                                                                                            |
| RA    | Радиоастрономия                                                                                                                      |
| RS    | Системы дистанционного зондирования                                                                                                  |
| S     | Фиксированная спутниковая служба                                                                                                     |
| SA    | Космические применения и метеорология                                                                                                |
| SF    | Совместное использование частот и координация между системами фиксированной спутниковой службы и фиксированной службы                |
| SM    | Управление использованием спектра                                                                                                    |
| SNG   | Спутниковый сбор новостей                                                                                                            |
| TF    | Передача сигналов времени и эталонных частот                                                                                         |
| V     | Словарь и связанные с ним вопросы                                                                                                    |

**Примечание**. — Настоящая Рекомендация МСЭ-R утверждена на английском языке в соответствии с процедурой, изложенной в Резолюции МСЭ-R 1.

Электронная публикация Женева, 2020 г.

#### © ITU 2020

Все права сохранены. Ни одна из частей данной публикации не может быть воспроизведена с помощью каких бы то ни было средств без предварительного письменного разрешения МСЭ.

# РЕКОМЕНДАЦИЯ МСЭ-В Р.1853-2

# Синтез временных рядов ухудшений в тропосфере

(2009-2011-2019)

#### Сфера применения

В настоящей Рекомендации представлены методы синтеза временных рядов ухудшений в тропосфере для конфигураций с одной площадкой и несколькими площадками (ослабление в газах, облаке, дожде и замирание и усиление из-за мерцания) на трассах Земля-космос, а также метод синтеза временных рядов ослабления в дожде на единичных наземных трассах.

#### Ключевые слова

Ослабление в кислороде, ослабление в водяном паре, ослабление в облаке, ослабление в дожде, мерцание, ослабление на единичной наклонной трассе, несколько площадок, ослабление на наклонной трассе, суммарное наземное ослабление в дожде вдоль одной линии, ослабление, синтезатор временных рядов, многоканальный

#### Ассамблея радиосвязи МСЭ,

принимая во внимание,

- *а*) что для надлежащего планирования наземных систем связи и систем связи Земля-космос необходимо иметь соответствующие методы синтеза пространственного изменения состояния канала распространения и его изменений во времени;
- *b)* что разработаны методы, позволяющие с достаточной точностью синтезировать пространственное изменение состояния канала распространения и его изменения во времени,

рекомендует,

- 1 чтобы для синтеза временных рядов отдельных компонентов тропосферного ослабления для конфигураций с одной площадкой и несколькими площадками и тропосферного мерцания с единичной дисперсией на трассах Земля-космос применялись методы, представленные в Приложении 1, в частности:
- а) для синтеза временных рядов ослабления в газообразном кислороде для трасс с одной площадкой и несколькими площадками следует использовать соответственно разделы 2.2 и 2.3;
- *b*) для синтеза временных рядов ослабления в водяном паре для трасс с одной площадкой и несколькими площадками следует использовать соответственно разделы 3.1 и 3.2;
- c) для синтеза временных рядов ослабления в облаке для трасс с одной площадкой и несколькими площадками следует использовать соответственно разделы 4.1 и 4.2;
- *d)* для синтеза временных рядов ослабления в дожде для трасс с одной площадкой и несколькими площадками следует использовать соответственно разделы 5.1 и 5.2;
- е) для синтеза тропосферного мерцания с единичной дисперсией следует использовать раздел 6;
- **2** чтобы для синтеза временных рядов общих ухудшений в тропосфере для конфигураций с одной площадкой и несколькими площадками на трассах Земля-космос применялись методы, представленные в Приложении 2, в частности:
- *а*) для синтеза временных рядов общего ухудшения с одной площадкой следует использовать раздел 2;
- *b*) для синтеза временных рядов общего ухудшения с несколькими площадками следует использовать раздел 3;
- **3** чтобы для синтеза временных рядов ослабления в дожде на единичных наземных трассах применялся метод, представленный в Приложении 3.

# Приложение 1

# Синтез временных рядов отдельных ухудшений в тропосфере для конфигураций с одной площадкой и несколькими площадками на трассах Земля-космос

#### 1 Введение

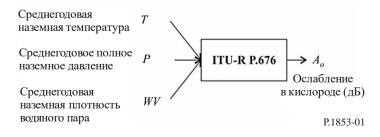
Методика, представленная в этом Приложении, обеспечивает методы синтеза отдельных и комбинированных ухудшений в тропосфере для конфигураций с одной и с несколькими площадками (ослабление в газах, в облаке и в дожде, а также замирание и усиление из-за тропосферного мерцания с единичной дисперсией) на трассах Земля-космос.

# 2 Ослабление в кислороде

Описанные ниже методы следует использовать для синтеза постоянного значения ослабления в газообразном кислороде.

#### 2.1 Цифровые карты

Неотъемлемой частью настоящей Рекомендации являются среднегодовые данные о наземном давлении  $P_{annual}$  (гПа) и среднегодовые данные о наземной плотности водяного пара  $WV_{annual}$  (г/м³), доступные в виде цифровых карт в zip-файле R-REC-P.1853-2-201908-Е. Координатная сетка широты построена для значений от  $-90^{\circ}$  с. ш. до  $+90^{\circ}$  с. ш. с шагом  $0,75^{\circ}$ , а координатная сетка долготы – от  $-180^{\circ}$  в. д. до  $+180^{\circ}$  в. д. с шагом  $0,75^{\circ}$ .


Среднегодовое наземное давление и среднегодовую наземную плотность водяного пара в любой заданной точке у поверхности Земли можно получить, выполнив следующие действия:

- а) определить четыре точки сетки ( $Lat_1$ ,  $Lon_1$ ), ( $Lat_2$ ,  $Lon_2$ ), ( $Lat_3$ ,  $Lon_3$ ) и ( $Lat_4$ ,  $Lon_4$ ) в окрестностях заданной точки (Lat, Lon);
- b) определить среднегодовые значения наземного давления  $P_1$ ,  $P_2$ ,  $P_3$  и  $P_4$  или среднегодовые значения наземной плотности водяного пара  $WV_1$ ,  $WV_2$ ,  $WV_3$  и  $WV_4$  у поверхности Земли в четырех окрестных точках сетки;
- с) определить значение P или WV в заданной точке (Lat, Lon), выполнив билинейную интерполяцию по четырем окрестным точкам сетки, как описано в Рекомендации MCЭ-R P.1144.

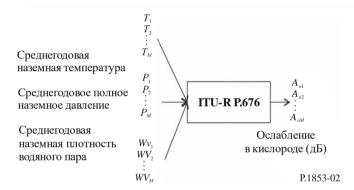
Карты среднегодовых значений наземного давления и наземной плотности водяного пара получены на основе данных ERA Interim Европейского центра среднесрочных прогнозов погоды (ECMWF) за 36 лет (с 1979 по 2014 год).

#### 2.2 Конфигурация с одной площадкой

# РИСУНОК 1 Блок-схема синтезатора временных рядов ослабления в газообразном кислороде с одной площадкой



 $S_OX_I$ . Рассчитать среднегодовую наземную температуру T для рассматриваемого местоположения, используя местные данные. Если местные данные недоступны, для прогнозирования T можно использовать метод, приведенный в Рекомендации МСЭ-R P.1510.


 $SS_OX_2$ . Рассчитать среднегодовое наземное давление P для рассматриваемого местоположения, используя местные данные. Если местные данные недоступны, для прогнозирования P можно использовать метод, приведенный в пункте 2.1.

 $S_OX_3$ . Рассчитать среднегодовую наземную плотность водяного пара WV для рассматриваемого местоположения, используя местные данные. Если местные данные недоступны, для прогнозирования WV можно использовать метод, приведенный в пункте 2.1.

Этап SS\_OX\_4. Преобразовать среднегодовую температуру T, среднегодовое наземное давление P и среднегодовую наземную плотность водяного пара WV в среднегодовое ослабление в кислороде  $A_O = \frac{h_O \gamma_O}{\sin \phi}$  в соответствии с методом "Приближенное определение затухания в атмосферных газах в диапазоне частот 1–350 ГГц", описанным в Рекомендации МСЭ-R P.676, для рассматриваемых значений частоты, угла места и высоты над уровнем моря.

#### 2.3 Конфигурация с несколькими площадками

# РИСУНОК 2 Блок-схема синтезатора временных рядов ослабления в газообразном кислороде с несколькими площадками



Этап  $MS_OX_1$ . Рассчитать среднегодовую наземную температуру  $T_i$ , где  $i = \{1, 2, ..., M\}$ , для M рассматриваемых местоположений, используя местные данные. Если местные данные недоступны, для прогнозирования  $T_i$  можно использовать метод, приведенный в Рекомендации МСЭ-R P.1510.

Этап  $MS_OX_2$ . Рассчитать среднегодовое наземное давление  $P_i$ , где  $i = \{1, 2, ..., M\}$ , для M рассматриваемых местоположений, используя местные данные. Если местные данные недоступны, для прогнозирования  $P_i$  можно использовать метод, приведенный в пункте 2.1.

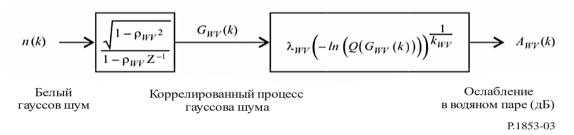
Этап  $MS_OX_3$ . Рассчитать среднегодовую наземную плотность водяного пара  $WV_i$ , где  $i = \{1, 2, ..., M\}$ , для M рассматриваемых местоположений, используя местные данные. Если местные данные недоступны, для прогнозирования  $WV_i$  можно использовать метод, приведенный в пункте 2.1.

Этап  $MS_OX_4$ . Преобразовать среднегодовую температуру  $T_i$ , среднегодовое наземное давление  $P_i$  и среднегодовую наземную плотность водяного пара  $WV_i$  в среднегодовое ослабление в кислороде  $A_{Oi} = \frac{h_{Oi}\gamma_{Oi}}{\sin \phi_i}$  в соответствии с методом "Приближенное определение затухания в атмосферных газах в

диапазоне частот 1–350 ГГц", описанным в Рекомендации МСЭ-R Р.676, для рассматриваемых значений частоты, угла места и высоты над уровнем моря.

# 3 Ослабление в водяном паре

#### 3.1 Конфигурация с одной площадкой


#### 3.1.1 Обзор

Метод синтеза временных рядов с одной площадкой предполагает, что долгосрочная статистика ослабления в водяном паре  $(A_{WV})$  соответствует распределению Вейбулла.

При использовании метода синтеза временных рядов с одной площадкой синтезируется временной ряд, воспроизводящий спектральные характеристики и распределение вероятностей ослабления в водяном паре.

Как показано на рисунке 3, дискретный временной ряд ослабления в водяном паре  $A_{WV}(t) = A_{WV}(kT_s)$ , где  $T_s$  – заданное время выборки, синтезируется на основе дискретной обработки белого гауссова шума  $n(t) = n(kT_s)$ . Для удобства  $kT_s$  обозначено на рисунке просто как k. Белый гауссов шум пропускается через фильтр нижних частот и преобразуется из нормального распределения в распределение Вейбулла в устройстве безынерционной нелинейности.

РИСУНОК 3 Блок-схема синтезатора временных рядов ослабления в водяном паре с одной площадкой



Синтезатор временных рядов определяется тремя параметрами:

 $k_{WV}$ : параметр формы распределения Вейбулла для ослабления в водяном паре;

λ<sub>WV</sub>: параметр масштаба распределения Вейбулла для ослабления в водяном паре;

 $\beta_{WV}$ : параметр, описывающий изменение во времени ( $c^{-1}$ ).

#### 3.1.2 Поэтапный метод

Для синтеза временных рядов ослабления в водяном паре с одной площадкой  $A_{WV}$  ( $kT_s$ ), k=1, 2, 3, ..., где  $T_s$  — временной интервал между выборками, а k — индекс каждой выборки, используется следующий поэтапный метод (метод постепенного приближения).

#### А Оценка параметров $k_{WV}$ и $\lambda_{WV}$

Параметры  $k_{WV}$  и  $\lambda_{WV}$  определяются по интегральной функции распределения ослабления в водяном паре в зависимости от вероятности события. Статистику ослабления в водяном паре можно определить исходя из локальных данных измерений или, в отсутствие данных измерений, с использованием метода прогнозирования ослабления в водяном паре, основанного на суммарном содержании водяного пара, как указано в Рекомендации МСЭ-R P.676.

Подбор Вейбулла ослабления в водяном паре для рассматриваемого местоположения в зависимости от вероятности события выполняется следующим образом.

Этап SS\_WV\_1. Составить множество пар  $[P_i, A_{WVi}]$ , где  $P_i$  (% времени) — вероятность превышения значения ослабления в водяном паре  $A_{WVi}$  (дБ). Конкретные значения  $P_i$  выбираются с учетом рассматриваемого диапазона вероятностей; однако предлагается следующий набор значений процента времени: 0,1; 0,2; 0,3; 0,5; 1; 2; 3; 5; 10; 20; 30 и 50%.

 $\Im$  3 мал SS\_WV\_2. Преобразовать множество пар  $\left[P_i, A_{WV_i}\right]$  во множество пар  $\left[\ln\left(-\ln\frac{P_i}{100}\right), \ln A_{WV_i}\right]$ 

 $3man\ SS\_WV\_3$ . Определить переменные a и b, приведя наименьшие квадраты в соответствие с линейной функцией для n наборов пар:

$$\ln A_{WVi} = a \ln \left( -\ln \frac{P_i}{100} \right) + b \tag{1}$$

следующим образом:

$$\begin{cases}
a = \frac{n \sum_{i=1}^{n} \ln A_{WVi} \ln \left(-\ln \frac{P_i}{100}\right) - \sum_{i=1}^{n} \ln A_{WVi} \sum_{i=1}^{n} \ln \left(-\ln \frac{P_i}{100}\right)}{n \sum_{i=1}^{n} \left[\ln \left(-\ln \frac{P_i}{100}\right)\right]^2 - \left[\sum_{i=1}^{n} \ln \left(-\ln \frac{P_i}{100}\right)\right]^2}; \\
b = \frac{\sum_{i=1}^{n} \ln \left(A_{WVi}\right) - a \sum_{i=1}^{n} \ln \left(-\ln \frac{P_i}{100}\right)}{n}.
\end{cases} (2)$$

Этап SS\_WV\_4. Рассчитать параметры  $k_{WV}$  и  $\lambda_{WV}$  следующим образом:

$$\begin{cases} k_{WV} = \frac{1}{a}; \\ \lambda_{WV} = \exp(b). \end{cases}$$
 (3)

# В Параметр фильтра нижних частот

Этап SS\_WV\_5. Установить  $\beta_{WV} = 3.65 \times 10^{-6} (c^{-1})$ .

# С Синтез временных рядов

Временные ряды  $A_{WV}(kT_s)$ , k = 1, 2, 3, ..., синтезируются следующим образом.

Этап  $SS_WV_6$ . Синтезировать временные ряды гауссова белого шума  $n(kT_s)$ , где k=1, 2, 3, ..., с нулевым математическим ожиданием и единичной дисперсией в период выборки  $T_s$ , составляющий 1 с.

Этап SS\_WV\_7. Установить  $G_{WV}(0) = 0$ .

Этап  $SS_WV_8$ . Отфильтровать шумы временных рядов  $n(kT_s)$  с помощью рекурсивного фильтра нижних частот, определяемого следующим образом:

$$G_{WV}(kT_s) = \rho_{WV} \times G_{WV}((k-1)T_s) + \sqrt{1-\rho_{WV}^2} \times n(kT_s)$$
 для  $k = 1, 2, 3, ...,$  (4)

где

$$\rho_{WV} = e^{-\beta_{WV}T_s}. (5)$$

Этап SS\_WV\_9. Рассчитать  $A_{WV}(kT_s)$  для k = 1, 2, 3, ... следующим образом:

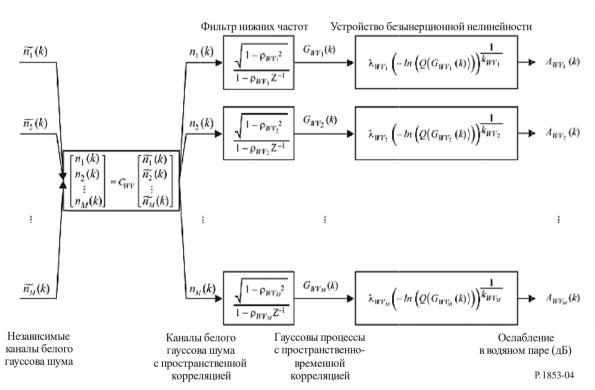
$$A_{WV}(kT_s) = \lambda_{WV} \left( -\log[Q(G_{WV}(kT_s))] \right)^{1/k_{WV}},$$
(6)

где (см. Рекомендацию МСЭ-R Р.1057)

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt.$$
 (7)

Этап SS\_WV\_10. Отбросить первые 5 000 000 выборок синтезированных временных рядов.

#### 3.2 Конфигурация с несколькими площадками


#### 3.2.1 Обзор

Метод синтеза временных рядов с несколькими площадками предполагает, что долгосрочная статистика ослабления в водяном паре для каждой площадки  $(A_{WVi})$ , где  $i = \{1, 2, ..., M\}$  (M - общее количество площадок), соответствует распределению Вейбулла.

При использовании этого метода синтеза временных рядов синтезируются M коррелированных временных рядов, воспроизводящих пространственное изменение, спектральные характеристики и распределение вероятностей ослабления в водяном паре.

Как показано на рисунке 4, временной ряд ослабления в водяном паре с несколькими площадками  $A_{WVi}(t) = A_{WVi}(kT_s)$ , где  $T_s$  — время выборки, синтезируется на основе дискретной обработки белого гауссова шума  $n_i(t) = n_i(kT_s)$ . Для удобства  $kT_s$  обозначено на рисунке просто как k. Белый гауссов шум пропускается через фильтр нижних частот и преобразуется из нормального распределения в распределение Вейбулла в устройствах безынерционной нелинейности.

РИСУНОК 4 Блок-схема синтезатора временных рядов ослабления в водяном паре с несколькими площадками



Синтезатор временных рядов для площадки і определяется следующими параметрами:

 $k_{Wvi}$ : параметр формы распределения Вейбулла для ослабления в водяном паре;

 $\lambda_{Wvi}$ : параметр масштаба распределения Вейбулла для ослабления в водяном паре;

 $\beta_{Wvi}$ : параметр, описывающий изменение во времени ( $c^{-1}$ );

 $D_{ij}$ : расстояние между площадками i и j (км).

#### 3.2.2 Поэтапный метод

Для синтеза временных рядов ослабления в водяном паре с несколькими площадками  $A_{WVi}(kT_s)$ , k=1,2,3,..., где  $T_s$  – временной интервал между выборками, k – индекс каждой выборки, а i=1,2,..., M (M – общее число площадок), используется следующий поэтапный метод.

#### A Оценка параметров $k_{WVi}$ и $\lambda_{WVi}$

Этап  $MS_WV_I$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  выполнить шаги, указанные в пункте А описания синтезатора временных рядов ослабления в водяном паре с одной площадкой, приведенного в пункте 3.1.2.

#### В Параметры фильтра нижних частот

Этап  $MS_WV_2$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  установить  $\beta_{WV_i} = 3,65 \times 10^{-6}$  (c<sup>-1</sup>).

# С Синтез временных рядов

Этап  $MS_WV_3$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  синтезировать временные ряды гауссова белого шума  $\tilde{n}_i(kT_s)$ , где k = 1, 2, 3, ..., с нулевым математическим ожиданием и единичной дисперсией в период выборки  $T_s$ , составляющий 1 с.

Этап  $MS_WV_4$ . Вычислить матрицу M х  $MR_n = [r_{n_{ij}}]$  для  $i = \{1, 2, ..., M\}$  и  $j = \{1, 2, ..., M\}$  следующим образом:

$$r_{n_{ij}} = \frac{1 - \rho_{WV_i} \, \rho_{WV_j}}{\sqrt{1 - \rho_{WV_i}^2} \, \sqrt{1 - \rho_{WV_i}^2}} \, r_{GWV_{ij}}, \tag{8}$$

где р
$$_{WV_i}$$
 =  $\mathrm{e}^{-eta_{WV_i}T_s}$  и р $_{WV_i}$  =  $\mathrm{e}^{-eta_{WV_j}T_s}$ 

И

$$r_{G_{WV_{ij}}} = r_{G_{WV}} \left( D_{ij} \right) = 0.29 \cdot \exp \left( -\frac{D_{ij}}{38} \right) + 0.71 \cdot \exp \left( -\frac{D_{ij}}{900} \right).$$
 (9)

Этап  $MS_WV_5$ . Вычислить функцию факторизации Холецкого матрицы  $R_n$ , чтобы определить нижнюю треугольную матрицу  $C_{WV} = [c_{WV_n}]$ , то есть

$$\mathbf{R}_n = \mathbf{C}_{WV} \mathbf{C}_{WV}^T. \tag{10}$$

 $\Im$   $MS_WV_6$ . Для каждого интервала времени  $kT_s$  вычислить  $n(kT_s) = [n_1(kT_s) \ n_2(kT_s) \ \dots \ n_M(kT_s)]^T$ , где

$$\boldsymbol{n}(kT_s) = \boldsymbol{C}_{WV} \cdot \tilde{\boldsymbol{n}}(kT_s) \tag{11}$$

и  $\tilde{\boldsymbol{n}}(kT_s) = [\tilde{n}_1(kT_s) \ \tilde{n}_2(kT_s) \ \dots \ \tilde{n}_M(kT_s)].$ 

Для справок:

$$\begin{cases} n_{1}(kT_{s}) = \tilde{n}_{1}(kT_{s}); \\ n_{2}(kT_{s}) = c_{WV_{21}}\tilde{n}_{1}(kT_{s}) + c_{WV_{22}}\tilde{n}_{2}(kT_{s}); \\ \vdots \\ n_{M}(kT_{s}) = c_{WV_{M1}}\tilde{n}_{1}(kT_{s}) + c_{WV_{M2}}\tilde{n}_{2}(kT_{s}) + \dots + c_{WV_{MM}}\tilde{n}_{M}(kT_{s}). \end{cases}$$

$$(12)$$

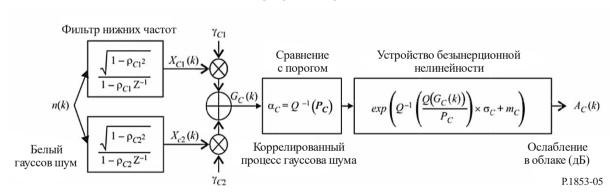
Этап  $MS_WV_7$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  и каждого интервала времени выполнить этапы с  $SS_WV_7$  по  $SS_WV_10$  пункта С описания синтезатора временных рядов ослабления в водяном паре с одной площадкой, приведенного в пункте 3.1.2.

Функция факторизации Холецкого реализована в языках программирования Matlab, Octave и Python.

#### 4 Ослабление в облаке

#### 4.1 Конфигурация с одной площадкой

#### 4.1.1 Обзор


Статистику долгосрочного совокупного содержания жидкой воды (ILWC) можно аппроксимировать логарифмически нормальным распределением, обусловленным вероятностью ненулевого ослабления в облаке, как предлагается в Рекомендации МСЭ-R P.840. Поскольку взаимосвязь между ослаблением в облаке ( $A_C$ ) и ILWC линейная (см. Рекомендацию МСЭ-R P.840), статистику долгосрочного ослабления в облаке ( $A_C$ ) можно аналогичным образом аппроксимировать условным логарифмически нормальным распределением.

Следовательно, при использовании метода синтеза временных рядов с одной площадкой статистика долгосрочного ослабления в облаке  $(A_C)$  аппроксимируется условным логарифмически нормальным распределением.

При использовании метода синтеза временных рядов с одной площадкой синтезируется временной ряд, воспроизводящий спектральные характеристики и распределение вероятностей ослабления в облаке.

Как показано на рисунке 5, временной ряд ослабления в облаке с одной площадкой  $A_C(t) = A_C(kT_s)$ , где  $T_s$  — время выборки, синтезируется на основе дискретной обработки белого гауссова шума  $n(t) = n(kT_s)$ . Для удобства  $kT_s$  обозначено на рисунке просто как k. Белый гауссов шум пропускается через фильтр нижних частот, усекается до соответствия заданной вероятности события в облаке и преобразуется из усеченного нормального распределения в условное логарифмически нормальное распределение в устройстве безынерционной нелинейности.

РИСУНОК 5 Блок-схема синтезатора временных рядов ослабления в облаке



Синтезатор временных рядов определяется восемью параметрами:

 $m_C$ : математическое ожидание условного логарифмически нормального распределения ослабления в облаке;

 $\sigma_C$ : стандартное отклонение условного логарифмически нормального распределения ослабления в облаке;

 $P_{\rm C}$ : вероятность ослабления в облаке (%);

 $\alpha_C$ : порог усечения коррелированного гауссова шума;

 $\beta_{C1}$ : параметр, описывающий изменение во времени быстрого компонента процесса (c<sup>-1</sup>);

 $\beta_{C2}$ : параметр, описывающий изменение во времени медленного компонента процесса ( $c^{-1}$ );

 $\gamma_{C1}$ : параметр, описывающий вес быстрого компонента процесса;

 $\gamma_{C2}$ : параметр, описывающий вес медленного компонента процесса.

#### 4.1.2 Поэтапный метод

Для синтеза временных рядов ослабления в облаке с одной площадкой  $A_C(kT_s)$ , k=1, 2, 3, ..., где  $T_s$  – временной интервал между выборками, а k – индекс каждой выборки, используется следующий поэтапный метод.

#### А Оценка параметров $\mu_C$ , $\sigma_C$ и $P_C$

Параметры условного логарифмически нормального распределения — математическое ожидание  $m_C$ , стандартное отклонение  $\sigma_C$  и вероятность ненулевого ослабления в облаке  $P_C$  — можно рассчитать по данным местных измерений. Если местные данные недоступны, эти параметры можно определить по цифровым картам совокупного содержания жидкой воды с температурой, сниженной до 0 °C, приведенным в Рекомендации МСЭ-R P.840.

При отсутствии данных местных измерений для рассматриваемого местоположения параметры условного логарифмически нормального распределения определяются следующим образом.

Этап  $SS\_CL\_1$ . Определить параметры  $m_{ILWC1}$ ,  $m_{ILWC2}$ ,  $m_{ILWC3}$ ,  $m_{ILWC4}$ ,  $\sigma_{ILWC4}$ ,  $\sigma_{ILWC3}$ ,  $\sigma_{ILWC3}$ ,  $\sigma_{ILWC4}$ ,  $\sigma_{I$ 

Этап  $SS_CL_2$ . Определить значения параметров  $m_{ILWC}$ ,  $\sigma_{ILWC}$  и  $P_{ILWC}$  в требуемом месте посредством билинейной интерполяции четырех значений каждого параметра в четырех точках сетки, как указано в Рекомендации МСЭ-R P.1144.

Этап  $SS_CL_3$ . Вычислить коэффициент погонного ослабления из-за жидкой воды, содержащейся в облаке,  $K_l(f,T)$ , методом, описанным в Рекомендации МСЭ-R P.840, для рассматриваемой частоты f и T=273.15 K.

Этап SS\_CL\_4. Установить:

$$\begin{cases} m_{\rm C} = m_{ILWC} + \ln\left(\frac{K_l}{\sin \varphi}\right); \\ \sigma_{\rm C} = \sigma_{ILWC}; \\ P_C = P_{ILWC}, \end{cases}$$
(13)

где ф – угол места рассматриваемой наклонной трассы.

#### В Параметры фильтра нижних частот

Этап SS CL 5. Установить:

$$\beta_{C1} = 5,7643 \times 10^{-4} \text{ (c}^{-1});$$

$$\beta_{C2} = 1,7663 \times 10^{-5} \text{ (c}^{-1});$$

$$\gamma_{C1} = 0,4394;$$

$$\gamma_{C2} = 0,7613.$$

# С Порог усечения

Этап SS CL 6. Порог усечения  $\alpha_C$  равен

$$\alpha_C = Q^{-1} \left( \frac{P_C}{100} \right), \tag{14}$$

где функция Q определена в пункте 3.1.2 и описана в Рекомендации МСЭ-R P.1057.

#### **D** Синтез временных рядов

Временной ряд  $A_C(kT_s)$ , k = 1, 2, 3, ..., синтезируется следующим образом.

Этап  $SS_CL_7$ . Синтезировать временные ряды гауссова белого шума  $n(kT_s)$ , где k=1,2,3,..., с нулевым математическим ожиданием и единичной дисперсией в период выборки  $T_s$ , составляющий 1 с.

Этап SS CL 8. Установить  $X_{C1}(0) = 0$ ;  $X_{C2}(0) = 0$ .

Этап  $SS_CL_9$ . Отфильтровать временной ряд шума  $n(kT_s)$  с помощью двух рекурсивных фильтров нижних частот, определяемых следующим образом:

$$\begin{cases} X_{C1}(kT_s) = \rho_{C1} \times X_{C1}((k-1)T_s) + \sqrt{1-\rho_{C1}^2} \times n(kT_s); \\ X_{C2}(kT_s) = \rho_{C2} \times X_{C2}((k-1)T_s) + \sqrt{1-\rho_{C2}^2} \times n(kT_s); \end{cases}$$
 при  $k = 1, 2, 3,$  (15)

где

$$\begin{cases}
\rho_{C1} = e^{-\beta_{C1}T_s}; \\
\rho_{C2} = e^{-\beta_{C2}T_s}.
\end{cases}$$
(16)

*Этап SS CL 10.* Вычислить  $G_C(kT_s)$  при k = 1, 2, 3, ... следующим образом:

$$G_{C}(kT_{s}) = \gamma_{C1} \times X_{C1}(kT_{s}) + \gamma_{C2} \times X_{C2}(kT_{s}). \tag{17}$$

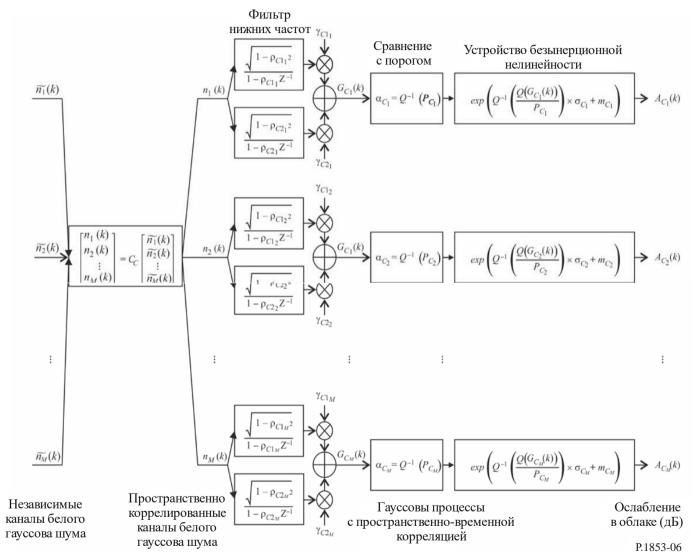
*Этап SS CL 11.* Вычислить  $A_C(kT_s)$  (дБ) при k = 1, 2, 3, ... следующим образом:

$$A_{C}(kT_{s}) = \begin{cases} \exp\left(Q^{-1}\left[\frac{100}{P_{C}}Q(G_{C}(kT_{s}))\right] \times \sigma_{C} + m_{C}\right) & \text{при } G_{C}(kT_{s}) > \alpha_{C}; \\ 0 & \text{при } G_{C}(kT_{s}) \leq \alpha_{C}, \end{cases}$$
(18)

где функция Q определена в пункте 3.1.2 и описана в Рекомендации МСЭ-R P.1057.

Этап  $SS_{CL_{12}}$ . Отбросить первые 5 000 000 выборок синтезированных временных рядов. События ослабления в облаке представлены последовательностями, значения которых превышают 0 дБ для ряда последовательных выборок.

# 4.2 Конфигурация с несколькими площадками


# 4.2.1 Обзор

Метод синтеза временных рядов с несколькими площадками предполагает, что долгосрочная статистика ослабления в облаке для каждой площадки  $(A_{Ci})$ , где  $i = \{1, 2, ..., M\}$  (M - общее количество площадок), соответствует условному логарифмически нормальному распределению.

При использовании этого метода синтеза временных рядов синтезируется временной ряд, воспроизводящий пространственное изменение, спектральные характеристики и распределение вероятностей ослабления в облаке.

Как показано на рисунке 6, временные ряды ослабления в облаке с несколькими площадками  $A_{Ci}(t) = A_{Ci}(kT_s)$ , где  $T_s$  — время выборки, синтезируются на основе дискретной обработки белого гауссова шума  $n_i(t) = n_i(kT_s)$ . Для удобства  $kT_s$  обозначено на рисунке просто как k. Белый гауссов шум пропускается через фильтр нижних частот, усекается до соответствия заданной вероятности события в облаке и преобразуется из усеченного нормального распределения в условное логарифмически нормальное распределение в устройстве безынерционной нелинейности.

РИСУНОК 6 Блок-схема синтезатора временных рядов ослабления в облаке с несколькими площадками



Синтезатор временных рядов для площадки і определяется следующими параметрами:

 $m_{Ci}$ : математическое ожидание условного логарифмически нормального распределения

ослабления в облаке;

 $\sigma_{\it Ci}$ : стандартное отклонение условного логарифмически нормального распределения

ослабления в облаке;

 $P_{Ci}$ : вероятность ослабления в облаке (%);

 $\alpha_{Ci}$ : порог усечения коррелированного гауссова шума;

 $\beta_{Cli}$ : параметр, описывающий изменение во времени быстрого компонента процесса (c<sup>-1</sup>);

 $\beta_{C2i}$ : параметр, описывающий изменение во времени медленного компонента процесса (c<sup>-1</sup>);

 $\gamma_{C1i}$ : параметр, описывающий вес быстрого компонента процесса;

 $\gamma_{C2i}$ : параметр, описывающий вес медленного компонента процесса;

 $D_{ii}$ : расстояние между площадками i и j (км).

#### 4.2.2 Поэтапный метод

Для синтеза временных рядов ослабления в облаке с несколькими площадками  $A_{Ci}(kT_s)$ , k=1, 2, 3, ..., где  $T_s$  — временной интервал между выборками, k — индекс каждой выборки, а i=1, 2, ..., M (M — общее число площадок), используется следующий поэтапный метод.

#### А Оценка параметров $m_{Ci}$ , $\sigma_{Ci}$ и $P_{Ci}$

Этап  $MS_CL_1$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  вычисляются значения  $m_{Ci}$ ,  $\sigma_{Ci}$  и  $P_{Ci}$  путем выполнения шагов, указанных в пункте A описания синтезатора временных рядов ослабления в облаке с одной площадкой, приведенного в пункте 4.1.2.

#### В Параметры фильтра нижних частот

Этап  $MS\_CL\_2$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  установить:

$$\beta_{C1i} = 5,7643 \times 10^{-4} \text{ (c}^{-1}\text{);}$$
 $\beta_{C2i} = 1,7663 \times 10^{-5} \text{ (c}^{-1}\text{);}$ 
 $\gamma_{C1i} = 0,4394;$ 
 $\gamma_{C2i} = 0,7613.$ 

# С Пороги усечения

Этап  $MS_{CL_3}$ . Пороги усечения  $\alpha_{C_i}$  равны

$$\alpha_{C_i} = Q^{-1} \left( \frac{P_{C_i}}{100} \right), \tag{19}$$

где функция Q определена в пункте 3.1.2 и описана в Рекомендации МСЭ-R P.1057.

# **D** Синтез временных рядов

Этап  $MS\_CL\_4$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  синтезировать временной ряд белого гауссова шума  $\widetilde{n}_i(kT_s)$ , где k = 1, 2, 3, ..., с нулевым математическим ожиданием и единичной дисперсией в период выборки  $T_s$ , составляющий 1 с.

Этап  $MS\_CL\_5$ . Вычислить матрицу M х M  $R_n = [r_{n_{ij}}]$  при  $i = \{1, 2, ..., M\}$  и  $j = \{1, 2, ..., M\}$  следующим образом:

$$r_{n_{ij}} = \frac{1}{\gamma_{C1_{i}}\gamma_{C1_{j}}} \frac{1}{\sqrt{1 - \rho_{C1_{i}}^{2}} \sqrt{1 - \rho_{C1_{j}}^{2}}} + \gamma_{C2_{i}}\gamma_{C2_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{j}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C2_{j}}} + \gamma_{C1_{i}}\gamma_{C2_{j}} \frac{\sqrt{1 - \rho_{C1_{i}}^{2}} \sqrt{1 - \rho_{C2_{j}}^{2}}}{1 - \rho_{C1_{i}}\rho_{C2_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C1_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{j}}} + \gamma_{C2_{i}}\gamma_{C1_{j}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}} \sqrt{1 - \rho_{C2_{i}}^{2}}}{1 - \rho_{C2_{i}}\rho_{C1_{i}}} + \gamma_{C2_{i}}\gamma_{C1_{i}} \frac{\sqrt{1 - \rho_{C2_{i}}^{2}}}{$$

где 
$$\rho_{C1_i} = \mathrm{e}^{-\beta_{C1_i}T_s}$$
 ,  $\rho_{C2_i} = \mathrm{e}^{-\beta_{C2_i}T_s}$  ,  $\rho_{C1_i} = \mathrm{e}^{-\beta_{C1_j}T_s}$  и  $\rho_{C2_i} = \mathrm{e}^{-\beta_{C2_j}T_s}$ 

и 
$$r_{G_{C_{ij}}} = r_{G_C} \left( D_{ij} \right) = 0.55 \cdot \exp \left( -\frac{D_{ij}}{24} \right) + 0.45 \cdot \exp \left( -\frac{D_{ij}}{700} \right).$$
 (21)

Этап  $MS\_CL\_6$ . Вычислить факторизацию Холецкого матрицы  $R_n$ , чтобы определить нижнюю треугольную матрицу  $C_C = [C_{Cii}]$ , где

$$\mathbf{R}_{n} = \mathbf{C}_{C} \mathbf{C}_{C}^{T}. \tag{22}$$

Этап  $MS_CL_7$ . Вычислить  $n(kT_s) = [n_1(kT_s) \ n_2(kT_s) \ \dots \ n_M(kT_s)]^T$  следующим образом:

$$\boldsymbol{n}(kT_s) = \boldsymbol{C}_C \cdot \tilde{\boldsymbol{n}}(kT_s), \tag{23}$$

где  $\tilde{\boldsymbol{n}}(kT_s) = [\tilde{n}_1(kT_s) \ \tilde{n}_2(kT_s) \ \dots \ \tilde{n}_M(kT_s)]^T$ .

Для справок:

$$\begin{cases} n_{1}(kT_{s}) = \tilde{n}_{1}(kT_{s}); \\ n_{2}(kT_{s}) = c_{C_{21}}\tilde{n}_{1}(kT_{s}) + c_{C_{22}}\tilde{n}_{2}(kT_{s}); \\ \vdots \\ n_{M}(kT_{s}) = c_{C_{M1}}\tilde{n}_{1}(kT_{s}) + c_{C_{M2}}\tilde{n}_{2}(kT_{s}) + \dots + c_{C_{MM}}\tilde{n}_{M}(kT_{s}). \end{cases}$$

$$(24)$$

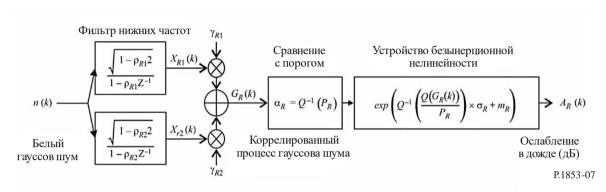
Этап  $MS_CL_8$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  выполнить этапы с  $SS_CL_8$  по  $SS_CL_12$  пункта D описания синтезатора временных рядов ослабления в облаке с одной площадкой, приведенного в пункте 4.1.2.

#### 5 Ослабление в дожде

#### 5.1 Конфигурация с одной площадкой

#### **5.1.1** Обзор

Метод синтеза временных рядов ослабления в дожде с одной площадкой предполагает, что долгосрочная статистика ослабления в дожде соответствует логарифмически нормальному распределению, обусловленному вероятностью ненулевого ослабления в дожде. Метод прогнозирования ослабления в дожде МСЭ-R из Рекомендации МСЭ-R Р.618 хорошо аппроксимируется условным логарифмически нормальным распределением в наиболее значимом диапазоне вероятностей превышения. Поскольку с помощью метода прогнозирования ослабления в дожде в наземном пространстве прогнозируется ненулевое ослабление в дожде при значениях вероятности превышения, превосходящих вероятность ослабления в дожде, метод синтеза временных рядов позволяет корректировать временные ряды ослабления таким образом, чтобы ослабление в дожде, соответствующее значениям вероятности превышения, превосходящим значения вероятности ослабления в дожде, составляло 0 дБ.


Этот метод действителен для диапазона частот от 4 ГГц до 55 ГГц и углов места от 5° до 90°.

При использовании метода синтеза временных рядов ослабления в дожде с одной площадкой синтезируется временной ряд, воспроизводящий статистические данные о спектральных характеристиках, крутизне замирания и длительности замирания, а также о распределении вероятностей событий ослабления в дожде. Также воспроизводятся статистические данные о

длительности периодов между событиями замирания, но только в рамках отдельных событий ослабления.

Как показано на рисунке 7, временной ряд ослабления в дожде  $A_R(t) = A_R(kT_s)$ , где  $T_s$  — заданное время выборки, синтезируется на основе дискретной обработки белого гауссова шума  $n(t) = n(kT_s)$ . Для удобства  $kT_s$  обозначено на рисунке просто как k. Белый гауссов шум пропускается через фильтр нижних частот, усекается до соответствия заданной вероятности события ослабления в дожде и преобразуется в устройстве безынерционной нелинейности из усеченного нормального распределения в условное логарифмически нормальное распределение.

РИСУНОК 7 Блок-схема синтезатора временных рядов ослабления в дожде



Синтезатор временных рядов определяется восемью параметрами:

 $m_R$ : математическое ожидание условного логарифмически нормального распределения

ослабления в дожде;

 $\sigma_R$ : стандартное отклонение условного логарифмически нормального распределения

ослабления в дожде;

 $P_R$ : вероятность ослабления в дожде (%);

 $\alpha_R$ : порог усечения коррелированного гауссова шума;

 $\beta_{R1}$ : параметр, описывающий изменение во времени быстрого компонента процесса ( $c^{-1}$ );

 $\beta_{R2}$ : параметр, описывающий изменение во времени медленного компонента процесса (c<sup>-1</sup>);

 $\gamma_{R1}$ : параметр, описывающий вес быстрого компонента процесса;

 $\gamma_{R2}$ : параметр, описывающий вес медленного компонента процесса.

### 5.1.2 Поэтапный метод

Для синтеза временных рядов ослабления в дожде  $A_R(kT_s)$ , k = 1, 2, 3, ..., где  $T_s$  – временной интервал между выборками, а k – индекс каждой выборки, используется следующий поэтапный метод.

#### А Оценка параметров $m_R$ , $\sigma_R$ и $P_R$

Параметры  $m_R$  и  $\sigma_R$  определяются по интегральной функции распределения ослабления в дожде в зависимости от вероятности события. Эти параметры могут быть определены на основании местных данных. Если местные данные отсутствуют, параметры  $m_R$  и  $\sigma_R$  можно определить методом прогнозирования ослабления в дожде из Рекомендации МСЭ-R P.618.

Для рассматриваемых значений угла места Земля-космос и частоты производится логарифмически нормальный подбор ослабления в дожде в зависимости от вероятности события следующим образом.

 $\Im$  *SS\_RA\_1*. Определить вероятность ослабления в дожде на трассе  $P_R$  (% времени) по данным местных измерений или, в отсутствие данных измерений, с использованием метода "Прогнозирование вероятности ослабления в дожде на наклонной трассе" из Рекомендации МСЭ-R P.618.

Этап SS\_RA\_2. Составить множество пар  $[P_i/P_R, A_{Ri}]$ , где  $P_i$  (% времени) — вероятность превышения значения ослабления в дожде  $A_{Ri}$  (дБ),  $P_i \le P_R$ . Конкретные значения  $P_i$  выбираются с учетом заданного диапазона вероятностей; однако предлагается следующий набор значений процентов времени: 0,01; 0,02; 0,03; 0,05; 0,1; 0,2; 0,3; 0,5; 1; 2; 3; 5 и 10% с ограничением  $P_i \le P_R$ .

 $\Im$  3 множество пар  $\left[P_i/P_R, A_{Ri}\right]$  во множество пар  $\left[Q^{-1}\left(\frac{P_i}{P_R}\right), \ln A_{Ri}\right]$ 

где функция Q определена в пункте 3.1.2 и описана в Рекомендации МСЭ-R P.1057.

Этап SS\_RA\_4. Определить переменные  $m_R$  и  $\sigma_R$  путем применения метода наименьших квадратов к величине  $\ln A_{Ri} = \sigma_R Q^{-1} \left(\frac{P_i}{P_R}\right) + m_R$  для всех i. Подбор методом наименьших квадратов можно

определить с использованием метода "Поэтапная процедура для аппроксимации дополнительного интегрального распределения посредством логарифмически нормального дополнительного интегрального распределения", описанного в Рекомендации МСЭ-R P.1057.

#### В Параметры фильтра нижних частот

*Этап SS\_RA\_5*. Установить следующие параметры:

$$\beta_{R1} = 9,0186 \times 10^{-4} \text{ (c}^{-1}\text{)};$$

$$\beta_{R2} = 5,0990 \times 10^{-5} \text{ (c}^{-1}\text{)};$$

$$\gamma_{R1} = 0,3746;$$

$$\gamma_{R2} = 0,7738.$$

# С Порог усечения

Этап  $SS_RA_6$ . Порог усечения  $\alpha_R$  равен

$$\alpha_R = Q^{-1} \left( \frac{P_R}{100} \right), \tag{25}$$

где функция О определена в пункте 3.1.2 и описана в Рекомендации МСЭ-R Р.1057.

#### **D** Синтез временных рядов

Временной ряд ослабления в дожде  $A_R(kT_s)$ , k=1,2,3,..., синтезируется следующим образом.

Этап  $SS_RA_7$ . Синтезировать временной ряд гауссова белого шума  $n(kT_s)$ , где k=1,2,3,..., с нулевым математическим ожиданием и единичной дисперсией в период выборки  $T_s$ , составляющий 1 с.

Этап SS RA 8. Установить значения  $X_{R1}(0) = 0$ ;  $X_{R2}(0) = 0$ .

Этап  $SS_RA_9$ . Отфильтровать временные ряды шума  $n(kT_s)$  с помощью двух рекурсивных фильтров нижних частот, определяемых следующим образом:

$$\begin{cases} X_{R1}(kT_s) = \rho_{R1} \times X_{R1}((k-1)T_s) + \sqrt{1-\rho_{R1}^2} \times n(kT_s); \\ X_{R2}(kT_s) = \rho_{R2} \times X_{R2}((k-1)T_s) + \sqrt{1-\rho_{R2}^2} \times n(kT_s), \end{cases}$$
 при  $k = 1, 2, 3, ...,$  (26)

$$\begin{cases} \rho_{R1} = e^{-\beta_{R1}T_s}; \\ \rho_{R2} = e^{-\beta_{R2}T_s}. \end{cases}$$
 (27)

Этап SS RA 10. Вычислить  $G_R(kT_s)$  при k = 1, 2, 3, ... следующим образом:

$$G_R(kT_s) = \gamma_{R1} \times X_{R1}(kT_s) + \gamma_{R2} \times X_{R2}(kT_s).$$
 (28)

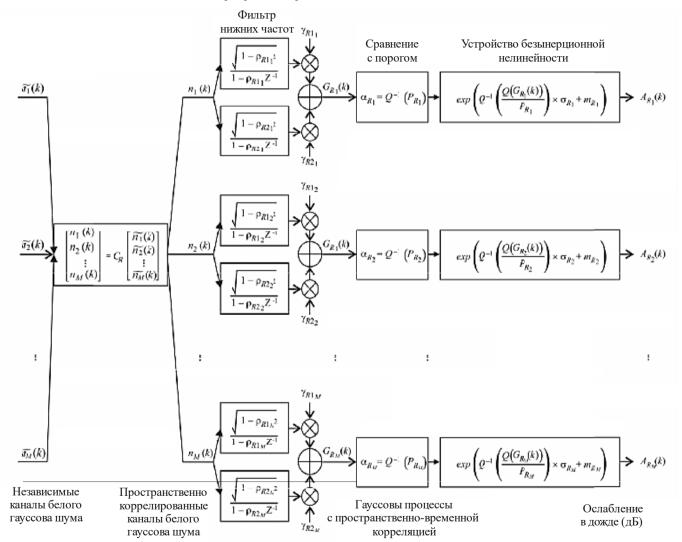
*Этап SS CL 11.* Вычислить  $A_R(kT_s)$  (дБ) при k = 1, 2, 3, ... следующим образом:

$$A_{R}(kT_{s}) = \begin{cases} \exp\left(Q^{-1}\left[\frac{100}{P_{R}}Q(G_{R}(kT_{s}))\right] \times \sigma_{R} + m_{R}\right) & \text{при} \quad G_{R}(kT_{s}) > \alpha_{R}; \\ 0 \quad \text{при} \quad G_{R}(kT_{s}) \leq \alpha_{R}, \end{cases}$$
 (29)

где функция Q определена в пункте 3.1.2 и описана в Рекомендации МСЭ-R P.1057.

Этап  $SS_CL_12$ . Отбросить первые 5 000 000 выборок синтезированных временных рядов. События ослабления в дожде представлены последовательностями, значения которых превышают 0 дБ для ряда последовательных выборок.

# 5.2 Конфигурация с несколькими площадками


#### 5.2.1 Обзор

Метод синтеза временных рядов ослабления в дожде с несколькими площадками предполагает, что долгосрочная статистика ослабления в дожде для каждой площадки  $(A_{Ri})$ , где  $i = \{1, 2, ..., M\}$  (M - общее количество площадок), соответствует условному логарифмически нормальному распределению.

При использовании метода синтеза временных рядов ослабления в дожде с несколькими площадками синтезируются M временных рядов, воспроизводящих пространственное изменение, спектральные характеристики и распределение вероятностей ослабления в дожде.

Как показано на рисунке 8, временные ряды ослабления в дожде с несколькими площадками  $A_{Ri}(t) = A_{Ri}(kT_s)$ , где  $T_s$  — время выборки, синтезируются на основе дискретной обработки белого гауссова шума  $n_i(t) = n_i(kT_s)$ . Для удобства  $kT_s$  обозначено на рисунке просто как k. Белый гауссов шум пропускается через фильтр нижних частот, усекается до соответствия заданной вероятности события в облаке и преобразуется из усеченного нормального распределения в условное логарифмически нормальное распределение в устройстве безынерционной нелинейности.

РИСУНОК 8 Блок-схема синтезатора временных рядов ослабления в дожде с несколькими площадками



P.1853-08

Синтезатор временных рядов для площадки і определяется следующими параметрами:

 $m_{Ri}$ : математическое ожидание условного логарифмически нормального распределения

ослабления в дожде;

 $\sigma_{\it Ri}$ : стандартное отклонение условного логарифмически нормального распределения

ослабления в дожде;

 $P_{Ri}$ : вероятность ослабления в дожде (%);

 $\alpha_{Ri}$ : порог усечения коррелированного гауссова шума;

 $\beta_{R1i}$ : параметр, описывающий изменение во времени быстрого компонента процесса (c<sup>-1</sup>);

 $\beta_{R2i}$ : параметр, описывающий изменение во времени медленного компонента процесса (c<sup>-1</sup>);

 $\gamma_{R1i}$ : параметр, описывающий вес быстрого компонента процесса;

 $\gamma_{R2i}$ : параметр, описывающий вес медленного компонента процесса;

 $D_{ii}$ : расстояние между площадками i и j (км).

#### 5.2.2 Поэтапный метод

Для синтеза временных рядов ослабления в дожде с несколькими площадками  $A_{Ci}(kT_s)$ , k=1,2,3,..., где  $T_s$  – временной интервал между выборками, k – индекс каждой выборки, а i=1,2,...,M (M – общее число площадок), используется следующий поэтапный метод.

#### A Оценка параметров $m_{Ri}$ , $\sigma_{Ri}$ и $P_{Ri}$

Этап  $MS_RA_1$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  выполнить этапы, указанные в пункте А описания синтезатора временных рядов ослабления в дожде с одной площадкой, приведенного в пункте 5.1.2.

#### В Параметры фильтра нижних частот

Этап MS RA 2. Для каждого номера площадки  $i = \{1, 2, ..., M\}$  установить значения:

$$\beta_{R1i} = 9,0186 \times 10^{-4} \text{ (c}^{-1});$$

$$\beta_{R2i} = 5,0990 \times 10^{-5} \text{ (c}^{-1});$$

$$\gamma_{R1i} = 0,3746;$$

$$\gamma_{R2i} = 0,7738.$$

#### С Пороги усечения

Этап  $MS_RA_3$ . Пороги усечения  $\alpha_{R_i}$  равны

$$\alpha_{R_i} = Q^{-1} \left( \frac{P_{R_i}}{100} \right), \tag{30}$$

где функция Q определена в пункте 3.1.2 и описана в Рекомендации МСЭ-R P.1057.

#### **D** Синтез временных рядов

Этап  $MS_RA_4$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  синтезировать временной ряд белого гауссова шума  $\tilde{n}_i(kT_s)$ , где k = 1, 2, 3, ..., с нулевым математическим ожиданием и единичной дисперсией в период выборки  $T_s$ , составляющий 1 с.

Этап  $MS_RA_5$ . Вычислить матрицу  $\mathbf{R}_n = [r_{n_{ij}}]$  при  $i = \{1, 2, ..., M\}$  и  $j = \{1, 2, ..., M\}$  следующим образом:

$$r_{n_{ij}} = \frac{1}{\gamma_{Rl_{i}}\gamma_{Rl_{j}}} \frac{1}{\sqrt{1 - \rho_{Rl_{i}}^{2}} \sqrt{1 - \rho_{Rl_{j}}^{2}}} + \gamma_{Rl_{i}}\gamma_{R2_{j}} \frac{\sqrt{1 - \rho_{R2_{i}}^{2}} \sqrt{1 - \rho_{R2_{j}}^{2}}}{1 - \rho_{R2_{i}}\rho_{R2_{j}}} + \gamma_{Rl_{i}}\gamma_{R2_{j}} \frac{\sqrt{1 - \rho_{Rl_{i}}^{2}} \sqrt{1 - \rho_{R2_{j}}^{2}}}{1 - \rho_{Rl_{i}}\rho_{R2_{j}}} + \gamma_{R2_{i}}\gamma_{Rl_{j}} \frac{\sqrt{1 - \rho_{R2_{i}}^{2}} \sqrt{1 - \rho_{Rl_{j}}^{2}}}{1 - \rho_{R2_{i}}\rho_{Rl_{j}}}$$
(31)

где 
$$\rho_{R1_i} = e^{-\beta_{R1_i}T_s}$$
,  $\rho_{R2_i} = e^{-\beta_{R2_i}T_s}$ ,  $\rho_{R1_j} = e^{-\beta_{R1_j}T_s}$  и  $\rho_{R2_j} = e^{-\beta_{R2_j}T_s}$ 

и 
$$r_{G_{R_{ij}}} = r_{G_R} \left( D_{ij} \right) = 0.59 \cdot \exp \left( -\frac{D_{ij}}{31} \right) + 0.41 \cdot \exp \left( -\frac{D_{ij}}{800} \right).$$

Этап MS\_RA\_6. Определить нижнюю треугольную матрицу  $C_R = [C_{R_{ij}}]$  с помощью факторизации Холецкого матрицы  $R_n$ , где

$$\mathbf{R}_n = \mathbf{C}_R \mathbf{C}_R^T. \tag{32}$$

Этап  $MS_RA_7$ . Вычислить  $n(kT_s) = [n_1(kT_s) \ n_2(kT_s) \ \dots \ n_M(kT_s)]^T$  следующим образом:

$$\boldsymbol{n}(kT_s) = \boldsymbol{C_R} \cdot \tilde{\boldsymbol{n}}(kT_s), \tag{33}$$

где  $\tilde{\boldsymbol{n}}(kT_s) = [\tilde{n}_1(kT_s) \ \tilde{n}_2(kT_s) \ \dots \ \tilde{n}_M(kT_s)]^T$ .

Для справок:

$$\begin{cases}
n_{1}(kT_{s}) = \tilde{n}_{1}(kT_{s}); \\
n_{2}(kT_{s}) = c_{R_{21}}\tilde{n}_{1}(kT_{s}) + c_{R_{22}}\tilde{n}_{2}(kT_{s}); \\
\vdots \\
n_{M}(kT_{s}) = c_{R_{M1}}\tilde{n}_{1}(kT_{s}) + c_{R_{M2}}\tilde{n}_{2}(kT_{s}) + \dots + c_{R_{MM}}\tilde{n}_{M}(kT_{s}).
\end{cases}$$
(34)

Этап  $MS_RA_8$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  выполнить этапы с  $SS_RA_8$  по  $SS_RA_12$  пункта D описания синтезатора временных рядов ослабления в дожде с одной площадкой, приведенного в пункте 5.1.2.

### 6 Тропосферное мерцание с единичной дисперсией

Как показано на рисунке 9, временной ряд мерцания sci(t) можно генерировать путем фильтрации белого гауссова шума n(t), так чтобы спектр асимптотической мощности отфильтрованного временного ряда характеризовался частотой спада  $f^{-8/3}$  и частотой среза  $f_c$  0,1  $\Gamma$ ц. Следует отметить, что стандартное отклонение мерцания возрастает с усилением ослабления в дожде.

РИСУНОК 9 Блок-схема синтезатора временных рядов мерцания с единичной дисперсией



# Приложение 2

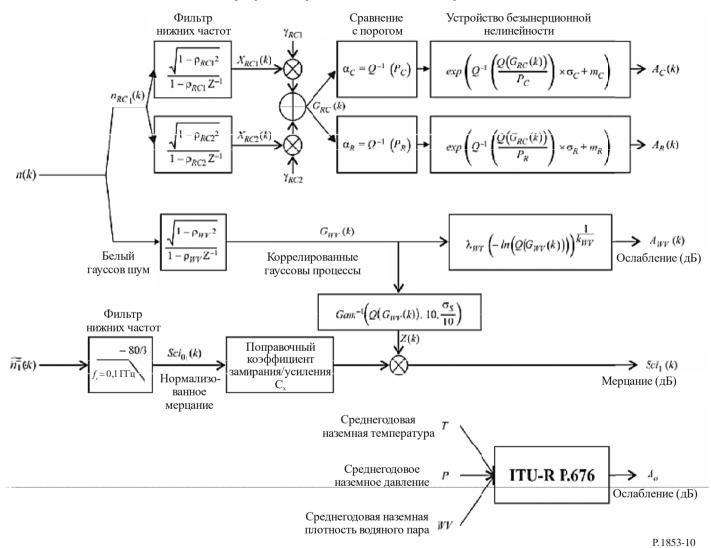
# Синтез временных рядов общих ухудшений в тропосфере для конфигураций с одной площадкой и несколькими площадками на трассах Земля-космос

#### 1 Введение

Методика, представленная в этом Приложении, обеспечивает методы синтеза общих ухудшений в тропосфере для конфигураций с одной и с несколькими площадками (ослабление в газах, в облаке и в дожде, а также ослабление и усиление из-за тропосферного мерцания) на трассах Земля-космос.

#### 2 Конфигурация с одной площадкой

#### 2.1 Обзор


Временные ряды, создаваемые сочетанием ослабления в газах, ослабления в облаке и ослабления в дожде с одной площадкой, а также ослабления и усиления из-за мерцания синтезируются методом, который представлен на рисунке 10, с использованием методов, описанных в Приложении 1. Введена соответствующая корреляция между ослаблением в облаке и ослаблением в дожде с использованием той же временной корреляции и того же базового гауссова процесса. Временной корреляции ослабления в дожде отдается предпочтение, поскольку ослабление в дожде является доминирующим ухудшением.

Ослабление в облаке интерполируется, если: а) синтезировано событие дождя со значением ослабления, превышающим 0 дБ; и b) ослабление в облаке превышает порог  $A_{C_{thresh}} = \frac{K_l}{\sin \phi}$ , где  $\phi$  – угол места, а  $K_l$  задается на этапе SS CL S из Приложения 1.

Для трасс Земля-космос метод синтеза временных рядов действителен для диапазона частот от 4  $\Gamma\Gamma$ ц до 55  $\Gamma\Gamma$ ц и углов места от 5° до 90°. Для низких частот, средних и высоких углов места и регионов с умеренным климатом общее ослабление можно правильно аппроксимировать с достаточной точностью по одному ослаблению в дожде.

При использовании этого метода синтеза временных рядов синтезируется временной ряд, воспроизводящий статистические данные о спектральных характеристиках, крутизне замирания и длительности замирания событий общего ослабления. Также воспроизводятся статистические данные о длительности периодов между событиями замирания, но только в рамках отдельных событий ослабления.

РИСУНОК 10 Блок-схема синтезатора временных рядов общего ослабления и мерцания с одной площадкой



#### 2.2 Поэтапный метод

Для синтеза временных рядов общих ухудшений в тропосфере (ослабление в газах, ослабление в облаке, ослабление в дожде, а также замирание и усиление из-за мерцания) с одной площадкой  $A_{TOT}$  ( $kT_s$ ) при  $k=1,\,2,\,3,\,...$ , где  $T_s$  — интервал времени между выборками, а k — индекс каждой выборки, используется следующий поэтапный метод.

Этап  $SS\_TOT\_1$ . Синтезировать временной ряд белого гауссова шума  $n(kT_s)$ , где k=1,2,3,..., с нулевым математическим ожиданием и единичной дисперсией в период выборки  $T_s$ , составляющий 1 с.

Этап  $SS\_TOT\_2$ . Рассчитать среднегодовой временной ряд ослабления в газообразном кислороде  $A_O$  в соответствии с процедурой, рекомендованной в пункте 2.2 Приложения 1.

Этап  $SS\_TOT\_3$ . Рассчитать временной ряд ослабления в водяном паре  $A_{WV}(kT_s)$ , начав с временного ряда гауссова шума  $n(kT_s)$ , в соответствии с процедурой, рекомендованной в пункте 3.1.2 Приложения 1.

Этап  $SS_TOT_4$ . Рассчитать временной ряд ослабления в облаке  $A_C(kT_s)$ , начав с временного ряда гауссова шума  $n(kT_s)$  в соответствии с процедурой, рекомендованной в пункте 4.1.2 Приложения 1, заменив этап  $SS_CL_5$  следующим этапом.

Установить:

$$\beta_{C1} = \beta_{R1} = \beta_{RC1} = 9,0186 \times 10^{-4} \text{ (c}^{-1});$$

$$\beta_{C2} = \beta_{R2} = \beta_{RC2} = 5,0990 \times 10^{-5} \text{ (c}^{-1});$$

$$\gamma_{C1} = \gamma_{R1} = \gamma_{RC1} = 0,3746;$$

$$\gamma_{C2} = \gamma_{R2} = \gamma_{RC2} = 0,7738.$$

Этап  $SS_TOT_5$ . Рассчитать временной ряд ослабления в дожде  $A_R(kT_s)$ , начав с временного ряда гауссова шума  $n(kT_s)$  в соответствии с процедурой, рекомендованной в пункте 5.1.2 Приложения 1, заменив этап  $SS_RA_5$  следующим этапом.

Установить:

$$\begin{split} \beta_{R1} &= \beta_{RC1} = 9,0186 \times 10^{-4} \text{ (c}^{-1}\text{);} \\ \beta_{R2} &= \beta_{RC2} = 5,0990 \times 10^{-5} \text{ (c}^{-1}\text{);} \\ \gamma_{R1} &= \gamma_{RC1} = 0,3746; \\ \gamma_{R2} &= \gamma_{RC2} = 0,7738. \end{split}$$

 $\Im$  Этап SS\_TOT\_6. Для каждого интервала времени  $kT_s$ : если  $A_R(kT_s) > 0$  и  $A_C(kT_s) > A_{C_{thresh}} = \frac{K_l}{\sin \phi}$ ,

то установить 
$$A_C(kT_s) = \frac{K_l}{\sin \varphi}$$
.

Этап SS\_TOT\_7. Определить многочлены замирания и усиления из-за мерцания следующим образом:

$$\begin{split} a_{Fade}(P) &= -0.061 \times \left(\log_{10}(P)\right)^3 + 0.072 \times \left(\log_{10}(P)\right)^2 - 1.71 \times \log_{10}(P) + 3.0; \\ a_{Enhance}(P) &= -0.0597 \times \left(\log_{10}(P)\right)^3 - 0.0835 \times \left(\log_{10}(P)\right)^2 - 1.258 \times \log_{10}(P) + 2.672. \end{split}$$

Этап  $SS\_TOT\_8$ . Синтезировать временной ряд мерцания с единичной дисперсией  $Sci_0(kT_s)$  в соответствии с методом, рекомендованным в разделе 6 Приложения 1.

Этап  $SS\_TOT\_9$ . Рассчитать временной ряд поправочных коэффициентов  $C_x(kT_s)$ , чтобы различать замирание из-за мерцания и усиление из-за мерцания:

$$C_{x}(k.T_{s}) = \begin{cases} \frac{a_{Fade}(100 \times Q[Sci_{0}(kT_{s})])}{a_{Enhance}(100 \times Q[Sci_{0}(kT_{s})])} & \text{при} \quad Sci_{0}(kT_{s}) > 0; \\ 1 \quad \text{при} \quad Sci_{0}(kT_{s}) \leq 0, \end{cases}$$
(35)

где функция Q определена в пункте 3.1.2 Приложения 1 настоящей Рекомендации и описана в Рекомендации МСЭ-R P.1057.

Этап SS\_TOT\_10. Если  $C_x(kT_s) < 1$  или  $100 \times Q[Sci_0(kT_s)] > 45$ , то установить  $C_x(kT_s) = 1$ .

Этап SS\_TOT\_11. Рассчитать стандартное отклонение мерцания  $\sigma_S$  методом "Вычисление месячных и долгосрочных статистических данных об амплитудных мерцаниях при углах места более 5°" из Рекомендации МСЭ-R P.618 (для справок: в Рекомендации МСЭ-R P.618  $\sigma_S$  обозначается как  $\sigma$ ).

Этапа  $SS\_TOT\_12$ . Промежуточный базовый гауссов процесс  $G_{WV}(kT_s)$ , рекомендованный для этапа  $SS\_TOT\_3$ , преобразуется в распределенный временной ряд с гамма-распределением  $Z(kT_s)$  следующим образом:

$$Z(kT_s) = Gam^{-1} \left[ Q(G_{WV}(kT_s)), 10, \frac{\sigma_s}{10} \right],$$
 (36)

где функция *Gam* представляет собой дополнительную совокупную функцию гамма-распределения, описанную в Рекомендации МСЭ-R P.1057 и определяемую следующим образом:

$$Gam(x,k,\vartheta) = \int_{x}^{\infty} \frac{x^{k-1} \exp(-x/\theta)}{\Gamma(k)\theta^{k}} dt.$$
 (37)

Отметим, что 
$$Q(G_{WV}(kT_s)) = \exp\left(-\left(\frac{A_{WV}(kT_s)}{\lambda_{WV}}\right)^{k_{WV}}\right)$$
.

Этап  $SS\_TOT\_13$ . Рассчитать временной ряд мерцания  $Sci(kT_s)$  следующим образом:

$$Sci(kT_s) = \begin{cases} Sci_0(kT_s) \times C_x(kT_s) \times Z(kT_s) \times [A_R(kT_s)]^{\frac{5}{12}} & \text{при} \quad A_R(kT_s) > 1; \\ Sci_0(kT_s) \times C_x(kT_s) \times Z(kT_s) & \text{при} \quad A_R(kT_s) \leq 1. \end{cases}$$
(38)

Этап  $SS\_TOT\_14$ . Рассчитать временной ряд общего ухудшения в тропосфере  $A_{TOT}(kT_s)$  следующим образом:

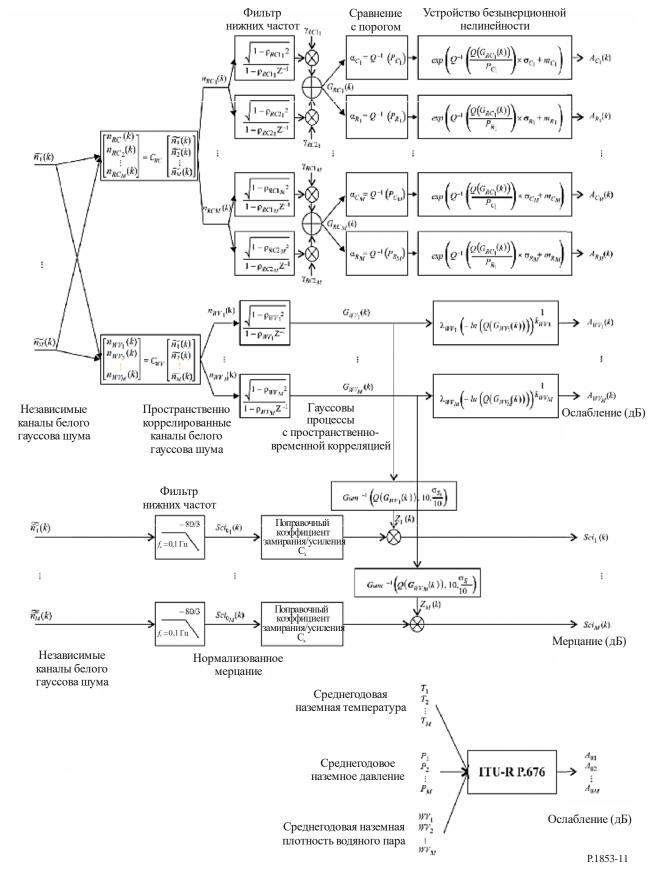
$$A_{TOT}(kT_s) = A_R(kT_s) + A_C(kT_s) + A_V(kT_s) + A_O + Sci(kT_s).$$
(39)

# 3 Конфигурация с несколькими площадками

#### 3.1 Обзор

Временные ряды общего ослабления, а также замирания и усиления из-за мерцания с несколькими площадками синтезируются методом, который представлен на рисунке 11, с использованием методов, описанных в предыдущих разделах. Введена соответствующая корреляция между ослаблением в

Функции гамма-распределения и обратного гамма-распределения реализованы в языках программирования Matlab, Octave и Python.


облаке и ослаблением в дожде с использованием той же временной корреляции и того же базового гауссова процесса. Временной корреляции ослабления в дожде отдается предпочтение, поскольку ослабление в дожде является доминирующим ухудшением. По той же причине отдается предпочтение пространственной корреляции ослабления в дожде.

Если а) возникло событие дождя (ослабление в синтетическом дожде больше 0 дБ) и b) ослабление в облаке превышает порог  $A_{C_{thresh}} = \frac{K_l}{\sin \phi}$ , где  $\phi$  — угол места, а  $K_l$  задается на этапе  $SS\_CL\_3$ , то интерполируется ослабление в облаке.

Для трасс Земля-космос метод синтеза временных рядов действителен для диапазона частот от 4  $\Gamma\Gamma$ ц до 55  $\Gamma\Gamma$ ц и углов места от 5° до 90°. В некоторых обстоятельствах (например, при низких частотах, средних и высоких углах места и в регионах с умеренным климатом) общее ослабление можно аппроксимировать с достаточной точностью по одному ослаблению в дожде.

При использовании этого метода синтеза временных рядов синтезируется временной ряд, воспроизводящий статистические данные о пространственных изменениях, спектральных характеристиках, крутизне замирания и длительности замирания событий общего ослабления. Также воспроизводятся статистические данные о длительности периодов между событиями замирания, но только в рамках отдельных событий ослабления.

РИСУНОК 11 Блок-схема синтезатора временных рядов общего ослабления и мерцания с несколькими площадками



#### 3.2 Поэтапный метод

Следующий поэтапный метод используется для синтеза временных рядов общих ухудшений в тропосфере (ослабление в газах, ослабление в облаке, ослабление в дожде, а также замирание и усиление из-за мерцания) с несколькими площадками  $A_{TOTi}(kT_s)$  при k=1, 2, 3, ..., где  $T_s$  – интервал времени между выборками, k – индекс каждой выборки, а i=1,2,...,M (M – общее количество площадок).

Этап  $MS\_TOT\_1$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  синтезировать временной ряд белого гауссова шума  $\tilde{n}_i(kT_s)$ , где k = 1, 2, 3, ..., с нулевым математическим ожиданием и единичной дисперсией в период выборки  $T_s$ , составляющий 1 с.

Этап  $MS\_TOT\_2$ . Рассчитать временной ряд ослабления в газообразном кислороде  $A_{Oi}$  в соответствии с процедурой, рекомендованной в пункте 2.3 Приложения 1.

Этап MS\_TOT\_3. Рассчитать временной ряд ослабления в водяном паре  $A_{WVi}(kT_s)$  начиная с временного ряда гауссова шума  $\tilde{n}_i(kT_s)$  в соответствии с процедурой, рекомендованной в пункте 3.2 Приложения 1.

Этап  $MS\_TOT\_4$ . Рассчитать временной ряд ослабления в облаке  $A_{Ci}(kT_s)$  начиная с временного ряда гауссова шума  $\tilde{n}_i(kT_s)$  в соответствии с процедурой, рекомендованной в пункте 4.2 Приложения 1, с заменой этапа  $MS\_CL\_2$  следующим этапом.

Установить:

$$\beta_{C1i} = \beta_{R1i} = \beta_{RC1i} = 9,0186 \times 10^{-4} \text{ (c}^{-1}\text{);}$$

$$\beta_{C2i} = \beta_{R2i} = \beta_{RC2i} = 5,0990 \times 10^{-5} \text{ (c}^{-1}\text{);}$$

$$\gamma_{C1i} = \gamma_{R1i} = \gamma_{RC1i} = 0,3746;$$

$$\gamma_{C2i} = \gamma_{R2i} = \gamma_{RC2i} = 0,7738$$

и заменить формулы для расчета  $r_{G_{C_i}}$  на этапе  $MS\_CL\_5$  следующей формулой:

$$r_{G_{C_{ij}}} = r_{G_{R_{ij}}} = r_{G_{RC_{ij}}} = 0.59 \cdot \exp\left(-\frac{D_{ij}}{31}\right) + 0.41 \cdot \exp\left(-\frac{D_{ij}}{800}\right).$$
 (40)

Этап MS\_TOT\_5. Рассчитать временной ряд ослабления в дожде  $A_{Ri}(kT_s)$  начиная с временного ряда гауссова шума  $\tilde{n}_i(kT_s)$  в соответствии с процедурой, рекомендованной в пункте 5.2.2 Приложения 1, с заменой этапа  $MS_RA_2$  следующим этапом.

Установить:

$$\beta_{R1i} = \beta_{RC1i} = 9,0186 \times 10^{-4} \text{ (c}^{-1}\text{)};$$
  

$$\beta_{R2i} = \beta_{RC2i} = 5,0990 \times 10^{-5} \text{ (c}^{-1}\text{)};$$
  

$$\gamma_{R1i} = \gamma_{RC1i} = 0,3746;$$
  

$$\gamma_{R2i} = \gamma_{RC2i} = 0,7738$$

и заменить формулы для расчета  $r_{G_{R_{ii}}}$  на этапе  $MS\_RA\_5$  следующей формулой:

$$r_{G_{R_{ij}}} = r_{G_{RC_{ij}}} = 0.59 \cdot \exp\left(-\frac{D_{ij}}{31}\right) + 0.41 \cdot \exp\left(-\frac{D_{ij}}{800}\right).$$
 (41)

 $\Im$   $MS\_TOT\_6$ . Для каждого номера площадки  $i=\{1,2,...,M\}$  и для каждой метки времени  $k_iT_s$  если  $A_{Ri}(kT_s) > 0$  и  $A_{Ci}(kT_s) > A_{Ci_{thresh}} = \frac{K_l}{\sin \varphi_i}$ , то установить  $A_{Ci}(kT_s) = \frac{K_l}{\sin \varphi_i}$ .

Этап MS\_TOT\_7. Определить многочлены замирания и усиления из-за мерцания:

$$\begin{split} a_{Fade}(P) &= -0.061 \times \left(\log_{10}(P)\right)^3 + 0.072 \times \left(\log_{10}(P)\right)^2 - 1.71 \times \log_{10}(P) + 3.0; \\ a_{Enhance}(P) &= -0.0597 \times \left(\log_{10}(P)\right)^3 - 0.0835 \times \left(\log_{10}(P)\right)^2 - 1.258 \times \log_{10}(P) + 2.672. \end{split}$$

Этап  $MS\_TOT\_8$ . Для каждого номера площадки  $i=\{1, 2, ..., M\}$  синтезировать временной ряд мерцания с единичной дисперсией  $Sci_{0i}(kT_s)$  в соответствии с методом, рекомендованным в разделе 6 Приложения 1.

Этап  $MS\_TOT\_9$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  рассчитать временной ряд поправочных коэффициентов  $C_{xi}(kT_s)$ , чтобы различать замирание и усиление из-за мерцания:

$$C_{x_{i}}(kT_{s}) = \begin{cases} \frac{a_{Fade}\left(100 \times Q[Sci_{0_{i}}(kT_{s})]\right)}{a_{Enhance}\left(100 \times Q[Sci_{0_{i}}(kT_{s})]\right)} & \text{при} \quad Sci_{0_{i}}(kT_{s}) > 0; \\ 1 \quad \text{при} \quad Sci_{0_{i}}(kT_{s}) \leq 0, \end{cases}$$
(42)

где функция *Q* определена в пункте 3.1.2 Приложения 1 и описана в Рекомендации МСЭ-R P.1057.

Этап MS\_TOT\_10. Если 
$$C_x(kT_s) < 1$$
 или  $100 \times Q |Sci_0(kT_s)| > 45$ , то  $C_x(kT_s) = 1$ . (43)

Этап  $MS\_TOT\_11$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  рассчитать стандартное отклонение мерцания  $\sigma_{Si}$  методом "Вычисление месячных и долгосрочных статистических данных об амплитудных мерцаниях при углах места более  $5^{\circ}$ " из Рекомендации MCЭ-R P.618.

Этап  $MS\_TOT\_12$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  преобразовать промежуточный базовый гауссов процесс  $G_{WVi}(kT_s)$ , определенный на этапе  $MS\_TOT\_3$ , в гамма-распределенный временной ряд  $Z_i(kT_s)$  следующим образом:

$$Z_{i}(kT_{s}) = Gam^{-1} \left[ Q\left(G_{WV_{i}}(kT_{s})\right), 10, \frac{\sigma_{S_{i}}}{10} \right], \tag{44}$$

где функция *Gam* представляет собой дополнительную совокупную функцию гамма-распределения, описанную в Рекомендации МСЭ-R P.1057 и определяемую следующим образом:

$$Gam(x,k,\vartheta) = \int_{x}^{\infty} \frac{x^{k-1} \exp(-x/\theta)}{\Gamma(k)\theta^{k}} dt.$$
 (45)

Отметим, что 
$$Q\left(G_{WV_i}(kT_s)\right) = \exp\left(-\left(\frac{A_{WV_i}(kT_s)}{\lambda_{WV_i}}\right)^{k_{WV_i}}\right)$$

Этап  $MS\_TOT\_13$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  рассчитать временной ряд мерцания  $Sci_i(kT_c)$  следующим образом:

$$Sci_{i}(kT_{s}) = \begin{cases} Sci_{0_{i}}(kT_{s}) \times C_{x_{i}}(kT_{s}) \times Z_{i}(kT_{s}) \times \left[A_{R_{i}}(kT_{s})\right]^{\frac{5}{12}} & \text{при} \quad A_{R_{i}}(kT_{s}) > 1; \\ Sci_{0_{i}}(kT_{s}) \times C_{x_{i}}(kT_{s}) \times Z_{i}(kT_{s}) & \text{при} \quad A_{R_{i}}(kT_{s}) \leq 1. \end{cases}$$

$$(46)$$

Этап  $MS\_TOT\_14$ . Для каждого номера площадки  $i = \{1, 2, ..., M\}$  рассчитать временной ряд общего ухудшения в тропосфере  $A_{TOT}(kT_s)$  следующим образом:

$$A_{TOT_{i}}(kT_{s}) = A_{R_{i}}(kT_{s}) + A_{C_{i}}(kT_{s}) + A_{V_{i}}(kT_{s}) + A_{O_{i}} + Sci_{i}(kT_{s}).$$

$$(47)$$

# Приложение 3

# Синтез временных рядов ослабления в дожде на единичных наземных трассах

Для синтеза временных рядов ослабления в дожде на единичных наземных трассах следует использовать приведенный ниже метод. Для единичных наземных трасс можно использовать метод синтеза временных рядов ослабления в дожде на трассах Земля-космос с одной площадкой, описанный в разделе 5 Приложения 1, со следующими изменениями.

Аналогично трассам Земля-космос:

- предполагается, что долгосрочная статистика ослабления в дожде на наземных трассах представляет собой условное логарифмически нормальное распределение;
- метод прогнозирования ослабления в дожде МСЭ-R из Рекомендации МСЭ-R Р.530 хорошо аппроксимируется условным логарифмически нормальным распределением в наиболее значимом диапазоне вероятностей превышения;
- ввиду того, что с помощью метода прогнозирования ослабления в дожде для наземных трасс прогнозируется ненулевое ослабление в дожде при значениях вероятности превышения, превосходящих вероятность ослабления в дожде, метод синтеза временных рядов позволяет корректировать временные ряды ослабления таким образом, чтобы ослабление в дожде, соответствующее значениям вероятности превышения, превосходящим значения вероятности ослабления в дожде, составляло 0 дБ;
- для наземных трасс метод синтеза временных рядов действителен для диапазона частот от 4 ГГц до 40 ГГц и значений длины трассы от 2 км до 60 км.

Для синтеза временных рядов ослабления в дожде с одной площадкой на наземных трассах следует выполнить все этапы, описанные в пункте 5.1.2, заменив пункт A следующим пунктом A'.

#### A Оценка параметров $m_R$ , $\sigma_R$ и $P_R$

Параметры  $m_R$  и  $\sigma_R$  определяются по интегральной функции распределения ослабления в дожде в зависимости от вероятности события. Статистические параметры ослабления в дожде можно определить по местным данным, или, в отсутствие местных данных, с использованием метода прогнозирования ослабления в дожде из Рекомендации МСЭ-R P.530.

Для заданных значений длины трассы и частоты производится логарифмически нормальный подбор ослабления в дожде в зависимости от вероятности события следующим образом.

Этап  $SS_RA_I$ '. Определить вероятность ослабления в дожде на трассе  $P_R$  (% времени) по данным местных измерений, или, в отсутствие данных измерений, можно использовать вероятность дождя  $P_{0annual}$ , указанную в Рекомендации МСЭ-R P.837.

Этап SS\_RA\_2'. Составить множество пар  $[P_i/P_R, A_{Ri}]$ , где  $P_i$  (% времени) — вероятность превышения значения ослабления в дожде  $A_{Ri}$  (дБ),  $P_i \le PR$ . Конкретные значения  $P_i$  выбираются с учетом заданного диапазона вероятностей; однако предлагается следующий набор значений процента времени: 0,01; 0,02; 0,03; 0,05; 0,1; 0,2; 0,3; 0,5; 1; 2; 3; 5 и 10% с ограничением  $P_i \le P_R$ .

Этап SS\_RA\_4. Определить переменные  $m_R$  и  $\sigma_R$  путем подбора методом наименьших квадратов таким образом, чтобы  $\ln A_{Ri} = \sigma_R Q^{-1} \left(\frac{P_i}{P_R}\right) + m_R$  для всех значений i. Подбор методом наименьших квадратов можно определить с использованием метода "Поэтапная процедура для аппроксимации

можно определить с использованием метода "Поэтапная процедура для аппроксимации дополнительного интегрального распределения посредством логарифмически нормального дополнительного интегрального распределения", описанного в Рекомендации МСЭ-R P.1057.