Международный союз электросвязи

Рекомендация МСЭ-R М.1851-1 (01/2018)

Математические модели диаграмм направленности антенн радиолокационных систем радиоопределения для использования при анализе помех

Серия М

Подвижные службы, служба радиоопределения, любительская служба и относящиеся к ним спутниковые службы

Чеждународный оюз

Предисловие

Роль Сектора радиосвязи заключается в обеспечении рационального, справедливого, эффективного и экономичного использования радиочастотного спектра всеми службами радиосвязи, включая спутниковые службы, и проведении в неограниченном частотном диапазоне исследований, на основании которых принимаются Рекомендации.

Всемирные и региональные конференции радиосвязи и ассамблеи радиосвязи при поддержке исследовательских комиссий выполняют регламентарную и политическую функции Сектора радиосвязи.

Политика в области прав интеллектуальной собственности (ПИС)

Политика МСЭ-R в области ПИС излагается в общей патентной политике МСЭ-Т/МСЭ-R/ИСО/МЭК, упоминаемой в Приложении 1 к Резолюции МСЭ-R 1. Формы, которые владельцам патентов следует использовать для представления патентных заявлений и деклараций о лицензировании, представлены по адресу: http://www.itu.int/ITU-R/go/patents/en, где также содержатся Руководящие принципы по выполнению общей патентной политики МСЭ-Т/МСЭ-R/ИСО/МЭК и база данных патентной информации МСЭ-R.

	Сарии Ракомениемий МСЭ-Р							
	(Представлены также в онлайновой форме по адресу: <u>http://www.itu.int/publ/R-REC/en</u> .)							
Серия	Название							
BO	Спутниковое радиовещание							
BR	Запись для производства, архивирования и воспроизведения; пленки для телевидения							
BS	Радиовещательная служба (звуковая)							
BT	Радиовещательная служба (телевизионная)							
F	Фиксированная служба							
Μ	Подвижные службы, служба радиоопределения, любительская служба и относящиеся к ним спутниковые службы							
Р	Распространение радиоволн							
RA	Радиоастрономия							
RS	Системы дистанционного зондирования							
S	Фиксированная спутниковая служба							
SA	Космические применения и метеорология							
SF	Совместное использование частот и координация между системами фиксированной спутниковой службы и фиксированной службы							
SM	Управление использованием спектра							
SNG	Спутниковый сбор новостей							
TF	Передача сигналов времени и эталонных частот							
V	Словарь и связанные с ним вопросы							

Примечание. – Настоящая Рекомендация МСЭ-R утверждена на английском языке в соответствии с процедурой, изложенной в Резолюции МСЭ-R 1.

> Электронная публикация Женева, 2018 г.

© ITU 2018

Все права сохранены. Ни одна из частей данной публикации не может быть воспроизведена с помощью каких бы то ни было средств без предварительного письменного разрешения МСЭ.

РЕКОМЕНДАЦИЯ МСЭ-В М.1851-1

Математические модели диаграмм направленности антенн радиолокационных систем радиоопределения для использования при анализе помех

(2009-2018)

Сфера применения

В настоящей Рекомендации описываются диаграммы направленности антенн радиолокационных систем радиоопределения, которые следует использовать для анализа единичных и совокупных помех. В зависимости от ширины луча антенны по уровню 3 дБ и пикового уровня первого бокового лепестка можно выбрать верное множество уравнений как для диаграммы направленности по азимуту, так и для диаграммы направленности по углу места. Определяются как пиковая диаграмма направленности – для единичного источника помех, так и усредненная диаграмма направленности – для нескольких источников помех.

Ключевые слова

Диаграммы направленности антенн, распределение тока, поле облучения, уравнения для диаграммы пиковой и усредненной маски

Сокращения/глоссарий

ADP Antenna directivity pattern ДНА Диаграмма направленности антенны

Соответствующие Рекомендации МСЭ-R

Рекомендации МСЭ-R F.699, МСЭ-R F.1245, МСЭ-R М.1638, МСЭ-R М.1652, МСЭ-R М.1849

Ассамблея радиосвязи МСЭ,

учитывая,

что необходима математическая модель обобщенных диаграмм направленности антенн в целях проведения анализа помех для случая отсутствия конкретной диаграммы направленности радиолокационных систем радиоопределения,

рекомендует,

1 в случае наличия диаграмм направленности антенны и/или уравнений диаграммы направленности, применимых к радиолокационной(ым) системе(ам) в других Рекомендациях МСЭ-R, касающихся характеристик радиолокационных систем радиоопределения, применять эти диаграммы направленности и/или уравнения диаграмм направленности антенн;

2 в случае отсутствия информации относительно диаграмм направленности антенн рассматриваемой радиолокационной системы радиоопределения, для целей анализа помех использовать одну из математических моделей эталонной антенны, представленных в Приложении 1.

Приложение 1

Математические модели диаграмм направленности антенн радиолокационных систем радиоопределения для использования при анализе помех

1 Введение

Обобщенная математическая модель диаграмм направленности антенн радиолокационных систем радиоопределения необходима в случае, если такие диаграммы направленности не определены в Рекомендациях МСЭ-R, применимых к анализируемой радиолокационной системе радиоопределения. Обобщенные модели диаграмм направленности антенн могут использоваться при анализе одиночной и множественных помех, таких как создаваемые другими радиолокационными системами и системами связи.

В настоящей Рекомендации описываются диаграммы направленности антенн радиолокационных систем радиоопределения, которые следует использовать для анализа единичных и совокупных помех. При наличии сведений о ширине луча антенны и пиковом уровне первого бокового лепестка можно выбрать верное множество уравнений как для диаграммы направленности по азимуту, так и для диаграммы направленности по углу места.

В таблице 1 представлены диапазоны параметров исследуемых антенн, полученные из Рекомендаций МСЭ-R.

Параметр антенны	Единица измерения	Описание	Минимальное значение	Максимальное значение	
Частоты передачи и приема	МГц		420	33 400	
Тип антенны		Всенаправленная антенна, директорная антенна, параболический отражатель, фазированная решетка			
Тип луча – наиболее распространенный		Веерный, иглообразный, косеканс-квадрат			
Усиление передающей и приемной антенны	дБи		25,6	54	
Ширина луча по углу места	Градусы	Иглообразный луч	0,25	5,75	
(-3дБ)		Косеканс-квадрат (CSC ²) (уравнение (12) и таблица 4)	3,6 (θ ₃) 20 (θ _{Max})	3,6 (θ ₃) 44 (θ _{Max})	
Ширина луча по азимуту (-3дБ)	Градусы	Иглообразный луч	0,4	5,75	
Пределы сканирования по углу места	Градусы		-60	+90	
Пределы сканирования по азимуту	Градусы		Сектор 30	360	
Уровень первого бокового лепестка ниже пикового уровня главного лепестка	дБ		-35	-15,6	

ТАБЛИЦА 1 Предельные значения параметров изучаемых антенн

Таблица 1 использовалась в качестве основы при построении предлагаемых типов и диаграмм направленности антенны.

2 Математические формулы

2.1 Радиолокационная антенна с узким лучом

2.1.1 Базовая информация

В отсутствие конкретной информации о ширине луча по уровню 3 дБ, форме распределения тока или поле облучения апертуры антенны, но при наличии данных о размере антенны, ширина луча антенны по половинной мощности θ_3 (градусы) приближенно описывается соотношением 70 λ/D , где длина волны λ и диаметр антенны *D* выражены в одних и тех же единицах; см. Рекомендацию МСЭ-R F.699, пункт 4.1 раздела *рекомендует*.

В случае доступности информации о форме распределения тока или поле облучения апертуры антенны можно использовать более точную модель диаграммы направленности антенны.

В целях упрощения анализа распределение тока в антенне рассматривается как функция координат либо по углу места, либо по азимуту. Диаграмма направленности $F(\mu)$ данного распределения определяется с помощью преобразования Фурье конечной длины следующим образом:

$$F(\mu) = \frac{1}{2} \int_{-1}^{+1} f(x) \cdot e^{j\mu x} dx,$$
 (1)

где:

f(x): относительная форма распределения поля, см. таблицу 2 и рисунок 1;

$$\mu$$
: содержится в нижеследующей таблице = $\pi \left(\frac{l}{\lambda}\right) \sin(\alpha);$

- *l*: общая длина апертуры;
- λ: длина волны;
- ω: угол ориентации (сканирования) луча в вертикальной или горизонтальной плоскости относительно нормали апертуры;
- θ: угол между направлением на рассматриваемую точку и нормалью апертуры;
- α : угол между направлением на рассматриваемую точку и направлением угла ориентации ($\alpha = \theta \omega$);
- *x* : нормализованное расстояние вдоль апертуры $-1 \le x \le 1$;
- *j* : обозначение комплексного числа.

Маска полярной диаграммы направленности антенны

Предлагаемые теоретические диаграммы направленности для антенн с равномерным фазовым распределением излучения представлены в таблице 2.

Предлагаемые теоретические диаграммы направленности для фазированных антенных решеток представлены в пункте 7 с учетом конкретного влияния боковых лепестков, появляющегося при больших углах сканирования ω .

Параметры и формулы для определения диаграмм направленности антенны (ДНА), представленные в таблице 2 (и, следовательно, в связанных с ней таблице 3 и рисунках), верны только для случая, когда амплитуда поля на ребре апертуры антенны равна нулю и находится в пределах границ главного лепестка и первых двух боковых лепестков ДНА.

При других значениях амплитуды поля на ребре апертуры антенны форма ДНА и ее параметры могут существенно отличаться от теоретических, представленных в настоящей Рекомендации.

В отсутствие любой иной информации можно рассмотреть возможность использования упрощенной диаграммы направленности антенны, согласующейся с теоретическим главным лепестком и маской в других направлениях, для исследований совместного использования частот и совместимости с другими радиолокационными системами. Для проведения таких исследований рекомендуется использовать пиковые или усредненные маски соответственно для единичного источника помех или нескольких источников помех. Маска отклоняется в точке разрыва от теоретической диаграммы и снижается к боковым лепесткам к минимальному уровню маски, с тем чтобы отобразить дальние боковые лепестки и задние лепестки антенны, как описано в пункте 2.1.3.

В случае наличия реальных диаграмм направленности антенны следует перевести в цифровую форму и использовать эти диаграммы.

Уравнения диаграмм направленности и соответствующих параметров антенны для различных форм распределения поля апертуры антенны представлены в таблице 2.

ТАБЛИЦА 2

Теоретические параметры направленности антенны

Относительная форма распределения поля ƒ(x), где −1 ≤ x ≤ 1	Диаграмма направленности F(µ)	Ширина луча по уровню половинной мощности Өз (градусы)	μ как функция θ3	Уровень первого бокового лепестка ниже пикового значения главного лепестка (дБ)	Номер уравнения
Равномерное значение 1	$\frac{\sin{(\mu)}}{\mu}$	$50,8\left(\frac{\lambda}{l}\right)$	$\frac{\pi \cdot 50, 8 \cdot \sin{(\theta)}}{\theta_3}$	-13,2	(2)
$COS(\pi^*x/2)$	$\frac{\pi}{2} \left[\frac{\cos\left(\mu\right)}{\left(\frac{\pi}{2}\right)^2 - \mu^2} \right]$	$68,8\left(\frac{\lambda}{l}\right)$	$\frac{\pi \cdot 68, 8 \cdot \sin(\theta)}{\theta_3}$	-23	(3)
$\cos^2(\pi^* x/2)$	$\frac{\pi^2}{2 \cdot \mu} \left[\frac{\sin(\mu)}{(\pi^2 - \mu^2)} \right]$	$83,2\left(\frac{\lambda}{l}\right)$	$\frac{\pi \cdot 83, 2 \cdot \sin{(\theta)}}{\theta_3}$	-32	(4)
$\cos^3(\pi^* x/2)$	$\frac{3 \cdot \pi \cdot \cos\left(\mu\right)}{8} \left[\frac{1}{\left(\frac{\pi}{2}\right)^2 - \mu^2} - \frac{1}{\left(\frac{3 \cdot \pi}{2}\right)^2 - \mu^2} \right]$	$95\left(\frac{\lambda}{l}\right)$	$\frac{\pi \cdot 95 \cdot \sin{(\theta)}}{\theta_3}$	-40	(5)
$\cos^4(\pi^* x/2)$	$\frac{3\pi^4 \sin(\mu)}{2\mu(\mu^2 - \pi^2)(\mu^2 - 4\pi^2)}$	106 $\left(\frac{\lambda}{l}\right)$	$\frac{\pi \cdot 106 \cdot \sin{(\theta)}}{\theta_3}$	-47	(6)

 θ_3 – ширина луча по уровню половинной мощности антенны (градусы) 3 дБ. Относительные формы функций распределения поля f(x), определенные в таблице 2, графически отображены на рисунке 2.

РИСУНОК 2 Распределения поля в апертуре антенны

При условии что известна ширина луча по уровню половинной мощности θ₃, значение μ может быть переопределено как функция ширины луча антенны по уровню половинной мощности. Это

sin(θ)

постоянным

выполняется путем замены количественного значения $\left(\frac{\iota}{\lambda}\right)$ в выражении $\mu = \tau$

значением, которое определяется относительной формой распределения поля, деленным на значение ширины луча по уровню половинной мощности θ_3 , согласно таблице 2. Эти постоянные значения, равные 50,8; 68,8; 83,2, 95 и 106 и показанные в таблице 2, могут быть выведены, если приравнять уравнение для $F(\mu) \kappa -3$ дБ и найти решение для угла θ .

На рисунке 3 показаны диаграммы направленности антенн различной линейной апертурой для функций равномерного распределения поля, а также распределения поля типа косинус (COS), косинус-квадрат (COS²), косинус-куб (COS³) и косинус в четвертой степени (COS⁴). Поскольку диаграммы являются математически симметричными, они были частично отражены на рисунке. Для сравнения: ширина луча по уровню 3 дБ для всех диаграмм составляет 6,0°, что означает различные соотношения λ/l .

2.1.3 Процедура определения маски

На основе рисунка 3, выше, уравнения маски выводятся с использованием кривой, соответствующей пиковым уровням боковых лепестков антенны. По результатам сравнения интегралов теоретических и предлагаемых диаграмм маски было выявлено, что разница между пиковой и усредненной мощностью в срезе одной главной плоскости составляет примерно 4 дБ. Применяются следующие определения:

- преобразовать уравнения (2)–(6) в дБ, используя 20*log₁₀ (абсолютное значение (диаграмма направленности по полю));
- нормализовать коэффициенты усиления диаграмм направленности. Равномерное распределение поля не требует нормализации, для распределения поля типа косинус вычитается –3,92 дБ, для распределения поля типа косинус-квадрат вычитается –6,02 дБ, для распределения поля типа косинус-куб вычитается –7,44 дБ и для распределения поля типа косинус в четвертой степени вычитается –8,52 дБ;
- для построения маски используется теоретическая диаграмма направленности из таблицы 2, как указано в первых двух шагах, вплоть до точки разрыва, определяемой либо пиковой, либо усредненной диаграммой направленности, в соответствии с требованием. После точки разрыва применяется диаграмма маски, указанная в таблице 3;
- маска пиковой диаграммы это диаграмма направленности антенны, которая обходит боковые лепестки. Она используется в случае источника одиночной помехи;
- маска усредненной диаграммы это диаграмма направленности антенны, которая аппроксимируется интегралом теоретической диаграммы направленности. Она используется в случае источников совокупной множественной помехи;
- точка разрыва маски пиковой диаграммы это точка на амплитуде диаграммы (дБ) ниже максимального значения коэффициента усиления, в которой форма диаграммы отклоняется от теоретической в диаграмму пиковой маски, как показано в таблице 3;

- точка разрыва маски усредненной диаграммы это точка на амплитуде диаграммы (дБ) ниже максимального значения коэффициента усиления, в которой форма диаграммы отклоняется от теоретической в диаграмму усредненной маски, как показано в таблице 3;
- θ₃ это ширина луча антенны по уровню 3 дБ (градусы);
- θ это угол (градусы) в срезе любой главной плоскости либо по углу места (вертикальная плоскость), либо по азимуту (горизонтальная плоскость);
- усредненная маска это пиковая маска минус примерно 4 дБ. Следует отметить, что точки разрыва пиковой диаграммы отличаются от точек разрыва усредненной диаграммы.

В таблице 3 показаны уравнения, которые следует использовать для расчетов.

Распреде- ление поля	Уравнение маски за точкой разрыва диаграммы, в которой маска отклоняется от теоретической диаграммы (дБ)	Точка разрыва пиковой диаграммы, в которой маска отклоняется от теоретической диаграммы (дБ)	Точка разрыва усредненной диаграммы, в которой маска отклоняется от теоретической диаграммы (дБ)	Постоянная величина, добавляемая к пиковой диаграмме для преобразова- ния ее в усредненную маску (дБ)	Минима- льный уровень маски (дБ)	Номер уравне- ния
Равномерное	$-8,584 \cdot \ln \left(2,876 \cdot \frac{ \theta }{\theta_3}\right)$	-5,75	-12,16	-3,72	-30	(7)
COS	$-17,51 \cdot \ln\left(2,33 \cdot \frac{ \theta }{\theta_3}\right)$	-14,4	-20,6	-4,32	-50	(8)
COS^2	$-26,882 \cdot \ln\left(1,962 \cdot \frac{ \theta }{\theta_3}\right)$	-22,3	-29,0	-4,6	-60	(9)
COS ³	$-35,84 \cdot \ln\left(1,756 \cdot \frac{ \theta }{\theta_3}\right)$	-31,5	-37,6	-4,2	-70	(10)
\cos^4	$-45,\!88 \cdot \ln\left(1,\!56 \cdot \frac{\left \theta\right }{\theta_3}\right)$	-39,4	-42,5	-2,61	-80	(11)

ТАБЛИЦА 3

Уравнения для диаграммы теоретической пиковой и усредненной маски

Функция ln() – это функция натурального логарифма. Пример точки разрыва представлен на рисунке 4.

Пример точки разрыва

2.2 Радиолокационная антенна с косекансно-квадратичной угломестной диаграммой направленности

Диаграмма типа косеканс-квадрат является частным случаем. Мощность (не напряженность поля) описывается следующим уравнением:

$$G(\theta) = G(\theta_1) \cdot \left(\frac{\text{CSC}(\theta)}{\text{CSC}(\theta_1)}\right)^2, \qquad (12)$$

где:

- $G(\theta)$: диаграмма типа косеканс-квадрат между углами θ_1 и θ_{Max} ;
- $G(\theta_1)$: коэффициент усиления диаграммы в θ_1 ;
 - θ₁: ширина луча антенны по уровню половинной мощности в точке начала диаграммы типа косеканс-квадрат = θ₃;
- θ_{Max}: максимальный угол, при котором заканчивается диаграмма типа косеканс-квадрат;
 - θ : угол места (градусы);
 - θ₃: ширина луча антенны по уровню половинной мощности (градусы).

Коэффициент усиления усредненной диаграммы направленности антенны для диаграммы типа косеканс-квадрат не учитывается. Он должен использоваться для случая одного или нескольких источников помех. Косекансная диаграмма направленности применяется так, как показано в таблице 4.

ТАБЛИЦА 4

Уравнения диаграммы направленности типа косеканс-квадрат

Уравнение диаграммы типа косеканс-квадрат	Условие	Номер уравнения
$\frac{\sin(\mu)}{\mu}; \ \mu = (\pi \cdot 50, 8 \cdot \sin(\theta)) / \theta_3$	$\frac{-\theta_3}{0,88} \le \theta \le +\theta_3$	(13)
$G(heta_1) \cdot \left(rac{ ext{CSC}(heta)}{ ext{CSC}(heta_1)} ight)^2$	$+\theta_3 \le \theta \le \theta_{Max}$	(14)
Минимальный уровень косекансной диаграммы (пример = -55 дБ)	$\theta_{Max} \leq \theta \leq \theta_{90}$	(15)
$G(\theta_1) = \frac{\sin\left(\frac{\pi \cdot 50, 8 \cdot \sin(\theta_1)}{\theta_3}\right)}{\frac{\pi \cdot 50, 8 \cdot \sin(\theta_1)}{\theta_3}}$	$\theta_1 = \theta_3$	(16)

Следует отметить, что $G(\theta_1) \cdot \left(\frac{\text{CSC}(\theta)}{\text{CSC}(\theta_1)}\right)^2$ относится к амплитуде диаграммы направленности по мощности, а $\frac{\sin(\mu)}{\mu}$ и $G(\theta_1) = \frac{\sin\left(\frac{\pi \cdot 50, 8 \cdot \sin(\theta_1)}{\theta_3}\right)}{\frac{\pi \cdot 50, 8 \cdot \sin(\theta_1)}{0}}$ относятся к "диаграмме направленности $F(\mu)$ ",

амплитуде поля, являющейся квадратом амплитуды мощности. Решением может быть запись $(\pi \cdot 50.8 \cdot \sin(\theta_{\star}))$

.

выражений в виде
$$\left(\frac{\sin(\mu)}{\mu}\right)^2$$
 и $G(\theta_1) = \frac{\sin\left(\frac{\pi \cdot 50, 5 \cdot \sin(\theta_1)}{\theta_3}\right)}{\frac{\pi \cdot 50, 8 \cdot \sin(\theta_1)}{\theta_3}}$

Графическое описание диаграмм направленности приведено на нижеследующих рисунках.

РИСУНОК 5

Зона действия квадратично-косекансного луча для поискового радара

2.3 Теоретические диаграммы и маски для различных диаграмм направленности антенны

Пример полярной диаграммы направленности антенны, пиковая и усредненная огибающая для равномерного распределения поля

Диаграмма направленности антенны, пиковая и усредненная огибающая для косинусоидального распределения поля

Диаграмма направленности антенны, пиковая и усредненная огибающая для распределения поля типа косинус-куб

Диаграмма направленности антенны, пиковая и усредненная огибающая для распределения мощности типа косинус в четвертой степени

РИСУНОК 12

Огибающая диаграмма направленности антенны типа CSC²

3 Выбор диаграммы направленности антенны

Предлагаемый метод выбора диаграммы направленности антенны основывается на информации о ширине луча по половинному уровню мощности и пиковом уровне боковых лепестков. Такой порядок выбора определен в таблице 5 с учетом информации о половинном уровне мощности.

Рек. МСЭ-К М.1851-1

ТАБЛИЦА 5

Таблица выбора диаграммы направленности

Диапазон уровня первого бокового лепестка ниже нормализованного пикового значения главного лепестка (дБ)	Возможный тип распределения поля антенны и косинус, возведенный в степень <i>п</i>	Номер уравнения для теоретической диаграммы	Номер уравнения для маски	
От 13,2 до < 20	Равномерное	(2)	(7)	
От 20 до < 30	n = 1	(3)	(8)	
От 30 до < 39	n=2	(4)	(9)	
От 39 до <45	<i>n</i> = 3	(5)	(10)	
≥45	n = 4	(6)	(11)	

4 Сравнение диаграмм направленности антенны

Одна из математических моделей для диаграммы направленности антенны радиолокационной системы радиоопределения, которая использовалась при анализе помех, представлена в Рекомендации МСЭ-R М.1652. Она содержит уравнения для нескольких диаграмм как функции коэффициента усиления антенны. Сравнение моделей, представленных в этой Рекомендации, и диаграмм для радара С, представленных в Рекомендации МСЭ-R М.1638-0, показывает, что диаграмма Рекомендации МСЭ-R М.1652 не является оптимальной. Как показано на рисунке 13, диаграмма направленности Рекомендации МСЭ-R М.1652 дает значительно завышенные оценки коэффициента усиления за пределами линии прицеливания антенны (0°).

Следует также отметить, что уравнения, определенные в Рекомендации МСЭ-R F.699, завышают уровни боковых лепестков для некоторых радиолокационных систем; эти уравнения не были предназначены для радиолокационных систем.

Рек. МСЭ-К М.1851-1

РИСУНОК 13

Сравнение диаграмм направленности антенны

5 Аппроксимирование трехмерных (3D) диаграмм направленности

В качестве инструментов анализа методом моделирования могут использоваться контурные графики. Трехмерная (3D) диаграмма направленности антенны может быть легко аппроксимирована. Это осуществляется путем умножения срезов напряжения в горизонтальной и вертикальной главных плоскостях. Для этого диаграмма направленности в вертикальной главной плоскости помещается в центральную колонку квадратной матрицы, и все остальные элементы приравниваются к нулю. Диаграмма в горизонтальной главной плоскости помещается в центральный ряд квадратной матрицы, и все остальные элементы приравниваются к нулю. Диаграмма в горизонтальной главной плоскости помещается в центральный ряд квадратной матрицы, и все остальные элементы приравниваются к нулю. Выполняется взаимное умножение матриц и после этого – построение графика. Следует обратить внимание на то, что все диаграммы направленности должны быть нормализованы.

Уравнение для расчета трехмерной диаграммы направленности задается следующим образом:

$$P_{i,h} = 20 \log \left[\sum_{k=0}^{N} \left| H_{k,i} V_{h,k} \right| \right], \tag{17}$$

где матрицы для вертикальной и горизонтальной плоскости, в вольтах, определяются уравнениями (18) и (19).

Диаграмма направленности в вертикальной плоскости определяется следующим образом:

	0	 0	El_1	0	 0	
	0	 0	El_2	0	 0	
		 0	El_3	0	 	
Вертикальная матрица (V _{h,k}) =		 			 	(18)
	0	 0	El_{N-1}	0	 0	
	0	 0	El_N	0	 0	

Диаграмма направленности в горизонтальной плоскости определяется следующим образом:

Горизонтальная матрица (
$$H_{k,i}$$
) = $\begin{pmatrix} 0 & \dots & \dots & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & 0 & 0 \\ Az_1 & Az_2 & & Az_{N-1} & Az_N \\ 0 & 0 & \dots & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & 0 \end{pmatrix}$ (19)

На рисунках 14 и 15 представлен пример трехмерной диаграммы направленности антенны.

РИСУНОК 14

M.1851-14

Рек. МСЭ-К М.1851-1

РИСУНОК 15

Пример трехмерного графика относительного изменения азимута и угла места диаграммы антенны, равномерное распределение поля в прямоугольной апертуре, ослабление (дБ) в зависимости от внеосевого угла; θ (угол места, градусы) и φ (азимут, градусы)

6 Примеры измеренных диаграмм направленности

На рисунках 16 и 17 показаны примеры измеренных диаграмм направленности радиолокационных антенн (антенн радара) в диапазоне частот 9 ГГц. На оси X представлен азимутальный угол, охватывающий более 360°, а на оси Y – уровень мощности, достигнутый при каждом азимутальном угле. Эта диаграмма мощности должна быть нормирована по отношению к своему максимальному значению или к изотропной антенне, для того чтобы рассматриваться в качестве диаграммы направленности антенны.

Первый анализ таких измеренных диаграмм направленности антенн показывает, что первые боковые лепестки появляются вблизи –30 дБн с заметным наклоном боковых лепестков – это позволяет приблизительно определить, что использовался закон распределения поля в апертуре COS². Теоретический минимальный уровень маски по модели COS² (–60 дБн) представляется в данном случае чересчур низким из-за наличия в этой диаграмме направленности антенны заднего лепестка и задних дифракционных лепестков; соответственно, если это необходимо, рекомендуется по возможности использовать реальные диаграммы направленности антенн вместо теоретических.

Пример графика по измеренным параметрам антенны

Пример графика по измеренным параметрам антенны

На рисунках 18 и 19 представлены еще два примера.

Источник: Statistical Characteristics of Gain and Mutual Gain of Radar Antennas, Project No. SF 010 204, Task 5727, Department of the Navy 15 September, 1963

Диаграмма направленности антенны доплеровского метеорологического радара с уровнем первого бокового лепестка 25 дБ и коэффициентом обратного излучения 60 дБ

Источник: USA Federal Meteorological Handbook No. 11, December 2005 Part B, FCM-H11B-2005

7 Диаграммы направленности для фазированных антенных решеток

Для расчета нормированной диаграммы направленности для линейной эквидистантной фазированной антенной решетки можно воспользоваться следующим уравнением:

$$g(\theta) = f(\theta) \cdot \frac{1}{N} |AF(\theta)|^2, \qquad (20)$$

где:

- *g*: нормированная диаграмма направленности для линейной эквидистантной антенной решетки;
- *f*: нормированная парциальная диаграмма направленности для базовых излучающих элементов линейной эквидистантной антенной решетки;
- N: количество базовых излучающих элементов;
- *AF* : множитель линейной эквидистантной антенной решетки; Ψ (радианы):

$$AF(\theta) = \frac{\sin\left(\frac{N\Psi}{2}\right)}{\sin\left(\frac{\Psi}{2}\right)}$$
(21)

при

$$\Psi = 2\pi (d/\lambda)(\sin(\theta) - \sin(\omega)), \qquad (22)$$

где:

- *d*: равное расстояние между соседними единообразными базовыми излучающими элементами;
- λ: длина волны на рассматриваемой частоте;
- ω: угол электронного управления лучом;
- θ: внеосевой угол.

Благодаря специфике фазированных антенных решеток имеется возможность электронного управления главным лепестком диаграммы направленности антенны в диапазоне $\pm 90^{\circ}$ от опорного направления механической антенны. При больших углах сканирования ω следует учитывать конкретное влияние боковых лепестков в диаграммах направленности антенн, выражающееся в существенном увеличении главного лепестка и нарушении симметрии (см. рисунок 22). На самом деле максимальное значение главного лепестка уменьшается сообразно $\cos(\omega)$ и далее сообразно парциальной диаграмме направленности излучающих элементов решетки. Это приводит к расширению основного луча, потерям максимального усиления и, следовательно, к росту дальних боковых лепестков. При значениях ω в диапазоне между $\pm 60^{\circ}$ и $\pm 90^{\circ}$ от опорного направления

механической антенны искажения диаграммы направленности столь велики, что ее использование не представляется возможным (см. рисунок 24). Практические значения ω находятся в диапазоне от 0° до ±60° от опорного направления механической антенны. Кроме того, если расстояние между базовыми излучающими элементами решетки больше $\lambda/2$, то даже при значениях ω в диапазоне менее ±60° от опорного направления механической антенны могут появиться побочные дифракционные максимумы (см. рисунок 23). И даже если расстояние между базовыми излучающими элементами решетки равно $\lambda/2$, боковые лепестки побочных дифракционных максимумов главного лепестка, расположенные на –90° и +90° от опорного направления механической антенны, искажают диаграмму направленности решетки (см. рисунок 24).

Теоретическая диаграмма направленности линейной эквидистантной антенной решетки из 30 излучающих элементов с расстоянием между излучателями, равным λ/2 (синяя кривая), и диаграммой излучения типа косинус-квадрат (красная кривая), ориентированной по опорному направлению

Рек. МСЭ-К М.1851-1

