RECOMMENDATION ITU-R F.637-3*

Radio-frequency channel arrangements for fixed wireless systems operating in the 23 GHz band

(Question ITU-R 108/9)

(1986-1992-1994-1999)

The ITU Radiocommunication Assembly,

considering

a) that the band 21.2-23.6 GHz is allocated to the fixed and other services;

b) Resolution 525 of the World Administrative Radio Conference for Dealing with Frequency Allocations in Certain Parts of the Spectrum (Malaga-Torremolinos, 1992);

c) that both analogue and digital systems are in use in this band;

d) that the band is used for differing applications by various administrations and that these applications may require different radio-frequency (RF) channel arrangements;

e) that several types of service with various capacities may be in simultaneous use in this frequency band;

f) that the band allocated to each service or even to each administration may vary from one country to another;

g) that the applications in this frequency band may require differing channel bandwidth;

h) that a high degree of compatibility between RF channels of different arrangements can be achieved by selecting all channel centre frequencies from a homogeneous basic pattern,

recommends

1 that RF channel arrangements for the band 21.2-23.6 GHz should be based on a homogeneous pattern;

2 that the homogeneous pattern with a preferred 3.5 MHz interval be defined by the relation:

$$f_p = f_r + 3.5 + 3.5 p$$

where:

 $1 \le p \le 685$

 f_r : reference frequency of the homogeneous pattern;

^{*} Radiocommunication Study Group 9 made editorial amendments to this Recommendation in 2002, in accordance with Resolution ITU-R 44.

3

that the homogeneous pattern with a preferred 2.5 MHz interval be defined by the relation:

$$f_p = f_r + 4 + 2.5 \, p$$

where:

 $1 \le p \le 959$

 f_r : reference frequency of the homogeneous pattern;

4 that the reference frequency of the homogeneous pattern for international connections should be:

$$f_r = 21196$$
 MHz

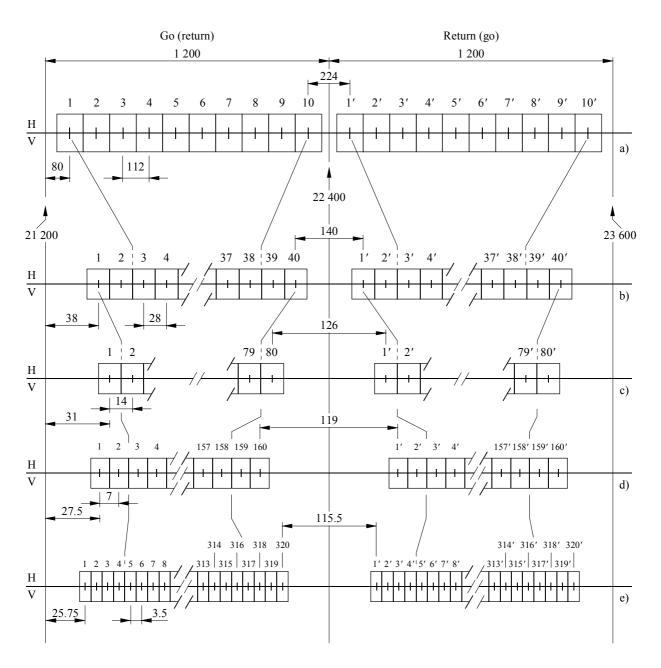
other reference frequencies may be agreed by the administrations concerned;

5 that all go channels should be in one half of any bidirectional band, and all return channels in the other;

6 that the channel spacings, XS, the centre gap, YS, and the distance to the lower and upper band limits, Z_1S and Z_2S , should be agreed by the administrations concerned, dependent on the application and channel capacity envisaged (see Recommendation ITU-R F.746 for definitions of XS, YS and ZS).

NOTE 1 – Examples of channel arrangements based on this Recommendation are described in Annexes 1, 2, 3, 4 and 5.

NOTE 2 – Due regard has to be taken that, in certain countries, a 3.5 MHz homogeneous pattern, interleaved by 1.75 MHz from that referred in § 2, is used in conjunction with the main pattern.


ANNEX 1

RF channel arrangements in the band 21.2-23.6 GHz in accordance with *recommends* 2 (United Kingdom)

In the United Kingdom, the use of the band 21.2-23.6 GHz is based on a homogeneous 3.5 MHz frequency pattern. Various channel spacings are accommodated as shown in Fig. 1 and interleaved patterns are also used for the various spacings. In some applications, additional channels can be added in the edge and central guardbands using the homogeneous pattern.

FIGURE 1 Radio-frequency channel arrangements for digital and analogue fixed wireless systems operating in the 21.2-23.6 GHz band (United Kingdom)

(All frequencies in MHz)

Note 1 - The RF channel arrangements of Fig. 1e) are derived by the use of carriers interleaved between those of the homogeneous pattern of *recommends* 2.

0637-01

ANNEX 2

RF channel arrangements in the band 21.2-23.6 GHz in accordance with *recommends* 2 (France)

In France, the use of the band 21.2-23.6 GHz is based on the homogeneous 3.5 MHz frequency pattern as shown in Fig. 2.

The applications are as follows:

– 21.2-22 GHz band (Part A of Fig. 2)

Television picture transmission

In this sub-band, two frequency plans are used as shown in Part A of Fig. 2

– 22-22.5 GHz band (Part B of Fig. 2)

Television picture transmission and telephony or television picture information transmission at 34 Mbit/s

– 22.5-23.065 GHz band (Part C of Fig. 2)

Television picture transmission, telephony or television information transmission at 34 Mbit/s as well as narrow-band type applications such as:

- data transmission below 144 kbit/s,
- additional stereophonic sound channel,
- additional 2 Mbit/s point-to-point system,
- TDMA point-to-multipoint system.

For narrow-band systems, subdivision of each 28 MHz channel, on the basis of 7 MHz, is adopted.

– 23.065-23.5 GHz band (Part D of Fig. 2)

FM and AM tele-distribution applications

- 23.5-23.6 GHz band (Part E of Fig. 2)

Application for non-telephony use.

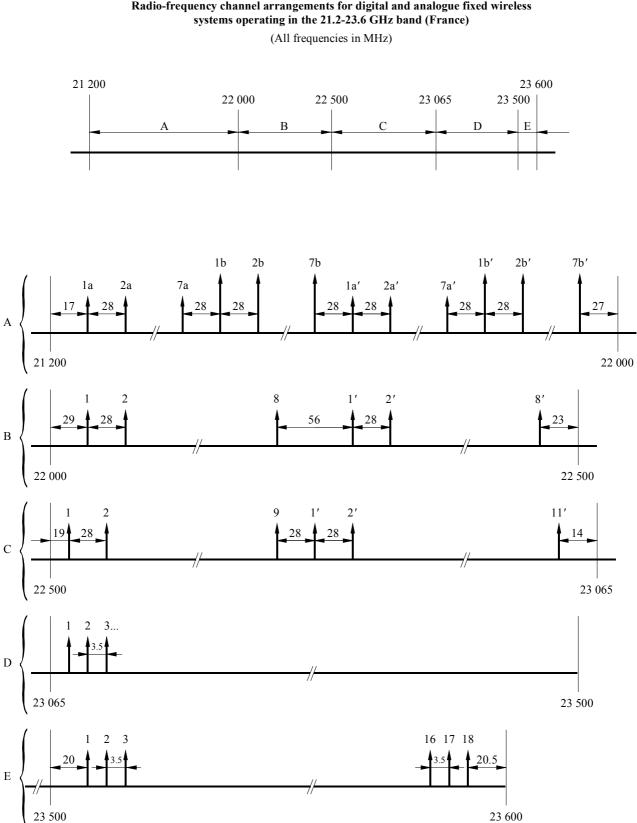


FIGURE 2 Radio-frequency channel arrangements for digital and analogue fixed wireless

0637-02

ANNEX 3

Radio-frequency channel arrangements for some CEPT administrations in the band 22.0-22.6 GHz paired with 23.0-23.6 GHz in accordance with *recommends* 2

An example of radio-frequency channel arrangements in the band 22.0-22.6 GHz paired with 23.0-23.6 GHz for carrier spacings of 112 MHz, 56 MHz, 28 MHz, 14 MHz, 7 MHz and 3.5 MHz is derived as follows:

Let f_0 be the centre frequency of 21 196 MHz;

- f_n be the centre frequency of a radio-frequency channel in the lower half of the band (MHz);
- $f'_{;n}$ be the centre frequency of a radio-frequency channel in the upper half of the band (MHz);

then the frequencies of individual channels are expressed by the following relationships:

a)	for systems	with a	carrier	spacing	of	1	12	MHz:	
----	-------------	--------	---------	---------	----	---	----	------	--

lower half of the band: $f_n = f_0 + 770 + 112 n$ MHz upper half of the band: $f'_{;n} = f_0 + 1778 + 112 n$ MHz

where:

 $n = 1, \dots, 5$

b) for systems with a carrier spacing of 56 MHz:

lower half of the band: $f_n = f_0 + 826 + 56 n$ MHz upper half of the band: $f'_{;n} = f_0 + 1834 + 56 n$ MHz

where:

 $n = 1, \dots, 9$

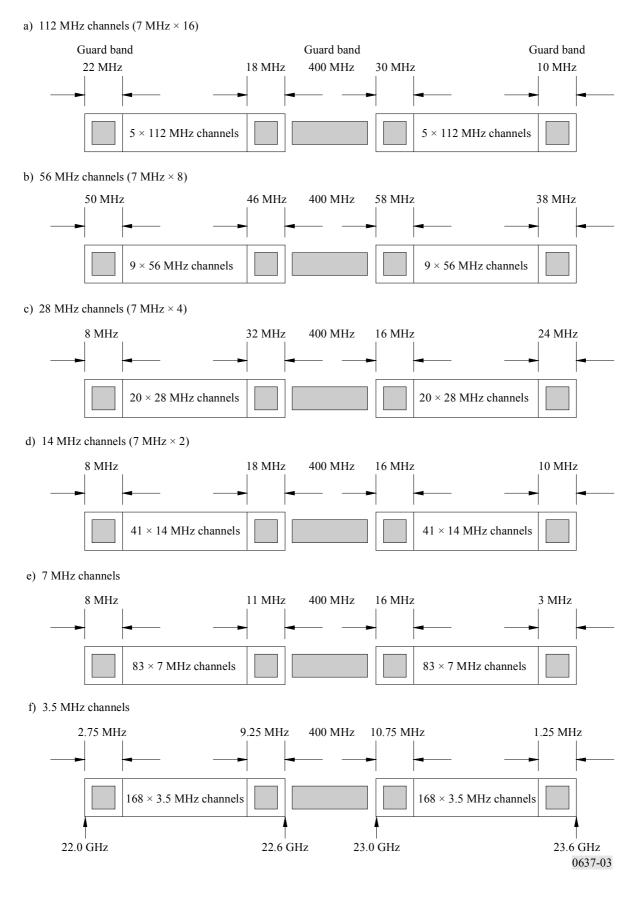
c) for systems with a carrier spacing of 28 MHz:

lower half of the band: $f_n = f_0 + 798 + 28 n$ MHz upper half of the band: $f'_{;n} = f_0 + 1806 + 28 n$ MHz

where:

 $n = 1, \dots 20$

d)	for systems with a carrier	spacing of 14 MHz:		
	lower half of the band:	$f_n = f_0 + 805 + 14 n$	MHz	
	upper half of the band:	$f'_{;n} =$	$f_0 + 1813 + 14 n$	MHz
where:				
	$n = 1, \dots 41$			
e)	for systems with a carrier	spacing of 7 MHz:		
	lower half of the band:	$f_n = f_0 + 808.5 + 7 n$	MHz	
	upper half of the band:	$f'_{;n} =$	$f_0 + 1816.5 + 7 n$	MHz
where:				
	$n = 1, \dots 83$			
f)	for systems with a carrier	spacing of 3.5 MHz:		
	lower half of the band:	$f_n = f_0 + 805 + 3.5 n$	MHz	
	upper half of the band:	$f'_{n} =$	$f_0 + 1813 + 3.5 n$	MHz
where:				
	$n = 1, \dots 168.$			


NOTE 1 – The radio-frequency channel arrangements of a) to f) above use channel centre frequencies f_n and f'; selected from the homogeneous pattern of *recommends* 2.

NOTE 2 – Figure 3 gives occupied spectrum in the 22.0-23.6 GHz band.

Rec. ITU-R F.637-3

FIGURE 3

Radio-frequency channel arrangements in the band 22.0-22.6 GHz paired with 23.0-23.6 GHz

ANNEX 4

Description of the radio-frequency channel arrangements in the band 21.2-23.6 GHz in accordance with *recommends* 3 (North America)

In the United States of America and Canada, the most widespread use of the 21.2-23.6 GHz band is in the 21.8-22.4 GHz and 23.0-23.6 GHz portions for which a frequency pattern with 50 MHz channels has been adopted. The same pattern is being used in the remainder of the 21.2-23.6 GHz band as usage is spreading. Accordingly, a homogeneous pattern is in use, based on *recommends* 3 and given by:

$$f_n = f_r - 21 + 50 n$$

where:

 $n = 1, 2, 3, \dots 48$ f_r (reference frequency) = 21196 MHz.

For two-way operation, the go-return separation is about 1200 MHz. Typical systems in use include digital transmission at data rates between about 1.5 and 8 Mbit/s, and a variety of analogue video systems.

ANNEX 5

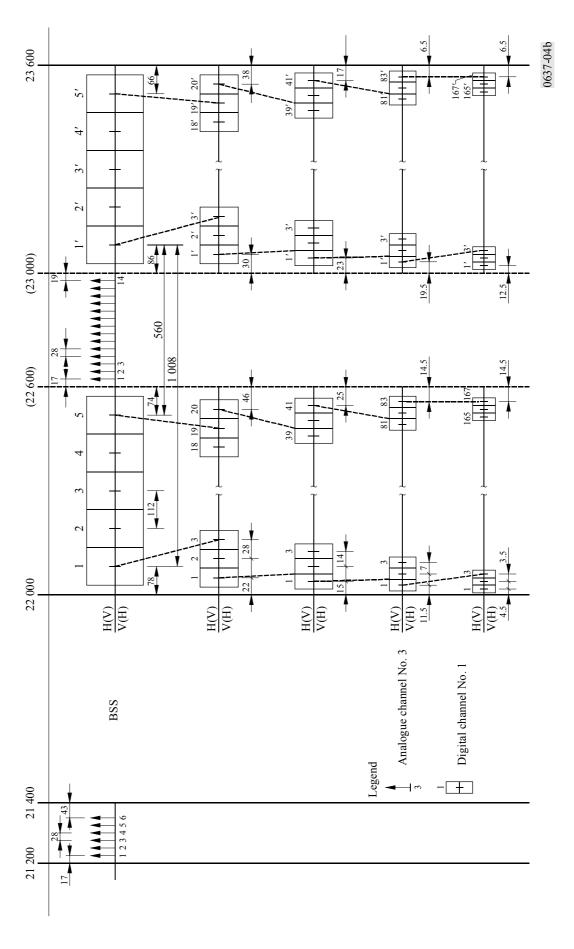
Radio-frequency channel arrangements in the band 21.2-23.6 GHz in accordance with *recommends* 2 (Germany)

Taking into account the fact, that:

- WARC-92 has allocated the band 21.4-22.0 GHz to the broadcasting-satellite service (BSS) on a primary basis in Regions 1 and 3;
- many individual reception units for the BSS are expected to be used and interference from the fixed service (FS) should be minimized;


the operational use of fixed wireless systems in the sub-band 21.4-22.0 GHz should be avoided.

The band plan based on WARC-92 decisions is shown in Fig. 4a.


FIGURE 4a Band plan for the band 21.2-23.6 GHz based on WARC-92 decisions

FS sim TV		Broadcasting- satellite service	FS duplex Go (Return)		FS simplex	FS duj Return	
21.2	21	.4 22	2.0 22	2.6	23	.0	23.6
						0	637-04a

An application of the band plan (Fig. 4a) for analogue and digital fixed wireless systems (2 Mbit/s to 155 Mbit/s) is described in detail in Fig. 4b.

