RECOMENDACIÓN UIT-R F.1102

CARACTERÍSTICAS DE LOS SISTEMAS DE RELEVADORES RADIOELÉCTRICOS EN BANDAS DE FRECUENCIAS SUPERIORES A UNOS 17 GHz

(Cuestión UIT-R 107/9)

(1994)

La Asamblea de Radiocomunicaciones de la UIT,

considerando

- a) que ciertas bandas de frecuencias superiores a unos 17 GHz están atribuidas al servicio fijo y a otros servicios;
- b) que las características de propagación por encima de unos 17 GHz vienen determinadas sobre todo por el desvanecimiento debido a las precipitaciones y la absorción, y sólo se prestan para aplicaciones radioeléctricas de corto alcance;
- c) que las diferentes aplicaciones de las administraciones pueden requerir distintas disposiciones de radiocanales;
- d) que varios servicios con diferentes características de señal y capacidades de transmisión pueden utilizarse simultáneamente en una misma banda de frecuencias;
- e) que las diferentes aplicaciones pueden exigir distintas anchuras de banda de canal,

recomienda

- 1. que en el diseño de los sistemas se tomen en consideración los efectos de la interrupción de la transmisión ocasionada por las precipitaciones, los cuales determinan notablemente la longitud del salto;
- **2.** que las bandas de frecuencias superiores a unos 17 GHz se utilicen para aplicaciones de corto alcance, con lo cual el equipo podrá ser compacto y estar provisto de antenas más pequeñas;
- **3.** que, para permitir la utilización de servicios mixtos y economizar al mismo tiempo espectro, las disposiciones de radiocanales se basen en modelos homogéneos, con arreglo a la Recomendación UIT-R F.746;
- **4.** que puedan aplicarse tanto técnicas de modulación digital como técnicas de modulación analógica de banda ancha;
- **5.** que se haga referencia al anexo 1 a efectos de orientación con respecto al diseño de los sistemas.

ANEXO 1

Características de los sistemas radioeléctricos en bandas de frecuencias superiores a unos 17 GHz

1. Introducción

En las bandas de frecuencias superiores a unos 17 GHz existen algunas atribuciones mundiales al servicio fijo. A dichas frecuencias la interrupción de la transmisión obedece principalmente a desvanecimientos debidos a precipitaciones que duran más de 10 s. De ahí que los parámetros que revisten particular importancia para la realización de tales sistemas sean la disponibilidad y la longitud del trayecto transmisor-receptor (longitud de salto) que pueden conseguirse. En el presente anexo se analizan esos parámetros en relación con los sistemas que se utilizan típicamente en redes de zona locales (LAN – local area networks).

2. Aplicaciones

2.1 Acceso/redes locales

Las bandas de frecuencias por encima de unos 17 GHz se están utilizando principalmente en enlaces de corto alcance. Un equipo radioeléctrico compacto y de gran fiabilidad permite transmitir señales vocales, de datos, vídeo y de datos en banda ancha.

Las principales aplicaciones son las siguientes:

- interconexión de redes de zona local,
- interconexión directa de redes de zona local (IEEE 802.3/Ethernet e IEEE 802.5/Token Ring) con una capacidad de transmisión del orden de 10 Mbit/s,
- enlaces de abonado,
- enlaces digitales de datos de grupo primario de mayor velocidad desde la central terminal a los edificios que albergan los usuarios,
- aplicaciones de telefonía celular,
- interconexión entre centrales de telefonía celular y estaciones de base,
- aplicaciones de socorro,
- utilización de equipo radioeléctrico transportable para establecer enlaces auxiliares en caso de fallo de sistemas de fibra óptica o de otros circuitos terrenales,
- conexión en anillo o punto a punto en la red de acceso SDH.

En el cuadro 1 se clasifican las aplicaciones anteriores.

CUADRO 1

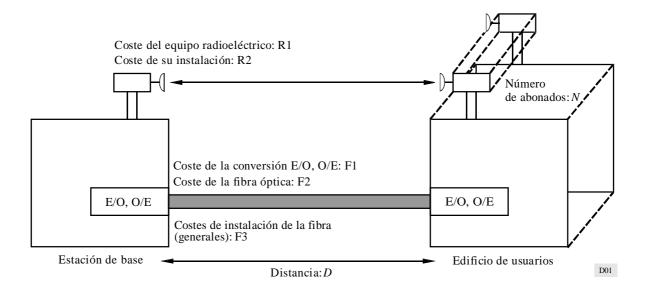
Clasificación de las aplicaciones

	Configuración del enlace físico	Capacidad de transmisión	Contenido de la señal	Longitud del salto
Interconexión de redes de zona local (LAN)	De edificio de usuarios a edifico de usuarios	Del orden de 10 Mbit/s	Datos	Varias decenas de metros a km
Enlace de abonado	De central terminal a edificio de usuarios	N grupos primarios analógicos o digitales (1,5 Mbit/s ó 2 Mbit/s) o capacidad PDH más elevada	Datos o vídeo	Varios km a decenas de km
Aplicaciones de telefonía intercelular	Entre la central telefónica del sistema celular y la estación de base radioeléctrica	1 a 10 Mbit/s	Voz o datos	Varios km a decenas de km
Equipo transportable para operaciones de socorro (véase la nota 1)	Auxiliar para enlaces de fibra óptica	Grupo primario analógico o digital, o capacidad PDH más elevada, o SDH	Voz, datos o vídeo	Varios km a decenas de km
Red de acceso SDH	Anillo/interconexión ADM o extensión de afluente	Jerarquía SDH	Contenedores virtuales (Vc)	Varios km a decenas de km

ADM: Múltiplex de inserción-extracción.

PDH: Jerarquía digital plesiócrona.

SDH: Jerarquía digital síncrona.


Nota 1 – Véase la Recomendación UIT-R F.1105.

2.2 Comparación económica de los radioenlaces y las conexiones de fibra óptica en las redes en bucle local

Un sistema de fibra óptica requiere trabajos de construcción a todo lo largo de la ruta de cable. En cambio, los sistemas radioeléctricos sólo requieren tales trabajos en las estaciones transmisora y receptora. Por esta razón, el coste de un sistema de fibra óptica es tanto mayor cuanto mayor es la distancia entre emplazamientos. En el modelo sencillo que se indica en la fig. 1 se comparan los costes.

FIGURA 1

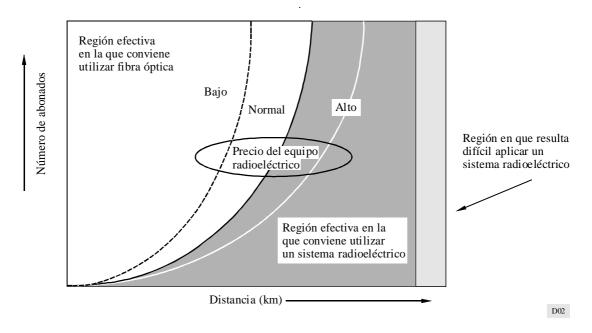
Modelo supuesto

El coste *R* del sistema radioeléctrico viene dado por:

$$R = (R1 + R2) N$$

El coste *F* del sistema de fibra óptica viene dado por:

$$F = F1 N + (F2 + F3) N D$$


En la fig. 2 puede verse el resultado de la comparación de costes. Según esta figura, dado el mismo número de abonados, al aumentar la distancia disminuye el coste del sistema radioeléctrico con respecto a uno de fibra óptica. Asimismo, siendo la distancia la misma, los sistemas radioeléctricos resultan ventajosos cuando el número de abonados es reducido. Además, la zona aplicable en el caso de los sistemas radioeléctricos se amplía considerablemente cuando aumenta la distancia.

Si sólo se toman en consideración los costes, cuanto mayor sea la distancia más se ampliará la zona aplicable del sistema radioeléctrico. No obstante, hay que tener en cuenta el hecho de que la distancia de propagación de los sistemas radioeléctricos que utilizan bandas de frecuencias por encima de unos 17 GHz queda limitada por la atenuación ocasionada por la lluvia. La necesidad de utilizar enlaces de múltiples saltos y corto alcance hace que resulten más interesantes, pues, los sistemas de fibra, pero por regla general los sistemas de múltiples saltos son poco frecuentes en el bucle local. En la práctica se utilizaría una combinación de fibra óptica y transmisión radioeléctrica, según cuál sea el sistema más económico, eficaz y práctico para cada parte de la aplicación.

4

FIGURA 2

Resultados de la comparación económica de los sistemas de fibra óptica y radioeléctricos

2.3 Rapidez de establecimiento

Una de las características de los sistemas radioeléctricos es la rapidez con la cual pueden entrar en servicio. Los sistemas de fibra óptica exigen la instalación de fibras entre los lugares donde deben suministrarse servicios de comunicación, lo cual conlleva largos periodos de construcción hasta que las líneas pueden entrar en servicio. En particular, si el tendido de la fibra óptica es subterráneo, el periodo de construcción aumenta considerablemente en comparación con su tendido en postes. Además en algunos casos no podrá instalarse fibra óptica debido a la imposibilidad de obtener derechos de paso. A ese respecto, un ejemplo bien conocido es la utilización de radioenlaces para facilitar la instalación de sistemas de televisión por cable. No obstante, el plazo de puesta en servicio de los sistemas radioeléctricos es muy breve, ya que basta efectuar instalaciones en los emplazamientos donde hay que suministrar servicios de comunicación. Esto permite establecer circuitos en unas cuantas horas. Aunque la planificación del enlace, la concesión de licencias y los procedimientos de autorización para disponer de emplazamientos aumentan en la práctica el plazo de conexión, éste es bastante más corto que el de un enlace de fibra óptica.

En los sistemas radioeléctricos es necesario confirmar la condición de visibilidad directa. Se están efectuando estudios sobre el empleo de computadores para la confirmación de la visibilidad directa, a fin de preparar bases de datos geográficos y de los edificios, y puede resultar útil arbitrar un procedimiento rápido para el ajuste de las antenas.

La relativa facilidad de redistribución del equipo radioeléctrico es una de sus características interesantes. Los sistemas radioeléctricos transportables son más adecuados para establecer comunicaciones rápidas de emergencia en situaciones de catástrofe, de fallo de enlaces y fibras, etc.

3. Consideraciones relativas a la longitud del salto

Aunque no puede formularse ninguna ley universal que relacione la longitud del salto con la frecuencia, los siguientes parámetros contribuyen a los objetivos de disponibilidad en la longitud del salto:

Atenuación específica en el espacio libre:

- A_0 (dB/km)
- depende de la frecuencia, según la Recomendación UIT-R PN.525.
- Atenuación por absorción específica debida a los gases (O_2 y H_2O):

- A_{α} (dB/km)
- depende de la frecuencia en las gamas de frecuencias relevantes, según la Recomendación UIT-R PN.676.

Ganancia isótropa de antena:

Gi (dB)

constante que depende de la dimensión geométrica de las antenas, sin límite teórico superior pero limitada prácticamente, para permitir una alineación viable del eje de puntería, por las manipulaciones prácticas de la abertura angular del haz principal a 3 dB (normalmente no inferior a 1°).

Esto implica un límite superior práctico de $G \cong 40$ dBi.

Potencia de transmisión:

 $P_T(dBm)$

- relacionada con la tecnología utilizable para la generación/amplificación de la portadora RF y con el requisito de linealidad del formato de modulación.
- Umbral de proporción de bits erróneos (BER):

 P_{Th} (dBm)

- relativo a la BER para la que se define el objetivo de disponibilidad. Este parámetro guarda relación con el factor de ruido del receptor, la velocidad binaria transmitida y la característica de portadora/ruido del formato de modulación.
- Atenuación debida a la lluvia durante el porcentaje de tiempo considerado:

 $R|_{\%}$ (dB)

 estimada, sobre la base de la intensidad de lluvia para el porcentaje de tiempo de indisponibilidad pertinente, de acuerdo con las Recomendaciones UIT-R PN.530 y UIT-R PN.838, con estadísticas tomadas de la Recomendación UIT-R PN.837.

Cabe subdividir en dos grupos los parámetros anteriores (véase la nota 1):

- Una «ganancia de salto» (HG) constante fija, que depende de la implementación:

$$HG = 2Gi + |P_{Th}| + P_T \qquad dB \qquad (1)$$

Una «atenuación del salto» (HA|%), que depende, para un determinado porcentaje de tiempo, de la intensidad de lluvia/frecuencia en la longitud ℓ (km) del salto, como se indica en la Recomendación UIT-R PN.530:

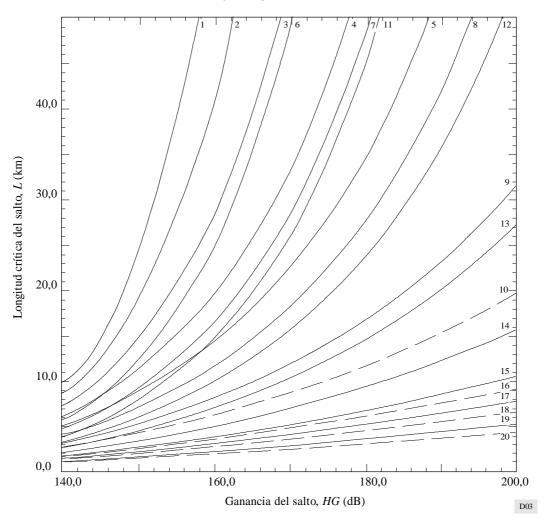
$$HA|_{\%} = R|_{\%} + (A_0 + A_{\alpha}) \ell \qquad dB \qquad (2)$$

Aplicando el método anterior pueden trazarse gráficos similares a los de las figs. 3, 4 y 5 (calculados a manera de ejemplo para las zonas climáticas B, G y K, con la frecuencia y el porcentaje de indisponibilidad como parámetros (U%)), que permiten obtener la longitud máxima del salto en una realización para una determinada frecuencia, zona climática y porcentaje de tiempo.

Nota 1 – En estas hipótesis se pasan por alto las pérdidas de la línea de alimentación, ya que los sistemas radioeléctricos por encima de 17 GHz vienen en general con antenas integradas; si existe una línea de alimentación entre el equipo y la antena, las pérdidas de dicha línea harán disminuir la ganancia del salto (HG).

4. Realizaciones radioeléctricas digitales

Los requisitos de la aplicación, la disponibilidad del espectro, las condiciones de propagación y la tecnología utilizable por encima de unos 17 GHz hacen que las realizaciones del equipo difieran sustancialmente de las que prevalecen por debajo de unos 17 GHz. No obstante, entre ambas no hay una transición abrupta sino gradual, que abarca las bandas de frecuencias de 13 GHz, 15 GHz, 18 GHz y 23 GHz.

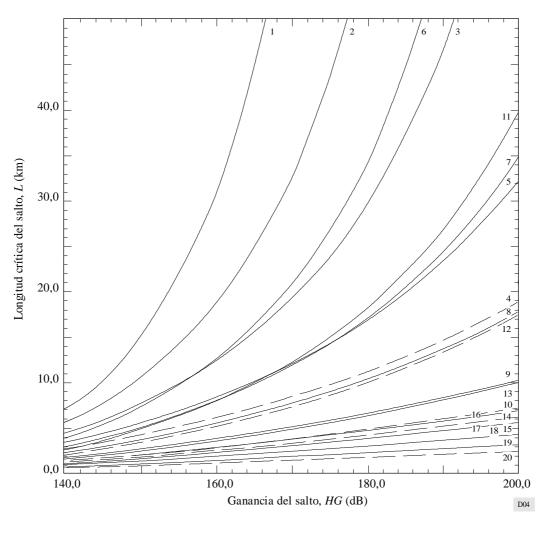

Las características distintivas predominantes de las aplicaciones radioeléctricas digitales por encima de unos 17 GHz son las siguientes:

- una amplia gama de capacidades de transmisión,
- menores eficacias espectrales,
- la división del equipo en una unidad de exteriores consistente en un extremo frontal radioeléctrico conectado a la antena y una unidad de interiores que comprende los subconjuntos en banda de base y, en muchos casos, también los subconjuntos de frecuencia intermedia. Esto permite evitar prácticamente las pérdidas de la línea de alimentación de guiaondas, que podrían ser prohibitivas, y ofrece una gran flexibilidad para el montaje del equipo mediante interconexiones de baja pérdida en banda de base y/o en frecuencia intermedia.

FIGURA 3

Longitud crítica del salto en función de la ganancia del salto para la zona climática B, con polarización horizontal

Ángulo de polarización: 0°

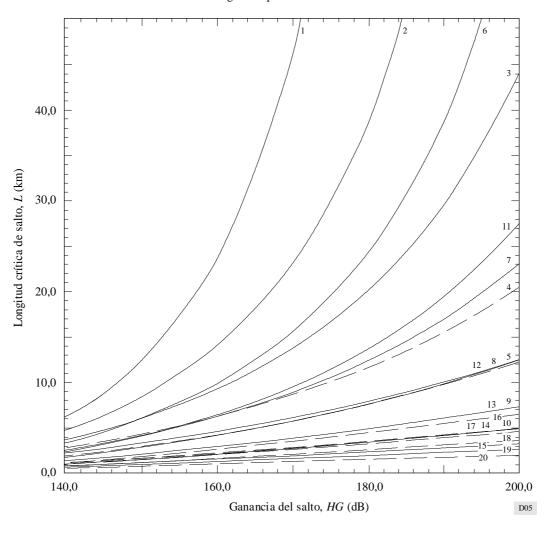


Curva	f(GHz)	U%
1	18	0,1
2	18	0,03
2 3 4 5	18	0,01
4	18	0,003
5	18	0,001
6	28	0,1
6 7	28	0.03
8	28	0.01
9	28	0,003
10	28	0,001
11	38	0.1
12	38	0,03
13	38	0,01
14	38	0,003
15	38	0,001
16	55	0,1
17	55	0,03
18	55	0,01
19	55	0,003
20	55	0,001
U: Indisponibilidad (%).		

FIGURA 4

Longitud crítica del salto en función de la ganancia del salto para la zona climática G, con polarización horizontal

Ángulo de polarización: 0°


Curva	f(GHz)	U%
1	18	0,1
2 3 4 5	18	0,03
3	18	0,01
4	18	0,001
5	18	0,003
6	28	0,1
7	28	0,03
8	28	0.01
9	28	0.001
10	28	0,003
11	38	0.1
12	38	0.03
13	38	0.01
14	38	0.001
15	38	0,003
16	55	0,1
17	55	0,03
18	55	0,01
19	55	0,001
20	55	0,003
77 T 1	., ., .	1 (0/)

U: Indisponibilidad (%).

FIGURA 5

Longitud crítica del salto en función de la ganancia del salto para la zona climática K, con polarización horizontal

Ángulo de polarización: 0°

Curva	f (GHz)	U%
1	18	0,1
2	18	0,03
3	18	0,01
4	18	0,003
2 3 4 5	18	0,001
6	28	0,1
7	28	0,03
8	28	0.01
8 9	28	0,003
10	28	0,001
11	38	0,1
12	38	0,03
13	38	0.01
14	38	0,003
15	38	0,001
16	55	0.1
17	55	0,03
18	55	0.01
19	55	0,003
20	55	0,001
		,
U: Indisponibilidad (%).		

4.1 Alternativas en el diseño

La elección entre las diferentes alternativas a la hora del diseño es un asunto bastante complejo, ya que existe un gran número de interdependencias. No obstante, para simplificar dicha tarea, los criterios de elección pueden subdividirse de varias formas, según cuál sea la optimización perseguida.

Por ejemplo, resulta interesante distinguir entre criterios de calidad de servicio y criterios de facilidad de uso, como se indica en el siguiente cuadro 2.

CUADRO 2

Calidad de servicio	Facilidad de uso	
Calidad de transmisión	Versatilidad de aplicación	
Ganancia del sistema	Facilidad de mantenimiento	
Eficacia espectral	Tamaño y peso	
Eficacia de potencia	Resistencia a las condiciones ambientales	

Llegado el caso, estos criterios de elección pueden reordenarse. Por ejemplo, para una determinada combinación de capacidad de transmisión y calidad de funcionamiento, la elección fundamental en lo que respecta a la calidad de servicio es entre la ganancia del sistema y la eficacia espectral. Cuando existen posibilidades de mejoramiento, tales como la corrección de errores, el subconjunto de criterios de elección se amplía y la flexibilidad del diseño es mayor.

Ciertos criterios adicionales de elección a la hora del diseño pueden pertenecer a ambas categorías. Por ejemplo, el tiempo entre fallos afecta tanto a la calidad de servicio como a la facilidad de uso.

En muchos casos es posible que el usuario avezado deduzca las opciones básicas adoptadas en el diseño basándose en los datos del equipo, pero en otros podrá requerirse información adicional para evaluar cabalmente el equipo considerado.

El diseñador del equipo tiene, por su parte, la difícil tarea de plasmar los objetivos de calidad de transmisión en el correspondiente conjunto de objetivos de diseño del equipo. Esta cuestión se analiza en la Recomendación UIT-T M.2100.

4.2 Procesamiento de la señal de banda de base

Las aplicaciones radioeléctricas en bandas de frecuencia superiores a unos 17 GHz suelen incluir en la unidad de interiores las funciones necesarias de procesamiento de la señal de banda de base.

Esto incluye la multiplexión de grupo con capacidades superiores al grupo primario PDH o las funcionalidades SDH. Es muy corriente incluir funciones de circuito de servicio, pero las realizaciones concretas varían considerablemente.

La corrección de errores se utiliza para mejorar la calidad de transmisión y la ganancia del sistema.

4.3 Generación y estabilización de la portadora

En principio, por motivos de simplicidad, se prefiere la generación directa de la frecuencia fundamental. No obstante, la disponibilidad de dispositivos de microondas activos para la generación directa disminuye al aumentar la frecuencia, y su coste aumenta. A partir de un cierto punto, que dependerá del estado de desarrollo tecnológico, resulta preferible generar un subarmónico y multiplicarlo hasta el valor de la frecuencia portadora.

La elección del método de estabilización de la frecuencia de la portadora dependerá de la aplicación de que se trate. Para las realizaciones más baratas, que ofrecen los mayores márgenes de tolerancia en cuanto a la frecuencia, basta con utilizar osciladores autoexcitados estabilizados por resonador. Si, además, se controla la temperatura, ello garantiza tolerancias de frecuencias menores, pero moderadas, para aplicaciones algo más exigentes. La categoría de aplicaciones más estrictas en lo que concierne a la estabilidad de frecuencia exige el empleo de osciladores controlados por cristal. Los fabricantes y usuarios de equipo radioeléctrico prefieren las realizaciones basadas en sintetizadores de frecuencia.

4.4 Formatos de modulación de la portadora

Existen dos factores que conjuntamente contribuyen a moderar los requisitos de eficacia espectral por encima de 17 GHz y permiten, por tanto, utilizar formatos de modulación digital más simples que los empleados por debajo de 17 GHz; estos dos factores son los siguientes:

- atribuciones de bandas de frecuencia más anchas,
- mayor hincapié en las realizaciones radioeléctricas de bajo coste.

La utilización de formatos de modulación más simples (bi o cuadrivalentes) garantiza mayores ganancias del sistema, lo que reviste gran importancia, habida cuenta de la predominancia del desvanecimiento debido a las precipitaciones por encima de 17 GHz. Sin embargo, es posible utilizar formatos de modulación con un mayor número de estados si así se requiere por razones técnicas o reglamentarias.

En el anexo 1 de la Recomendación UIT-R F.1101 se traza un panorama de los formatos de modulación digitales.

4.5 Funciones básicas de transmisión/recepción radioeléctrica

La traducción a la práctica de las funciones de transmisión y recepción refleja las elecciones efectuadas a nivel del diseño, elecciones que se basan en las consideraciones expuestas en el § 4.1. Las diferencias que se observan en las realizaciones del equipo de una misma aplicación se deben a las distintas orientaciones comerciales de los fabricantes y a sus surtidos de productos, capacidades tecnológicas propias y proveedores de componentes y, cosa no menos importante, a las preferencias subjetivas de los diseñadores.

Tratándose de una misma aplicación, las diferencias básicas en el diseño radioeléctrico vienen dadas por la elección entre la modulación directa o indirecta de la portadora del transmisor y por el número de conversiones de frecuencia intermedia en el receptor. En principio, cuanto más simple sea el formato de modulación, más fácil resultará la modulación directa de la portadora. El número de conversiones de frecuencia intermedia en el receptor depende principalmente de los requisitos de selectividad, la disponibilidad de componentes de circuitos integrados y la agilidad de cambio de canal RF requerida (por ejemplo, con un sintetizador).

La mayor parte de las aplicaciones radioeléctricas digitales por encima de unos 17 GHz tienen lugar en sistemas locales de distribución y requieren pocos o ningún repetidor. Aunque la conexión adosada de terminales es directa, se dispone de repetidores RF pasivos o activos, lo que representa una solución económica y eficaz cuando no se requiere capacidad de extracción/inserción. Los repetidores RF activos pueden utilizar o no conversión de frecuencia, según el caso.

4.6 Funciones de supervisión y disposiciones de protección

En las sucesivas generaciones de realizaciones radioeléctricas digitales se han ido incorporando funciones de supervisión y capacidades de gestión de red cada vez más especializadas, por ejemplo, supervisión de la relación de bits erróneos (BER), establecimiento de bucles locales y distantes, y visualización local de la telesupervisión. Existen terminales de mano y portátiles que pueden emplearse como alternativa a las realizaciones especializadas. Se utilizan computadores personales o portátiles con soportes lógicos de marca registrada para la gestión centralizada de las redes.

Se han previsto las disposiciones necesarias de protección para ofrecer la fiabilidad y/o disponibilidad deseadas. Algunos ejemplos de esas posibles disposiciones son:

- diversidad de encaminamiento,
- equipo de reserva activo supervisado,
- equipo de reserva activo supervisado con diversidad de frecuencia, de polarización y/o espacial.

4.7 Conclusiones

La creciente demanda de sistemas radioeléctricos digitales que funcionen por encima de 17 GHz estimula la creación de nuevas generaciones de equipos que mejoren la calidad de servicio y la facilidad de utilización por el usuario, a costes cada vez más bajos. Además comienzan a aparecer en el mercado realizaciones baratas y eficaces para bandas de frecuencia cada vez más elevadas.

Estos progresos son fruto del constante mejoramiento tecnológico de los dispositivos de microondas, especialmente los transistores de efecto de campo (FET) y los circuitos integrados monolíticos de microondas (MMIC), así como de la realización de las funciones de frecuencia intermedia, de banda de base y auxiliares mediante circuitos integrados.
