

Рекомендация МСЭ-R BT.2020-1 (06/2014)

Значения параметров для систем ТСВЧ для производства программ и международного обмена ими

Серия ВТ

Радиовещательная служба (телевизионная)

Предисловие

Роль Сектора радиосвязи заключается в обеспечении рационального, справедливого, эффективного и экономичного использования радиочастотного спектра всеми службами радиосвязи, включая спутниковые службы, и проведении в неограниченном частотном диапазоне исследований, на основании которых принимаются Рекомендации.

Всемирные и региональные конференции радиосвязи и ассамблеи радиосвязи при поддержке исследовательских комиссий выполняют регламентарную и политическую функции Сектора радиосвязи.

Политика в области прав интеллектуальной собственности (ПИС)

Политика МСЭ-R в области ПИС излагается в общей патентной политике МСЭ-Т/МСЭ-R/ИСО/МЭК, упоминаемой в Приложении 1 к Резолюции МСЭ-R 1. Формы, которые владельцам патентов следует использовать для представления патентных заявлений и деклараций о лицензировании, представлены по адресу: http://www.itu.int/ITU-R/go/patents/en, где также содержатся Руководящие принципы по выполнению общей патентной политики МСЭ-Т/МСЭ-R/ИСО/МЭК и база данных патентной информации МСЭ-R.

Серии Рекомендаций МСЭ-R				
	(Представлены также в онлайновой форме по адресу: http://www.itu.int/publ/R-REC/en .)			
Серия	Название			
ВО	Спутниковое радиовещание			
BR	Запись для производства, архивирования и воспроизведения; пленки для телевидения			
BS	Радиовещательная служба (звуковая)			
BT	Радиовещательная служба (телевизионная)			
F	Фиксированная служба			
M	Подвижные службы, служба радиоопределения, любительская служба и относящиеся к ним спутниковые службы			
P	Распространение радиоволн			
RA	Радиоастрономия			
RS	Системы дистанционного зондирования			
\mathbf{S}	Фиксированная спутниковая служба			
SA	Космические применения и метеорология			
SF	Совместное использование частот и координация между системами фиксированной спутниковой службы и фиксированной службы			
SM	Управление использованием спектра			
SNG	Спутниковый сбор новостей			
TF	Передача сигналов времени и эталонных частот			
V	Словарь и связанные с ним вопросы			

Примечание. — Настоящая Рекомендация МСЭ-R утверждена на английском языке в соответствии с процедурой, изложенной в Резолюции МСЭ-R 1.

Электронная публикация Женева, 2015 г.

© ITU 2015

Все права сохранены. Ни одна из частей данной публикации не может быть воспроизведена с помощью каких бы то ни было средств без предварительного письменного разрешения МСЭ.

РЕКОМЕНДАЦИЯ MCЭ-R BT.2020-1*

Значения параметров для систем ТСВЧ для производства программ и международного обмена ими

(2012-2014)

Сфера применения

Телевидение сверхвысокой четкости (ТСВЧ) предоставляет зрителям возможность просмотра программ с более высоким качеством изображения, достигаемого в основном благодаря широкому полю обзора как по горизонтали, так и по вертикали, при этом возможно выбрать размер экрана, подходящий для использования в домашних условиях или в общественных местах. Для применений ТСВЧ необходимы параметры системы более высокого уровня, чем в случае систем ТВЧ. В данной Рекомендации устанавливаются значения параметров системы для изображения ТСВЧ в целях производства программ и международного обмена программами.

Ключевые слова

ТСВЧ, параметры системы для изображения, широкое поле обзора, система телевидения, международный обмен программами.

Ассамблея радиосвязи МСЭ,

учитывая,

- что с 1997 года в нескольких администрациях была создана служба цифрового наземного телевизионного вещания, которая может предоставлять программы с высоким качеством изображения с помощью систем ТВЧ;
- что зрители ожидают, что будущие ТВ-системы после ТВЧ будут иметь улучшенные характеристики по сравнению с теми, что предлагаются существующими системами ТВЧ, с точки зрения более реалистичного восприятия, большей прозрачности реального мира и более точной передачи визуальной информации;
- что, как ожидается, телевидение сверхвысокой четкости (ТСВЧ) станет доступным в ближайшем будущем при использовании, помимо прочего, больших размеров экрана, более высокого пространственно-временного разрешения, более широкой цветовой гаммы, расширенного динамического диапазона и т. д., принимая во внимание разработки, осуществляемые в технологии устройств отображения;
- что МСЭ-R проводит исследования в области формирования изображений с очень высоким d) разрешением (ЕНКІ) и расширенной иерархии форматов изображения в системах цифрового изображения для большого экрана (LSDI) и разработало соответствующие Рекомендации, а именно: Рекомендацию MCЭ-R BT.1201-1, в которой приводятся руководящие указания по характеристикам изображения для систем изображения с очень высоким разрешением, и Рекомендацию MCЭ-R BT.1769, в которой указываются значения параметров для расширенной иерархии форматов изображений LSDI;
- что LSDI это система, обеспечивающая возможность демонстрации изображения на очень больших экранах, используемых, как правило, для общественного просмотра. Данная система может использоваться в ходе различных мероприятий, включая демонстрации программ, например постановочных программ, спектаклей, спортивных мероприятий, концертов и т. д.;

В феврале 2015 года 6-я Исследовательская комиссия по радиосвязи внесла редакционные поправки в настоящую Рекомендацию в соответствии с Резолюцией МСЭ-R 1.

- f) что EHRI это система, обеспечивающая более высокое, по сравнению с ТВЧ, разрешение, которая может быть использована как для телевещания, так и в областях, не связанных с вещанием (например, в компьютерной графике, полиграфии и медицине);
- g) что система ТСВЧ предоставляет зрителям возможность просмотра программ с более качественными зрительными ощущениями, в основном благодаря широкому полю обзора, которое охватывает значительную часть естественного человеческого поля зрения, при этом возможно выбрать размер экрана, подходящий для использования в домашних условиях или в общественных местах:
- h) что в системах ТСВЧ желательно использовать форматы сигналов, способствующие повышению эффективности сжатия, поскольку в этих системах используется большее количество пикселей, чем в системах ТВЧ,

рекомендует,

чтобы для производства программ в системах ТСВЧ и международного обмена этими программами использовались значения параметров, определенные в настоящей Рекомендации¹,

и далее рекомендует,

чтобы, если будет показано, что какая-либо альтернативная функция электронно-оптического преобразования (ЕОТF) обеспечивает значительные преимущества, одновременно не накладывая серьезных ограничений, настоящая Рекомендация была расширена с целью использования улучшенной функции ЕОТF.

ПРИМЕЧАНИЕ. – В будущем настоящая Рекомендация должна быть рассмотрена с целью ее расширения в виде дополнений для включения более подробных параметров изображения.

_

¹ Обе системы ТСВЧ, как с разрешением 3840 × 2160, так и с разрешением 7680 × 4320, будут в основном применяться для "доставки" телевизионных программ в дома, где зрители при просмотре смогут насладиться эффектом полного погружения в происходящее на экране и более полным ощущением реальности происходящего благодаря использованию ТВ-экранов с диагональю порядка 1,5 м и более, или во время демонстрации программ на больших экранах (LSDI) в театрах, залах и в других местах, например на спортивных мероприятиях или в тематических парках.

Зрителям будет также интересна возможность просмотра программ на планшетных ПК с очень высоким разрешением.

Системы с разрешением 7680×4320 обеспечивают более полные зрительные ощущения при большем разнообразии условий просмотра по сравнению с системами, имеющими разрешение 3840×2160 .

Для доставки подобных программ в дома средствами наземного или спутникового вещания потребуется, по всей вероятности, повысить эффективность кодирования сигналов видеоисточника и/или пропускную способность каналов передачи по сравнению с теми параметрами, которые используются в существующих системах. В настоящее время для достижения этой цели проводятся исследования. Доставка такого рода программ на начальном этапе будет осуществляться с помощью кабельных или волоконно-оптических каналов.

На выбор частоты кадров могут влиять частота в электросети и вид используемого освещения объектов, а также соображения, связанные с преобразованием программного материала между более высокими частотами кадров и более низкими частотами кадров (см. Отчет МСЭ-R ВТ.2246).

ТАБЛИЦА 1 Пространственные характеристики изображения

Параметр	Значения		
Формат изображения	16:9		
Количество пикселей по горизонтали × по вертикали	7 680 × 4 320	3 840 × 2 160	
Решетка дискретизации	Ортогональная		
Формат пикселя	1:1 (квадратные пиксели)		
Адресация пикселей	Порядок следования пикселей в каждом ряду – слева направо, нумерация рядов – сверху вниз		

ТАБЛИЦА 2 Временные характеристики изображения

Параметр	Значения		
Частота кадров (Гц) ^{(1), (2)}	120; 60; 60/1,001; 50; 30; 30/1,001; 25; 24; 24/1,001		
Тип развертки	Прогрессивная		

- (1) В ряде стран, где используется частота кадров 50 Гц, применяется дополнительная частота кадров 100 Гц.
- $^{(2)}$ В ряде стран, где используется частота кадров 60 Γ ц, применяется дополнительная частота кадров 120/1,001 Γ ц, хотя в некоторых других странах она еще исследуется.

ТАБЛИЦА 3 **Колориметрия системы**

Параметр	Значения			
Характеристика электронно- оптического преобразования перед проведением нелинейной предварительной коррекции	Предполагается линейная ⁽¹⁾			
	Координаты цветности (СІЕ, 1931)	X	у	
Первичные цвета и опорный	Первичный красный (R)	0,708	0,292	
уровень белого ⁽²⁾	Первичный зеленый (G)	0,170	0,797	
	Первичный синий (В)	0,131	0,046	
	Опорный уровень белого (D65)	0,3127	0,3290	

 $^{^{(1)}}$ Информация об изображении может быть линейно отображена с помощью трехцветных координат RGB в диапазоне 0–1.

⁽²⁾ Колориметрические значения в информации об изображении могут быть определены на основе опорных первичных цветов RGB и опорного уровня белого.

ТАБЛИЦА 4

Формат сигнала

Параметр	Значения			
	$R'G'B'^{(1)}$			
Формат сигнала	Постоянная яркость $Y'_{C}C'_{BC}C'_{RC}^{(2)}$	Непостоянная яркость $Y'C'_BC'_R^{(3)}$		
	$E' = \begin{cases} 4.5E, & 0 \leq E < \beta \\ \alpha E^{0.45} - (\alpha - 1), & \beta \leq E \leq 1 \end{cases}$ где E — это напряжение, нормализованное по опорному уровню белого и пропорциональное яркости, присущей опорным камерным каналам цветности $R, G, B; E'$ — это результирующий нелинейный сигнал.			
	α и β – решения для следующей системи	ы уравнений:		
Нелинейная передаточная функция ⁽⁴⁾	$\begin{cases} 4.5\beta = \alpha\beta^{\circ} \\ 4.5 = 0.45\alpha \end{cases}$	$^{0,45} - \alpha + 1$ (1) $\alpha \beta^{-0,55}$ (2)		
	Эта система уравнений обеспечивает необходимое условие для бесперебойного соединения двух отрезков кривой и приводит к значениям α = 1,09929682680944 и β = 0,018053968510807 По практическим соображениям могут использоваться следующие значения: α = 1,099 и β = 0,018 для 10-битовых систем α = 1,0993 и β = 0,0181 для 12-битовых систем			
Производные Y'_{C} и Y'	$Y_C' = (0.2627R + 0.6780G + 0.0593B)'$	Y' = 0.2627R' + 0.6780G' + 0.0593B'		
Производные цветоразностных сигналов	$C'_{BC} = \begin{cases} \frac{B' - Y'_C}{-2N_B}, & N_B \leq B' - Y'_C \leq 0 \\ \frac{B' - Y'_C}{2P_B}, & 0 < B' - Y'_C \leq P_B \\ \frac{B' - Y'_C}{-2N_R}, & N_R \leq R' - Y'_C \leq 0 \end{cases}$ $C'_{RC} = \begin{cases} \frac{R' - Y'_C}{-2N_R}, & N_R \leq R' - Y'_C \leq 0 \\ \frac{R' - Y'_C}{2P_R}, & 0 < R' - Y'_C \leq P_R \end{cases}$ ГДЕ $P_B = \alpha \Big(1 - 0.0593^{0.45}\Big) = 0.7909854$ $N_B = \alpha \Big(1 - 0.9407^{0.45}\Big) - 1 = -0.9701716$ $P_R = \alpha \Big(1 - 0.7373^{0.45}\Big) = 0.4969147$ $N_R = \alpha \Big(1 - 0.7373^{0.45}\Big) - 1 = -0.8591209$ В практических целях могут использоваться следующие значения: $P_B = 0.7910, & N_B = -0.9702$ $P_R = 0.4969, & N_R = -0.8591$	$C'_{B} = \frac{B' - Y'}{1,8814}$ $C'_{R} = \frac{R' - Y'}{1,4746}$		

Примечания к таблице 4:

- $^{(1)}$ Значения R'G'B' могут быть использованы для обмена программами в случаях, когда производство программ наилучшего качества имеет первостепенное значение.
- (2) Постоянная яркость $Y'_CC'_{BC}C'_{RC}$ может использоваться, когда первостепенное значение имеет наиболее точное удерживание информации о яркости или когда ожидается улучшение эффективности кодирования в целях доставки программ (см. Отчет МСЭ-R BT.2246).
- ⁽³⁾ Традиционная непостоянная яркость $Y'C'_BC'_R$ может применяться в тех случаях, когда первостепенное значение имеет использование в вещательной сети такой же эксплуатационной практики, как в SDTV и ТВЧ (см. Отчет MCЭ-R BT.2246).
- (4) При типичной практике производства функция кодирования источников изображения корректируется, так что итоговое изображение имеет желаемый вид, который просматривается на эталонном мониторе с эталонной функцией декодирования, приведенной в Рекомендации МСЭ-R BT.1886, в эталонной среде просмотра, определенной в Рекомендации МСЭ-R BT.2035.

ТАБЛИЦА 5 **Цветовое представление**

Параметр	Значе		ения	
Кодированный сигнал	R', G', В' или Y', С' _В , С		С' _R или Y' _C , С'	BC, C'RC
Решетка дискретизации – <i>R'</i> , <i>G'</i> , <i>B'</i> , <i>Y'</i> , <i>Y'</i> _C	Ортогональная, с повторениями строк и кадров, ре совмещаются			в, решетки отсчетов
	Ортогональная, с повторениями строк и кадров, решетки отсчетов совмещаются друг с другом. Первая выборка (верхняя слева) совмещается с первыми выборками Y'			
			Система 4:2:0	
Решетка дискретизации $-C'_{B}$, C'_{R} или C'_{BC} , C'_{RC}	Каждая решетка имеет такое же количество горизонтальных отсчетов, что и у компоненты $Y'(Y'_C)$	Осуществляется горизонтальная субдискретизация с коэффициентом 2 по отношению к компоненте $Y'(Y'c)$		Осуществляется горизонтальная и вертикальная субдискретизация с коэффициентом 2 по отношению к компоненте $Y'(Y'_C)$
Формат кодирования	10 или 12 битов на компоненту			ту
Квантование <i>R'</i> , <i>G'</i> , <i>B'</i> , <i>Y'</i> , <i>Y'</i> с, <i>C'</i> _B , <i>C'</i> _R , <i>C'</i> _B C, <i>C'</i> _R C	$DR' = INT \left[(219 \times R' + 16) \times 2^{n-8} \right]$ $DG' = INT \left[(219 \times G' + 16) \times 2^{n-8} \right]$ $DB' = INT \left[(219 \times B' + 16) \times 2^{n-8} \right]$ $DY'(DY'_C) = INT \left[(219 \times Y'(Y'_C) + 16) \times 2^{n-8} \right]$ $DC'_B(DC'_{BC}) = INT \left[(224 \times C'_B(C'_{BC}) + 128) \times 2^{n-8} \right]$ $DC'_R(DC'_{RC}) = INT \left[(224 \times C'_R(C'_{RC}) + 128) \times 2^{n-8} \right]$			
Уровни квантования	10-битовое кодирование		12-битовое кодирование	
 уровень черного <i>DR'</i>, <i>DG'</i>, <i>DB'</i>, <i>DY'</i>, <i>DY'</i>_C ахроматический <i>DC'</i>, <i>DC'</i>, <i>DC'</i>, axpoint <i>DC'</i>, and <i>DC</i>	64			256
DC'_{B} , DC'_{R} , DC'_{BC} , DC'_{RC} — номинальный пиковый	512		2 048	
DR', DG', DB', DY', DY' _C DC' _B , DC' _R , DC' _{BC} , DC' _{RC}	940 64 и 960		3 760 256 и 3 840	
Назначение уровней	10-битовое кодирование		12-бі	итовое кодирование
квантования – видеоданные – контрольные отметки времени	с 4 по 1 019 0–3 и 1 020–1 (0-	с 16 по 4 079 15 и 4 080–4 095
