International Telecommunication Union



# Recommendation ITU-R BT.1888-1 (09/2011)

# Basic elements of file-based broadcasting systems

BT Series Broadcasting service (television)



International Telecommunication

#### Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

#### Policy on Intellectual Property Right (IPR)

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from <u>http://www.itu.int/ITU-R/go/patents/en</u> where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

|        | Series of ITU-R Recommendations                                                      |  |
|--------|--------------------------------------------------------------------------------------|--|
|        | (Also available online at <u>http://www.itu.int/publ/R-REC/en</u> )                  |  |
| Series | Title                                                                                |  |
| BO     | Satellite delivery                                                                   |  |
| BR     | Recording for production, archival and play-out; film for television                 |  |
| BS     | Broadcasting service (sound)                                                         |  |
| BT     | Broadcasting service (television)                                                    |  |
| F      | Fixed service                                                                        |  |
| Μ      | Mobile, radiodetermination, amateur and related satellite services                   |  |
| Р      | Radiowave propagation                                                                |  |
| RA     | Radio astronomy                                                                      |  |
| RS     | Remote sensing systems                                                               |  |
| S      | Fixed-satellite service                                                              |  |
| SA     | Space applications and meteorology                                                   |  |
| SF     | Frequency sharing and coordination between fixed-satellite and fixed service systems |  |
| SM     | Spectrum management                                                                  |  |
| SNG    | Satellite news gathering                                                             |  |
| TF     | Time signals and frequency standards emissions                                       |  |
| V      | Vocabulary and related subjects                                                      |  |

Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.

Electronic Publication Geneva, 2011

#### © ITU 2011

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

# RECOMMENDATION ITU-R BT. 1888-1

# **Basic elements of file-based broadcasting systems**

(3/2011-9/2011)

#### Scope

This Recommendation describes basic elements of file-based broadcasting systems to facilitate the transfer of files from a content provider to an end user. The files transferred in both real-time and non real-time are stored in a receiver to be played at a time convenient to the end user. The Recommendation provides some basic implementation characteristics of a receiver.

The ITU Radiocommunication Assembly,

#### considering

a) that there is a growing consumer demand for the capability to view TV programmes at their convenience;

b) that there is growing consumer interest in viewing all types of content including audio/video and multi-media content;

c) that large-capacity storage devices have become available for a receiver;

d) that file-based systems are capable of delivering any kind of content including audio/video as well as multimedia data in non-real-time transfer;

e) that high-quality content encoded at higher bit rate than that in real-time broadcasting can be delivered using non real-time transfers;

f) that services using file-based content delivery have already been introduced using telecommunication networks;

g) that it is desirable to provide interoperability between different systems,

#### recommends

1 that the basic elements described in Annex 1 should be used for development of file-based broadcasting systems;

2 that NOTE 1 is considered to be part of the Recommendation.

NOTE 1 – Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words shall in no way be construed to imply partial or total compliance with this Recommendation.

NOTE 2 – Example of practical implementation of a file-based broadcasting system is given in Appendix 1 and Appendix 2 for information.

# Annex 1

## Basic elements for file-based broadcasting systems

#### 1 Introduction

File-based broadcasting systems have the capability to be independent of the content to be delivered, end user storage devices are also independent of the content being stored. This results in huge flexibility in what a content provider may deliver to the end user. Content can be delivered in shorter or longer periods than the real-time duration. High-quality content can be delivered by encoding the content at higher bit rates than the maximum bit rate of the delivery channel. In the case of mobile reception, while reception errors often occur, errors may be corrected through various techniques in the case of non real-time transmission.

The basic elements described in this annex apply to requirements for file-based broadcasting systems, receiver configuration for the systems, metadata, and a file transport method over a broadcast channel.

#### 2 Abbreviations

| BML   | Broadcast markup language                   |
|-------|---------------------------------------------|
| CID   | Context identification                      |
| DLC   | Download control                            |
| DRM   | Digital rights management                   |
| ECG   | Electronic content guide                    |
| FEC   | Forward error correction                    |
| FLUTE | File delivery over unidirectional transport |
| HCfB  | Header compression for broadcasting         |
| IANA  | Internet assigned numbers authority         |
| IP    | Internet protocol                           |
| LLI   | Licence link information                    |
| RMT   | Reliable multicast transport                |
| ROHC  | Robust header compression                   |
| TLV   | Type length value                           |
| ULE   | Unidirectional lightweight encapsulation    |
| URI   | Uniform resource identifier                 |
| URL   | Uniform resource locator                    |
|       |                                             |

## **3** Requirements for file-based broadcasting systems

#### 3.1 System requirements

To develop a file-based broadcasting system, the following requirements should be met:

- 1. A receiver for the system shall be equipped with a storage device to store content and play the content. Play of content may be output from the storage device through a copy protected interface.
- 2. Information necessary for setting up a scheduled download should be delivered over the broadcast channel.
- 3. It should be possible to set up a scheduled download of additional content related to real-time broadcasting programme.
- 4. Receiver tuning shall be controlled by the specific information.
- 5. Any rescheduling of content shall be possible through the scheduling information.
- 6. Lost or corrupted file should be detected by a receiver prior to its use.
- 7. Large files should be delivered with a small overhead.
- 8. Delivered content can be protected to restrict the use by the end user.
- 9. An expiration date for the use of the content may be sent.
- 10. Stored content in a receiver may be deleted by the end user.

## 3.2 Required files

In the system, the following files should be delivered:

1. Media file.

Coded audio/video signals or other multimedia data.

2. License link information (LLI).

Information on license and rights management for the content. It describes constraints on the use of content. It also provides information to obtain a license if required.

- 3. Metadata:
  - Metadata for establishing the download schedule.

Information necessary for a receiver to obtain all files including a media file, LLI, and ECG metadata. It describes URLs of servers or URI and start/end times of the delivery session that carries these files. Details are described in § 5.

– ECG metadata.

Information on content such as title and genre. It is used by an end user to select content to store. It may also be used to select stored content to use. Details are described in § 6.

Figure 1 shows a protocol stack of general file-based broadcasting systems to transfer these files.

#### Rec. ITU-R BT. 1888-1

| Audio/video or other multimedia data   | LLI  | ECG<br>metadata | Metadata for setup a scheduled download |
|----------------------------------------|------|-----------------|-----------------------------------------|
| Media file                             | E.1  |                 |                                         |
| DRM                                    | File |                 |                                         |
| File transport method                  |      |                 |                                         |
| Channel coding and modulation          |      |                 |                                         |
| Physical layer (terrestrial/satellite) |      |                 |                                         |

FIGURE 1 Protocol stack of general file-based broadcasting systems

BT.1888-01

#### 4 Receiver configuration for a file-based broadcasting system

#### 4.1 Main components in a receiver for the system

A receiver for the system shall have storage to store the delivered content. The main components in a receiver are shown in Fig. 2.



FIGURE 2 Main components in receiver for the system

BT.1888-02

The functions of each module in a receiver are listed below.

| Module                                   | Function                                                                                                           |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Broadcast demodulation and demultiplex   | Demodulates received broadcasting signals and outputs demultiplexed signals that carry files                       |
| Downloader                               | Manages schedules for downloading content. Reconstructs a file from the demultiplexed signals when recording       |
| Setup navigation of a scheduled download | Lets users set a scheduled download based on metadata for setup a scheduled download and ECG metadata              |
| Storage                                  | Stores reconstructed files by downloader                                                                           |
| Content guide                            | Presents a list of stored content and provides a user interface to select and delete content based on ECG metadata |
| Media player                             | Plays stored content and outputs audio/video signals                                                               |

#### 4.2 Reference receiving procedures to obtain content

In a file-based broadcasting system, the following receiving procedures should be taken.

A receiver for the system needs metadata for setting up a scheduled download of the required content in advance. The metadata needs to be transferred by a service provider. Multiple files may make up one content. Therefore, metadata is important for the receiver to identify files of content and servers or sessions that provide those files. Based on this information, the receiver sets up a scheduled download.

At the scheduled time, the receiver tunes into the broadcast signal delivering the desired files, and stores the delivered files. These procedures are shown in Fig. 3.



BT.1888-03

After the receiver stores the files, the content may be used at any time. As required the receiver shall obtain a valid license according to the LLI of the content.

## 5 Metadata

## 5.1 Metadata for setting up a scheduled download

Metadata describing all the information necessary for setting up a scheduled download should be transferred to the receiver prior to the content delivery. Metadata for setting up a scheduled download should include the following information:

- 1. Information on delivery schedules, namely start/end times.
- 2. Information on delivery session to identify the broadcast signal.
- 3. Information required to reconstruct files from transmitted data.
- 4. Information on file, namely the file name, file size, and file type.
- 5. Content identification.
- 6. Information on DRM server if required.

Prior to obtaining content, a receiver has to identify what content will be delivered and its delivery information on broadcast signal. All files comprising the content should also be identified.

Based on the metadata, a receiver stores the necessary files for the selected content at a specified time. The metadata may describe auxiliary information for a receiver to select the content.

## 5.2 ECG metadata

ECG metadata including the following information should be transferred to receivers:

- 1. Description of content title, abstraction, and genre. It may include thumbnail-size images of the content.
- 2. Properties of video/audio or other multimedia data.
- 3. Description of price and other information for billing.
- 4. Description of rights to use the content and other information to obtain the license.

ECG metadata is used for navigation to select. It is also used for navigation to select content to use from the stored content list.

## 6 File transport method over broadcast channel

All content and content related metadata, should be transferred by a reliable and efficient file transport method. Several files may be packaged into one file for a single transfer.

As in real-time broadcasting systems, it is important to minimize transfer delay in file-based broadcasting systems. However, delay variation has less impact in file-based broadcasting systems compared to real-time broadcasting systems. It is important to transfer and store a file without loss or corruption. A detection mechanism to detect lost or corrupted file fragments should be incorporated in file-based broadcasting systems. A system should be equipped with some mechanisms to repair lost or corrupted file fragments.

# Appendix 1 (informative)

# File-based broadcasting system for advanced-satellite broadcasting in Japan<sup>1</sup>

## 1 Overview

Digital broadcasting provides content to many viewers at once via terrestrial or satellite broadcasting channels in a stable manner. All viewers can enjoy broadcast programmes at the same time. However, it is difficult to respond to individual requests from all viewers.

In contrast with broadcasting, telecommunication provides requested content via bi-directional channels. However, it is subject to certain problems, e.g. limitations in the network bandwidth and the equipment throughput may result in deteriorated service quality when a large number of viewers make requests.

<sup>&</sup>lt;sup>1</sup> This system is specified in Part 1 of ARIB STD-B45 v2.0 (2011): Content download system for broadcasting.

When these different delivery channels are combined to deliver content, they complement each other and lead to enriched multimedia services. The file-based broadcasting system developed in Japan delivers popular content over broadcasting channels in a short time and also delivers requested content on telecommunication networks. Figure 4 shows an overview of the system.



In this system, frequently requested content is provided to many users via broadcasting channels. Less frequently requested content is provided via telecommunication networks.

Files storing audio/video code and associated metadata are delivered over broadcasting channels to every receiver. In addition to these files, the receiver individually obtains the license information from the server using telecommunication networks when needed. The size of license information is small compared to the content itself, keeping the network and server loads low. This system utilizes characteristics of broadcasting channels and telecommunication networks.

Figure 5 shows the protocol stack over the broadcasting channels. Audio/video signals and metadata are delivered as a file over broadcasting channels by the file transport method described in § 6.



BT.1888-05

#### 2 Entity model for the system

In the system, the service provider has two sub-systems: one is a broadcasting sub-system, and the other is a telecommunication sub-system. Figure 6 shows the entity model for the system.



FIGURE 6

BT.1888-06

The functions of each entity in the two sub-systems are listed below:

| Entity                                     |                   | Function                                                                                                            |
|--------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------|
| Broadcasting Metadata server<br>sub-system |                   | Provides metadata for setup a scheduled download and ECG metadata                                                   |
|                                            | Media file server | Provides media file of content                                                                                      |
| Telecommunication<br>sub-system            | Web server        | Connects to browser in receiver and introduces provided content to user                                             |
|                                            | Metadata server   | Provides metadata for setup a scheduled download and ECG metadata                                                   |
|                                            | Media file server | Provides media file of content                                                                                      |
|                                            | DRM server        | Manages rights of content and provides license information needed<br>to play back content to DRM client in receiver |

#### The functions of each entity in the receiver are listed below:

| Entity                                                                                                                                                | Function                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Browser                                                                                                                                               | Presents web content to user                                                                                  |
| Setup navigation of a scheduled download                                                                                                              | Lets users set up a scheduled download based on metadata for setup a scheduled download and ECG metadata      |
| Downloader                                                                                                                                            | Manages schedules for downloading content. At the scheduled time, receives IP packets and reconstructs a file |
| Storage                                                                                                                                               | Stores reconstructed files by downloader                                                                      |
| Content guide Presents a list of stored content and provides a user interface to select, delete, retrieve<br>and export content based on ECG metadata |                                                                                                               |
| AV player Plays stored content and outputs audio/video signals                                                                                        |                                                                                                               |
| DRM client                                                                                                                                            | Embedded module to manage rights of content                                                                   |
| Export processor                                                                                                                                      | Module to copy stored content outside receiver                                                                |

A receiver can set up a scheduled download based on the metadata delivered on either the broadcasting sub-system or the telecommunication sub-system. Figure 7 shows a flow diagram from setting up a scheduled download to playing back the stored content at a receiver.



BT.1888-07

As shown in Fig. 7, there are three means to set up a scheduled download.

1. From file-based broadcasting.

A scheduled download is set up based on the metadata delivered over the broadcasting channels. The broadcasting channels have a large transmission capacity, and the consumed resources, such as transmitters and frequency bandwidth, are constant regardless of the number of receivers. A large amount of content, which meets the preferences of many users, is stored in a receiver without consuming telecommunication resources. It is convenient for users to store their favourite content in advance.

2. Navigation from data broadcasting of real-time services.

A list of content related to real-time broadcast programmes is presented to users in the data broadcasting of real-time services. A user selects content to download from the list. The receiver then obtains the metadata for setup the scheduled download from the server by using telecommunication networks. Based on the metadata, the receiver sets up the scheduled download.

3. Connecting to portal server.

This works in the same way as telecommunication download services. A list of provided content is presented to users at the portal site in the telecommunication networks. After a user selects content with a browser, the receiver obtains the metadata for setup the scheduled download and sets up the scheduled download in the same way as 2).

At the same portal site, a list of content provided in the telecommunication download services is also presented. When a user selects content provided in the telecommunication download services, the content is delivered to the user immediately.

#### Rec. ITU-R BT. 1888-1

For the service provider, it is easy to switch the delivery channels from broadcasting channels to telecommunication networks and vice versa. It is also easy to present some recommended content to users.

In each case, a list of stored content in a receiver is presented to the user, from which the user selects and plays back content in the same way as content delivered on telecommunication networks.

#### 4 Download control information as metadata for setup a scheduled download

A receiver sets up a scheduled download based on Download control (DLC) specified in this section. DLC is delivered on either broadcasting channels or telecommunication networks as depicted in Fig. 7. DLC is an XML document describing all information necessary for receivers to tune into the broadcasting signals and store delivered files.

DLC describes the following information:

- Name of content provider.
- Description of content.
- URL of metadata server to obtain ECG metadata when it is provided on telecommunication networks.
- URL of DRM server with its signature.
- Certificate-related information.
- Delivery information of broadcasting signals such as IP address and port number, or service identification.
- Start and end times of the delivery session.
- Content identification.
- Information on file repair mechanism such as URLs of repair servers.

## 5 File transport method for the system

In the system, files are transported after being encapsulated into IP packets in order to achieve the maximum effect of hybrid delivery using broadcasting channels and telecommunication networks. The constructed IP packets are multiplexed in broadcasting channels using the multiplexing scheme for variable-length packets<sup>2</sup>.

## 5.1 Constructing IP packets from a file

A file is segmented into data units of a given size. Besides these data units, file attribute information, which describes the file identification and size, is generated. IP packets are constructed from each data unit and the file attribute information by adding download, IP, and UDP headers. Figure 8 shows an overview of the process of constructing IP packets from a file to be transferred.

<sup>&</sup>lt;sup>2</sup> See Recommendation ITU-R BT.1869 – Multiplexing scheme for variable-length packets in digital multimedia broadcasting systems.



# 5.2 File attribute information

File attribute information is contained in an XML document that describes information necessary for receivers to reconstruct the file from received data units. It also describes the configuration of a download header. An XML scheme for the file attribution information is shown below.

```
<? xml version="1.0" encoding="UTF-8" ?>
<xs:scheme xmlns:xs="http://www.w3.org/2001/XMLScheme">
 <xs:element name="FileInfo" type="FileInfoType"/>
 <xs:complexType name="FileInfoType">
  <xs:sequence>
   <xs:element name="File" type="FileType" maxOccurs="1"/>
  </xs:sequence>
  <xs:attribute name="Width-Of-BlockNumber" type="xs:positiveInteger"</pre>
use="required"/>
  <xs:attribute name="Last-SN-Of-FileInfo" type="xs:positiveInteger"</pre>
use="optional"/>
  <xs:attribute name="Max-Unit-In-Block" type="xs:unsignedLong" use="optional"/>
  <xs:attribute name="Size-Of-DataUnit" type="xs:positiveInteger"</pre>
use="optional"/>
  <xs:attribute name="FEC-Encoding-ID" type="xs:unsignedLong" use="optional"/>
  <xs:attribute name="Expires" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="FileType">
  <xs:attribute name="Content-Location" type="xs:anyURI" use="required"/>
  <xs:attribute name="Content-Type" type="xs:string" use="required"/>
  <xs:attribute name="Content-Length" type="xs:unsignedLong" use="required"/>
  <xs:attribute name="Last-BlockNumber" type="xs:unsignedLong" use="required"/>
  <xs:attribute name="Last-SN" type="xs:unsignedLong" use="required"/>
  <xs:attribute name="Transfer-Encoding" type="xs:string" use="optional"/>
  <xs:attribute name="Transfer-Length" type="xs:unsignedLong" use="optionl"/>
 </xs:complexType>
</xs:scheme>
```

| Name of element/attribute | Description                                                                                                                                                     |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FileInfo                  | This element includes information on the file attribute information. This element contains one "File" element                                                   |  |
| Width-Of-Block-Number     | This attribute identifies the number of bits for the block_number field in the download header                                                                  |  |
| Last-SN-Of-FileInfo       | This attribute identifies the last sequence number of the packet carrying the file attribute information                                                        |  |
| Max-Unit-In-Block         | This attribute identifies the maximum number of data units in a block                                                                                           |  |
| Size-Of-DataUnit          | This attribute identifies the size of the data unit in bytes                                                                                                    |  |
| FEC-Encoding-ID           | This attribute identifies the type of FEC as the number registered for "Reliable<br>Multicast Transport (RMT) FEC Encoding IDs and FEC Instance IDs" at<br>IANA |  |
| Expires                   | This attribute identifies the expiry data for the file attribute information                                                                                    |  |
| File                      | This element includes information on file identification and data units                                                                                         |  |
| Content-Location          | This attribute identifies identification of the file as a URI                                                                                                   |  |
| Content-Type              | This attribute identifies the content type of the file                                                                                                          |  |
| Content-Length            | This attribute identifies the size of the file in bytes                                                                                                         |  |
| Last-BlockNumber          | This attribute identifies the last block number to which the last packet carrying data units belongs.                                                           |  |
| Last-SN                   | This attribute identifies the last sequence number of the packet carrying data units in the last block                                                          |  |
| Transfer-Encoding         | This attribute identifies the type of transfer encoding if the file is encoded                                                                                  |  |
| Transfer-Length           | This attribute identifies the transferred size if the file is encoded                                                                                           |  |

The meaning of each element and attribute is below:

#### 5.3 Download header

The download header indicated in Table 1 is added to each data unit and the file attribute information.

| TABLE 1 | l |
|---------|---|
|---------|---|

#### **Download header**

| Syntax            | No. of bits | Mnemonic |
|-------------------|-------------|----------|
| download_header { |             |          |
| transport_file_id | 32          | uimsbf   |
| block_number      | n           | uimsbf   |
| sequence_number   | 32-n        | uimsbf   |
| }                 |             |          |

transport\_file\_id – This identifies the file being transferred.

**block\_number** – This indicates the sequential number of blocks and is incremented for each block with the same transport\_file\_id. A block is defined as a collection of data units.

**sequence\_number** – This indicates the sequential number of packets and is incremented for each packet with the same transport\_file\_id. The total number of bits for block\_number and

sequence\_number fields is 32 bits. The number of bits for the block\_number field is configured from the file attribute information.

The packets carrying the file attribute information are transferred prior to all other packets carrying data units of that file. The first packet carrying file attribute information has a download header whose block and sequence numbers are 0.

## 5.4 IP header compression

IP and UDP headers of the constructed IP packets are compressed using HCfB of TLV multiplexing scheme since these headers are not necessary over broadcasting channels.

HCfB replaces IP and UDP headers with either a full header, which includes all IP and UDP header information, or a compressed header, which does not include all IP and UDP header information. To decompress the compressed header, at least one packet with a full header needs to be transferred prior to packets with a compressed header. CID\_header\_type is used to indicate which type of header the packet has.

To deliver files, it is also necessary to transfer the packets carrying file attribute information prior to packets carrying data units. When header information of the first packet carrying the file attribute information is replaced with a full header, and the header information of all other packets is replaced with a compressed header, the overhead of IP and UDP header information is maximally reduced. Therefore, packet headers are compressed as listed in Table 2 and shown in Fig. 9.

#### TABLE 2

CID\_header\_type assignment of each packet

| Packet                                                   | Value of CID_header_type                         | Description                                         |
|----------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|
| The first packet carrying the file attribute information | 0x20 (for IPv4 packet)<br>0x60 (for IPv6 packet) | Full header of packet with IP and UDP headers       |
| All packets other than that listed above                 | 0x21 (for IPv4 packet)<br>0x61 (for IPv6 packet) | Compressed header of packet with IP and UDP headers |



BT.1888-09

These compressed header packets are transferred over the broadcasting channels.

## 5.5 Detection of lost or corrupted file fragments

Lost and corrupted file fragments can be detected as follows:

- Corrupted data units are detected by checking a checksum of IP and UDP headers.
- Lost data units are detected by checking a sequential number of a download header.

A receiver identifies whether or not the transferred file is identical to that of the transmitter. When the integrity of a file is not maintained, the receiver may repair the file by using the repair server identified in the DLC.

# Appendix 2 (informative)

# File-based broadcasting system for mobile reception ISDB-T multimedia broadcasting in Japan<sup>3</sup>

## 1 Overview

The purpose of this file-based broadcasting system is to broadcast media-content files to mobile terminals. As the radio channels between transmitters and mobile terminals are unstable, transmission-error-compensation technologies, such as forward-error correction (FEC), are indispensable. However, if the receiving condition is so bad that the transmission cannot be completed only through the broadcasting channel, it is effective to utilize communication channels to retrieve the missing portions of the content. The system also uses communication channels to deliver information on access control and digital-rights management. Figure 10 shows an overview of the system.

In regard to this file-based broadcasting system, contents are mainly transmitted over broadcasting channels. In the case that a portion of the contents at the receivers is missing, "content-complementation data" is transmitted through communications channels.

Files containing audio, video, and other multimedia contents are delivered over broadcast channels using the protocol illustrated in Fig. 11. The content of the media file is identified by the media type indicated by the metadata or the transport parameters. The ECG metadata contains information on content such as title and genre. It also contains links to licence information (LLI). The download-control metadata contains the information that receivers need in order to obtain scheduling information for content download. The file-transport methods used by the system are FLUTE, AL-FEC, UDP/IP, ROHC, ULE, and MPEG-2 TS, which are described in detail in § 5. For the physical layer, Multimedia System "F" defined in Recommendation ITU-R BT.1833 is used.

<sup>&</sup>lt;sup>3</sup> This system is specified in Part II of ARIB STD-B45 v2.0 (2011): Content download system for broadcasting.



# Overview of a file-based broadcasting system using broadcasting channels and telecommunications networks



BT.1888-10

| FIGURE 11                                 |
|-------------------------------------------|
| Protocol stack over broadcasting channels |

| Media file                                                                       | ECG metadata<br>download control metadata |  |
|----------------------------------------------------------------------------------|-------------------------------------------|--|
| FLUTE / AL- FEC                                                                  |                                           |  |
| UDP / IP / ROHC                                                                  |                                           |  |
| ULE                                                                              |                                           |  |
| MPEG-2 TS                                                                        |                                           |  |
| Multimedia systems "F" p hysical layer (including channel coding and modulation) |                                           |  |

BT.1888-11

#### 2 Entity model for the system

In the case of this file-based broadcasting system, information is delivered to mobile terminals from two sub-systems: a broadcasting system and an information-management system. As shown in Fig. 12, the broadcasting system uses broadcasting networks to deliver contents, and the information-management system uses communication channels to transmit content-complementation data and licence information.

| FIGURE 12                   |
|-----------------------------|
| Entity model for the system |



|                               | Entity                                   | Function                                                                                 |  |
|-------------------------------|------------------------------------------|------------------------------------------------------------------------------------------|--|
| Broadcasting system           | Programming/contents-management system   | Controls broadcasting schedule/manages media contents                                    |  |
|                               | Metadata system                          | Manages metadata                                                                         |  |
|                               | File-based broadcasting playout facility | Provides downloading bit stream to<br>broadcasting network                               |  |
|                               | Broadcasting network                     | Delivers media contents to mobile terminals                                              |  |
| Information-management system | Contents-complementation system          | Provides missing portion of contents to mobile terminals                                 |  |
|                               | Access-control system                    | Provides access-control information                                                      |  |
|                               | Communications network                   | Delivers content-complementation data and access-control information to mobile terminals |  |

The entity model of the mobile terminals is shown in Fig. 13.

FIGURE 13



The functions of each entity in the receiver are listed below:

| Entity                            | Function                                                                              |
|-----------------------------------|---------------------------------------------------------------------------------------|
| Antenna terminal                  | Receives signal from antenna                                                          |
| Tuner                             | Demodulates digital broadcasting signal                                               |
| TS decode/DEMUX                   | Decodes transport stream and selects intended stream (de-multiplexing)                |
| Download control function         | Reconstructs scheduled download contents from transport stream (incl. FLUTE/AL-FEC)   |
| Storage                           | Stores reconstructed download contents                                                |
| Communication IF                  | Interfaces with communications networks                                               |
| Communication function            | Handles communications protocols                                                      |
| Contents complementation function | Detects missing portion for reconstructing contents and requests complementation data |
| Access-control function           | Accesses control function at mobile terminal                                          |
| Renderer                          | Playbacks audio, visual, and hyper-text contents                                      |
| Decryptor                         | Decrypts encrypted contents                                                           |
| AV decoder/browser                | Playbacks decrypted audio, visual, and hyper-text contents                            |
| Audio visual display              | Presents audio, visual, and hyper-text contents                                       |
| Export control function           | Exports contents to external devices (with appropriate access control)                |
| Export interface                  | Logical and physical interface to external devices                                    |
| Receiver application              | Provides user interface for ECG, download scheduling, charging, etc.                  |

#### **3 Procedures for obtaining content**

The receiver first obtains the ECG metadata that contains the title of the content, a link to the purchase information, etc. and then obtains the download-control metadata (which contains broadcasting date and other detailed information necessary for downloading the content). The metadata is transmitted via broadcasting networks; however, in the case that the receiver cannot obtain the metadata by broadcasting, it can also be obtained via communications networks.

The receiver then programs the download schedule according to the information in the metadata, and it starts downloading when the intended contents are broadcasted. To save battery power, the receiver sleeps and does not always receive broadcasting radiowaves. If the content is not completely downloaded, the remaining portions can be retrieved via communication networks. Before the content is used, licence information and related payment procedures are executed through communication networks. A typical service flow is shown in Fig. 14.



FIGURE 14 Typical service flow

## 4 ECG metadata and download control metadata

The ECG metadata is an XML document describing content such as title and genre. It also contains a link to licence information (LLI) and a link to download control metadata.

The download-control metadata contains a "User service description" used to describe the information needed for tuning into broadcasting signals (Session description) and for performing the content complementation procedures (Associated delivery procedure description), as shown in Fig. 15.

# FIGURE 15

#### Download control metadata



The contents of the user service description are as listed in the following table:

| Entity                           | Definition                                |
|----------------------------------|-------------------------------------------|
| User-service description         | Contains user service description         |
| Version                          | Version for user service description      |
| Program                          | Reference ID of content (CRID)            |
| Session description              | Session description                       |
| Associated-procedure description | Associated delivery procedure description |

## 5 Manifest file

A downloaded content can contain multiple files as media resources, as shown in Fig. 16. To manage resource files in content and to manage playback scenarios of the content, an XML document (Manifest file) is contained in the content. The structure of the manifest file is shown in Fig. 17.





BT.1888-16

| FIGURE 17                  |
|----------------------------|
| Structure of manifest file |

| Entity     | Description                                                                                                          |
|------------|----------------------------------------------------------------------------------------------------------------------|
| manifests  | Root entity of manifest file                                                                                         |
| manifest   | Parent node for each version                                                                                         |
| @version   | Manifest version                                                                                                     |
| assets     | Container for each resource file                                                                                     |
| @count-ass | Bet-id ID for representative resource file for playback count                                                        |
| asset      | Describing resource- file attributes, including ID, file name, encryption status, and scene-IDs for playback control |
| scenario   | Container for playback-scenario control information                                                                  |
| sequence   | Information on playback timeline                                                                                     |

BT.1888-17

#### **6** File transport method for the system

Media files transmitted over a broadcasting channel are fragmented into a MPEG-2 TS (transport stream) defined in ITU-T Recommendation H.222.0, as shown in Fig. 18.



FIGURE 18

BT.1888-18

#### 6.1 Constructing IP packets from a file

The media file is divided into source-symbol fragments and combined with the AL-FEC (application-layer forward error correction) parity symbols for resilience against transmission error in mobile broadcasting channels. The symbols are then encapsulated into file-delivery-over-unidirectional-transport (FLUTE) packets and then transmitted on UDP/IP. The packet structure of FLUTE is shown in Fig. 19.

| Flags (V, C, R, etc. 16 bit)      | HDR_LEN (8 bit) | CP (8bit) |  |  |
|-----------------------------------|-----------------|-----------|--|--|
| CCI (32*N bit)                    |                 |           |  |  |
| TSI (16*                          | TSI (16*M bit)  |           |  |  |
| TOI (16*L bit)                    |                 |           |  |  |
| SCT(32 bit)                       |                 |           |  |  |
| ERT (32 bit)                      |                 |           |  |  |
| Header extensions (is applicable) |                 |           |  |  |
| FEC payload ID (32 bit)           |                 |           |  |  |
| Encoding symbols                  |                 |           |  |  |

| F     | IGURE  | 19        |
|-------|--------|-----------|
| FLUTE | packet | structure |

BT.1888-19

| Field             | Definition                                                                                                                  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Flags             | Various flags including version number, congestion control, field length of CCI, TSI, and TOI, and existence of SCT and ERT |  |  |
| HDR_LEN           | Contains header length in 32-bit units                                                                                      |  |  |
| СР                | Code point (which may be used to specify FEC_encoding_ID)                                                                   |  |  |
| CCI               | Congestion-control information                                                                                              |  |  |
| TSI               | Transport-session identifier                                                                                                |  |  |
| TOI               | Transport-object identifier                                                                                                 |  |  |
| SCT               | Sender current time in milliseconds                                                                                         |  |  |
| ERT               | Expected residual time in milliseconds                                                                                      |  |  |
| Header extensions | Additional information                                                                                                      |  |  |
| FEC payload ID    | Contains source block number and encoding symbol ID of encoding symbols                                                     |  |  |
| Encoding symbols  | Payload                                                                                                                     |  |  |

#### 6.2 IP header compression

IP and UDP headers are compressed using robust header compression (ROHC), as shown in Figs 20 and 21.



#### **ROHC** packet structure



BT.1888-20

#### FIGURE 21

#### **ROHC** header structure



BT.1888-21

| Field                  | Description                            |
|------------------------|----------------------------------------|
| Padding                | Padding information                    |
| Context identifier     | ID for ROHC context                    |
| Header-type identifier | '1111 1101': IR packet                 |
|                        | '1111 1000': IR-DYN packet             |
| Profile identifier     | 0x0002 (UDP profile)                   |
| Static chain           | Static part of UDP header information  |
| Dynamic chain          | Dynamic part of UDP header information |

#### 6.3 Encapsulation into transport stream packets<sup>4</sup>

The header-compressed IP packets are encapsulated into MPEG-2 transport-stream packets using unidirectional lightweight encapsulation. The structure of ULE is shown in Fig. 22.

<sup>&</sup>lt;sup>4</sup> See Recommendation ITU-R BT.1887 – Carriage of IP packets in MPEG-2 transport streams in multimedia broadcasting.

FIGURE 22

| ULE packet structure |                |                |          |                        |    |              |     |
|----------------------|----------------|----------------|----------|------------------------|----|--------------|-----|
| _                    |                |                | D = 0    | Destination<br>address | Ъ_ |              |     |
| D                    | Data<br>length | Packet<br>type | רי<br>הי | 48                     | ╵┟ | Data         | CRC |
| 1                    | 15             | 16             |          |                        |    | $8 \times N$ | 32  |
|                      |                |                | D = 1    |                        |    |              |     |
| Ser                  | nding order    |                |          |                        |    |              |     |

BT.1888-22

| Field               | Description                                |
|---------------------|--------------------------------------------|
| D                   | 0: Destination-address field exists        |
|                     | 1: Destination-address field does not exit |
| Data length         | Length of data field in bytes              |
| Packet type         | 0x8000: IPv4 packet                        |
|                     | 0x22F1: ROHC compressed IP packet          |
|                     | 0x22F2: HCfB compressed IP packet          |
|                     | 0x86DD: IPv6 packet                        |
| Destination address | 48-bit-length destination address          |
| Data                | ULE encapsulated data bytes                |
| CRC                 | Cyclic redundancy check                    |

#### 6.4 Detection of lost or corrupted file fragments

Lost and corrupted file fragments can be detected as follows:

- Lost symbols are detected by checking FEC payload ID in the FLUTE header.
- Corrupted IP packets are detected by checking the checksum of the UDP headers.
- Corrupted ULE packets are detected by checking the checksum of the ULE packets.
- Lost MPEG-2 TS packets are detected by checking the TS header.

Corrupted or lost symbol packets are discarded, and the original file is reconstructed by using AL-FEC decoding. If the file is not perfectly reconstructed, the receiver may repair the file by using the contents-complementation system identified by the download-control metadata.

#### 7 Digital-rights management

For the purpose of digital-rights management, the entire content file can be encrypted before transmission. The encryption key is delivered through the communication channels after appropriate authentication procedures are performed.