

Рекомендация МСЭ-R BT.1888 (03/2011)

Базовые элементы радиовещательных систем на основе файлов

Серия ВТ Радиовещательная служба (телевизионная)

Предисловие

Роль Сектора радиосвязи заключается в обеспечении рационального, справедливого, эффективного и экономичного использования радиочастотного спектра всеми службами радиосвязи, включая спутниковые службы, и проведении в неограниченном частотном диапазоне исследований, на основании которых принимаются Рекомендации.

Всемирные и региональные конференции радиосвязи и ассамблеи радиосвязи при поддержке исследовательских комиссий выполняют регламентарную и политическую функции Сектора радиосвязи.

Политика в области прав интеллектуальной собственности (ПИС)

Политика МСЭ-R в области ПИС излагается в общей патентной политике МСЭ-Т/МСЭ-R/ИСО/МЭК, упоминаемой в Приложении 1 к Резолюции 1 МСЭ-R. Формы, которые владельцам патентов следует использовать для представления патентных заявлений и деклараций о лицензировании, представлены по адресу: http://www.itu.int/ITU-R/go/patents/en, где также содержатся Руководящие принципы по выполнению общей патентной политики МСЭ-Т/МСЭ-R/ИСО/МЭК и база данных патентной информации МСЭ-R.

	Серии Рекомендаций МСЭ-R				
	(Представлены также в онлайновой форме по адресу: http://www.itu.int/publ/R-REC/en .)				
Серия	Название				
ВО	Спутниковое радиовещание				
BR	Запись для производства, архивирования и воспроизведения; пленки для телевидения				
BS	Радиовещательная служба (звуковая)				
BT	Радиовещательная служба (телевизионная)				
F	Фиксированная служба				
M	Подвижная спутниковая служба, спутниковая служба радиоопределения, любительская спутниковая служба и относящиеся к ним спутниковые службы				
P	Распространение радиоволн				
RA	Радиоастрономия				
RS	Системы дистанционного зондирования				
S	Фиксированная спутниковая служба				
SA	Космические применения и метеорология				
SF	Совместное использование частот и координация между системами фиксированной спутниковой службы и фиксированной службы				
SM	Управление использованием спектра				
SNG	Спутниковый сбор новостей				
TF	Передача сигналов времени и эталонных частот				
V	Словарь и связанные с ним вопросы				

Примечание. – Настоящая Рекомендация МСЭ-R утверждена на английском языке в соответствии с процедурой, изложенной в Резолюции 1 МСЭ-R.

Электронная публикация Женева, 2011 г.

© ITU 2011

Все права сохранены. Ни одна из частей данной публикации не может быть воспроизведена с помощью каких бы то ни было средств без предварительного письменного разрешения МСЭ.

РЕКОМЕНДАЦИЯ МСЭ-R ВТ.1888

Базовые элементы радиовещательных систем на основе файлов

(Вопрос МСЭ-R 45-2/6)

(2011)

Сфера применения

В настоящей Рекомендации описываются базовые элементы радиовещательных систем на основе файлов, способствующие передаче файлов от поставщика контента конечному пользователю. Файлы, передаваемые в режиме как реального, так и нереального времени, сохраняются в приемнике и могут быть воспроизведены в удобное для конечного пользователя время. Рекомендация содержит ряд базовых характеристик приемника в отношении реализации.

Ассамблея радиосвязи МСЭ,

учитывая,

- а) что со стороны пользователей существует растущий спрос на возможность просмотра телевизионных программ в удобное для них время;
- b) что со стороны пользователей возрастает интерес к просмотру контента всех типов, включая аудио/видео- и мультимедийный контент;
- с) что появились устройства для хранения данных большой емкости, предназначенные для приемников;
- d) что системы на основе файлов пригодны для доставки контента любого вида, включая аудио/видео-, а также мультимедийные данные при передаче в режиме нереального времени;
- е) что в режиме нереального времени может передаваться высококачественный контент, кодированный с более высокой цифровой скоростью по сравнению с тем, который возможен при радиовещании в режиме реального времени;
- f) что службы, использующие доставку контента на основе файлов, уже реализованы в сетях электросвязи;
- g) что желательно обеспечить функциональную совместимость различных систем, рекомендует,
- **1** чтобы при разработке радиовещательных систем на основе файлов применялись базовые элементы, описанные в Приложении 1;
- 2 чтобы соблюдение положений настоящей Рекомендации осуществлялось на добровольной основе. Однако настоящая Рекомендация может содержать некоторые обязательные положения (например, для обеспечения функциональной совместимости или возможности применения), и в таком случае соблюдение Рекомендации достигается при выполнении всех указанных положений. Для выражения требований используются слова "следует", "должен" ("shall") или некоторые другие обязывающие выражения, такие как "обязан" ("must"), а также их отрицательные формы. Употребление таких слов никоим образом не следует интерпретировать как основание для частичного или полного соблюдения положений данной Рекомендации.

ПРИМЕЧАНИЕ 1. – Пример практической реализации радиовещательной системы на основе файлов для сведения приведен в Дополнении 1.

Приложение 1

Базовые элементы для радиовещательных систем на основе файлов

1 Введение

Радиовещательные системы на основе файлов способны быть независимыми от доставляемого контента, притом что пользовательские устройства хранения информации также независимы от сохраняемого контента. Результатом этого является высокая степень гибкости в отношении того, что поставщик контента может доставить конечному пользователю. Контент может быть доставлен в течение более короткого или более длительного периода времени, чем его длительность в реальном времени. Контент высокого качества может быть доставлен с использованием кодирования с более высокой скоростью, чем максимальная скорость в канале доставки. В случае мобильного приема, когда часто возникают ошибки приема, они могут корректироваться различными способами в случае передачи в режиме нереального времени.

Базовые элементы, описанные в настоящем Приложении, применимы к требованиям, предъявляемым к радиовещательным системам на основе файлов, к конфигурации приемников для таких систем, метаданным и к методам транспортировки файлов по радиовещательному каналу.

2 Сокращения

BML	Broadcast markup language	Язык разметки для радиовещания
CID	Context identification	Контекстная идентификация
DLC	Download control	Управление загрузкой
DRM	Digital rights management	Управление цифровыми правами
ECG	Electronic content guide	Руководство по электронному контенту
FEC	Forward error correction	Упреждающая коррекция ошибок
HCfB	Header compression for broadcasting	Сжатие заголовка для радиовещания
IANA	Internet assigned numbers authority	Орган присвоения адресов интернета
IP	Internet protocol	Протокол Интернет
LLI	Licence link information	Информация о ссылке на лицензию
RMT	Reliable multicast transport	Надежная многопотоковая передача
TLV	Type length value	Значение длины типа
URI	Uniform resource identifier	Унифицированный идентификатор ресурса
URL	Uniform resource locator	Унифицированный указатель ресурса

3 Требования к радиовещательным системам на основе файлов

3.1 Системные требования

Для разработки радиовещательной системы на основе файлов должны быть выполнены следующие требования:

1 Приемник системы должен быть снабжен устройством хранения информации для записи и воспроизведения контента. Воспроизведение контента может осуществляться с устройства хранения через интерфейс с защитой от копирования.

- 2 Информация, необходимая для настройки загрузки по расписанию, должна доставляться по радиовещательному каналу.
- 3 Должна быть предусмотрена возможность настроить загрузку по расписанию дополнительного контента, относящегося к радиовещательной программе в режиме реального времени.
- 4 Настройка приемника должна управляться специальной информацией.
- 5 Информация, определяющая расписание, должна позволять внесение любых изменений в расписание загрузки контента.
- 6 Приемник должен распознавать потерянные или поврежденные файлы до их использования.
- 7 Большие файлы должны доставляться с небольшим запасом.
- 8 Доставленный контент может быть защищен для ограничения его использования конечным пользователем.
- 9 Может передаваться дата истечения срока использования контента.
- 10 Конечный пользователь может удалить контент, сохраненный в приемнике.

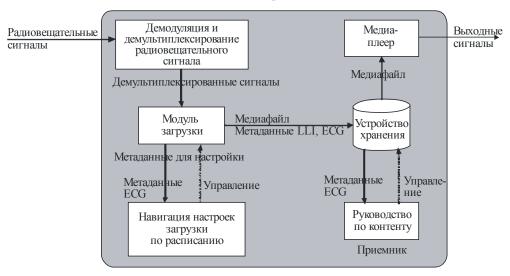
3.2 Необходимые файлы

В системе должны доставляться следующие файлы:

- 1 Медиафайл.
 - Кодированные аудио/видеосигналы или другие мультимедийные данные.
- 2 Информация о ссылке на лицензию (LLI).
 - Информация о лицензии и управлении правами, касающаяся контента. В ней описываются ограничения на использование контента. Она также содержит информацию о получении лицензии, если требуется.
- 3 Метаданные:
 - Метаданные для задания расписания загрузки.
 - Информация, необходимая приемнику для получения всех файлов, в том числе медиафайла, LLI и метаданных ECG. В ней описываются адреса (URL) серверов либо URI и время начала/конца сеанса доставки при передаче этих файлов. Подробности приведены в п. 5.
 - Метаданные ЕСG.
 - Информация о контенте, такая как название и жанр. Используется конечным пользователем при выборе контента для сохранения. Также может использоваться при выборе сохраненного контента для воспроизведения. Подробности приведены в п. 6.

На рисунке 1 показан стек протокола обобщенной радиовещательной системы на основе файлов, реализующий передачу этих файлов.

РИСУНОК 1 Стек протокола обобщенной радиовещательной системы на основе файлов


Аудио/видео или другие мультимедийные данные	LLI	Метаданные ECG	Метаданные для настройки загрузки по расписанию	
Медиафайл	Файл			
DRM				
Метод транспортировки файла				
Кодирование и модуляция в канале				
Физический уровень (наземный/спутниковый)				

4 Конфигурация приемника радиовещательной системы на основе файлов

4.1 Основные компоненты приемника системы

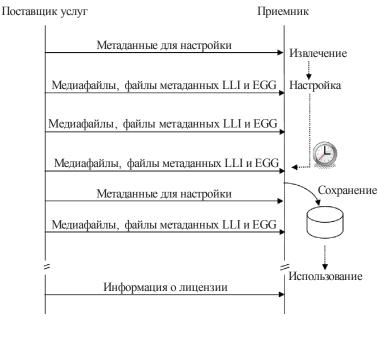
Приемник системы должен иметь устройство для хранения доставленного контента. Основные компоненты приемника показаны на рисунке 2.

РИСУНОК 2 Основные компоненты приемника системы

BT.1888-02

Функции каждого модуля приемника перечислены ниже.

Модуль	Функция
Демодуляция и демультиплексирование радиовещательного сигнала	Демодулирует принятые радиовещательные сигналы и вырабатывает выходные демультиплексированные сигналы, содержащие файлы
Модуль загрузки	Управляет расписаниями загрузки контента. При записи реконструирует файл из демультиплексированных сигналов
Настройка навигации загрузки по расписанию	Позволяет пользователям настроить загрузку по расписанию на основе метаданных, чтобы осуществить загрузку по расписанию, и для метаданных ЕСБ
Устройство хранения	Сохраняет файлы, реконструированные модулем загрузки
Руководство по контенту	Представляет список сохраненного контента и предоставляет пользователю интерфейс для выбора и удаления контента, основанного на метаданных ECG
Медиаплеер	Воспроизводит сохраненный контент и вырабатывает выходные аудио/видеосигналы


4.2 Эталонные процедуры приема для получения контента

В радиовещательной системе на основе файлов должны быть выполнены следующие процедуры приема.

Приемнику системы необходимо заранее иметь метаданные для настройки загрузки требуемого контента по расписанию. Метаданные должен передавать поставщик услуг. Контент может состоять из нескольких файлов. Поэтому метаданные важны для приемника как средство идентификации файлов контента, а также серверов или сеансов, предоставляющих эти файлы. На основе этой информации приемник настраивает загрузку по расписанию.

В установленное время приемник настраивается на радиовещательный сигнал, доставляющий требуемые файлы, и сохраняет принятые файлы. Эти процедуры показаны на рисунке 3.

РИСУНОК 3 Процедуры приема для получения контента

После того как приемник сохранил файлы, контентом можно пользоваться в любое время. Требуется, чтобы приемник получил действующую лицензию согласно LLI на контент.

BT.1888-03

5 Метаданные

5.1 Метаданные для настройки загрузки по расписанию

Метаданные, описывающие всю информацию, необходимую для настройки загрузки по расписанию, должны быть переданы приемнику до передачи контента. Эти метаданные должны содержать следующую информацию:

- 1 Информация о расписании загрузки, а именно время начала/конца.
- 2 Информация о сеансе доставки для идентификации радиовещательного сигнала.
- 3 Информация, необходимая для реконструкции файлов из переданных данных.
- 4 Информация о файле, а именно имя, размер и тип файла.
- 5 Идентификация контента.
- 6 Информация о сервере DRM, если требуется.

До получения контента приемник должен определить, какой контент будет доставлен, и извлечь соответствующую информацию о доставке из радиовещательного сигнала. Все файлы, составляющие контент, также должны быть определены.

На основе метаданных приемник сохраняет необходимые файлы для выбранного контента в указанное время. Метаданные могут описывать вспомогательную информацию для приемника, относящуюся к выбору контента.

5.2 Металанные ECG

Приемнику должны быть переданы метаданные ЕСG, содержащие следующую информацию:

- Oписание названия файла, краткое содержание и жанр. Оно может включать миникадры, представляющие контент.
- 2 Свойства видео/аудио- или других мультимедийных данных.
- 3 Описание цены и другая информация для выставления счетов.
- 4 Описание прав на использование контента и другая информация для получения лицензии.

Метаданные ECG используются для навигации при выборе. Они используются также для навигации при выборе контента для использования из списка сохраненных данных контента.

6 Метод передачи файлов по радиовещательному каналу

Весь контент и связанные с ним метаданные должны передаваться надежным и эффективным методом транспортировки файлов. Некоторые файлы могут быть упакованы в один файл для единой передачи.

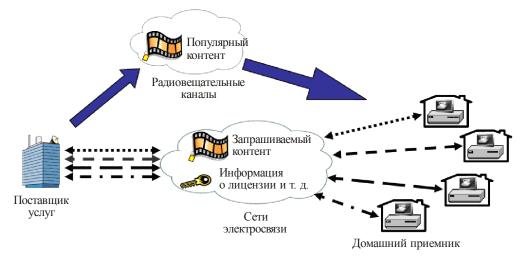
Как и в радиовещательных системах в режиме реального времени, в радиовещательных системах на основе файлов важно минимизировать задержку при транспортировке. Вместе с тем разброс задержек оказывает на радиовещательные системы, основанные на файлах, меньшее влияние, чем на радиовещательные системы в режиме реального времени. Важно передать и сохранить файл без потери или повреждения. Поэтому в радиовещательные системы на основе файлов должен быть встроен механизм обнаружения потерянных или поврежденных файловых фрагментов. Система должна быть оснащена механизмами восстановления потерянных или поврежденных фрагментов.

Дополнение 1 (для сведения)

Радиовещательная система на основе файлов в Японии¹

1 Обзор

Цифровое радиовещание стабильно предоставляет контент одновременно многим зрителям по наземным или спутниковым радиовещательным каналам. Все зрители могут наслаждаться радиовещательными программами в одно и то же время. Однако трудно удовлетворить индивидуальные запросы всех зрителей.


В отличие от радиовещания электросвязь предоставляет запрошенный контент по двунаправленным каналам. Вместе с тем это вызывает определенные проблемы, связанные, например, с ограничениями пропускной способности сети и производительности оборудования, что может привести к ухудшению качества обслуживания, когда большое число зрителей представляет запросы.

¹ Эта система описана в документе ARIB STD-B45 v1.0 (2010): Content download system for advanced wide band digital satellite broadcasting.

Когда эти разные каналы доставки объединяются для доставки контента, они дополняют друг друга, что приводит к появлению усовершенствованных мультимедийных служб. Радиовещательная система на основе файлов, разработанная в Японии, доставляет популярный контент по радиовещательным каналам за короткое время, а также доставляет запрашиваемый контент по сетям электросвязи. На рисунке 4 дано общее представление о системе.

РИСУНОК 4

Общее представление о радиовещательной системе на основе файлов, использующей радиовещательные каналы и сети электросвязи

BT.1888-04

В этой системе часто запрашиваемый контент доставляется многим пользователям по радиовещательным каналам. Реже запрашиваемый контент доставляется по сетям электросвязи.

Файлы, содержащие аудио/видеокод и связанные с ним метаданные, доставляются по радиовещательным каналам до каждого приемника. В дополнение к этим файлам приемник в индивидуальном порядке получает от сервера информацию о лицензиях, используя при необходимости сети электросвязи. Размер лицензионной информации невелик по сравнению с контентом, поэтому нагрузка на сеть и сервер невелика. Данная система использует возможности как радиовещательных каналов, так и сетей электросвязи.

На рисунке 5 показан стек протокола для радиовещательных каналов. Аудио- и видеосигналы и метаданные доставляются в форме файла по радиовещательным каналам методом транспортировки файлов, описанным в п. 6.

РИСУНОК 5 Стек протокола передачи по вещательным каналам

Аудио	Видео	Титр	LLI	Метаданные ECG	DLC
Медиафайл				Фойт	
DRM			Файл		
Метод транспортировки файлов (IP-пакет)					
Мультиплексирование					
Кодирование/модуляция в канале					
Физический уровень					

2 Модель объектов системы

В данной системе поставщик услуг располагает двумя подсистемами: одна их них – радиовещательная подсистема, а другая – подсистема электросвязи. На рисунке 6 показана модель объектов системы.

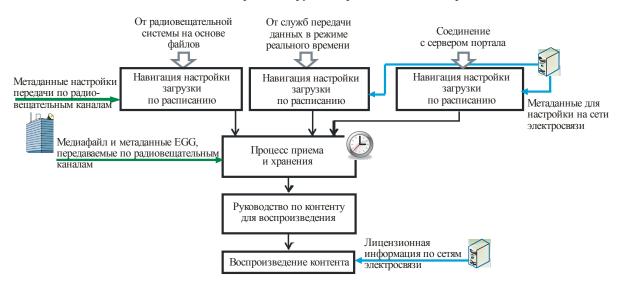
Метаданные Броузер Приемник для настройки Сервер Навигация метаданных Метаданные EGG настройки загрузки по Сервер медиафайлов Медиафайл расписанию Настройка Радиовещательная подсистема Модуль Медиафайл **Устройство** загрузки Метаданные' хранения Медиа-Метаданные Файл ВМL и т. д. Руководство файл Веб-сервер Метаданные контента для настройки Запуск Сервер Запуск Метаданные EGG метаданных Аудио/видео Сервер медиафайлов Медиафайл плеер Лицензионная Ключ дешифрования/RMPI Сервер DRM информация Телекоммуникационная Клиент Процессор дешифро-вания/RMPI подсистема DRM экспорта

РИСУНОК 6 Модель объектов системы

BT.1888-06

Функции каждого объекта в двух подсистемах перечислены ниже:

Объект		Функции	
Радиовещательная подсистема	Сервер метаданных	Обеспечивает метаданные для настройки загрузки по расписанию и метаданные ECG	
	Сервер медиафайлов	Предоставляет медиафайл контента	
Подсистема электросвязи	Веб-сервер	Подключает к браузеру приемника и предоставляет доставленный контент пользователю	
	Сервер метаданных	Обеспечивает метаданные для настройки загрузки по расписанию и ECG-метаданные	
	Сервер медиафайлов	Обеспечивает медиафайл контента	
	DRM-сервер	Управляет правами на использование контента и предоставляет лицензионную информацию, необходимую для воспроизведения контента DRM-клиенту в приемнике	


Функции каждого объекта в приемнике перечислены ниже:

Объект	Функции	
Браузер	Предоставляет веб-контент пользователю	
Настройка навигации загрузки по расписанию	Позволяет пользователям настроить загрузку по расписанию по основе метаданных для настройки загрузки по расписанию и метаданных ЕСС	
Модуль загрузки	Управляет расписаниями загрузки контента. В запланированный момент принимает IP-пакеты и реконструирует файл	
Устройство хранения	Сохраняет файлы, реконструированные модулем загрузки	
Руководство контента	Выдает список сохраненных файлов контента и предоставляет пользователю интерфейс для выбора, удаления, восстановления и экспорта контента на основе метаданных ECG	
Аудио/видеоплеер	Воспроизводит сохраненный контент и выдает аудио/видеосигналы	
Клиент DRM	Встроенный модуль для управления правами на использование контента	
Процессор экспорта Модуль копирования сохраненного контента из приемника на внешн устройство		

3 Процедуры получения контента

Приемник может настроить загрузку по расписанию на основе метаданных, доставленных радиовещательной подсистемой или подсистемой электросвязи. На рисунке 7 показана технологическая схема — от настройки загрузки по расписанию до воспроизведения сохраненного контента в приемнике.

РИСУНОК 7
Технологическая схема – от настройки загрузки по расписанию до воспроизведения контента

BT.1888-07

Как показано на рисунке 7, есть три способа настройки загрузки по расписанию.

1 От радиовещательной системы на основе файлов.

Загрузка по расписанию настраивается на основе метаданных, полученных по радиовещательным каналам. Такие каналы имеют большую пропускную способность, но расход ресурсов, таких как передатчики и полосы частот, постоянен при любом числе приемников. Большой объем контента, который отвечает предпочтениям многих пользователей, хранится в приемнике без потребления ресурсов электросвязи. Пользователям удобно заранее сохранять избранный контент.

2 Навигация на основе радиовещательной передачи данных в службах реального времени.

Список контента, относящегося к радиовещательным программам в режиме реального времени, доставляется пользователям посредством радиовещательной передачи данных, службами реального времени. Пользователь выбирает контент для загрузки из списка. Затем приемник получает метаданные для настройки загрузки по расписанию от сервера, используя сети электросвязи. На основе метаданных приемник настраивает загрузку по расписанию.

3 Соединение с сервером портала.

Выполняется так же, как в случае служб загрузки через сети электросвязи. Список имеющегося контента предоставляется пользователям на сайте портала в сетях электросвязи. После того как пользователь выберет с помощью браузера нужный контент, приемник получает метаданные для загрузки по расписанию и настраивает загрузку по аналогии с пунктом 2).

На том же сайте портала присутствует также список контента, поставляемого службами загрузки через сети электросвязи. Когда пользователь выбирает контент, поставляемый этими службами загрузки, этот контент доставляется ему немедленно.

Поставщик услуг может легко переключить каналы доставки с радиовещательных каналов на сети электросвязи и наоборот. Также легко предоставить пользователям какой-либо рекомендованный контент.

В каждом случае список контента, хранящегося в приемнике, представляется пользователю, и пользователь выбирает из него и воспроизводит нужный контент таким же образом, как и контент, доставляемый по сетям электросвязи.

4 Загрузка управляющей информации, такой как метаданные, для настройки загрузки по расписанию

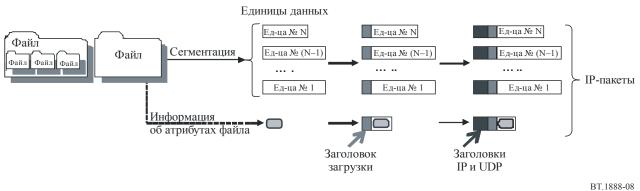
Приемник настраивает загрузку по расписанию на основе команд управления загрузкой (DLC), указанных в настоящем разделе. DLC доставляются по радиовещательным каналам либо по сетям электросвязи, как показано на рисунке 7. DLC – это документ XML, включающий всю информацию, необходимую приемникам для настройки на радиовещательные сигналы и хранения доставленных файлов.

DLC включает следующую информацию:

- наименование поставщика контента;
- описание контента;
- URL сервера метаданных для получения метаданных ECG, если они поставляются по сетям электросвязи;
- URL DRM-сервера с соответствующей подписью;
- информацию, связанную с сертификатом;
- информацию о доставке радиовещательных сигналов, таких как IP-адрес и номер порта или идентификация службы;
- время начала и окончания сеанса доставки;

- идентификацию контента;
- информацию о механизме восстановления файлов, такую как URL серверов восстановления.

5 Метод транспортировки файлов в системе


В системе файлы транспортируются после их инкапсуляции в IP-пакеты для достижения максимальной эффективности гибридной доставки с использованием как радиовещательных каналов, так и сетей электросвязи. Созданные IP-пакеты мультиплексируются в радиовещательных каналах с использованием способа мультиплексирования пакетов переменной длины².

5.1 Формирование ІР-пакетов из файла

Файл сегментируется на единицы данных заданного размера. Кроме этих блоков генерируется также информация об атрибутах файла, которая описывает идентификацию и размер файла. ІР-пакеты формируются из каждого блока данных и информации об атрибутах файла путем добавления заголовков загрузки, ІР и UDP.

На рисунке 8 в общем виде показана процедура формирования ІР-пакетов из файла, подлежащего передаче.

5.2 Информация об атрибутах файла

Информация об атрибутах файла находится в XML-документе, который содержит информацию, необходимую приемникам для реконструкции файла из принятых блоков данных. Документ описывает также конфигурацию заголовка загрузки. Схема XML для информации об атрибутах файла приведена ниже.

² См. Рекомендацию МСЭ-R ВТ.1869 – Схема мультиплексирования для пакетов переменой длины в системах цифрового мультимедийного радиовещания.

Значения каждого элемента и атрибута приведены ниже:

Название элемента/атрибута	Описание
FileInfo	Этот элемент содержит информацию об атрибутах файла. В его состав входит один элемент типа "файл"
Width-Of-Block-Number	Этот атрибут определяет число битов в поле block_number заголовка загрузки
Last-SN-Of-FileInfo	Этот атрибут определяет последний номер последовательности пакета, несущего информацию об атрибутах файла
Max-Unit-In-Block	Этот атрибут определяет максимальное число единиц данных в блоке
Size-Of-DataUnit	Этот атрибут определяет размер единицы данных в байтах
FEC-Encoding-ID	Этот атрибут определяет тип упреждающей коррекции ошибок (FEC) как число, зарегистрированное IANA для идентификаторов "Надежная многоадресная транспортировка (RMT) с FEC-кодированием и идентификаторов FEC-реализаций"
Expires	Этот атрибут определяет дату завершения срока действия информации об атрибутах файла
File	Этот элемент включает информацию об идентификации файла и единицах данных
Content-Location	Этот атрибут определяет идентификацию файла как URI
Content-Type	Этот атрибут определяет тип контента в файле
Content-Length	Этот атрибут определяет размер файла в байтах
Last-BlockNumber	Этот атрибут определяет номер последнего блока, которому принадлежит последний пакет, переносящий единицы данных
Last-SN	Этот атрибут определяет номер последней последовательности пакета, переносящего единицы данных в последнем блоке
Transfer-Encoding	Этот атрибут определяет тип кодирования при передаче, если файл кодирован
Transfer-Length	Этот атрибут определяет передаваемый размер, если файл кодирован

5.3 Заголовок загрузки

Заголовок загрузки, указанный в таблице 1, добавляется к каждой единице данных и информации об атрибуте файла.

ТАБЛИЦА 1 **Заголовок загрузки**

Синтаксис	Число битов	Мнемоника
download_header {		
transport_file_id	32	uimsbf
block_number	n	uimsbf
sequence_number	32-n	uimsbf
}		

transport file id – определяет передаваемый файл.

block_number — указывает порядковый номер блоков, который увеличивается для каждого блока с тем же идентификатором transport file id. Блок — это совокупность единиц данных.

sequence_number – указывает порядковый номер пакетов, который увеличивается для каждого блока с тем же идентификатором transport_file_id. Общее число битов для полей block_number и sequence_number равно 32. Число битов для поля block_number задается информацией об атрибуте файла.

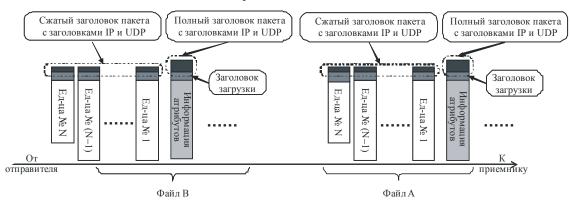
Пакеты, переносящие информацию об атрибутах файла, передаются перед всеми другими пакетами, переносящими единицы данных этого файла. Первый пакет, переносящий информацию об атрибутах файла, имеет заголовок загрузки, в котором номера блоков и последовательности равны 0.

5.4 Сжатие IP-заголовка

Заголовки IP и UDP сформированных IP-пакетов подвергаются сжатию с использованием алгоритма HCfB схемы мультиплексирования TLV, поскольку эти заголовки не являются необходимыми для радиовещательных каналов.

HCfB заменяет заголовки IP и UDP либо полным заголовком, содержащим всю информацию о заголовках IP и UDP, либо сжатым заголовком, не содержащим всей информации об этих заголовках. Для разжатия сжатого заголовка требуется, чтобы по крайней мере один пакет с полным заголовком был передан раньше пакетов со сжатым заголовком. Для указания того, какой тип заголовка содержится в пакете, используется поле CID header type.

Для доставки файлов необходимо также передавать пакеты, переносящие информацию об атрибутах файла, еще до передачи пакетов, переносящих единицы данных. Если информация заголовка первого пакета, переносящего информацию об атрибутах файла, заменяется полным заголовком, то информация заголовка всех других пакетов заменяется сжатым заголовком. Благодаря этому избыточность заголовков IP и UDP минимизируется в наибольшей степени. Таким образом, заголовки пакетов сжимаются, как показано в таблице 2 и на рисунке 9.


ТАБЛИЦА 2

Назначение поля CID_header_type для каждого пакета

Пакет	Значение поля CID_header_type	Описание
Первый пакет, переносящий информацию об атрибутах файла	0x20 (для пакета IPv4) 0x60 (для пакета IPv6)	Полный заголовок пакета с заголовками IP и UDP
Все пакеты, кроме указанного выше	0x21 (для пакета IPv4) 0x61 (для пакета IPv6)	Сжатый заголовок пакета с заголовками IP и UDP

РИСУНОК 9

Обзор заголовков пакетов

BT.1888-09

Эти пакеты со сжатыми заголовками передаются по радиовещательным каналам.

5.5 Обнаружение потерянных или поврежденных фрагментов файлов

Потерянные или поврежденные фрагменты файлов могут быть обнаружены следующим образом:

- Поврежденные единицы данных обнаруживаются посредством проверки контрольных сумм заголовков IP и UDP.
- Потерянные единицы данных обнаруживаются посредством проверки порядкового номера заголовка загрузки.

Приемник определяет, идентичен ли переданный файл тому, который был отправлен передатчиком. Если целостность файла нарушена, приемник может исправить файл с помощью сервера восстановления, определяемого в DLC.