
t3s2-006r8
24 November 2004

ATSC Proposed Standard:
Advanced Common Application Platform

(ACAP)

Advanced Television Systems Committee, Inc.
Suite 1200
1750 K Street, N.W.
Washington, D.C. 20006

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 2

The Advanced Television Systems Committee, Inc., is an international, non-profit organization
developing voluntary standards for digital television. The ATSC member organizations represent
the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable,
satellite, and semiconductor industries.

Specifically, ATSC is working to coordinate television standards among different
communications media focusing on digital television, interactive systems, and broadband
multimedia communications. ATSC is also developing digital television implementation
strategies and presenting educational seminars on the ATSC standards.

ATSC was formed in 1982 by the member organizations of the Joint Council on InterSociety
Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and
Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National
Cable Television Association (NCTA), and the Society of Motion Picture and Television
Engineers (SMPTE). Currently, there are approximately 140 members representing the
broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite,
and semiconductor industries.

ATSC Digital TV Standards include digital high definition television (HDTV), standard
definition television (SDTV), data broadcasting, multichannel surround-sound audio, and
satellite direct-to-home broadcasting.

About the Candidate Standard
This specification is being put forth as a Candidate Standard by the T3/S2 Specialist Group on
Advanced Common Application Platform. ATSC members and non-members are encouraged to
review and implement this specification and return comments to cs101-editor@atsc.org. ATSC
Members can also send comments directly to the T3/S2 Specialist Group. The ATSC believes
this specification is stable. It is expected to progress to Proposed Standard after a period of time
ending no later than 30 September 2004.

Editor’s Note
This document is a work in process. As such, notes are included in some portions of the
document indicating editorial items remaining to be addressed and substantive questions and/or
open issues. These items will be addressed as part of the ongoing work on CS/101A that will
occur during the Candidate Standard phase.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 3

Table of Contents
1. SCOPE..14

1.1 Status 14

1.2 Purpose 14

1.3 Application 15

2. GENERAL CONSIDERATIONS ...16

2.1 Format 16

2.2 Inclusion of GEM 16

2.3 Addition of Non-ACAP Interfaces 16

2.4 Application Areas 16

2.5 Profiles 16

3. DEFINITIONS AND ABBREVIATIONS ..17

3.1 Definitions from GEM 17

3.2 Definitions Introduced by OCAP 17

3.3 Definitions Introduced by ACAP 17

3.4 Abbreviations from GEM 17

3.5 Abbreviations Introduced by ACAP 17

3.6 Conformance Keywords 17
3.6.1 Section and Data Structure Syntax Notation 17

4. REFERENCES..19

4.1 Normative References 19

4.2 Informative References 21
4.2.1 Informative References from MHP 21
4.2.2 Informative References Defined by ACAP 21

4.3 Reference Acquisition 21
4.3.1.1 ATSC Standards 21
4.3.1.2 ECMA Standards 21
4.3.1.3 ETSI Standards 22
4.3.1.4 W3C Standards 22

5. ARCHITECTURE..23

5.1 Support for ACAP-J Applications 23

5.2 Support of ACAP-X Applications 23

6. COMMON CONTENT FORMATS...25

6.1 General 25

6.2 Static Formats 25

6.3 Broadcast Streaming Formats 25
6.3.1 Video 25

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 4

6.3.2 Audio 25
6.3.3 Closed-Captioning 25

7. ACAP-J APPLICATIONS AND ENVIRONMENT ...26

7.1 Behavior 26
7.1.1 Application Model 26
7.1.1 Destruction of Applications 26

7.2 Facilities 26
7.2.1 Java Content 27

7.2.1.1 Additional Java APIs 27
7.2.1.1.1 Closed Captioning 27
7.2.1.1.2 Locators 27
7.2.1.1.3 Events 27
7.2.1.1.4 Content Identification API 27
7.2.1.1.5 Extended SI API 28

7.2.1.2 Inter-Environment DOM Integration 28
7.2.1.3 Void 29
7.2.1.4 Integration of the JavaTV SI API 29
7.2.1.5 Addition of Non-ACAP Interfaces 29
7.2.1.6 GEM Functional Equivalents (Informative) 29
7.2.1.7 Semantics of java.io.File.lastModified() for broadcast carousels 29

7.2.2 Font Index Content 29
7.2.3 Archive Content 29

7.3 Addition of Non-ACAP Interfaces 29

8. ACAP-X APPLICATIONS AND ENVIRONMENT...30

8.1 Behavior 30
8.1.1 Application Behavior 30

8.1.1.1 Clarifications 30
8.1.2 Resource Identifier Schemes 31

8.1.2.1 Restrictions 31
8.1.2.1.1 ecmascript Scheme 31
8.1.2.1.2 lid Scheme 31
8.1.2.1.3 tv Scheme 31

8.1.2.2 Extensions 31
8.1.2.2.1 acap Scheme 31
8.1.2.2.2 exit Scheme 31

8.1.3 Event Processing 31
8.1.3.1 Restrictions 31

8.1.4 Trigger Processing 32
8.1.4.1 Restrictions 32
8.1.4.2 Extensions 32

8.1.4.2.1 Environment Triggers 33
8.1.4.2.2 org.atsc.trigger.start Trigger 33
8.1.4.2.3 Application Triggers 33

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 5

8.2 Facilities 33
8.2.1 Application Metadata Content 34

8.2.1.1 Modifications 35
8.2.1.1.1 Content Type 35
8.2.1.1.2 Document Type Definition 35
8.2.1.1.3 Document Type Declaration 35

8.2.1.2 Extensions 35
8.2.1.2.1 entity Element 35
8.2.1.2.2 initial Entity Type 35
8.2.1.2.3 permissionRequest entity Type 35
8.2.1.2.4 signature Entity Type 35
8.2.1.2.5 identifier Element 36
8.2.1.2.6 Permission Capability 36

8.2.1.2.6.1 type Parameter 37
8.2.1.2.6.2 target Parameter 37
8.2.1.2.6.3 actions Parameter 37

8.2.2 Graphics Content 37
8.2.2.1 Extensions 37

8.2.2.1.1 image/mpeg 37
8.2.3 Non-Streaming Video Content 37

8.2.3.1 Extensions 38
8.2.3.1.1 video/dvb.mpeg.drip 38

8.2.4 Non-Streaming Audio Content 38
8.2.4.1 Extensions 38

8.2.4.1.1 audio/mpeg 38
8.2.5 Streaming Video Content 38
8.2.6 Streaming Audio Content 38
8.2.7 Font Content 38
8.2.8 Archive Content 38
8.2.9 Markup Content 38

8.2.9.1 Restrictions 39
8.2.9.1.1 Resource Content Type References 39
8.2.9.1.2 Resource Access 39
8.2.9.1.3 Document Type Declaration 40
8.2.9.1.4 Namespace Declarations 40
8.2.9.1.5 legacy Application 40
8.2.9.1.6 intrinsic event Attributes 40
8.2.9.1.7 name Attribute 41
8.2.9.1.8 a (anchor) Element 41
8.2.9.1.9 frame Element 41
8.2.9.1.10 object Element 41

8.2.9.1.10.1 Active Content Object Element 41
8.2.9.1.10.2 Trigger Object Element 42

8.2.9.1.11 script Element 42
8.2.9.2 Extensions 42

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 6

8.2.9.2.1 Document Type Declaration 43
8.2.9.2.2 cite Attribute 43
8.2.9.2.3 event Attributes 43
8.2.9.2.4 longdesc Attribute 44
8.2.9.2.5 a (anchor) Element 44

8.2.9.2.5.1 Application Replacement and Launching 44
8.2.9.2.5.2 Service Selection 45
8.2.9.2.5.3 Service Component Selection 45

8.2.9.2.6 area Element 45
8.2.9.2.7 meta Element 45

8.2.9.2.7.1 Classpath Metadata Item 46
8.2.9.2.8 object Element 46

8.2.10 Stylesheet Content 46
8.2.10.1 Restrictions 46

8.2.10.1.1 Resource Content Type References 46
8.2.10.1.2 Media Types 47
8.2.10.1.3 Properties 47

8.2.10.1.3.1 atsc-nav-index Property 47
8.2.10.1.3.2 atsc-nav-{left,right,up,down} Properties 47

8.2.10.1.4 Property Values 47
8.2.10.1.4.1 <color> Property Value 47

8.2.10.2 Extensions 47
8.2.10.2.1 Font Face Rule 47
8.2.10.2.2 Viewport Rule 47

8.2.10.2.2.1 Viewport Descriptors 48
8.2.10.2.3 Media Types 50
8.2.10.2.4 Properties 51

8.2.10.2.4.1 acap-dynamic-refresh Property 51
8.2.10.2.4.2 crop Property 51
8.2.10.2.4.3 font Property 52
8.2.10.2.4.4 nav-index Property 52
8.2.10.2.4.5 nav-{left,right,up,down} Properties 53
8.2.10.2.4.6 opacity Property 54

8.2.10.2.5 Property Value Types 54
8.2.10.2.5.1 <color> Property Value Type 54

8.2.11 Script Content 55
8.2.11.1 Restrictions 55

8.2.11.1.1 HTML Module Objects 55
8.2.11.1.1.1 HTMLDocument Object 55
8.2.11.1.1.2 HTMLFormElement Object 55
8.2.11.1.1.3 HTMLImageElement Object 55
8.2.11.1.1.4 HTMLObjectElement Object 55

8.2.11.1.2 StyleSheets Module Objects 56
8.2.11.1.3 Event Types 57

8.2.11.1.3.1 HTML Event Types 57
8.2.11.1.4 Environment Module Objects 57

8.2.11.1.4.1 Navigator Object 57
8.2.11.2 Extensions 57

8.2.11.2.1 Event Module Objects 57

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 7

8.2.11.2.1.1 ApplicationEvent Object 57
8.2.11.2.1.2 TimerEvent Object 58
8.2.11.2.1.3 TriggerEvent Object 58

8.2.11.2.2 Event Types 60
8.2.11.2.2.1 HTML Event Types 60
8.2.11.2.2.2 Application Lifecycle Event Types 61
8.2.11.2.2.3 Timer Event Types 63
8.2.11.2.2.4 Trigger Event Types 63

8.2.11.2.3 Environment Module Objects 64
8.2.11.2.3.1 Window Object 64

8.2.11.2.4 Inter-Environment Bridge 64
8.2.11.2.4.1 Packages Object 64
8.2.11.2.4.2 Package Object 65
8.2.11.2.4.3 Java Class Object 65
8.2.11.2.4.4 Java Method Object 65
8.2.11.2.4.5 Behavior of Java Objects in ECMAScript 65
8.2.11.2.4.6 Explicit Method Selection 66
8.2.11.2.4.7 Method Signature Matching 66
8.2.11.2.4.8 Subclassing 66
8.2.11.2.4.9 Exceptions 67
8.2.11.2.4.10 Security 67
8.2.11.2.4.11 Unicode Escapes 68

8.3 ACAP-X Security Specifics 68
8.3.1 Cookie Access 68
8.3.2 Inter-Environment Bridge Access 68
8.3.3 Runtime Code Extension Access 68

8.4 ACAP-X Transport Specifics 68
8.4.1 ACAP-X Transport Binding 69

8.4.1.1 Bounded Resource Encapsulation 69
8.4.1.2 Unbounded Resource Encapsulation 69
8.4.1.3 Trigger Encapsulation 69

9. MONITOR APPLICATION SUPPORT..70

10. TRANSPORT AND SIGNALING ..71

10.1 Introduction 71
10.1.1 Notation 71

10.2 Carousel 71
10.2.1 NSAP Address 71
10.2.2 Content Type and Timestamp Inheritance 72
10.2.3 Application transport over HTTP 72

10.2.3.1 HTTP Profile 73
10.2.3.2 HTTPS Profile 74

10.2.4 Time Stamp Descriptor 75
10.2.5 Usage of Private Data for non-ACAP Extensions 75
10.2.6 Data Broadcast Descriptor 76

10.3 Application Signaling 76
10.3.1 Application Content Types 76
10.3.2 Application Protocol ID 76

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 8

10.3.3 Signaling of Profiles and Versions Required by Applications 77
10.3.4 ACAP-X Extensions 77

10.3.4.1 ACAP-X Application Descriptor 78
10.3.4.2 ACAP-X Application Location Descriptor 78
10.3.4.3 ACAP-X Application Boundary Descriptor 79

10.4 Object Carousel Protocol (Informative) 80
10.4.1 Message Template 80

10.4.1.1 Interoperable Object Protocol 80
10.4.1.2 Interoperable Object References 80

10.4.1.2.1 Network Service Access Point Address 81
10.4.2 Service Gateway Message 83

10.4.2.1 Message Schema 83
10.4.2.2 Message Descriptors 83

10.4.2.2.1 Label Descriptor 83
10.4.2.2.2 Time Stamp Descriptor 84

10.4.3 Directory Message 84
10.4.3.1 Message Schema 84

10.4.4 Message Descriptors 84
10.4.4.1.1 Label Descriptor 84
10.4.4.1.2 Time Stamp Descriptor 84

10.4.5 File Message 84
10.4.5.1 Message Schema 84
10.4.5.2 Message Descriptors 85

10.4.5.2.1 Content Type Descriptor 85
10.4.5.2.1.1 Descriptor Schema 85
10.4.5.2.1.2 Descriptor Semantics 85

10.4.5.2.2 Time Stamp Descriptor 88
10.4.5.2.2.1 Descriptor Semantics 88

10.4.6 Stream Message 88
10.4.7 Stream Event Message 89

10.4.7.1 Stream Event Concepts 89
10.4.7.2 Message Schema 89
10.4.7.3 Message Semantics 89
10.4.7.4 Message Descriptors 89

10.4.7.4.1 Stream Event Descriptor 90
10.4.7.4.2 NPT Reference Descriptor 90

10.5 Data Carousel Protocol (Informative) 90
10.5.1 The Message Template 90

10.5.1.1 Message Header 90
10.5.1.2 Section Format 90

10.5.2 Download Info Indication Message 91
10.5.2.1 Message Schema 91
10.5.2.2 Method Structures 91
10.5.2.3 Message Descriptors 91

10.5.2.3.1 Compressed Module Descriptor 91

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 9

10.5.2.3.2 Label Descriptor 92
10.5.2.3.3 Caching Priority Descriptor 92

10.5.3 Download Server Initiate Message 92
10.5.3.1 Message Schema 92
10.5.3.2 Method Structures 92
10.5.3.3 Group Link Descriptor 92

10.5.3.3.1 Subgroup Association Descriptor 92
10.5.3.4 Download Data Block Message 92
10.5.3.5 Download Cancel Message 92

10.5.3.5.1 Message Schema 92
10.5.3.5.2 Message Semantics 93

10.6 Transport Protocol (Informative) 93
10.6.1 Introduction 93
10.6.2 Program Map Table 93

10.6.2.1 Deferred Association Tags Descriptor 94
10.6.2.2 Carousel Identifier Descriptor 94
10.6.2.3 Application Signaling Descriptor 94
10.6.2.4 Data Broadcast Id Descriptor 95

10.6.3 Application Information Table 95
10.6.3.1 Generic Application Descriptor Sequence 97

10.6.3.1.1 Transport Protocol Descriptor 97
10.6.3.1.1.1 Descriptor Schema 97
10.6.3.1.1.2 Object Carousel Selector Structure 98

10.6.3.2 Download Info Indication Location Descriptor 98
10.6.4 Application Specific Descriptor Sequence 98

10.6.4.1 Application Descriptor 98
10.6.4.2 Application Name Descriptor 98
10.6.4.3 Application Icon Descriptor 98
10.6.4.4 Prefetch Descriptor 98
10.6.4.5 Download Info Indication Location Descriptor 99

10.6.5 Application Representation Specific Descriptor Sequences 99
10.6.5.1 ACAP-J Application Descriptors 99

10.6.5.1.1 ACAP-J Application Descriptor 99
10.6.5.1.2 ACAP-J Application Location Descriptor 99

10.6.5.2 ACAP-X Application Descriptors 100
10.6.5.2.1 ACAP-X Application Descriptor 100
10.6.5.2.2 ACAP-X Application Location Descriptor 100
10.6.5.2.3 ACAP-X Application Boundary Descriptor 101

11. INTERACTION CHANNEL...102

11.1 Interaction Channel Protocols 102
11.1.1 Network Specific Protocols 102
11.1.2 Internet Protocol 102
11.1.3 User Datagram Protocol (UDP) 102
11.1.4 Transmission Control Protocol (TCP) 102

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 10

11.1.5 Hyper-Text Transfer Protocol (HTTP) 103
11.1.6 Domain Name Service (DNS) 103

12. SECURITY..104

12.1 Introduction 104

12.2 ACAP Trust Model 104
12.2.1 General Rules 104
12.2.2 Applications Received Over a Terrestrial Interface 104
12.2.3 Applications Received Over a Cable Interface 105

12.3 Security Policy for Applications 105

12.4 ACAP Extensions to GEM Security Model 105
12.4.1 ACAP Signing Framework 105

12.4.1.1 General Principles 105
12.4.1.2 Authentication of ACAP-X Applications 106

12.4.2 ACAP Extensions to Security Policies for Applications 107
12.4.2.1 ACAP Permission Request File 107

12.4.2.1.1 General Principles 107
12.4.2.1.2 DTD definition 107
12.4.2.1.3 ACAP Permission Request File Name and Location 107

12.4.2.2 Cable Specific Security Access Policy 108
12.4.2.2.1 Monitor Application Features Access Policy 108

12.4.2.2.1.1 Applications not Signed by the ACAP Signing Framework 108
12.4.2.2.1.2 Applications Signed by the ACAP Signing Framework 108
12.4.2.2.1.3 Privileged Monitor Application API access 108

12.4.2.3 ACAP Security Policy for Applications 108
12.4.2.3.1 Cookie Permission 108

12.4.2.3.1.1 Untrusted Applications 108
12.4.2.3.1.2 Trusted Applications 109
12.4.2.3.1.3 Permission Request Syntax 109

12.4.2.3.2 Runtime Code Extension Permission 109
12.4.2.3.2.1 Untrusted Applications 110
12.4.2.3.2.2 Trusted Applications 110
12.4.2.3.2.3 Permission Request Syntax 110

12.4.2.3.3 Inter-Environment Bridge Permission 110
12.4.2.3.3.1 Untrusted Applications 110
12.4.2.3.3.2 Trusted Applications 110
12.4.2.3.3.3 Permission Request Syntax 110

12.5 Security over the Interaction Channel 110

12.6 Platform Minima 110

12.7 ACAP Security Operational Model 111

13. GRAPHICS REFERENCE MODEL ..112

14. SYSTEM INTEGRATION..113

14.1 Text Presentation 113

14.2 Resource Reference and Locators 113
14.2.1 ACAP URI Scheme 113

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 11

14.2.1.1 Scheme Definition 113
14.2.1.1.1 Additional Restrictions 116

14.2.1.2 Extended ACAP URI Scheme for ACAP-X 117
14.2.1.3 Referencing Specific Entities 117

14.2.1.3.1 Program Streams 117
14.2.1.3.2 Program Elements 117
14.2.1.3.3 Files and Directories 118
14.2.1.3.4 Resolution of Locator Elements 118

14.2.1.3.4.1 Contextual 119
14.2.1.3.4.2 Universally Resolvable 119
14.2.1.3.4.3 Environment Specific 120
14.2.1.3.4.4 Physical Constructs 121

14.3 Persistent Local Storage 121

15. MINIMUM RECEIVER REQUIREMENTS...122

15.1 General 122

15.2 User Input 122

15.3 Graphics 122

16. DETAILED PLATFORM PROFILE DEFINITIONS ...123

17. CONFORMANCE ...124

17.1 Compliance with GEM 124
17.1.1 GEM errata 124
17.1.2 Modifications to MHP Definitions of Functional Equivalents 124

17.1.2.1 Application Icons Descriptor 124

1. PACKAGE ORG.ATSC.SI ..126

1.1 Description 126

1. SCOPE..131

2. ACAP PERMISSION REQUEST FILE DOCUMENT TYPE..131

2.1 acap-permission-1.dtd 131

3. ACAP-J FONT INDEX FILE DOCUMENT TYPE ...134

3.1 acap-j-font-index-1.dtd 134

4. ACAP-X APPLICATION METADATA DOCUMENT TYPE ..135

4.1 acap-x-metadata-1.dtd 135

5. ACAP-X MARKUP DOCUMENT TYPE..139

5.1 acap-x-xdml-1.dtd 139

5.2 acap-x-xdml-model-1.ent 144

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 12

Index of Tables
Table 7-1 ACAP-J Content Types 27

Table 8-1 ACAP-X Content Types 34

Table 8-2 Markup Resource Content Type References 39

Table 8-3 Stylesheet Resource Content Type References 46

Table 8-4 ECMAScript Internal Properties for Java Entities 65

Table 8-5 ACAP-X Trigger Event Transport Binding 69

Table 10-1 Specifier and Service Location 72

Table 10-2 Semantics of the HTTPProfileBody 73

Table 10-3 Semantics of the HTTPSProfileBody 74

Table 10-4 application_type Extensions 76

Table 10-5 protocol_id Extension 76

Table 10-6 ACAP-X Application Descriptor 78

Table 10-7 ACAP-X Application Location Descriptor 79

Table 10-8 ACAP-X Application Boundary Descriptor 80

Table 10-9 Network Service Access Point Address 81

Table 10-10 Network Service Access Point Address Fields 81

Table 10-11 Specifier Type Assignments 82

Table 10-12 Organization Unique Identifier Assignments 82

Table 10-13 ACAP Carousel Location 82

Table 10-14 Program Map Table 93

Table 10-15 Application Content Types 94

Table 10-16 Application Information Table 95

Table 10-17 Application Type Assignments 96

Table 10-18 Protocol Id Assignments 98

Table 10-19 ACAP-J Application Descriptor 99

Table 10-20 ACAP-J Application Location Descriptor 100

Table 12-1 Application Name for Different Application Types 108

Table 14-1 ACAP URI Contextual Constructs 119

Table 14-2 ACAP URI Universally Resolvable Constructs 119

Table 14-3 ACAP URI Environment Specific Constructs 120

Table 14-4 ACAP URI Physical Layer Constructs 121

Table 16-1 Detailed Platform Profile Definitions 123

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 13

Index of Figures
Figure 5-1 ACAP-J System Architecture 23

Figure 5-2 ACAP Application and System Software 24

Figure 10-1 Content Type Inheritance 86

Figure 10-2 Content Type Inheritance Conflict 87

Figure 11-1 Interaction Channel Network Protocols 102

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 14

Proposed Standard:
Advanced Common Application Platform (ACAP)

1. SCOPE

1.1 Status
This section describes the status of this document at the time of its publication. Other documents
may supersede this document. The latest status of this document series is maintained by the
ATSC. This specification is a working draft of the ACAP group.

1.2 Purpose
The present document defines the Advanced Common Application Platform, henceforth referred
to as ACAP. ACAP is applicable for specifications and standards based on the ACAP APIs,
content formats, and semantic guarantees.

The reader's attention is called to the possibility that compliance with this standard may
require use of an invention covered by patent rights. By publication of this standard, no position
is taken with respect to the validity of this claim, or of any patent rights in connection therewith.
The patent holder has, however, filed a statement of willingness to grant a license under these
rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain
such a license. Details may be obtained from the publisher.

This specification is firstly intended to be used by entities writing terminal specifications
and/or standards based on ACAP. Secondly it is intended for developers of applications that use
the ACAP functionality and APIs. The ACAP specification aims to ensure interoperability
between ACAP applications and different implementations of platforms supporting ACAP
applications.

Note: This specification defines the interfaces visible to applications. Application
developers should not assume that any related interface is available unless it is
specifically listed. Terminal standards or implementations may have other
interfaces present.

An ACAP Application is a collection of information which is processed by an application
environment in order to interact with an end-user or otherwise alter the state of the application
environment.

ACAP Applications are classified into two categories depending upon whether the initial
application content processed is of a procedural or a declarative nature. These categories of
applications are referred to as procedural (ACAP-J) and declarative (ACAP-X) applications,
respectively. An example of an ACAP-J application is a Java TV™ Xlet composed of compiled
Java™ byte code in conjunction with other multimedia content such as graphics, video, and
audio. An example of an ACAP-X application is a multimedia document composed of XHTML
markup, style rules, scripts, and embedded graphics, video, and audio.

Note: An ACAP application need not be purely procedural or declarative. In
particular, an ACAP-J application may reference declarative content such as
graphic content or may construct and cause the presentation of markup content.
Similarly, ACAP-X applications often make use of script content, which is

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 15

procedural in nature. Furthermore, an ACAP-X application may reference an
embedded Java TV Xlet.

Application environments are similarly classified into two categories depending upon
whether they process procedural or declarative applications. These categories are referred to as
ACAP-J and ACAP-X environments, respectively. An example of an ACAP-J environment is a
Java Virtual Machine and its associated Application Programming Interface (API)
implementation. An example of an ACAP-X environment is an XHTML multimedia document
browser, also known as a user agent.

1.3 Application
The architecture and facilities of the ACAP Standard are intended to apply to broadcast systems
and receivers for terrestrial (over-the-air) broadcast and cable TV systems. In addition, the same
architecture and facilities may be applied to other transport systems (such as satellite).

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 16

2. GENERAL CONSIDERATIONS

2.1 Format
ACAP is primarily based on GEM [1] and DASE [5], and includes additional functionality from
OCAP [4]. GEM provides a framework for the definition of a GEM Terminal Specification. This
document builds on GEM by adding specification elements in order to offer a higher degree of
interoperability among different environments based on digital TV specifications from ATSC
and SCTE.

It is expected that future versions of DASE and OCAP will be based on this specification.

2.2 Inclusion of GEM
This document includes GEM [1] in its entirety. To be fully compliant with this specification,
equipment shall also be fully compliant with GEM [1].

2.3 Addition of Non-ACAP Interfaces
Terminal specifications based on ACAP may add public interfaces, provided that they are added
in a namespace that does not conflict with ACAP. For example, OCAP [4] defines extensions to
the ACAP-J applications environment in the Java packages org.ocap and org.atsc.

ACAP terminal specifications and ACAP terminals shall not require that such extension
interfaces be called by ACAP applications in order to enable behavior that is normatively
required by this specification.

2.4 Application Areas
In this version of this specification, the same application areas as GEM [1] Section 0.5 are
considered.

2.5 Profiles
The informative text referenced from GEM [1] Section 0.6 describes the GEM approach to
profiles. The profiles defined in this specification are modeled on a similar scheme.

This specification defines two profiles, an ACAP-J Profile and a combined ACAP-J and
ACAP-X Profile. They are detailed in Section 16, “Detailed Platform Profile Definitions.”

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 17

3. DEFINITIONS AND ABBREVIATIONS

3.1 Definitions from GEM
The definitions from GEM [1] Chapter 3 apply to this specification.

3.2 Definitions Introduced by OCAP
The definition of CableCARD from OCAP [4] applies to this specification.

3.3 Definitions Introduced by ACAP
For the purposes of the present document, the following terms and definitions apply:
ACAP Application – An application that is written only to the interfaces and semantic

guarantees defined in ACAP. A suitably signaled ACAP application will run on any terminal
that complies to an ACAP terminal specification.

ACAP Terminal – A terminal or other device that conforms to an ACAP Terminal
Specification. Examples of ACAP terminals include an OCAP terminal (including the
CableCARD Module) and a terminal supporting the DASE PAE.

ACAP Terminal Specification – An ACAP terminal specification is a specification that
includes all normative and selected optional elements of its underlying ACAP specification,
and provides additional specifications as required.

Trusted Application – An application that is eligible to be trusted and to which is granted
access to some sensitive resources.

3.4 Abbreviations from GEM
The definitions from GEM [1] Chapter 4 apply to this specification.

3.5 Abbreviations Introduced by ACAP
For the purposes of the present document, the following abbreviations apply:
ACAP Advanced Common Application Platform
ACAP-J ACAP Procedural (Java)
ACAP-X ACAP Declarative (XHTML)

3.6 Conformance Keywords
As used in this document, the conformance keyword shall denotes a mandatory provision of the
Standard. The keyword should denotes a provision that is recommended but not mandatory. The
keyword may denotes a feature whose presence does not preclude compliance, that may or may
not be present at the option of the application or the system implementer.

3.6.1 Section and Data Structure Syntax Notation

This document contains symbolic references to syntactic elements. These references are
typographically distinguished by the use of a different font (e.g., restricted), may contain the
underscore character (e.g., sequence_end_code) and may consist of character strings that are not
English words (e.g., dynrng).

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 18

The formats of sections and data structures in this document are described using a C-like
notational method employed in ISO/IEC 13818-1.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 19

4. REFERENCES

4.1 Normative References
The following documents contain provisions which, through reference in this text, constitute
provisions of the present document.
� References are either specific (identified by date of publication and/or edition number or

version number) or non-specific.
� For a specific reference, subsequent revisions do not apply.
� For a non-specific reference, the latest version applies.
� A non-specific reference to an ETS shall also be taken to refer to later versions published as

an EN with the same number.
The following comments apply to particular sources of documents:
(1) Where the reference is to an ISO specification, it is considered to be a “non-specific”

reference; additionally, officially published amendments and corrigenda are considered to
automatically update the referenced document.

(2) Where an ISBN number is provided for a referenced document, it is considered to be
“specific reference”.

(3) References to RFCs are considered to be “specific references”. An RFC being indicated
obsoleted by another RFC is not considered significant.

(4) URL references with note [4] are provided for convenience to access the document in
electronic form.

(5) URL references with note [5] are the normative method to access the reference.
(6) ETSI specifications are available from the ETSI server at: http://www.etsi.org. However, the

ETSI server provides the current edition of the specification and in every case this
specification makes “specific” references which in the future may not be the current
reference.

Note: The extent to which all or part of the following references are normative is
specified at the locations in the main body of this specification where they are
used. Listing a reference here does not imply that all of a reference is required.

(7) SCTE 90-1 is available from http://ww.scte.org. The most recent version of the CableLabs
OCAP 1.0 specification is available from http://www.opencable.com/specifications.

Reference Edition Description Note

[1] GEM 1.0.2 Digital Video Broadcasting (DVB), Globally Executable MHP
version 1.0.2, available as ETSI TS 102 819 V 1.3.1

(6)

[2] MHP 1.0 1.0.3 Digital Video Broadcasting (DVB), Multimedia Home Platform
version 1.0.3, available as ETSI TS 101 812 V 1.3.1

(6)

[3] MHP 1.1 1.1.1 Digital Video Broadcasting (DVB), Multimedia Home Platform
version 1.1.1, available as ETSI TS 102 812 V1.2.1

(6)

[4] OCAP 1.0 90-1 2004 ANSI/SCTE 90-1 2004, SCTE Application Platform Standard,
OCAP 1.0 Profile

(7)

[5] A/100-1 1.0 DASE-1 Part 1: Introduction, Architecture, and Common Facilities,
A/100-1, ATSC

[6] A/52A ATSC A/52A, “Digital Audio Compression (AC-3) Standard, Rev.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 20

A,” 20 August 2001
[7] A/53B ATSC A.53B, “ATSC Digital Television Standard, Revision B, with

Amendments 1 and 2,” 7 August 2001 (Amendment 1 dated 23
May 2002; Amendment 2 dated 19 May 2003)

[8] SCTE 43 Digital Video System Characteristics Standard for Cable Television
[9] ISO 15706 Information and documentation - International Standard

Audiovisual Number (ISAN)

[10] ISO 20925-1 (work in progress) Information and documentation - Identifier for versions of
audiovisual works (V-ISAN) - Part 1: Format and use.

[11] ISO/IEC 13818-
1:2000/PDAM 4

(work in progress) GENERIC CODING OF MOVING PICTURES AND AUDIO:
SYSTEMS Amendment 4: ISAN and V-ISAN use in the content
labeling descriptor

[12] OP-SC OpenCable Security Specification
[13] ATSC T3-548 2001 Technical Group Report: “Advanced television Systems Committee

Usage of the MPEG-2 Registration Descriptor,” 9 October 2001

[14] ATSC T3-549 2001 Technical Group Report: “Collision Avoidance for Private Fields
and Ranges,” 9 October 2001

[15] ATSC T3-575 R13 Code Point Registry
[16] CORBA 2.1 Common Object Request Broker Architecture: Interoperable Object

Protocol Specification

[17] EN 301 192 1.3.1 Digital Video Broadcast Specification for Data Broadcasting
[18] ETR 162 Edition 1 Digital Video Broadcasting (DVB);Allocation of Service Information

(SI) codes for DVB systems

[19] ETS 300 468 Edition 2 Digital Video Broadcasting (DVB);Specification for Service
Information (SI) in DVB systems

[20] ISO 639.2 1.0 Code for the Representation of Names of Languages: Part 1
[21] ISO 8859-1 1.0 Information Technology: 8-Bit Single-Byte Coded Graphic

Character Sets: Part 1: Latin Alphabet No. 1

[22] ISO 13818-1 Second Edition
(2000)

Information Technology: Generic Coding of Moving Pictures and
Associated Audio Information: Systems

[23] ISO 13818-6 First Edition (1998) Information Technology: Generic Coding of Moving Pictures and
Associated Audio Information: Extensions for Digital Storage
Media Command and Control

[24] PNG 1.0.1 Portable Network Graphics
[25] RFC 1738 Universal Resource Locators (URL)
[26] RFC 1950 ZLIB Compressed Data Format Specification (Version 3.3)
[27] RFC 1951 DEFLATE Compressed Data Format Specification (Version 1.3)
[28] RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies

[29] RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
[30] SCTE 40 Digital Cable Network Interface Standard
[31] SCTE 54 Digital Video Service Multiplex and Transport System Standard for

Cable Television

[32] TR 101 162 1.0 Digital Broadcasting Systems for Television, Sound, and Data
Services: Allocation of Service Information (SI) Codes for Digital
Video Broadcasting (DVB) Systems

[33] CSS-BOX Working Draft CSS3 Module: The Box Model, W3C
[34] CSS-COLOR Working Draft CSS3 Module: Color, W3C
[35] CSS-TV Candidate

Recommendation
CSS TV Profile 1.0, W3C

[36] CSS-UI Working Draft CSS3 Module: Basic User INterface, W3C
[37] A/100-8 1.0 DASE-1 Part 8: Conformance, A/100-8, ATSC
[38] A/100-2 1.0 DASE-1 Part 2: Declarative Applications and Environments, A/100-

2, ATSC

[39] RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1. R. Fielding, J. Gettys, J.
Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. June
1999

[40] A/96 ATSC Interaction Channel Protocols
[41] RFC 1034 Domain names - concepts and facilities. P.V. Mockapetris. Nov-01-

1987.

[42] RFC 1035 Domain names - implementation and specification. P.V.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 21

Mockapetris. Nov-01-1987.
[43] A/100-4 1.0 ATSC DASE-1 Part 4, A/100-4, “Application Programming

Interface,” 9 March 2003

[44] A/100-3 1.0 ATSC DASE-1 Part 3, A/100-3, “Procedural Applications and
Environment,” 9 March 2003

[45] SCTE 65 Service Information Delivered Out-Of-Band for Digital Cable
Television

[46] Void Void
[47] A/65B ATSC A/65B, “Program and System Information Protocol for

Terrestrial Broadcast and Cable, Rev. B,” 18 March 2003

[48] CSS Recommendation Cascading Style Sheets, Level 2, W3C
[49] DOM2 EVENTS Recommendation Document Object Model (DOM) Level 2 Events, W3C
[50] ECMASCRIPT ECMAScript Language Specification, 3rd Ed., ECMA-262, ECMA
[51] MIME-MEDIA Multimedia Internet Mail Extensions (MIME) Part Two: Media

Types, RFC2046, IETF

[52] A/94 ATSC A/94, “ATSC Data Application Reference Model,” 16 August
2002

[53] EIA-708-B “Digital Television (DTV) Closed Captioning”
[54] HTML 4.01 HTML 4.01 Specification, W3C
[55] ISO/IEC 11172-
3

1993 Information technology – Coding of moving pictures and
associated audio for digital storage media at up to about 1.5
MBits/s – Part 3: Audio

[56] ETR 154 3.0 Digital Video Broadcasting (DVB); Implementation Guidelines for
the use of MPEG-2 Systems

[57] T3-548 Technology Group Report T3-548: “ATSC Usage of the MPEG-2
Registration Descriptor,” 9 October 2001

[58] T3-549 Technology Group report T3-549: “Collision Avoidance for Private
Fields and Ranges,” 9 October 2001

4.2 Informative References

4.2.1 Informative References from MHP

GEM [1] Annex C is included in this specification.

4.2.2 Informative References Defined by ACAP

The following informative references apply to this specification.

Reference Edition Description Note
[59] A/95 ATSC A/95, “Transport Stream File System,” 25 February 2003
[60] OC-SP-HOST-
CFR-I16-040402

 OpenCable Host Device Core Functional Requirements

4.3 Reference Acquisition

4.3.1.1 ATSC Standards

Advanced Television Systems Committee (ATSC), 1750 K Street N.W., Suite 1200 Washington,
DC 20006 USA; Phone: +1 202 872 9160; Fax: +1 202 872 9161; http://www.atsc.org/.

4.3.1.2 ECMA Standards

ECMA, 114, rue du Rhône, CH-1204 Geneva, Switzerland; Phone: +41 22 849 60 00; Fax: +41
22 849 60 01; http://www.ecma.ch/.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 22

4.3.1.3 ETSI Standards

ETSI Secretariat, 650, route des Lucioles, 06921 Sophia-Antipolis Cedex, France; Phone: +33
(0)4 92 94 42 00; Fax: +33 (0)4 93 65 47 16; http://www.etsi.org/.

4.3.1.4 W3C Standards

World Wide Web Consortium (W3C), Massachusetts Institute of Technology, Laboratory for
Computer Science, 200 Technology Square, Cambridge, MA 02139, USA; Phone: +1 617 253
2613; Fax: +1 617 258 5999; http://www.w3.org/.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 23

5. ARCHITECTURE
The architecture for ACAP is as specified in the MHP definition of the functional equivalent
named “Arch” as specified in GEM [1] Clause 15.6. (See Section 17.1, “Compliance with
GEM.”)

5.1 Support for ACAP-J Applications
Where only ACAP-J applications are supported, the application and system software are as
shown in Figure 5-1 ACAP-J System Architecture.

Figure 5-1 ACAP-J System Architecture

5.2 Support of ACAP-X Applications
Where the optional ACAP-X applications are supported, the system application and systems
software is as illustrated in Figure 5-2 ACAP Application and System Software.

ACAP/GEM Application

ACAP System Software

Common Infrastructure

Common Content Decoders
(PNG, JPEG, Portable Font, ...)

Security Framework

(JavaTV Xlet, ...)

Procedural Application Environment

Java Byte Code Interpreter
(Java Virtual Machine)

API Implementations: Core Java
platform, JMF, JavaTV, HAVi UI,

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 24

Figure 5-2 ACAP Application and System Software

 ACAP Application

 (JavaTV Xlet, XHTML, CSS, ECMAScript ...)

 ACAP System Software

 Common Infrastructure

 ACAP-X Environment ACAP-J Environment

 Java Byte Code Interpreter

API Implementations: Core Java
Platform, JMF, JavaTV, HAVi,
UI, W3C, ACAP

 Document and Environment Object
 Model API Implementation

ECMAscript
Interpreter

ECMAscript/
 Java API
 Bridge

XHTML
Interpreter

Cascading
Stylesheet
Interpreter

Embedded
Xlet
Support

 Common Content Decoders
 (PNG, JPEG, Portable, Font…)

 Security Framework

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 25

6. COMMON CONTENT FORMATS

6.1 General
Chapter 7 of GEM [1] shall apply.

In this specification, support for PNG shall have an additional requirement beyond those
requirements inherited from GEM, specifically that the tRNS chunk shall be supported for images
where it is present and when it specifies one of the color types defined by PNG to be allowed to
contain this chunk.

Note: The extent to which an ACAP terminal device can reproduce transparent
colors is subject to those approximations defined by MHP [2], Section 15.1 “PNG
Restrictions”. The above language does not modify these restrictions or impose
additional requirements on the graphics hardware of an ACAP terminal device.

6.2 Static Formats
MPEG-1 Audio Layer 3 elementary stream data shall be supported as defined by ISO/IEC
11172-3 [55], as further constrained by ETR 154 [56].

6.3 Broadcast Streaming Formats

6.3.1 Video

Video streamed over a terrestrial network shall be as defined by ATSC A/53B [7]. Video
streamed over a cable network shall be as defined by SCTE 43 [8].

6.3.2 Audio

Audio streamed over either terrestrial or cable networks shall be Dolby AC-3 data as defined by
ATSC A/52A [6] and ATSC A/53B [7].

6.3.3 Closed-Captioning

Closed captions shall be supported as defined by EIA-708-B [53]. For terrestrial networks,
A/53B [7] shall also apply. For cable networks, NTSC Closed Caption data must be passed
through the appropriate terminal outputs in accordance with ANSI/SCTE 43 (formerly DVS/258)
[8]. Decoding and display of the NTSC Closed Caption data in the terminal is only required
when the set-top terminal includes analog component (Y-Pb-Pr, RGB, YUV, etc.) or
uncompressed digital outputs. In all cases, reconstruction of line-21 for analog NTSC outputs
and pass-through of the content advisory information in a compressed SPTS on the IEEE-1394
interface is required.

Note: Products implementing this specification may need to comply with a
number of other specifications or regulations for the support of closed captioning
which are outside the scope of this specification.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 26

7. ACAP-J APPLICATIONS AND ENVIRONMENT
This section defines the content of ACAP-J applications and the behavior and facilities required
or permitted by an ACAP-J environment.

The definition of an ACAP-J application and environment is based on GEM [1] and OCAP
[4]. When normative material is incorporated into this specification from GEM [1] and OCAP
[4], the terms GEM Application and OCAP Application should be read in this specification as
ACAP-J application; and OCAP Execution Engine should be read as an ACAP-J environment.

The content (MIME media) type used to label an ACAP-J application as an aggregate entity
shall be application/acap-j.

7.1 Behavior

7.1.1 Application Model

Chapter 9 of GEM [1] shall apply with the DVB-J model applying to ACAP-J applications.

7.1.1 Destruction of Applications
ACAP terminals shall implement the facility described in section 13.2.1.8.2 of OCAP 1.0 [4] for
destruction of applications.

7.2 Facilities
The content (MIME media) types specified in Table 7-1 (ACAP-J Content Types) may be used
by an ACAP-J application and shall be supported by an implementation of an ACAP-J
environment. In this table, the last column specifies zero or more file name extensions that
should be used with files of this content type. The extension <x> designates a numeric value
starting from zero (0) with no leading zeros. The extension N/A indicates that no extension is
applicable since resources of this type are not named or do not appear in the broadcast file
system or the content type describes a collection of resources. The extension others indicates that
other, non-specific extensions are permitted.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 27

Table 7-1 ACAP-J Content Types
Content Type See Section Extensions

application/acap-certificate 12.4.1 .<x>
application/acap-digest 12.4.1 .hashfile
application/acap-j 7 N/A
application/acap-j-fontindex 7.2.2 .fontindex
application/acap-permission 6 .perm
application/acap-signature 12.4.1 .<x>
application/font-tdpfr 6 .pfr
application/java 7.2.1 .class
application/zip 7.2.3 .zip
audio/ac3 6.3.2 N/A
audio/mpeg 6 .mp2
image/jpeg 6 .jpg;.jpeg
image/mpeg 6 .mpg
image/png 6 .png
text/dvb.utf8 6 .txt; others
video/dvb.mpeg.drip 6 .drip
video/mpeg 6.3.1 N/A
video/mpv 6.3.1 N/A

An ACAP-J application shall contain at least one resource of content type application/java. The
presence of resources of other content types in an ACAP-J application is strictly optional.

7.2.1 Java Content

An ACAP-J application shall use and an ACAP-J environment shall support Java Class Files as
defined by MHP [2], Section 11, and as required by GEM [1], and as extended by the following
subsections.

The content (MIME media) type used to label Java Class Files shall be application/java.

7.2.1.1 Additional Java APIs

7.2.1.1.1 Closed Captioning

The org.ocap.media package as defined in Annex S of OCAP 1.0 [4].

7.2.1.1.2 Locators

The org.ocap.net.OcapLocator class as defined in Annex I of OCAP 1.0 [4]. In ACAP terminals,
OcapLocator shall support the syntax defined in section 14.2.1.

7.2.1.1.3 Events

The org.ocap.ui.event package as defined in Annex E of OCAP 1.0 [4].

7.2.1.1.4 Content Identification API

An object which implements the javax.tv.service.guide.ProgramEvent interface shall also implement
the org.atsc.si.ContentIdentifications interface. An array of objects which implement
org.atsc.si.ContentIdentification or the appropriate subinterface of ContentIdentification shall be returned
by the method getIdentifiers() from the ContentIdentifications interface. In the case where the
underlying program event does not contain content identifiers, the getIdentifiers() method shall
return an empty array. An object which implements the org.atsc.si.ISANIdentification interface shall

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 28

be a member of the array of ContentIdentification returned by the getIdentifiers() method when the
underlying program event is identified with an ISAN identifier. An object which implements
VISANIdentification shall be a member of the array of ContentIdentification returned by the getIdentifiers()
method when the underlying program event is identified with a V-ISAN identifier. The format of
the string returned by the getISANIdentifier method of ISANIdentification shall be conformant with ISO
15706 [9]. The format of the string returned by the getVISANIdentifier method of VISANIdentification
shall be conformant with ISO 20925-1 [10].

Note: Content identification values defined by ISO 15706 [9] and ISO 20925-1
[10] are carried by means of ISO/IEC 13818-1:2000/PDAM 4 [11].

The Content Identification API is presented in Annex A, “Content Identification API.”

7.2.1.1.5 Extended SI API

The org.ocap.si package as defined in Annex T, section T.3 of OCAP 1.0 [4].

7.2.1.2 Inter-Environment DOM Integration

If an ACAP System supports an ACAP-X environment, then it shall support the following
additional packages, as further restricted below, in the ACAP-J environment:
� org.atsc.dom

� org.atsc.dom.environment

� org.atsc.dom.events

� org.atsc.dom.html

� org.atsc.dom.views

� org.w3c.dom

� org.w3c.dom.css

� org.w3c.dom.events

� org.w3c.dom.html2

� org.w3c.dom.views

Support for org.atsc.dom and its sub-packages as listed above shall adhere to A/100-4 [43],
Sections 4.3 through 4.7, and shall be governed by the semantics defined by A/100-2 [38],
Section 5.3.1.2, as further constrained by section 8.2.11.

Support for org.w3c.dom and its sub-packages as listed above shall adhere to A/100-3 [44],
Section 5.1.1.2.6, except that support for org.w3c.dom.css shall be limited to the following
interfaces:
� org.w3c.dom.css.CSSStyleDeclaration

� org.w3c.dom.css.ElementCSSInlineStyle

Furthermore, the following methods of org.w3c.dom.css.CSSStyleDeclaration shall not be used by
an ACAP Application and need not be implemented by an ACAP System:
� getPropertyCSSValue(String)

� getParentRule()

If one of these methods is implemented by an ACAP System and invoked by an ACAP
Application, then a runtime exception shall be raised.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 29

7.2.1.3 Void
(This section is intentionally empty)

7.2.1.4 Integration of the JavaTV SI API

As defined in Annex T, Section T.2.1.2.1 of OCAP 1.0 [4].

7.2.1.5 Addition of Non-ACAP Interfaces

As discussed in Section 2.3 (“Addition of Non-ACAP Interfaces”), terminal specifications based
on ACAP may add extensions to ACAP, provided that they are added in a namespace that does
not conflict with ACAP. In the case of the ACAP-J environment, any such extensions must be
done in a Java package that does not conflict with one specified by ACAP.

7.2.1.6 GEM Functional Equivalents (Informative)

As specified in Section 19.1, “Compliance with GEM”, the APIs from the MHP definitions of
the following functional equivalents as specified in GEM [1] Clause 15.6 are required to be
supported:
� “Application Signaling”, which introduces the org.dvb.application package.

7.2.1.7 Semantics of java.io.File.lastModified() for broadcast carousels

GEM [1] clause 11.5.1 allows GEM terminal specifications to define signalling that provides a
value for the method java.io.File.lastModified(). Section 10.2.4 defines a time stamp
descriptor. If a time stamp descriptor is available for a file, the value in the time stamp
descriptor shall be reported from java.io.File.lastModified(). If one is not available,
then the value returned from this method is undefined.

7.2.2 Font Index Content

An ACAP-J application may use and an ACAP-J environment shall support Font Index Files as
defined by MHP [2], Annex D.2.2.2, and required by GEM [1].

The content (MIME media) type used to label Font Index Files shall be application/acap-j-
fontindex.

7.2.3 Archive Content

An ACAP-J application may use and an ACAP-J environment shall support ZIP Archive Files as
defined by MHP [2], Section 11.3.1.4, and as required by GEM [1].

The content (MIME media) type used to label a ZIP Archive File shall be application/zip.

7.3 Addition of Non-ACAP Interfaces
As discussed in Section 2.3 (“Addition of Non-ACAP Interfaces”), terminal specifications based
on ACAP may add extensions to ACAP, provided that they are added in a namespace that does
not conflict with ACAP. In the case of the ACAP-J environment, any such extensions must be
done in a Java package that does not conflict with one specified by ACAP.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 30

8. ACAP-X APPLICATIONS AND ENVIRONMENT
This section defines the content of ACAP-X applications and the behavior and facilities required
or permitted by an ACAP-X environment.

The definition of an ACAP-X application and environment is based on DASE Declarative
Applications and Environment as defined by A/100-2 [38] and other parts of ATSC Standard
A/100. When normative material is incorporated into this specification from the ATSC Standard
A/100, the terms DASE Declarative Application should be read in this specification as ACAP-X
application; DASE Declarative Environment should be read as ACAP-X environment; and DASE
System should be read as a combination of both ACAP-J and ACAP-X environments.

The content (MIME media) type used to label an ACAP-X application as an aggregate entity
shall be application/acap-x.

8.1 Behavior
This section describes certain behavioral aspects of ACAP-X applications and implementations
of an ACAP-X environment.

8.1.1 Application Behavior

This section specifies restrictions and extensions on use and support for resource identifier
schemes with respect to A/100-1 [5] and A/100-2 [38].

The description of application processing, decoding, and presentation specified in A/100-2
[38], Sections 4.1 through 4.3, shall apply to ACAP-X Applications and implementations of an
ACAP-X environment with the following exceptions:
� The Application Lifecycle, including the application state model, shall adhere to GEM [1],

Section 9.3, “DVB-HTML Model,” with the term ACAP-X substituted for the term DVB-
HTML.

Note: The application lifecycle of a DASE Declarative Application is effectively
replaced by DVB-HTML application lifecycle.

� Transitions in the lifecycle state model of an ACAP-X Application shall generate application
lifecycle events as defined by Section 8.2.11.2.2.2 (“Application Lifecycle Event Types”).

� The Application Display Model shall adhere to GEM [1] Section 13, “Graphics Reference
Model.”
Xlets embedded in ACAP-X applications shall be supported as defined in MHP 1.1 [3],

Section 9.6.

8.1.1.1 Clarifications

Regarding the interpretation of GEM [1], Section 9.3, “DVB-HTML Model,” an ACAP-X
application that is initially signaled for prefetching rather than auto-start shall remain in the
LOADING state until an org.acap.trigger.start environment trigger is received, at which point the
application shall be transitioned to the ACTIVE state. See Section 8.1.4.2.2 for further information.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 31

8.1.2 Resource Identifier Schemes

This section specifies restrictions and extensions on use and support for resource identifier
schemes with respect to A/100-1 [5] and A/100-2 [38].

An ACAP-X application may use and an ACAP-X environment shall support the archive
scheme defined by A/100-1 [5], Section 5.1.2.3.1.1, and the acap and exit schemes as described
below.

8.1.2.1 Restrictions

8.1.2.1.1 ecmascript Scheme

The ecmascript scheme as specified by A/100-1 [5], Section 5.1.2.3.1.2, shall not be used by an
ACAP-X application and need not be supported by an ACAP-X environment.

8.1.2.1.2 lid Scheme

The lid scheme as specified by A/100-1 [5], Section 5.1.2.3.1.3, shall not be used by an ACAP-X
application and need not be supported by an ACAP-X environment.

8.1.2.1.3 tv Scheme

The tv scheme as specified by A/100-1 [5], Section 5.1.2.3.1.4, shall not be used by an ACAP-X
application and need not be supported by an ACAP-X environment.

8.1.2.2 Extensions

8.1.2.2.1 acap Scheme

An ACAP-X application may use and an ACAP-X environment shall support the acap scheme
defined by Section 14.2.1.2, “Extended ACAP URI Scheme for ACAP-X.”

8.1.2.2.2 exit Scheme

An ACAP-X application may use and an ACAP-X environment shall support the exit scheme,
the format of which consists of a scheme component and does not include a scheme specific
component. The semantics of activating a URI that uses this scheme shall cause the ACAP-X
application to be terminated.

Note: The exit scheme does not identify a resource per se, but denotes a semantic
action.

8.1.3 Event Processing

This section specifies restrictions on use and support for event processing behavior with respect
to A/100-1 [5] and A/100-2 [38].

8.1.3.1 Restrictions

All DOM events that are emitted by an ACAP-X environment shall first be dispatched to the
EventTarget::dispatchEvent method of the Window object of the affected document, and, thence, to the
HTMLDocument object (i.e., the document node); that is, the capturing phase of downward event

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 32

propagation shall begin with the Window object and descend from there to the affected document’s
document node and thence to its descendent element nodes.

Note: See Section 8.2.11 (“Script Content”) and A/100-2 [38], Section 5.3, for
further information about the Window and HTMLDocument objects.

After an unload HTML event is dispatched to a Window object, further HTML events shall not
be dispatched to the Window object until a new document is loaded into the Window.

If a new document is to be loaded into a Window object, then that document shall not be
presented and no event shall be dispatched to it until an unload HTML event is dispatched to the
Window to signal the unloading of the Window’s current document.

When dispatching an event to a Window object, the Window::document property shall reference
the HTMLDocument object associated with the Window.

8.1.4 Trigger Processing

This section specifies restrictions and extensions on use and support for trigger processing
behavior with respect to A/100-1 [5] and A/100-2 [38].

Note: An ACAP application indicates its interest in receiving trigger events by
registering DOM Event Listeners for specific trigger event types. See Section
8.2.11.2.2.4 for further information.

8.1.4.1 Restrictions

The script event type defined by A/100-2 [38], Section 4.5, shall not be used by an ACAP-X
application, and need not be supported by an ACAP-X environment. If a script event type is
utilized by an ACAP-X application, then it shall be ignored regardless of whether or not it is
supported.

8.1.4.2 Extensions

An ACAP-X application may use and an ACAP-X environment shall support both asynchronous
(“do-it-now”) and synchronized trigger events, where the concrete form of these triggers is
transport dependent, but shall consist of the following information items:
� event type

� event time

� event payload

The event type shall take the form of a string capable of representing Unicode character data
that denotes the type of trigger event.

The event time shall be a value that denotes one of the following: (1) “now” or (2) a media
time. In the first of these cases, the trigger is considered to be asynchronous, and the associated
trigger event shall be dispatched immediately upon reception; in the last of these cases, the
indicated time shall be the time at which the related media stream’s play time matches the event
time.

The event payload shall take the form of a (possibly empty) string capable of representing
Unicode character data, that denotes an arbitrary, application defined trigger payload.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 33

The concrete representation and encoding of the above information items is dependent upon
the ACAP-X application transport scenario in use.

Note: See Section 8.4.1.3 for further information on concrete representation and
transport of triggers.

The set of possible trigger event types is divided into two categories: (1) environment
triggers and (2) application triggers, as defined in the following sub-sections.

8.1.4.2.1 Environment Triggers

A trigger in which the event type has the prefix org.atsc.trigger is defined to be an environment
trigger. An environment trigger is dispatched to the application environment itself and not
dispatched to the application.

If a trigger event type does have the prefix org.atsc.trigger, but the event type is not defined by
this specification as an environment trigger, then the trigger shall be ignored and shall not be
dispatched to the application environment.

Note: Even though environment triggers are not dispatched to an application, they
do, in general, have a direct or indirect affect on a targeted application.

8.1.4.2.2 org.atsc.trigger.start Trigger

The environment trigger event type org.atsc.trigger.start is used to cause a prefetched application to
become active. When received, it shall cause the application to be transitioned from the LOADING
to the ACTIVE state, which, in turn, shall cause an org.atsc.application.started event to be dispatched to
the targeted application. If the application is not in the LOADING state upon trigger reception, then
this environment trigger event shall be ignored.

An event payload is not defined for use with this trigger event type, and if present, shall be
ignored.

8.1.4.2.3 Application Triggers

A trigger in which the event type does not have the prefix org.atsc.trigger is defined to be an
application trigger. Furthermore, an application trigger shall not have the prefix org.atsc unless
such usage is defined by this specification or a future revision thereof. An application trigger is
dispatched to the application in the form of a TriggerEvent object as described by Section
8.2.11.2.1.3 (“TriggerEvent Object”) below.

Note: As of the initial release of the ACAP specification, no ACAP defined
application trigger is specified.

8.2 Facilities
This section describes the content facilities that are either required in or available for use by an
ACAP-X application and that must be supported by an ACAP-X environment.

Note: A content facility is a logical grouping of a set of MIME media types
(content types).

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 34

The content (MIME media) types specified in Table 8-1 ACAP-X Content Types,” may be
used by an ACAP-X application and shall be supported by an implementation of an ACAP-X
environment. In this table, the last column specifies zero or more file name extensions that
should be used with files of this content type. The extension <x> designates a numeric value
starting from zero (0) with no leading zeros. The extension N/A indicates that no extension is
applicable since resources of this type are not named or do not appear in the broadcast file
system or the content type describes a collection of resources.

Table 8-1 ACAP-X Content Types
Content Type See Section Extensions

application/acap-certificate 12.4.1 .<x>
application/acap-digest 12.4.1 .hashfile
application/acap-permission 12.4.1.2 .perm
application/acap-signature 12.4.1 .<x>
application/acap-x 8 N/A
application/acap-x-metadata 8.2.1 .xml
application/font-tdpfr 8.2.7 .pfr
application/xhtml+xml 8.2.9 .xht;.xhtml
application/zip 8.2.8 .zip
audio/ac3 8.2.6 N/A
audio/basic 8.2.4 .au
audio/mpeg 8.2.4 .mp2
image/jpeg 8.2.2 .jpg;.jpeg
image/mpeg 8.2.2 .mpg
image/png 8.2.2 .png
text/css 8.2.9.2.8 .css
text/ecmascript 8.2.11 .es
video/mng 8.2.3 .mng
video/mpeg 8.2.5 N/A
video/mpv 8.2.5 N/A

An ACAP-X application shall contain at least one resource of content type
application/xhtml+xml. The presence of resources of other content types in an ACAP-X application is
strictly optional.

When an ACAP-X application makes use of an embedded Xlet or the Inter-Environment
Bridge, resources that adhere to the content types specified in Table 7.1 may also be present in
an ACAP-X application's resource collection.

8.2.1 Application Metadata Content

An ACAP-X application may use and an ACAP-X environment shall support the Application
Metadata Content facilities defined by A/100-1 [5], Section 6.1, as modified and extended
below.

In the case that application metadata content is inconsistent with metadata information
specified in application signaling, then the metadata information specified in application
signaling shall be given precedence.

If an ACAP-X application does not include an application metadata resource or does not
reference an application metadata resource as its root resource, then the information that is
mandatory in an application metadata resource shall be implied from signaling information that
accompanies the ACAP-X application. In this case, the behavior of an ACAP-X application shall

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 35

be identical to an ACAP-X application that does include and reference such an implied
application metadata resource as its root resource.

8.2.1.1 Modifications

8.2.1.1.1 Content Type

The content (MIME media) type used to label an ACAP-X Application Metadata Resource shall
be application/acap-x-metadata.

8.2.1.1.2 Document Type Definition

The document type definition used to determine the validity of ACAP-X Application Metadata
Content shall be as defined by Annex B, Section 4, “ACAP-X Application Metadata Document
Type.”

8.2.1.1.3 Document Type Declaration

The formal public identifier used by a document type declaration in an ACAP-X Application
Metadata resource shall be as follows:

"-//ATSC//DTD ACAP-X Application Metadata 1.0//EN"

8.2.1.2 Extensions

8.2.1.2.1 entity Element

In addition to those values specified by A/100-1 [5], Section 6.1.1.6.9.1, the entitytype attribute
of the entity element may take the following values, as further described below:
signature

In addition, the semantics of the entity types described by A/100-1 [5], Section 6.1.1.6.9.1,
are further extended as described below.

8.2.1.2.2 initial Entity Type

If an ACAP-X application includes an application metadata resource, then it shall be specified an
entity element with an entitytype attribute with the value initial. Furthermore, the value of the uri
attribute shall reference a resource that adheres to the ACAP-X markup content type as defined
by Section 8.2.9 below.

8.2.1.2.3 permissionRequest entity Type

If an ACAP-X application includes a permission request file, then it shall be specified by an
entity element with an entitytype attribute with the value permissionRequest. In this case, the value
of the uri attribute shall reference a resource that adheres to the ACAP permission request file
content type as defined by Section 12.4.2.1 below.

8.2.1.2.4 signature Entity Type

If an ACAP-X application includes a signature file, then it shall be specified by an entity element
with an entitytype attribute with the value signature. In this case, the value of the uri attribute shall
reference a resource that adheres to the ACAP signature file content type as defined by Section
12.4.1 below.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 36

8.2.1.2.5 identifier Element

An ACAP-X application may specify and an ACAP-X environment shall support param children
elements of the identifier element such that the name attributes of these param elements are orgid
and appid and the value attributes of these param elements adhere to MHP [2], Section 14.5,
“Text Encoding of Application Identifiers.”

Note: See MHP [2], Section 10.5, “Application Identification,” for further
information on organization and application identifiers.

If an ACAP-X application includes an application metadata resource, then it shall specify
exactly one orgid and exactly one appid using the param children of the ident element as described
above.

If an ACAP-X application includes an application metadata resource, then it shall specify a
value for the uuid attribute of the identifier element; however, that value may be zero (0).
Notwithstanding the preceding, an ACAP-X application should specify a probabilistically
unique, non-zero value for the uuid attribute.

Example: The following specifies an identifier element that satisfies the above requirements.

<identifier uuid="0">
 <param name="orgid" value="0x000023d2"/>
 <param name="appid" value="0x4020"/>
</identifier>

If an application metadata resource is implied and the transport scenario does not signal a
UUID, then a UUID of zero (0) shall be implied.

8.2.1.2.6 Permission Capability

An ACAP-X application may use and an ACAP-X environment shall support a permission
capability on the cond element in order to specify requirements or requests with respect to the
granting of security permissions.

The permission capability admits the following parameters, as specified by child param
elements of the cond element specifying this capability:
� type

� target

� actions

Exactly one type parameter shall be specified as a child of the cond element that specifies this
capability; exactly zero or one target and zero or one actions parameters may be specified.

The semantics of a permission capability is as follows: if an application specifies a
permission capability with a qualifier attribute whose value is required, and the ACAP System
cannot or would not grant the indicated permission, then the application shall not be activated.

Note: Use of the permission capability does not constitute a request for
authorization to access the target or actions of the named permission. A request
for authorization to grant a permission is outside of the scope of the semantics of
the cond element.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 37

Example: The following specifies a permission capability on a cond element in order to indicate
that access to read and write a file in the local filesystem is required in order to activate the
application.

<cond qualifier="required" capability="permission">
 <param name="type" value="java.io.FilePermission"/>
 <param name="target" value="file.dat"/>
 <param name="actions" value="read,write"/>
</cond>

8.2.1.2.6.1 type Parameter

The type parameter of a permission capability shall specify either a fully qualified Java class
name or a non-Java permission type name.

8.2.1.2.6.2 target Parameter

The target parameter of a permission capability specifies a target for the specifically named
permission. The syntax and semantics of the target parameter are governed by the named
permission.

8.2.1.2.6.3 actions Parameter

The actions parameter of a permission capability specifies one or more actions for the
specifically named permission. The syntax and semantics of the actions parameter are governed
by the named permission.

8.2.2 Graphics Content

An ACAP-X application may use and an ACAP-X environment shall support the Graphics
Content facilities defined by A/100-1 [5], Section 6.2, as extended below, and shall do so in a
manner consistent with GEM [1] Section 7.1.1, and with Section 17.1.1, “GEM errata,” of this
document..

Note: The ACAP-X environment does not support the image/gif content type.

8.2.2.1 Extensions

8.2.2.1.1 image/mpeg

An ACAP-X application may use and an ACAP-X environment shall support the MPEG-2 I-
Frame graphics content format as defined by GEM [1] Section 7.1.2. Application resources that
employ this format shall be identified as image/mpeg and shall use the resource name extension
“.mpg”.

An application entity identified as content type image/mpeg may be referenced in all contexts
where a content type defined by A/100-1 [5], Section 6.2, “Graphics Content”, is permitted. In
all other contexts, the use of content type image/mpeg is undefined.

8.2.3 Non-Streaming Video Content

An ACAP-X application may use and an ACAP-X environment shall support the Non-Streaming
Video content facilities defined by A/100-1 [5], Section 6.3, as extended below.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 38

8.2.3.1 Extensions

8.2.3.1.1 video/dvb.mpeg.drip

The ACAP-X environment does not directly support the MPEG-2 Video “drip feed” content
format as defined by GEM [1], Section 7.1.3. Nevertheless, because this non-streaming video
content type is supported by the ACAP-J environment, it is possible to make use of this content
type by employing appropriate ACAP-J APIs through either (1) the Inter-Environment API
Bridge or (2) an embedded Xlet. If an ACAP-X application makes indirect use of resources of
this content type, then such resources shall be identified as video/dvb.mpeg.drip and shall use the
resource name extension “.drip”.

8.2.4 Non-Streaming Audio Content

An ACAP-X application may use and an ACAP-X environment shall support the Non-Streaming
Audio content facilities defined by A/100-1 [5], Section 6.4, as extended below.

8.2.4.1 Extensions

8.2.4.1.1 audio/mpeg

An ACAP-X application may use and an ACAP-X environment shall support the MPEG-1
Audio Layers 1 and 2 content format as defined by MHP [2], Section 7.1.4. Application
resources that employ this format shall be identified as audio/mpeg and shall use the resource name
extension “.mp2”.

An application entity identified as content type audio/mpeg may be referenced in all contexts
where a content type defined by A/100-1 [5], Section 6.4, “Non-Streaming Audio Content”, is
permitted. In all other contexts, the use of content type audio/mpeg is undefined.

8.2.5 Streaming Video Content

An ACAP-X application may use and an ACAP-X environment shall support the Streaming
Video Content facilities defined by A/100-1 [5], Section 6.5.

8.2.6 Streaming Audio Content

An ACAP-X application may use and an ACAP-X environment shall support the Streaming
Audio Content facilities defined by A/100-1 [5], Section 6.6.

8.2.7 Font Content

An ACAP-X application may use and an ACAP-X environment shall support the Font Content
facilities defined by A/100-1 [5], Section 6.7.

8.2.8 Archive Content

An ACAP-X application may use and an ACAP-X environment shall support the Archive
Content facilities defined by A/100-1 [5], Section 6.8.

8.2.9 Markup Content

An ACAP-X application may use and an ACAP-X environment shall support the Markup
Content facilities defined by A/100-2 [38],Section 5.1, as restricted and extended below.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 39

8.2.9.1 Restrictions

This section describes restrictions upon the markup content facility defined by A/100-2 [38],
Section 5.1.

8.2.9.1.1 Resource Content Type References

References to resources from markup content attributes that take the form of a URI shall be
limited to those content types checked as supported in Table 8-2 Markup Resource Content Type
References”. If a reference is made to a resource of a content type that is not supported in the
referencing context, then the behavior of an ACAP-X environment is implementation dependent,
and shall not be relied upon by an ACAP-X application. If a content type is not listed in this
table, then it shall be construed as unsupported.

Table 8-2 Markup Resource Content Type References

Element/Attribute

application/acap-j

application/acap-x

application/java

application/xhtm
l+xm

l

application/zip (note 3)

audio/ac3

audio/basic

audio/m
peg

im
age/{jpeg,m

peg,png}

text/css

text/ecm
ascript

video/m
ng

video/m
peg

video/m
pv Notes

a.href

area.href

Base.href 1
frame.longdesc

frame.src

img.longdesc

img.src

Input.src

link.href

object.archive 2
object.classid
object.codebase 1
object.data

script.src
style.src
Notes

1. The value of the href attribute of the base element does not reference a resource; rather, it serves as
a means for resolving relative URIs that appear as attributes of other elements.

2. No semantics are associated with the archive attribute of the object element in this version of the
ACAP specification.

3. Use of the application/zip content type is supported only indirectly through use of the archive URI
scheme.

8.2.9.1.2 Resource Access

References to a streaming video or audio resources from ACAP-X markup content shall not
cause tuning to occur. References that imply tuning to access a resource shall behave as if the
resource were unavailable.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 40

8.2.9.1.3 Document Type Declaration

An ACAP-X application shall not include or reference and an ACAP-X environment need not
support a markup content entity whose document type declaration refers to a document type that
is not an ACAP-X Family Document Type as defined by Annex B, Section 5, “ACAP-X Markup
Document Type”

If a markup content entity of an application signaled as an ACAP-X application makes
reference to a formal public identifier (FPI) in its document type declaration and that identifier
references a document type that is not an ACAP-X Family Document Type, then the ACAP-X
application shall be aborted.

8.2.9.1.4 Namespace Declarations

A markup content document instance in an ACAP-X application should specify a default XML
Namespace Declaration using the xmlns attribute in the root (document) element. If no default
XML Namespace Declaration is specified, then http://www.w3.org/1999/xhtml shall be assumed to be
the default namespace.

The use of any XML namespace prefix in a markup content document instance other than the
xml prefix shall be accompanied by an appropriate XML namespace attribute.

8.2.9.1.5 legacy Application

An ACAP-X application shall not indicate that it is a legacy application by specifying a legacy
application parameter with the value true in the application metadata resource. If an ACAP-X
application is marked as a legacy application, then it shall not be activated by an ACAP-X
environment.

Note: See A/100-1 [5], Section 6.1.1.6.13.4, for further information on the legacy
application parameter.

8.2.9.1.6 intrinsic event Attributes

An ACAP-X application shall not use and an ACAP-X environment need not support the
following intrinsic event attributes:
� onclick

� ondblclick

� onmousedown

� onmouseup

� onmouseover

� onmousemove

� onmouseout

� onkeypress

� onkeydown

� onkeyup

� onfocus

� onblur

� onsubmit

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 41

� onreset

� onselect

� onchange

� onload

� onunload

Note: The functionality of these intrinsic event attributes may be obtained by use
of DOM-2 Events functionality as specified by A/100-2 [38], Section 5.3.1.2.7.

If an ACAP-X application makes use of one of these attributes, then an ACAP-X
environment shall not evaluate its script content, and may optionally present an error indication
to the end-user.

8.2.9.1.7 name Attribute

Except for those element types that require the presence of a name attribute, the name attribute
defined by A/100-2 [38], Section 5.1.1.5.2, for use with transcoded legacy documents shall not
be used by an ACAP-X application and need not support the semantics for this attribute in this
context in an ACAP-X environment.

8.2.9.1.8 a (anchor) Element

The ability for an a (anchor) element to target the top-level frame with video content defined by
A/100-2 [38], Section 5.1.1.6.1.1.3, for use with transcoded legacy documents in order to
terminate a declarative application, shall not be used by an ACAP-X application.

If an ACAP-X application does target the top-level frame with video content, then activating
the anchor shall be ignored, producing no side effect.

The ability for an a (anchor) element to reference dynamically generated content via the
ecmascript scheme defined by A/100-2 [38], Section 5.1.1.6.1.1.5, shall not be used by an
ACAP-X application.

If an ACAP-X application does make use of this scheme, then activating the anchor shall be
ignored, producing no side effect.

8.2.9.1.9 frame Element

The src attribute of a frame element shall be restricted to reference an application resource of
content type application/xhtml+xml; furthermore, that resource shall be part of the current
application.

If an entity of an ACAP-X application uses content type application/xhtml+xml, and the src
attribute of a frame element references a destination resource that is not of content type
application/xhtml+xml, then the user agent shall either (1) ignore the reference and produce no side
effect, or (2) present feedback to the end-user that the reference will/does produce no effect.

8.2.9.1.10 object Element

8.2.9.1.10.1 Active Content Object Element

The object element type may be used to reference active content objects as described by A/100-2
[38], Section 5.1.1.6.8.1, with the following restrictions.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 42

The content type of the object element’s immediate implementation, as referenced by the
classid attribute, shall be restricted to application/java and shall adhere to those constraints defined
by the ACAP-J environment.

The semantics of the archive attribute, if specified, shall be ignored by an ACAP-X
environment.

Note: Use of the archive attribute is expected to be reintroduced in the future in
order to support access to archive packaging of Java Xlets via a return channel.

The codetype attribute, if specified, shall be application/java.
The height and width specify the size of the Xlet's visible representation. If either height or

width is zero or negative, then the ACAP-J method javax.tv.graphics.TVContainer.getRootContainer()
shall return null for this embedded Xlet.

A param element with a name attribute of appid may be specified as a child of an active
content object element, in which case the value attribute shall be a hexadecimal number prefixed
with “0x” that corresponds to an application identifier listed in the ACAP-X application
signaling. If more than one param element is specified, or the appid value does not correspond to
any listed application identifier, then the embedded Xlet shall not be initialized.

Note: An appid parameter need not be specified. An explicit appid parameter is
typically used to distinguish among multiple embedded Xlets for the purpose of
supporting inter-Xlet communications.

8.2.9.1.10.2 Trigger Object Element

The ability for an object element to serve as a special trigger object defined by A/100-2 [38],
Section 5.1.1.6.8.2, shall not be used by an ACAP-X application.

If an ACAP-X application does make use of this form of the object element, then it shall be
ignored, producing no side effect.

8.2.9.1.11 script Element

The time of evaluation of script content contained in or referenced by a script element is
implementation dependent, except that it shall occur at a time no later than immediately prior to
the dispatching of the org.atsc.document.domstable event to the Window object containing the
document in which the script element appears.

The order of evaluation of script content contained in or referenced by more than one script
element contained within a document shall be the same as pre-traversal element order.

In a multiple frameset document, the order of evaluation of script content contained in or
referenced by script elements contained in documents referenced by frame elements is
implementation dependent. However, any script content contained in or referenced by a script
element contained in a document containing a frameset element shall occur prior to the
evaluation of script content contained in or referenced by script elements contained in documents
referenced by frame elements that occur in the same document as the frameset element.

8.2.9.2 Extensions

This section describes extensions to the markup content facility defined by A/100-2 [38], Section
5.1.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 43

8.2.9.2.1 Document Type Declaration

An ACAP-X application may use and an ACAP-X environment shall support references to
document types that satisfy the definition of an ACAP-X Family Document Type, defined as
follows:

The set of ACAP-X Family Document Types is defined to include the following:
� The ACAP-X Document Type (XDML) defined by Annex B in this specification.
� All future standard and non-standard (proprietary) ACAP-X Document Types such that (1)

any non-standard element type or attribute is declared to use qualified names, the prefix of
the qualified name is not acap, and the XML namespace associated with the qualified name is
not “http://www.atsc.org/acap#markup”; (2) any alteration to an existing element’s content model
is strictly backward compatible from the perspective of validating the element’s children.
The formal public identifier (FPI) used to label and reference an ACAP-X Family Document

Type shall adhere to one of the following forms, where x and y indicate a major and minor
version number of a specific standard XDML document type defined for use by a published
edition of an ACAP specification:
� -//ATSC//DTD XHTML ACAP-X XDML x.y//EN"

� -//ATSC//DTD XHTML ACAP-X XDML x.y ProprietaryNameAndVersion//EN"

� -//W3C//DTD XHTML Basic 1.0//EN"

Non-standard (proprietary) ACAP-X Family Document Types shall employ the second of the
above forms and shall supply a non-empty value for ProprietaryNameAndVersion, which shall
consist of at least two space separated tokens the last of which is a version number (preferably in
major.minor form) and the remaining (initial) tokens designate a unique organization and or
specification identity. The value(s) employed for the proprietary name should be chosen in such
a manner as to minimize the probability of colliding with other names. The substring ACAP (in
any combination of lower- and upper-case) shall not appear in the proprietary name.

Note: The value of the ProprietaryNameAndVersion tokens are further restricted
by the syntactic constraints implied by an XML Formal Public Identifier (FPI).

8.2.9.2.2 cite Attribute

For those element types that admit a cite attribute, the value of that attribute may be a URI that
references a resource of content type application/xhtml+xml, as defined by Section 8.2.9.

8.2.9.2.3 event Attributes

An ACAP-X application may use and an ACAP-X environment shall support the following
event attributes, where the acap namespace prefix is bound to the namespace URI
http://www.atsc.org/acap#markup:
� acap:ondomstable

� acap:onload

� acap:onunload

Note: For the purposes of defining the DTD for ACAP-X markup content and for
use in actual instance documents, the namespace prefix employed by these
attributes is fixed.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 44

The values of these attributes shall adhere to the syntax of the StatementList non-terminal of
ECMASCRIPT [50], Section 12.1; in particular, it shall be syntactically valid for use as the
content of the Block non-terminal.

Use of these event attributes shall have the same semantic effect as registering a DOM-2
event handler to receive the org.atsc.document.domstable, load, and unload event types, respectively.

Note: See Section 8.2.11.2.1.3 (“TriggerEvent Object”) for further information on
the org.atsc.document.domstable, load, and unload event types.

8.2.9.2.4 longdesc Attribute

For those element types that admit a longdesc attribute, the value of that attribute may be a URI
that references a resource of content type application/xhtml+xml, as defined by Section 8.2.9.

8.2.9.2.5 a (anchor) Element

8.2.9.2.5.1 Application Replacement and Launching

An ACAP-X application may use and an ACAP-X environment shall support references to
content types application/acap-j and application/acap-x as the destination of an anchor (a) element,
where the reference identifies an ACAP-J or ACAP-X application.

If an a (anchor) element’s destination content type is application/acap-j or application/acap-x, and a
target attribute is specified with a value that designates the current top level frame of the
application, then anchor activation shall cause (1) termination of the current application and (2)
instantiation of a new ACAP-J or ACAP-X application instance.

The process of instantiating an application by activation of an anchor while terminating the
activating applications is referred to as application replacement.

If an a (anchor) element’s destination content type is application/acap-j or application/acap-x, and
no target attribute is specified or a target attribute is specified with a value of _blank, then anchor
activation shall cause the instantiation of a new ACAP-J or ACAP-X application instance.

The process of instantiating an application by activation of an anchor without terminating the
activating applications is referred to as application launching.

If an a (anchor) element’s destination content type is application/acap-j or application/acap-x, and a
target attribute is specified with a value other than one that designates the top level frame of the
application or the target _blank, then an attempt to perform anchor activation shall not replace the
current application or launch a new application.

Note: See Section 14.2.1 (“ACAP URI Scheme”) for further information on
referencing an ACAP application.

A query component may appear in a resource identifier used to reference an ACAP-J or
ACAP-X application for the purpose of launching a new application or replacing the current
application. The format of the optional query component shall be identical to that used by the
application/x-www-form-urlencoded content type as described by HTML [54], Section 17.13.4 (“Form
Content Types”).

In case the new or replacement application is an ACAP-X application, the unordered union
of name and value pairs that appear in (1) the resource reference, (2) the application signaling,
and (3) the application parameter elements of the ACAP-X application metadata resource, if

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 45

specified, shall form the set of application parameters to the ACAP-X application, and shall be
exposed to the application as a query component of the URL represented by the Window::location
property of the application’s top-level Window object. If the same name appears in more than one
of the above three locations, then the value used shall be determined according to a precedence
established by the order of locations specified here, with the resource reference given the highest
precedence.

The same behavior shall apply for launching or replacement with an ACAP-J application,
except that (1) no application metadata resource applies and (2) the application parameters are
exposed through the javax.tv.xlet.XletContext.getXletProperty(XletContext.ARGS) method as described by
MHP [2], Section 11.7.1.1.

8.2.9.2.5.2 Service Selection

An ACAP-X application may use and an ACAP-X environment shall support references to
content type video/mpeg as the destination of an anchor (a) element, where of the reference
identifies a service (virtual channel) in an MPEG-2 transport stream.

If an a (anchor) element's destination content type is video/mpeg, then anchor activation shall
cause service selection within the current service context.

Note: See Section 14.2.1 (“ACAP URI Scheme”) for further information on
referencing a service.

Note: A side-effect of service selection may be that the activating application is
terminated if the application is a service bound application and it is not signaled in
the referenced service.

8.2.9.2.5.3 Service Component Selection

An ACAP-X application may use and an ACAP-X environment shall support references to
content type video/mpv and audio/ac3 as the destination of an anchor (a) element, where of the
reference identifies a service component (program element) in an MPEG-2 transport stream.

If an a (anchor) element’s destination content type is video/mpv or audio/ac3, then anchor
activation shall cause service component selection within the current service.

Note: See Section 14.2.1 (“ACAP URI Scheme”) for further information on
referencing a service component.

8.2.9.2.6 area Element

An ACAP-X application may use and an ACAP-X environment shall support application
replacement and launching, service selection, and service component selection by means of the
area element in an identical manner to that of the a (anchor) element as described in Section
8.2.9.2.5 (“a (anchor) Element”) above.

8.2.9.2.7 meta Element

The following metadata items are defined as extensions to the set of items defined by A/100-2
[38], Section 5.1.1.6.7:
� Classpath

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 46

8.2.9.2.7.1 Classpath Metadata Item

The class path to be used when loading application defined Java class files for use with
embedded Xlets or the Inter-Environment Bridge may be specified by using a meta element with
a name attribute with a value Classpath. In this case, the value of the content attribute shall be a
form that corresponds to that specified by A/100-1 [5], Section 6.1.1.6.13.2.

If an ACAP-X application includes an application metadata resource (AMR) and the AMR
specifies a classpath application parameter, then any value specified by a Classpath metadata item
using a meta element shall be appended to the effective classpath.

8.2.9.2.8 object Element

If an object element’s data attribute references a non-streaming audio resource as the object
instance data and the classid attribute is not specified, then a param child element with the name
loop and the value of either true or false may be specified in order to indicate that the non-
streaming audio resource is to be repeatedly presented in a loop. If a loop param element child
with the value true is not specified, then the non-streaming audio resource shall be presented only
once.

8.2.10 Stylesheet Content

An ACAP-X application may use and an ACAP-X environment shall support the Stylesheet
Content facilities defined by A/100-2 [38], Section 5.2, as restricted and extended below.

8.2.10.1 Restrictions

The following subsections describe restrictions upon the stylesheet content facility defined by
A/100-2 [38], Section 5.2.

8.2.10.1.1 Resource Content Type References

References to resources from stylesheet content rules, properties, or descriptors that take the
form of a URI shall be limited to those content types checked as supported in Table 8-3
Stylesheet Resource Content Type References.” If a reference is made to a resource of a content
type that is not supported in the referencing context, then the behavior of an ACAP-X
environment is implementation dependent, and shall not be relied upon by an ACAP-X
application. If a content type is not listed in this table, then it shall be construed as unsupported.

Table 8-3 Stylesheet Resource Content Type References

Property/
Descriptor

application/font-tdpfr

im
age/{jpeg,m

peg,png}

text/css

video/m
ng

video/m
peg

video/m
pv

background-image

list-style-image

@font-face src

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 47

8.2.10.1.2 Media Types

An ACAP-X environment is not required to support the atsc-tv media type as defined by A/100-2
[38] Section 5.2.1.7.1.

8.2.10.1.3 Properties

8.2.10.1.3.1 atsc-nav-index Property

The atsc-nav-index property as defined by A/100-2 [38], Section 5.2.1.8.3.2, shall not be used by
ACAP Applications; rather, the nav-index property should be used instead, as defined by Section
8.2.10.2.4.4, “nav-index Property”.

8.2.10.1.3.2 atsc-nav-{left,right,up,down} Properties

The atsc-nav-{left,right,up,down} properties as defined by A/100-2 [38], Section 5.2.1.8.3.3,
shall not be used by ACAP Applications; rather, the nav-{left,right,up,down} properties should
be used instead, as defined by Section 8.2.10.2.4.5, “nav-{left,right,up,down} Properties”.

8.2.10.1.4 Property Values

8.2.10.1.4.1 <color> Property Value

The atsc-rgba() functional notation as defined by A/100-2 [38], Section 5.2.1.8.4.1, shall not be
used by ACAP Applications in those contexts that take a <color> property value; rather, the
rgba() functional notation should be used instead, as defined by Section 8.2.10.2.5.1, “<color>
Property Value Type”.

8.2.10.2 Extensions

8.2.10.2.1 Font Face Rule

An ACAP-X application may use and an ACAP-X environment shall support the units-per-em font
descriptor within an @font-face rule, as defined by CSS2 [48], Section 15.3.4.

8.2.10.2.2 Viewport Rule

An ACAP-X application may use and an ACAP-X environment shall support an @viewport rule,
defined according to the following extensions to CSS [48], Appendix D, “The Grammar of
CSS2”:

viewport
 VIEWPORT_SYM S* '{' S* declaration [';' S* declaration]* '}' S*

In this grammar production, VIEWPORT_SYM denotes the lexical string “@viewport” (not
including quotation marks) and declaration is as defined by CSS [48], Appendix D, Section D.1,
“Grammar.” An instance of this production may appear in the same context as the media non-
terminal as specified by the stylesheet production of CSS [48], Appendix D, Section D.1.

Only one @viewport rule shall apply to an XHTML document instance hierarchy presented by
an ACAP-X application. If multiple @viewport rules are present, then the priority for determining
the applicable rule shall be in accordance with CSS [48], Section 6.4, “The Cascade.”

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 48

The collection of declarations contained within an @viewport rule constitute a viewport
descriptor set. Only the declarations that appear in the applicable rule shall be used to determine
the viewport descriptor set. Each viewport descriptor is expressed as a name and a value pair
using the syntax of the declaration production of CSS [48], Appendix D, Section D.1. The
following sub-sections define the permissible descriptors that may be used by an ACAP-X
application.

The purpose of the @viewport rule and its viewport descriptor set is to describe a reference
region within the canvas, to establish a logical (user) coordinate space within this region, and to
determine the bounds of the initial containing block within this coordinate space.

Note: In this specification, the canvas is considered to be coterminous with the
graphics plane, as defined by Section 13, “Graphics Reference Model”.

Note: See CSS [48], Section 2.3.1, “The Canvas,” Section 9.1.1, “The Viewport,”
and Section 9.1.2, “Containing Blocks,” for further information on canvas,
viewport, and initial containing block, respectively.

If no @viewport rule is applicable when presenting an XHTML document instance hierarchy,
then the viewport and the initial containing block shall be considered to be coterminous with and
have the same horizontal and vertical resolution as the graphics plane.

Example: The following specifies a viewport that occupies one-fourth (1/4) of the graphics
plane and is centered within the graphics plane. The logical (user) coordinate space of the
viewport is 288x360 pixels, and the initial containing block is a 200x200 pixel square centered
within the viewport.

@viewport {
 region : inset-rect(25%,25%,25%,25%);
 resolution : 288 360;
 initial-container : inset-rect(80,44,80,44)
}

8.2.10.2.2.1 Viewport Descriptors

The following descriptors may be specified in an @viewport rule:
� initial-container

� region

� resolution

Note: As used in this subsection, the term descriptor is unrelated to the term as
used in the MPEG-2 context.

8.2.10.2.2.1.1 initial-container Descriptor

An ACAP-X application may use and an ACAP-X environment shall support the initial-
container viewport descriptor, as defined below.

Name: initial-container
Value: auto | <shape>
Initial: auto
Applies to: the viewport
Inherited: N/A

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 49

Percentages: relative to viewport’s extent
Media: visual

Values of <shape> are limited to rect() and inset-rect(); the semantics of all values are specified
below.
auto – The initial container block’s computed origin and extent are the same as the viewport’s

origin and extent.
rect(top, right, bottom, left) – Each of the four arguments can be a <length> or a <percentage>. All

length values are offsets relative to the origin of the viewport, which is its top left vertex. All
<percentage> values are computed relative to the viewport’s extent. The computed width and
height of the initial container block are determined by subtracting the left from the right for
the width, and similarly top from bottom for the height. However, if this computation results
in a negative value, it is considered to be zero.

inset-rect(top, right, bottom, left) – Like rect(), except that the values are offsets relative to the
respective edges of the viewport.
When specifying a <length> or a <percentage> as an argument to a shape function, the value

may be negative.
The units of values specified as a <length> shall be restricted to pixels only. If no unit is

specified, then pixels shall be assumed to be the units. Furthermore, values specified as pixels
shall be interpreted in the viewport’s logical (user) coordinate space, which may not be the same
as the graphics plane’s coordinate space.

Visible marks produced by formatting a markup content resource in an ACAP-X application
may appear outside of the initial container block; however, all marks are clipped by the viewport
region.

Note: Visible marks may be placed outside the initial container block by using
absolute position style properties, in which case they are interpreted as relative to
the viewport’s origin, and not the initial container block’s origin.

8.2.10.2.2.1.2 region Descriptor

An ACAP-X application may use and an ACAP-X environment shall support the region
viewport descriptor, as defined below.

Name: region
Value: auto | <shape>
Initial: auto
Applies to: the viewport
Inherited: N/A
Percentages: relative to graphics plane’s extent
Media: visual

Values of <shape> are limited to rect() and inset-rect(); the semantics of all values are specified
below.
auto – The viewport’s computed origin and extent are the same as the graphics plane’s origin and

extent.
rect(top, right, bottom, left) – Each of the four arguments can be a <length> or a <percentage>. All

length values are offsets relative to the origin of the graphics plane, which is its top left

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 50

vertex. All <percentage> values are computed relative to the graphics plane’s extent. The
computed width and height of the viewport are determined by subtracting the left from the
right for the width, and similarly top from bottom for the height. However, if this
computation results in a negative value, it is considered to be zero.

inset-rect(top, right, bottom, left) – Like rect(), except that the values are offsets relative to the
respective edges of the graphics plane.
When specifying a <length> or a <percentage> as an argument to a shape function, the value

may be negative.
All visible marks produced by formatting a markup content resource in an ACAP-X

application shall be clipped to the region established by the region viewport descriptor. This
descriptor effectively establishes the origin and extent of the viewport within the coordinate
space of the canvas (i.e., the graphics plane).

8.2.10.2.2.1.3 resolution Descriptor

An ACAP-X application may use and an ACAP-X environment shall support the resolution
viewport descriptor, as defined below.

Name: Resolution
Value: auto | <number> <number>
Initial: Auto
Applies to: the viewport
Inherited: N/A
Percentages: N/A
Media: Visual

The semantics of the values of this descriptor are specified below:
auto – The viewport’s logical (user) coordinate space has the same horizontal and vertical

resolution as the coordinate space of the graphics plane (canvas); that is, an identity scale
transform applies when mapping from the viewport coordinate space to the graphics plane
coordinate space.

<number> <number> – The horizontal resolution (hres) of the viewport’s logical (user) coordinate
space is determined by the first <number>, while the vertical resolution (vres) is determined
by the second <number>; that is, the following scale transform applies when mapping the
viewport coordinate space to the graphics plane coordinate space, where w and h represent
the width and height of the viewport as determined by the region descriptor:

8.2.10.2.3 Media Types

An ACAP-X application may use and an ACAP-X environment shall support the all media type,
as defined by CSS2 [48], and the tv media type, as defined by CSS-TV [35].

The following statement in CSS2 [48], Section 7.3, shall be considered to not apply to the all
media type: “A user agent that claims to support a media type by name must implement all of the
properties that apply to that media type.”

Note: Supporting the all media type effectively means that style declarations that
appear in the context of an @media all rule are construed as applying to all media.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 51

Note: The tv media type is also defined by CSS2 [48], however, this specification
does not make use of that definition of the tv media type. Rather, this specification
interprets the tv media type only with respect to its definition in CSS-TV [35].

8.2.10.2.4 Properties

An ACAP-X application may use and an ACAP-X environment shall support the following style
properties as defined in this section:
� acap-dynamic-refresh

� crop

� nav-index

� nav-left

� nav-right

� nav-up

� nav-down

� opacity

In addition to defining additional properties, the following subsections extend the value space
or value semantics of certain properties.

8.2.10.2.4.1 acap-dynamic-refresh Property

An ACAP-X application may use and an ACAP-X environment shall support the acap-dynamic-
refresh property, as defined by A/100-2 [38], Section 5.2.1.8.3.1, with the name acap-dynamic-
refresh being substituted for the name atsc-dynamic-refresh.

8.2.10.2.4.2 crop Property

An ACAP-X application may use and an ACAP-X environment shall support the crop property,
as defined by CSS-BOX [33], Section 12.

Note: The crop property is intended to satisfy the functionality provided by the
clip-video property of DVB-HTML as defined in MHP 1.1 [3].

For convenience sake, the definition of the crop property as specified in CSS-BOX [33] is as
follows: “This property allows a replaced element to be just a rectangular area of an object,
instead of the whole object.”

The crop property adds a step when determining the intrinsic width and height of an element.
When the layout algorithms reference the “intrinsic width” (and/or height), they are referring to
the computed intrinsic width and height. The computed intrinsic width and height of an element
are the result of applying the crop to the actual intrinsic width and height of the element.

Name crop
Value auto | <shape>
Initial Auto
Applies to: replaced elements
Inherited: No
Percentages: relative to intrinsic size
Media visual
Computed value specified value

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 52

Values of <shape> are limited to rect() and inset-rect(); the semantics of all values are specified
below.
auto – The element’s computed intrinsic width and height are the same as its actual intrinsic

width and height.
rect(top, right, bottom, left) – Each of the four arguments can be a <length> or a <percentage>. All

percentage values are computed relative to the intrinsic dimensions of the element. Values
are offsets relative to the top left of the element. The computed intrinsic width and height of
the element are determined by subtracting the left from the right for the width, and similarly
top from bottom for the height. However, if this computation results in a negative value, it is
considered to be zero.

inset-rect(top, right, bottom, left) – Like rect(), except that the values are offsets relative to the
respective edges of the element.

8.2.10.2.4.3 font Property

An ACAP-X application may use and an ACAP-X environment shall support the following
system font names as values for the font property in accordance with CSS2 [48], Section 15.2.5:
� caption

� icon

� menu

� message-box

� small-caption

� status-bar

The mapping from these system font names to actual system font resources is
implementation dependent.

8.2.10.2.4.4 nav-index Property

An ACAP-X application may use and an ACAP-X environment shall support the nav-index
property, as defined by CSS-UI [36], Section 9.2.2.

Note: The nav-index property is intended to satisfy the functionality provided by
the atsc-nav-index property of A/100-2 [38] and the nav-index property defined
by DVB-HTML as defined in MHP 1.1 [3].

For convenience sake, the definition of the nav-index property as specified in CSS-UI [36] is
as follows: “This property specifies the position of the current element in the sequential
navigation order for the current document.”

The sequential navigation order defines the order in which elements will receive focus when
navigated by the user via an input device. The sequential navigation order may include elements
nested within other elements.

Name nav-index
Value auto | <number> | inherit
Initial auto
Applies to: all enabled elements
Inherited: no
Percentages: N/A
Media interactive

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 53

The semantics of all values are specified below.
auto – The element's sequential navigation order is assigned automatically by the user agent.
<number> – The number (which is non-zero and positive) indicates the sequential navigation

order for the element. ‘1’ means first. Elements with the same nav-index value are navigated
in document order when that nav-index value is being navigated.
Elements that may receive focus should be navigated by user agents according to the

following rules:
1. Those elements that support the nav-index property and assign a positive value to it are

navigated first. Navigation proceeds from the element with the lowest nav-index value to the
element with the highest value. Values need not be sequential nor must they begin with any
particular value. Elements that have identical nav-index values should be navigated in the
order they appear in the character stream.

2. Those elements that do not support the nav-index property or support it and assign it a value
of ‘auto’ are navigated next. These elements are navigated in the order they appear in the
character stream.

3. Elements that are disabled do not participate in the sequential navigation order.
The actual key sequence that causes sequential navigation or element activation depends on

the configuration of the user agent (e.g., the “tab” key is often used for sequential navigation, and
the “enter” key is used to activate a selected element).

User agents may also define key sequences to navigate the sequential navigation order in
reverse. When the end (or beginning) of the tabbing order is reached, user agents may circle back
to the beginning (or end). “shift-tab” is often used for reverse sequential navigation.

8.2.10.2.4.5 nav-{left,right,up,down} Properties

An ACAP-X application may use and an ACAP-X environment shall support the nav-left, nav-
right, nav-up, and nav-down properties, as defined by CSS-UI [36], Section 9.2.3.

Note: The nav-* properties are intended to satisfy an essential subset of the
functionality provided by the atsc-nav-* properties defined by A/100-2 [38],
Section 5.2.1.8.3.3, and the nav-* properties defined by MHP 1.1 [3], Section
8.8.5.10.

For convenience sake, the definition of the nav-left, nav-right, nav-up, and nav-down
properties as specified in CSS-UI [36] is as follows:

Name nav-left, nav-right, nav-up, nav-down
Value auto | <uri> | inherit
Initial Auto
Applies to: all enabled elements
Inherited: No
Percentages: N/A
Media interactive

The semantics of all values are specified below.
auto – The user agent automatically determines which element to navigate the focus to in

response to directional navigational input.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 54

<uri> – The <uri> should indicate (through the use of a fragment identifier) the element to which
the focus is to be navigated to in response to directional navigation input respective to the
specific property.
User agents for devices with keyboards with arrow keys may respond to the four directional

arrow keys (up arrow, right arrow, down arrow, left arrow) by navigating the focus according to
four respective nav-* directional navigation properties (nav-up, nav-right, nav-down, nav-left).

8.2.10.2.4.6 opacity Property

An ACAP-X application may use and an ACAP-X environment shall support the opacity
property, as defined by CSS-COLOR [34], Section 3.2.

For convenience sake, the definition of the opacity property as specified in CSS-COLOR
[34] is as follows:

Name opacity
Value <alphavalue> | inherit
Initial 1.0
Applies to: all elements
Inherited: no
Percentages: N/A
Media interactive

The semantics of all values are specified below.
<alphavalue> – The uniform opacity setting to be applied across an entire object. Any values

outside the range 0.0 (fully transparent) to 1.0 (fully opaque) will be clamped to this range. If
the object is a container element, then the effect is as if the contents of the container element
were blended against the current background using a mask where the value of each pixel of
the mask is <alphavalue>.

8.2.10.2.5 Property Value Types

The following subsections describe additional property value types or extensions to existing
property values types.

8.2.10.2.5.1 <color> Property Value Type

An ACAP-X application may use and an ACAP-X environment shall support the rgba()
functional notation and the transparent keyword defined by CSS-COLOR [34], Sections 4.2.2 and
4.2.3, respectively, as a value in those contexts that specify use of the <color> property value as
defined by CSS [48] Section 4.3.6.

Note: The rgba() functional notation is intended to satisfy the functionality
provided by the atsc-rgba() functional notation defined by A/100-2 [38], Section
5.2.1.8.4.1.

Note: The transparent keyword can be considered a shorthand for rgba(0,0,0,0).

For convenience sake, the definition of the rgba() functional notation as specified in CSS-
COLOR [34] is as follows. “The format of an RGBA value in the functional notation is 'rgba('
followed by a comma-separated list of three numerical values (either three integer values or three
percentage values), followed by an <alphavalue>, followed by ')'. The integer value 255

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 55

corresponds to 100 percent; e.g., rgba(255,255,255,0.8) = rgba(100%,100%,100%,0.8). Whitespace
characters are allowed around the numerical values.

8.2.11 Script Content

An ACAP-X application may use and an ACAP-X environment shall support the Script Content
facilities defined by A/100-2 [38], Section 5.3, as restricted and extended below.

8.2.11.1 Restrictions

The following subsections describe restrictions upon the script content facility defined by A/100-
2 [38], Section 5.3.

8.2.11.1.1 HTML Module Objects

8.2.11.1.1.1 HTMLDocument Object

The following methods of the HTMLDocument host object as defined by A/100-2 [38], Section
5.3.1.2.3.3, shall not be used by an ACAP-X application:
� write(DOMString)

� writeln(DOMString)

If an attempt is made by an ACAP application to resolve a reference to the one of the above
methods, then a run-time exception shall be raised.

During the construction of an HTMLDocument node instance and prior to the dispatch of the
org.acap.document.domstable event, the HTMLDocument node and all descendant nodes shall be read-
only. After the entire document is parsed and corresponding node construction has completed
and immediately prior to dispatching the org.acap.document.domstable event, the HTMLDocument node
and all descendant nodes shall be reverted to mutable, unless they are otherwise required to be
immutable.

8.2.11.1.1.2 HTMLFormElement Object

The HTMLFormElementExt interface extension to HTMLFormElement as defined by A/100-2 [38],
Section 5.3.1.2.3.4, shall not be used by an ACAP-X application.

If an attempt is made by an ACAP application to resolve a reference to the above interface,
then a run-time exception shall be raised.

8.2.11.1.1.3 HTMLImageElement Object

The property HTMLImageElementExt::lowsrc extension to HTMLImageElement as defined by A/100-2
[38], Section 5.3.1.2.3.5, shall not be used by an ACAP-X application.

If an attempt is made by an ACAP application to resolve a reference to the above property,
then a run-time exception shall be raised.

8.2.11.1.1.4 HTMLObjectElement Object

The property HTMLObjectElementExt::lowsrc extension to HTMLObjectElement as defined by A/100-2
[38], Section 5.3.1.2.3.7, shall not be used by an ACAP-X application.

If an attempt is made by an ACAP application to resolve a reference to the above property,
then a run-time exception shall be raised.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 56

The HTMLTriggerObjectElementExt interface extension to HTMLObjectElement as defined by A/100-2
[38], Section 5.3.1.2.3.7, shall not be used by an ACAP-X application.

If an attempt is made by an ACAP application to resolve a reference to the above interface,
then a run-time exception shall be raised.

8.2.11.1.2 StyleSheets Module Objects

The following interfaces and host object as defined by A/100-2 [38], Sections 5.3.1.2.5 and
5.3.1.2.6, shall not be used by an ACAP-X application and need not be supported by an ACAP-X
environment:
� Counter

� CSSCharsetRule

� CSSFontFaceRule

� CSSImportRule

� CSSMediaRule

� CSSPrimitiveValue

� CSSRule

� CSSRuleList

� CSSStyleRule

� CSSStyleSheet

� CSSUnknownRule

� CSSValue

� CSSValueList

� DocumentCSS

� DocumentStyle

� DOMImplementationCSS

� LinkStyle

� MediaList

� Rect

� RGBColor

� StyleSheet

� StyleSheetList

� ViewCSS

Note: The only stylesheet related interfaces and host objects required to be
supported after removing the above are: CSSStyleDeclaration and
ElementCSSInlineStyle.

In addition, the method CSSStyleDeclaration::getPropertyCSSValue and the property
CSSStyleDeclaration::parentRule shall not be used by an ACAP-X application.

If an attempt is made by an ACAP application to resolve a reference to one of the above
interfaces and host objects, methods, or properties, then a run-time exception shall be raised.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 57

8.2.11.1.3 Event Types

This section describes restrictions to the Event Set Module Objects specified by A/100-2 [38],
Section 5.3.1.2.8.

8.2.11.1.3.1 HTML Event Types

As described in A/100-2 [38], Section 5.3.1.2.1.4.1, the HTMLEvents feature string shall return true
when the DOMImplementation::hasFeature method is invoked. As a consequence, the event types
defined by DOM2-EVENTS [49], Section 1.6.5, “HTML Event Types,” shall be generated at the
appropriate times by an ACAP-X environment and dispatched to registered event listeners.

An HTML event shall be instantiated and dispatched as an Event object as described in
DOM2-EVENTS [49], Section 1.6.5.

Note: When creating an Event object that corresponds with an HTML event type,
the eventType argument of the DocumentEvent::createEvent method is “HTMLEvent” as
describe in DOM2-EVENTS [49], Section 1.6.5.

8.2.11.1.4 Environment Module Objects

This section describes restrictions on certain Environment Module objects.

8.2.11.1.4.1 Navigator Object

The following properties of the Navigator host object as defined by A/100-2 [38], Section
5.3.1.2.9.3, shall not be used by an ACAP-X application and need not be supported by an ACAP-
X environment:
� ddeBackChannel

� ddeContentLevel

� ddeSourceId

� ddeEnabled

� ddeReleasable

If an attempt is made by an ACAP application to resolve a reference to one of the above
properties, then a run-time exception shall be raised.

8.2.11.2 Extensions

8.2.11.2.1 Event Module Objects

This section describes extensions to the Events Module specified by A/100-2 [38], Section
5.3.1.2.7.

8.2.11.2.1.1 ApplicationEvent Object

An ACAP-X application may use and an ACAP-X environment shall support an ApplicationEvent
object that implements the following interface:

interface ApplicationEvent : Event
{
 /* read-write properties */
 attribute DOMString detail;
 /* methods */

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 58

 void initApplicationEvent(in DOMString type, in DOMString detail);
};

8.2.11.2.1.1.1 ApplicationEvent::detail

The value of this mutable, string valued property is not defined, but may be used by application
dependent logic for passing information between intermediate targets during the event capture
phase.

8.2.11.2.1.1.2 ApplicationEvent::initApplicationEvent

The initApplicationEvent method is used to initialize the value of a ApplicationEvent created through the
DocumentEvent interface. This method may only be called before the ApplicationEvent has been
dispatched via the dispatchEvent method, though it may be called multiple times during that phase
if necessary. If called multiple times, the final invocation takes precedence. This method has no
effect if called after the event has been dispatched.

8.2.11.2.1.2 TimerEvent Object

An ACAP-X application may use and an ACAP-X environment shall support a TimerEvent object
that implements the following interface:

interface TimerEvent : Event
{
 /* read-write properties */
 attribute DOMString detail;
 attribute unsigned long interval;
 /* methods */
 void initTimerEvent(in DOMString detail, in unsigned long interval);
};

8.2.11.2.1.2.1 TimerEvent::detail

An application supplied string used to provide detail and linkage from the registration of the
timer to timer event handler. This property is considered opaque by the user agent.

8.2.11.2.1.2.2 TimerEvent::interval

This mutable, integer valued property indicates the timer restart interval in milliseconds. The
default action of a timer event causes the timer to be restarted with this interval. This default
action may be canceled by either (1) initializing or setting the value of this interval to zero or (2)
invoking the method Event::preventDefault on the TimerEvent object.

8.2.11.2.1.2.3 TimerEvent::initTimerEvent

The initTimerEvent method is used to initialize the value of a TimerEvent created through the
DocumentEvent interface. This method may only be called before the TimerEvent has been
dispatched via the dispatchEvent method, though it may be called multiple times during that phase
if necessary. If called multiple times, the final invocation takes precedence. This method has no
effect if called after the event has been dispatched.

8.2.11.2.1.3 TriggerEvent Object

An ACAP-X application may use and an ACAP-X environment shall support a TriggerEvent object
that implements the following interface.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 59

interface TriggerEvent : Event
{
 /* constants */
 const unsigned long TIME_NONE = 0;
 const unsigned long TIME_NPT = 1;
 /* read-only properties */
 readonly attribute unsigned long timeType;
 readonly attribute DOMString time;
 /* read-write properties */
 attribute DOMString detail;
 /* methods */
 void initTriggerEvent(in DOMString type,
 in unsigned long timeType, in DOMString time, in DOMString detail);
};

A TriggerEvent object shall be constructed by means of the DocumentEvent::createEvent method,
where the eventType argument to this method shall be “org.atsc.trigger”.

Example: The following ECMAScript fragment creates a TriggerEvent object corresponding to an
asynchronous trigger event, initializes the object, then dispatches it to the Window object, which,
in turn dispatches it to the document and its descendant element hierarchy. The type property of
the event is “org.xyz.myTriggerEvent”; the detail property is “payload”.

var e = document.createEvent ("org.atsc.trigger");
e.initTriggerEvent ("org.xyz.myTrigger", TriggerEvent.TIME_NONE, null, "payload");
window.dispatchEvent (e);

8.2.11.2.1.3.1 TriggerEvent::timeType

This immutable, enumerated valued property shall contain one the values TIME_NONE or
TIME_NPT. This property deteremines how to interpret the value of TriggerEvent::time.

If the value of this property is TIME_NONE, then the value of TriggerEvent::time shall be either null
or an empty string.

If the value of this property is TIME_NPT, then the value of TriggerEvent::time shall be the string
representation of an integer normal play time value.

8.2.11.2.1.3.2 TriggerEvent::time

This immutable, string valued property shall contain a string representation of a trigger’s time, if
the trigger is a synchronized trigger, or null, if the trigger is asynchronous. See Section
8.2.11.2.1.3.1 for information on the interpretation of a non-null value.

8.2.11.2.1.3.3 TriggerEvent::detail

This mutable, string valued property shall contain a string representation of a trigger’s payload.
The syntax and semanics of this string are application defined, and considered opaque by the
user agent.

8.2.11.2.1.3.4 TriggerEvent::initTriggerEvent

The initTriggerEvent method is used to initialize the value of a TriggerEvent created through the
DocumentEvent interface. This method may only be called before the TriggerEvent has been
dispatched via the dispatchEvent method, though it may be called multiple times during that phase

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 60

if necessary. If called multiple times, the final invocation takes precedence. This method has no
effect if called after the event has been dispatched.

The type parameter of this method shall be used to initialize the type property of the object.
The detail parameter of this method shall be used to initialize the detail property of the object.
The bubbles and cancelable properties of the object shall be initialized to false.

8.2.11.2.2 Event Types

This section describes extensions to the Event Set Module Objects specified by A/100-2 [38],
Section 5.3.1.2.8.

8.2.11.2.2.1 HTML Event Types

In addition to the events defined by DOM2-EVENTS [49], Section 1.6.5, “HTML Event Types”,
the following event type shall be generated and dispatched by an ACAP-X environment as an
HTML event type:
� org.atsc.document.domstable

8.2.11.2.2.1.1 org.atsc.document.domstable Event

The org.atsc.document.domstable event is used to indicate the completed construction of a document
instance (i.e., its DOM instance).

Name: org.atsc.document.domstable
Bubbles: no
Cancelable: no
Default Action: none
Context: none

This event shall be generated by an ACAP-X environment and dispatched to the Window
object associated with the document being constructed.

This event signals the completed construction of the current document instance. After receipt
of this event, any modification to the document instance is restricted to programmatic control by
script content.

The dispatching of this event shall precede in time the dispatching of any other HTML event
type; however, both application lifecycle events and timer events may be dispatched prior to the
dispatching of the org.atsc.document.domstable event.

The target of the org.atsc.document.domstable event type shall be the frameset element node of a
multiple-frame document; otherwise, the target shall be the body element node.

8.2.11.2.2.1.2 org.atsc.document.load Event

The org.atsc.document.load event shall be generated when the DOM implementation finishes
loading all content within a document, all frames within a frame, or within an object element.
The dispatching of the org.atsc.document.load event shall follow in time the initiation of
playback of any media object that is referenced by an img or object element in the document to
which this event is to be dispatched and the media objects are automatically started without
explicit user or application defined programmatic action.

Name: org.atsc.document.load
Bubbles: no

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 61

Cancelable: no
Default Action: none
Context: none

This event shall be generated by an ACAP-X environment and dispatched to the Window
object associated with the document being constructed.

8.2.11.2.2.1.3 org.atsc.document.unload Event

The org.atsc.dom.unload event shall be generated when the DOM implementation removes a
document from a window or frame.

The dispatching of the org.atsc.document.unload event shall follow in time the cessation of
playback of any media object that is referenced by an img or object element in the document to
which this event is to be dispatched and the media objects were automatically started without
explicit user or application defined programmatic action.

Name: org.atsc.document.unload
Bubbles: no
Cancelable: no
Default Action: none
Context: none

This event shall be generated by an ACAP-X environment and dispatched to the Window object
associated with the document being constructed.

8.2.11.2.2.2 Application Lifecycle Event Types

This section specifies the following application lifecycle event types:
� org.atsc.application.started

� org.atsc.application.suspending

� org.atsc.application.resumed

� org.atsc.application.terminating

An ACAP-X environment shall dispatch these events to the top-level Window object of the
application to which they apply as described in the following subsections.

The target of all application lifecycle events shall be the top-level Window object of the
ACAP-X application.

An ACAP-X application is not notified of a transition to the LOADING or KILLED states.

8.2.11.2.2.2.1 org.atsc.application.started Event

The org.atsc.application.started event is used to indicate that an ACAP-X application has just been
activated. More specifically, the application has just transitioned from the LOADING state to the
ACTIVE state as defined by the application lifecycle state model.

Name: org.atsc.application.started
Bubbles: No
Cancelable: No
Default Action: None
Context: None

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 62

The dispatching of the org.atsc.application.started event shall precede in time the initiation of
playback of any media object that is referenced by an img or object element in the document to
which this event is to be dispatched and the media objects are automatically started without
explicit user or application defined programmatic action.

8.2.11.2.2.2.2 org.atsc.application.suspending Event

The org.atsc.application.suspending event is used to indicate that an ACAP-X application is about to
be suspended. More specifically, the application is about to be transitioned to the PAUSED state as
defined by the application lifecycle state model.

Name: org.atsc.application.suspending
Bubbles: no
Cancelable: no
Default Action: none
Context: none

An ACAP-X application shall strictly limit the type and amount of processing performed in
an event handler registered for this event type. An implementation dependent time limit of no
less than one second may be enforced on such processing by an ACAP-X environment, after
which the application may be forcibly suspended.

An org.atsc.application.suspending event shall not be dispatched to an application if no prior
org.atsc.application.started event was dispatched to the application.

8.2.11.2.2.2.3 org.atsc.application.resumed Event

The org.atsc.application.resumed event is used to indicate that a previously paused (suspended)
ACAP-X application has just been resumed. More specifically, the application has just
transitioned from the PAUSED state to the ACTIVE state as defined by the application lifecycle state
model.

Name: org.atsc.application.resumed
Bubbles: No
Cancelable: No
Default Action: None
Context: None

An org.atsc.application.resumed event shall not be dispatched to an application if no prior
org.atsc.application.suspending event was dispatched to the application.

8.2.11.2.2.2.4 org.atsc.application.terminating Event

The org.atsc.application.terminating event is used to indicate that an ACAP-X application has been
signaled for graceful destruction. More specifically, the application has just transitioned to the
DESTROYED state as defined by the application lifecycle state model.

Name: org.atsc.application.terminating
Bubbles: no
Cancelable: no
Default Action: none
Context: none

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 63

An ACAP-X application shall strictly limit the type and amount of processing performed in
an event handler registered for this event type. An implementation dependent time limit of no
less than one second may be enforced on such processing by an ACAP-X environment, after
which the application may be forcibly terminated (killed).

An org.atsc.application.terminating event shall not be dispatched to an application if no prior
org.atsc.application.started event was dispatched to the application.

The dispatching of the org.atsc.application.terminating event shall follow in time the cessation of
playback of any media object that is referenced by an img or object element in the document to
which this event is to be dispatched and the media objects were automatically started without
explicit user or application defined programmatic action.

8.2.11.2.2.3 Timer Event Types

The org.atsc.timer event is used to indicate the firing of a timer event.

Name: org.atsc.timer
Bubbles: No
Cancelable: Yes
Default Action: restart timer with same timer id using interval property to determine interval
Context: Detail

A timer event shall be generated by an ACAP-X environment when a timer is fired as a side
effect of invoking the Window::startTimer() method as described in Section 8.2.11.2.3.1.1
(“TimerDispatcher::startTimer”) below. It shall be dispatched to the Window object on which the
startTimer method was invoked.

A timer event shall be instantiated and dispatched as a TimerEvent object as described in
Section 8.2.11.2.1.2 (“TimerEvent Object”) above.

The target of a org.atsc.timer event shall be the HTMLDocument node of the document associated
with the Window object in which the timer is started.

8.2.11.2.2.4 Trigger Event Types

The org.atsc.trigger event is used to indicate the dispatch of a generic trigger.

Name: org.atsc.trigger
Bubbles: No
Cancelable: No
Default Action: None
Context: Detail

A generic trigger event is never generated automatically by an ACAP-X environment. This
event may be programmatically constructed and dispatched by application defined script content
to a Window object as determined by the ACAP-X application.

In addition to the generic trigger type defined above, application defined trigger types shall
be generated by an ACAP-X environment upon receipt of an asynchronous trigger or upon the
firing of a synchronized trigger as describe in Section 8.1.4 (“Trigger Processing”) above.

A trigger event shall be instantiated and dispatched as a TriggerEvent object as described in
Section 8.2.11.2.1.3 (“TriggerEvent Object”) above.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 64

The target of both the generic org.atsc.trigger event type as well as application defined trigger
types shall be the HTMLDocument node of the document associated with the top-level Window object
of the ACAP-X application which the trigger is associated.

8.2.11.2.3 Environment Module Objects

This section describes extensions on certain Environment Module objects.

8.2.11.2.3.1 Window Object

An ACAP-X application may use and an ACAP-X environment shall support the DOM-2
EventTarget interface on each Window object. Furthermore, the event flow for dispatched events
shall start with the Window object and proceed as described in Section 8.1.3 (“Event Processing”)
above.

An ACAP-X application may use and an ACAP-X environment shall support the following
extension interface on each Window object:

interface TimerDispatcher
{
 /* methods */
 TimerId startTimer(in DOMString detail, in unsigned long interval);
 void cancelTimer(in TimerId id);
};

8.2.11.2.3.1.1 TimerDispatcher::startTimer

This number valued method shall cause the repeated dispatch of an org.atsc.timer event to occur
every interval milliseconds, returning a unique, opaque numeric identifier which may be
subsequently used by Window::cancelTimer.

The detail parameter is application defined and is considered to be opaque to the user agent.
The value of the interval parameter may be zero, in which case a single timer event is

asynchronously dispatched, and is not repeated unless the TimerEvent::interval property is modified
by an event handler to be non-zero and the default action is not canceled.

8.2.11.2.4 Inter-Environment Bridge

An ACAP-X application may use and an ACAP-X environment shall support an interface
between the ACAP-X and ACAP-J environments as specified in MHP 1.1 [3], Section 8.10.2, as
further amended by this section, with the term ACAP-J substituted for DVB-J and the term
ACAP-X substituted for DVB-HTML.

Any use of this functionality by an ACAP-X application shall be subject to security
considerations defined by Section 8.3.2, “Inter-Environment Bridge Access”.

8.2.11.2.4.1 Packages Object

The Packages object described MHP 1.1 [3], Section 8.10.2, shall have a set of properties
consisting of an ECMAScript object for each root package name that has been loaded into the
class loader associated with the ACAP-X application or is present in the underlying ACAP-J
implementation.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 65

8.2.11.2.4.2 Package Object

Each ECMAScript object representing a Java package shall have a set of properties consisting of
an ECMAScript object for each top-level class and subpackage in the Java package.

8.2.11.2.4.3 Java Class Object

Each ECMAScript object representing a Java class shall have a property of the type Function for
each public, static method name in the Java class. It shall also have an internal property,
[[Constructor]], which allows it to be used by the ECMAScript new operator. When invoked, the
function attempts to find the best matching signature among the corresponding Java methods or
constructors using the rules specified in MHP 1.1 [3] Section 8.10.2.7. If a compatible method is
found, the arguments are converted according to MHP 1.1 [3], Section 8.10.2.9, and the return
values as specified in MHP 1.1 [3], Section 8.10.2.11.

8.2.11.2.4.4 Java Method Object

Each ECMAScript object representing a Java method shall implement a [[Call]] function that
invokes the Java method. The arguments are matched against the signature of the Java method
as specified in MHP 1.1 [3], Section 8.10.2.7. If the method is compatible, the arguments are
converted according to MHP 1.1 [3], Section 8.10.2.9, and the return values as specified in MHP
1.1 [3], Section 8.10.2.11.

8.2.11.2.4.5 Behavior of Java Objects in ECMAScript

The ECMAScript objects representing Java entities shall behave as host objects as defined in the
ECMAScript specification. Table 8-4 ECMAScript Internal Properties for Java Entities, lists the
requirements on the internal properties of ECMAScript objects representing Java entities

Table 8-4 ECMAScript Internal Properties for Java Entities
Property Requirements

[[Prototype]] Shall be null.
[[Class]] Implementation dependent.
[[Value]] Implementation dependent.
[[Get]] Per ECMAScript specification for native objects.
[[Put]] Per ECMAScript specification for native objects.
[[CanPut]] Per ECMAScript specification for native objects.
[[HasProperty]] Per ECMAScript specification for native objects.
[[Delete]] Per ECMAScript specification for native objects.
[[DefaultVaue]] Shall be implemented as specified below.
[[Construct]] When the corresponding Java object is an instantiable class., an instance of the class shall be

constructed if the argument list matches a constructor. If no match is found, it throws a TypeError
exception. For objects corresponding to a Java object that is not an instantiable class, e.g. an
abstract class, it is undefined.

[[Call]] For an object corresponding to a Java method (or overloaded methods), [[Call]] shall be
implemented to invoke a method as described above. Otherwise it is undefined.

[[HasInstance]] Shall be undefined on all objects corresponding to Java entities
[[Scope]] Implementation dependent.
[[Match]] Shall be undefined on all objects corresponding to Java entities

All properties specified herein on objects representing Java entities shall have the ReadOnly
ECMAScript attribute, with the following exception. During the execution of an ECMAScript
subclass constructor described in Section 8.2.11.2.4.8, the properties on the current object shall
not have the ReadOnly attribute.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 66

Note: The lack of [[Prototype]] or [[HasInstance]] means that ECMAScript instanceof() is
not useful on objects representing Java entities. Instead java.lang.Class.isInstance()
should be used for querying the inheritance of Java objects.

Note: Because the behavior of type conversion operators is unchanged from that
specified in ECMASCRIPT [50], Section 9, invoking ToBoolean on a
java.lang.Boolean always returns true, since that is the value returned for all objects.
And because the behavior of [[DefaultValue]] is unchanged, ToNumber on a
java.lang.Object returns the result of toString(), since that is the value returned for all
objects.

8.2.11.2.4.6 Explicit Method Selection

The mechanism for explicit method selection specified in MHP 1.1 [3], Section 8.10.2.5 is not
supported by the ACAP-X application environment. Instead, a set of three methods are provided
to allow particular methods to be explicitly retrieved so that it may be invoked.

The ECMAScript object corresponding to a Java object shall have a function that returns an
object respresenting the corresponding Java method. It behaves as a Java method with the
signature:

Method getMethod(String methodName, String methodSignature)

The ECMAScript object corresponding to a Java class shall have a function for retrieving
static methods that returns an object respresenting the corresponding Java method:

Method getStaticMethod(String methodName, String methodSignature)

In addition, it shall provide function for retrieving constructors that returns an object
representing the corresponding Java constructor:

Constructor getConstructor(String methodSignature).

The signature string argument is a comma separated list of formal Java type specifiers. The
signature must exactly match the argument list portion, i.e. that portion between the parentheses,
of the string returned by java.lang.reflect.Method.toString() or java.lang.reflect.Constructor.toString().

8.2.11.2.4.7 Method Signature Matching

An implementation is required to match signatures of both static and non-static methods when
the invocation is attempted on an ECMAScript object representing an instance of a Java class.
The second item in the bulleted list in MHP 1.1 [3], Section 8.2.10.7 is amended to read:

“be static when the invocation is attempted on the class, and may
be static or non-static when invoked on an instance.”

8.2.11.2.4.8 Subclassing

Subtype is a function-valued property on the Global object which allows one to subclass an existing
Java class. It returns an ECMAScript object that corresponds to the Java class representing the

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 67

subclass. If the function is invoked to create a subclass of a final class, a TypeError exception is
thrown.

Invoking new on the returned object constructs an instance of the subclass. During the
creation of the instance, the constructor that was passed to Subtype is invoked on an object
representing the Java object with the parent constructors invoked. The ECMAScript constructor
function may then add function-valued properties for the methods implemented in ECMAScript.
As specified in Section 8.2.11.2.4.5, properties corresponding to Java methods are writable only
during this constructors invocation.

Method invocation from Java is performed as follows:
� If the method appears on a superclass and is final, that method is invoked.
� Otherwise, if the ECMAScript object has a function-valued property with the method name,

that function is invoked.
� Otherwise, if the Java method is implemented on a superclass, that method is invoked.
� Otherwise, a Java runtime exception is thrown.

In the example of subclassing in MHP 1.1 [3], Section 8.10.2.10, the line

this.ActionPerformed = arg1;

is amended to read

this.SetAction(arg1);

In MHP 1.1 [3] section 8.10.2.10, the references to subclassing shall be limited to the
implementation of Java interfaces. There is no requirement to be able to subclass Java classes
(e.g abstract ones). Invoking the Subtype constructor on a Java class (as opposed to an interface)
may cause the DVBException with the error code SUBCLASS_NOT_ALLOWED_ERR to be raised.

8.2.11.2.4.9 Exceptions

Exceptions thrown by Java called from ECMAScript are not converted to ECMAScript
exceptions. They appear in ECMAScript as a Java object.

ECMAScript functions that throw exceptions when called form Java should throw subclasses
of java.lang.exception or java.lang.error if they wish specific behavior on from the Java caller. If such
a function throws another type of object, it appears in Java as a Java runtime exception with a
message of “ECMAScript”.

Where MHP 1.1 [3], Section 8.10.2 specifies that an object of type DVBException is thrown, an
ECMAScript TypeError shall be thrown instead.

8.2.11.2.4.10 Security

Per MHP 1.1 [3], Section 8.10.2.3, the Java runtime shall enforce the MHP security model when
ECMAScript calls into Java. Hence, an implementation is required to maintain all contextual
information needed by the Java Security model through multiple layers of calls between
languages in both directions.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 68

8.2.11.2.4.11 Unicode Escapes

As described in ECMASCRIPT [50], Section 6, ECMAScript identifiers, strings and characters
may contain Unicode escape sequences that start with a ‘\’ followed by a single ‘u’, whereas Java
allows a ‘\’ followed by one or more instances of the letter ‘u’. An ACAP-X environment is
required to normalize these representations for purposes of comparisons so that regardless of the
original or intermediate representation, equivalent Unicode sequences are considered equivalent
when used in strings, characters and identifiers.

8.3 ACAP-X Security Specifics

8.3.1 Cookie Access

Access to cookie state information items shall be controlled by the acap:cookie permission request
as described by Section 12.4.2.3.1 below.

8.3.2 Inter-Environment Bridge Access

Access to the inter-environment bridge shall be controlled by the acap:bridge permission request as
described by Section 12.4.2.3.3 below.

8.3.3 Runtime Code Extension Access

Access to the runtime code extension mechanisms shall be controlled by the acap:rce permission
request as described by Section 12.4.2.3.2 below.

8.4 ACAP-X Transport Specifics
The following metadata items shall be signaled in all ACAP-X application transport scenarios:
� application identifier

� root directory

� root resource

The application identifier metadata item shall specify a UUID, an organization identifier, and
an organization specific application identifier. See Section 8.2.1.2.5 above for further
information.

The root directory metadata item shall specify a directory either as an absolute URI or an
absolute directory within some implied file system namespace, as determined by the transport
scenario. This directory shall serve as the default base directory for relative references to
resources that do not otherwise specify or imply a base directory.

The root resource metadata item shall specify a relative or absolute reference to the resource
that represents the ACAP-X application’s root entity. If the reference is a relative reference, then
it shall be resolved relative to the root directory metadata item. If it is an absolute directory with
an implied file system namespace, and that implied file system is a broadcast object carousel,
then it shall be interpreted as a file pathname starting with the root directory of the object
carousel.

The root resource metadata item shall reference either an application metadata resource or a
markup content resource as defined by this specification. If a markup content resource is
referenced as the root resource, then an application metadata resource shall be implied as
described in Section 8.1.1 (“Application Behavior”) above.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 69

8.4.1 ACAP-X Transport Binding

When delivered within an ATSC or Digital Cable Television compliant transport stream, an
ACAP-X application shall be signaled and as described by Section 10 (“Transport and
Signaling”).

This specification does not preclude the use of other transport bindings for other delivery
mechanisms.

8.4.1.1 Bounded Resource Encapsulation

A bounded resource (i.e., a resource of definite length) that is included in an ACAP-X
application shall be encapsulated as a DSM-CC U-U BIOP::File object that makes use of any
form of an interoperable object reference (IOR) as permitted by Section 10.4.1.2 below.

8.4.1.2 Unbounded Resource Encapsulation

An unbounded resource (i.e., a resource of indefinite length) that is referenced by an ACAP-X
application is limited to the streaming audio and stream video content types permitted by
Sections 8.2.6 and 8.2.5 above. These resources are limited to elementary streams carried
directly by the MPEG-2 transport stream, and are not transported by the DSM-CC UU Object
Carousel.

8.4.1.3 Trigger Encapsulation

An asynchronous or synchronized trigger that is targeted to an ACAP-X application shall be
encapsulated as a combination of (1) DSM-CC U-U BIOP::StreamEventMessage object as
defined by MHP [2], Table B.30, that makes use of any form of an interoperable object reference
(IOR) as pemitted by Section 10.4.1.2 below, and (2) DSM-CC Stream Event Descriptor as
defined by Section 10.4.7.4.1 below.

The mapping defined in Table 8-5 ACAP-X Trigger Event Transport Binding, from the
generic trigger event information items described by Section 8.1.4 above shall apply:

Table 8-5 ACAP-X Trigger Event Transport Binding
Trigger Event Item Mapping

event type eventName_data field of BIOP::StreamEventMessage object
event time eventNPT field of stream event descriptor
event payload privateDataByte[] field of stream event descriptor

The BIOP::StreamEventMessage objects that provide mappings between event ids and event
types shall appear in the root application directory of the object carousel.

If multiple ACAP-X applications are delivered in a single object carousel instance and each
application is targeted for distinct trigger events, then the root application directories of these
applications should be distinct. If they are not distinct, then each application shall receive copies
of all triggers for which there is a matching event id value.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 70

9. MONITOR APPLICATION SUPPORT
For ACAP receivers connected to cable networks, the monitor application, unbound

applications and their supporting infrastructure shall be included as defined in OCAP 1.0 [4]. A
non-exclusive list of the relevant sections of that document includes the following:
� Section 10.2.2.1 Unbound Applications
� Section 10.2.2.3 Application Manager Responsibilities
� Section 10.2.2.4 Application Priority
� Section 10.2.2.5 Host Device Resident Applications
� Section 11.2.2 Extensions to DVB-MHP (Normative)
� Section 13.2.2 Extensions to DVB-MHP (Normative)
� Section 18.2.1 Normative
� Section 19 Baseline Functionality
� Section 20 “Monitor Application”
� Annex G “OCAP 1.0 Application API”
� Annex P “OCAP 1.0 Service API”
� Annex R “Hardware POD API”
� Annex S “Media API”
� Annex Q “OCAP 1.0 System API”
� Annex K “OCAP User Input Event API”
� Annex A “XAIT Document Type Definition”
� Annex H “MPEG Component API”

Note: It is expected that this reference and list will be updated during the
candidate specification phase.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 71

10. TRANSPORT AND SIGNALING

10.1 Introduction
This section of the specification specifies the transport and signaling of applications and
application files. The specification is based on the MHP definitions of GEM functional
equivalents adopted in this section. After the normative specification, several informative
sections (labeled as such) describe the transport design. The scope is just those aspects of the
transport protocol that relate to applications.

10.1.1 Notation

To make the sections more legible, the text adopts a consistent convention for structures. The
structure name consists of word fragments that begin with an upper case letter. There are no
spaces between fragments nor there these underscores. For example:

TransportDescriptor() {
 DescriptorCode. //8 bit uimsbf. The code identifies the structure
 DataLength. //8 bit uimsbf. The length of the octet sequence that represents the structure data.
 for i=0;i<N-1;i++ {
 Octet
 }
}

If the construct is a constant, the letters are upper case and there are underscores between
fragments. An example of the convention is SOME_CONSTANT_VALUE. The appendix adopts the
same conventions. If the construct name of the appendix and that of the specification it
references differ just with respect to the above conventions, the readership should assume that
the constructs are identical.

10.2 Carousel
As specified in section 17.1 “Compliance with GEM”, this specification adopts the MHP
definition of the “Carousel” functional equivalent as specified in GEM [1] clause 15.6. This
definition is extended with the definitions in this section.

10.2.1 NSAP Address

GEM [1] clause [reference to clause 15.6.1.1.1 proposed in corrigendum M87] enables GEM
terminal specifications to define a replacement for the definition of the NSAP address. This
specification does so. The specifierType and specifierData definitions described in GEM [1] clause
[reference to clause 15.6.1.1.1 proposed in corrigendum M87] are replaced with the following.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 72

Table 10-1 Specifier and Service Location
 specifierType // 8 bit uimsbf. The value is 0x1, indicating IEEE OUI
 specifierData // 24 bit uimsbf. The value is 0x000979, indicating ATSC
 acap_service_location() {
 source_id // 16 bit uimsbf. 0x0000 indicates the cable out-of-band

channel; other values resolve to a virtual channel.
 reserved // 64 bit uimsbf, 0xffffffffffffffff
 }

Note: OCAP may add an additional redefinition of Specifier and service location,
e.g. based on the CableLabs value of the OUID for specifierData, which is
0x001000

10.2.2 Content Type and Timestamp Inheritance

GEM [1] clause [reference to clause 15.6.1.1.2 proposed in corrigendum M89] enables GEM
terminal specifications to define additional mechanisms for determining the MIME type of a file.
This specification does so by defining the content type inheritance mechanism described in this
section. This inheritance rule applies also to inheritance of the timestamp value.

The timestamp descriptor is defined in section 10.2.4. The content type descriptor is defined
in MHP clause B.2.3.4, as included in this specification through the MHP definition of the
“Carousel” functional equivalent as specified in GEM [1] clause 15.6. As with the MHP
carousel, if a file message includes a content type descriptor, the type of the file shall be
determined from this descriptor.

If a file message does not contain a content type descriptor, then the content type descriptor
of the object containing the file shall be used to determine the type of the file. Similarly, if a file
message does not include a timestamp descriptor, then the timestamp descriptor of the object
containing the file is used to determine the type of the file.

Directory Objects may contain a content type descriptor and/or a timestamp descriptor. If
one is present it shall be associated with the directory; otherwise the value associated with the
object containing the directory shall be associated with the directory.

Service Gateway objects may contain a content type descriptor and/or a timestamp
descriptor. If a content type descriptor is not present, the type “application/dvbj” shall be
associated with the service gateway. If timestamp descriptor is not present, then a value of 0
shall be associated with the service gateway.

If an object contains more than one content type descriptor or more than one timestamp
descriptor, then it is implementation dependant which one is used. If a file or directory object
does not include a content type descriptor or does not contain a timestamp descriptor, and this
object is contained within two or more objects, then it is implementation dependant which one is
used for the inheritance of the missing descriptor value.

10.2.3 Application transport over HTTP

Note: As specified in chapter 16, “Detailed Platform Profile Definitions”, the
extensions in this section only apply to the profile including ACAP-X.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 73

The Object Carousel definitions of MHP clause B.2.3 (as included in this specification through
the MHP definition of the “Carousel” functional equivalent as specified in GEM [1] clause 15.6)
are extended with the messages defined in this section.

10.2.3.1 HTTP Profile

HTTPProfileBody is defined below. The Interoperable Object Reference of a File message may
include zero or one HTTPProfileBody instance or (see below) zero or one HTTPSProfileBody instance.
If the HTTPProfileBody is present in other object carousel messages, the implementation shall
ignore it.

The profile describes the location of the file contents on the interaction channel. The profile
contains the components (host, port, and path) which allow the implementation to construct the
schema:
� http://host:port/path_segments
The HTTPProfileBody is given in Table 10-2 Semantics of the HTTPProfileBody.”

Table 10-2 Semantics of the HTTPProfileBody
HTTPProfileBody {
 ProfileIdTag // 32 bit uimsbf. The value is 0x44564200
 ProfileDataLength // 32 bit uimsbf
 ProfileDataByteOrder // 8 bit uimsbf
 VersionMajor // 8 bit uimsbf
 VersionMinor // 8 bit uimsbf
 HostDataLength // 8 bit uimsbf
 for (k=0;k<N1;k++) {
 HostData // 8 bit uimsbf
 }
 Port // 16 bit uimsbf
 ObjectKeyLength // 16 bit uimsbf
 for (k=0;k<N2;k++) {
 ObjectKeyData // 8 bit uimsbf
 }
}

The semantics of the profile fields are:
ProfileDataByteOrder – The field shall be 0x00 to indicate big endian order.
VersionMajor – The field indicates the major portion of the protocolversion. The implementation shall

ignore it, as the implementation must support http1.1. The field is present to anticipate future
versions of the protocol.

VersionMinor – The field indicates the minor portion of the protocol version. The implementation
shall ignore it, as the implementation must support http1.1. The field is present to anticipate
future versions of the protocol.

HostData – The character sequence specifies the host to which the client http messages will be
sent. The schema may be either the fully qualified domain name, or the decimal shorthand
(e.g “129.145.166.188”). The character encoding is UTF-8.

Port – The field is an unsigned integer that specifies the port at which the service side listens. The
value 0xFFFF is reserved to mean to adopt the default port. (The default port for http,
specified in rfc2616, is 80.)

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 74

ObjectKeyData – The field is the character sequence that represents the path that identifies the
service side implementation. The character encoding is that described in “Uniform Resource
Identifiers (URI): Generic Syntax” (RFC2396). The implementation shall support the
fragment identifier construct of section 4.1 of RFC2396 and support the query construct of
section 5.0 and section 5.2 of RFC2396.
An HTTPProfileBody IOR may be used in conjunction with a BIOPProfileBody, in which case the

priority for determining which IOR entry to use shall be as follows:
1. If there is no timestamp descriptor in the File message, then use the HTTPProfileBody to

perform an unconditional GET using HTTP, and, if the request is successful, then use the
resource returned by the HTTP response. If the request is not successful, then use the
resource referenced by the BIOPProfileBody.

2. If there is a timestamp descriptor in the File message, then use the HTTPProfileBody to perform
a conditional GET using HTTP with the value of the timestamp being used to construct an If-
Modified-Since request header, and, if the request is successful and returns a newer resource,
then use the resource returned by the HTTP response. If the request is not successful or no
resource was returned, then use the resource referenced by the BIOPProfileBody. If the
timestamp descriptor is present, but the value equates to “unknown”, the logic of the first
case is applicable. The semantics are as if the descriptor is not present.

3. If no HTTPProfileBody is present, then use the BIOPProfileBody to obtain the resource.
A File Message's IOR shall contain no more than one instance of an HTTPProfileBody and no

more than one instance of a BIOPProfileBody. If Interoperable Object Reference of the File Message
contains a LiteOptionsProfileBody, then it shall not contain either a HTTPSProfileBody or HTTPProfileBody
or a BIOPProfileBody.

10.2.3.2 HTTPS Profile

The HTTPSProfileBody is defined below. The profile is comparable to the profile for http, but
signals that the protocol is to be https instead. The schema for the HTTPSProfileBody is identical to
that for HTTPProfileBody except for the ProfileIdTag code. See Table 10-3 Semantics of the
HTTPSProfileBody.

Table 10-3 Semantics of the HTTPSProfileBody
HTTPSProfileBody {
 ProfileIdTag // 32 bit uimsbf. The value is <tbd>.
 ProfileDataLength // 32 bit uimsbf
 ProfileDataByteOrder // 8 bit uimsbf
 VersionMajor // 8 bit uimsbf
 VersionMinor // 8 bit uimsbf
 HostDataLength // 8 bit uimsbf
 for (k=0;k<N1;k++) {
 HostData // 8 bit uimsbf
 }
 Port // 16 bit uimsbf
 ObjectKeyLength // 16 bit uimsbf
 for (k=0;k<N2;k++) {
 ObjectKeyData // 8 bit uimsbf
 }
}

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 75

The semantics of the fields are identical to that of the HTTPProfileBody. (The default port for
https is 443.) The HTTPSProfileBody may be used in conjunction with a BIOPProfileBody. The
timestamp algorithm is identical to the algorithm for HTTPProfileBody.

10.2.4 Time Stamp Descriptor

The Time Stamp Descriptor describes the time when the object was last modified.

Note: The schema is the same as that found in A/95 [59], but this specification
relaxes certain semantic restrictions of that specification. Whereas A/95 requires
the descriptor to be present in all file messages, this is not necessary to signal a
TimeStamp value for each file in a directory hierarchy, due to the Content Type and
Time inheritance mechanism.

The schema of the descriptor is:

TimeStampDescriptor() {
 DescriptorTag // 8 bit uimsbf The value shall be 0x8C.
 DescriptorLength // 8 bit uimsbf
 TimeStamp //64 bit uimsbf
}

The definition for each field is:
Descriptor Tag – The field identifies the descriptor. For the TimeStampDescriptor the value shall be

0x8C.
Descriptor Length – The field describes the byte count of the data that follows the Descriptor

Length field it. The value of the field shall be set to 0x08.

Time Stamp – This 64 bit unsigned integer represents the UTC time when the
object (or child objects) was last modified. The units are milliseconds since
00:00:00 of January 1, 1970 GMT. The value 0xFFFFFFFFFFFFFFFF shall
indicate that the time is not available. For a Service Gateway Object or a
Directory Object, the object is “modified” if a binding has been added or deleted,
or if a binding name has been changed. For a File Object, the object is “modified”
if the ContentTypeDescriptor, the ContentLength, or the ContentData have been changed.

10.2.5 Usage of Private Data for non-ACAP Extensions
In the MHP definition of the “Carousel” functional equivalent as specified by in GEM [1] clause
15.6, private data is specified in:
� The Download Info Indication Message in MHP clause B.2.2 (last structure)
� The message schema in the Digital Storage Media Command and Control specification (last

structure)
If a non-ACAP extension uses this private data, this specification requires that the first structure
of the private data be the Registration Descriptor of the Motion Picture Experts Group. The
purpose of the constraint is to eliminate name collisions. The Registration Descriptor provides
the mechanism through which organizations reserve unique codes. The organization codes scope
the private data found after the structure.

The Registration Descriptor shall adopt the restrictions of Report T3-548 [57] and Report T3-
549 [58]. In addition to these conventions, the Format Identifier of the Registration Descriptor is

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 76

to be registered with the Society of Motion Picture and Television Engineers. The web site for
the organization (http://www.smpte-ra.org) provides further information on the registration
process.

10.2.6 Data Broadcast Descriptor
The value of the data_broadcast_id field of the data_broadcast_descriptor as described in MHP
clause 10.7.2 (as included in this specification through the MHP definition of of the “Application
Signalling” functional equivalent as specified in GEM [1] clause 15.6) shall be 0x010D.

10.3 Application Signaling
As specified in Section 17.1 “Compliance with GEM”, this specification adopts the MHP
definition of the “Application Signalling” functional equivalent as specified in GEM [1] clause
15.6. This definition is extended with the definitions in this section.

10.3.1 Application Content Types

The application_type definition of MHP clause 10.4.6 (as included in this specification through the
MHP definition of the “Application Signalling” functional equivalent as specified in GEM [1]
clause 15.6) is extended with the following values:

Table 10-4 application_type Extensions
application_type description

0x0006 ACAP-J
0x0007 ACAP-X

Note: As required by GEM, the application_type value of 0x0001 for DVB-J shall
also be supported. The terminal behavior is the same as for ACAP-J.

10.3.2 Application Protocol ID
GEM [1] clause [reference to clause 15.6.1.2.1 proposed in corrigendum M87] enables GEM
terminal specifications to define additional values for the protocol_id field. This specification adds
the following value:

Table 10-5 protocol_id Extension
Value Description

0x0006 ACAP Object Carousel

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 77

When the protocol_id is 0x0006, the selector bytes in the transport protocol descriptor shall be
as follows:

ACAPTransportProtocolSelector {
 RemoteConnection // 1 bit uimsbf.
 ReservedFutureUse // 7 bit uimsbf. The value shall be all ones.
 If (RemoteConnection == “1”) {
 SourceId // 16 bit uimsbf
 Reserved // 32 bit uimsbf. The value shall be all ones.
 }
 ComponentTag // 8 bit uimsbf
}

The semantics of each field are:
RemoteConnection – If the value is zero, the current service provides the transport connection. The

subsequent fields are not present in this case. If the value is one, a service other than the
current service provides the transport connection. Applications with this flag set shall have
their application control code set to REMOTE, as specified for MHP applications carried by
a remote MHP object carousel, as defined in clause 10.8.1.1 of MHP (as included in this
specification through the MHP definition of the “Application Signalling” functional
equivalent as specified in GEM [1] clause 15.6).

SourceId – Refers to the source_id of the transport stream that provides the transport connection.

Note: See Section 10.2.1 of this specification.

ComponentTag – Identifies the "principal" service component that delivers the application. The
identified component is the elementary stream that carries the DSI of the object carousel.

Note: The definition of ACAPTransportProtocolSelector is based on the syntax of the
selector bytes for OC transport defined in MHP clause 10.8.1.1. It is identical
except that sourceId is used instead of the (original_network_id, transport_stream_id,
service_id) tuple taken from DVB-SI.

10.3.3 Signaling of Profiles and Versions Required by Applications

For applications fully compliant with this version of this specification, the following values shall
always be signaled:

application_profile 1
version.major 1
version.minor 0
version.micro 0

10.3.4 ACAP-X Extensions

Note: In the ACAP-J profile, no semantics are defined for the descriptors defined
in this section. As a consequence, terminals that only support the ACAP-J profile
may ignore them if signaled.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 78

10.3.4.1 ACAP-X Application Descriptor

The Application Representation Specific Descriptor sequence may contain a single ACAP-X
Application Descriptor for each ACAP-X application. The descriptor contains a sequence of
octets that the implementation forwards to the application at application launch. The
implementation shall support the descriptor as described in Table 10-6, ACAP-S Application
Descriptor.

Table 10-6 ACAP-X Application Descriptor
Construct Structure Field Restriction Source Section

ACAP-X
Application
Descriptor

 Descriptor Tag If the descriptor is present, the value shall
be 0x8D. The size of the field is one byte.

ACAP
1.0

This
Section

ACAP-X
Application
Descriptor

 Descriptor
Sequence
Length

The value represents the length of the entire
descriptor data. The size of the field is one
byte.

ACAP
1.0

This
Section

ACAP-X
Application
Descriptor

Parameter
Sequence

Parameter
Sequence

The character sequence is string that is
appended to the application initial path as
parameters. The encoding shall be UTF-8. It
is valid for the string to be null.

ACAP
1.0

This
Section

10.3.4.2 ACAP-X Application Location Descriptor

The ACAP-X Application Location Descriptor contains information through which the
implementation resolves the location of the ACAP-X application. The Application
Representation Specific Descriptor sequence may contain a single ACAP-X Application
Location Descriptor for each ACAP-X application. The implementation shall support the
descriptor schema defined in Table 10-7 ACAP-X Application Location Descriptor.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 79

Table 10-7 ACAP-X Application Location Descriptor
Construct Structure Field Restriction Source Section

ACAP-X
Application
Location
Descriptor

 Descriptor Tag If the descriptor is present, the value shall
be 0x8E. The size of the field is one byte.

ACAP
1.0

Transport
Chapter

ACAP-X
Application
Location
Descriptor

 Descriptor
Length

The value represents the length of the entire
descriptor data. The size of the field is one
byte.

ACAP
1.0

Transport
Chapter

ACAP-X
Application
Location
Descriptor

 Physical Root
Length

The value represents the length of the
physical root string. The size of the field is
one byte.

ACAP
1.0

Transport
Chapter

ACAP-X
Application
Location
Descriptor

Physical Root
Character
Sequence

Physical Root
Character

The variable length field is either empty or
contains a UTF-8 encoded string that
specifies the path to the root directory of the
application. The semantics are transport
protocol specific. See below for details

ACAP
1.0

Transport
Chapter

ACAP-X
Application
Location
Descriptor

Initial Path
Character
Sequence

Initial Path
Character

The variable length field shall contain a
UTF-8 encoded string that specifies the
relative path to either 1) the ACAP-X
application Metadata Resource (ARM) file
or 2) the ACAP-X initial entity (i.e an XDML
Family Document. The path is relative to the
application root directory specified in the
Physical Root field.

ACAP
1.0

Transport
Chapter

The semantics of the physical root depends on the transport protocol. Table 10-18, Protocol
Id Assignments (below), lists the feasible values for the ProtocolId field.

If the ProtocolId is the value for the ACAP Object Carousel, that is 0x0006, then the physical
root field represents the relative path from the root directory of the object carousel. The
implication is that if the physical root string is empty, the physical root for the application is the
physical root of the object carousel.

10.3.4.3 ACAP-X Application Boundary Descriptor

The descriptor may be present in the application representation specific descriptor sequence. The
descriptor provides a regular expression that defines the data elements that form the application.
If the descriptor is not present, the application boundary defaults to the complete set of all
content that resides in the transport signaled in the Transport Protocol Descriptor associated with
the application. There can be multiple ACAP-X Application Boundary Descriptor instances for
the same ACAP-X application. In this case, the equivalent global regular expression is the OR
combination (union) of the individual regular expressions. The syntax of the descriptor is given
in Table 10-8 ACAP-X Application Boundary Descriptor. The syntax of the regular expression
field is defined in Section 9.3.1.4.1 of MHP 1.1 [3].

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 80

Table 10-8 ACAP-X Application Boundary Descriptor
Construct Structure Field Restriction Source Section

ACAP-X
Application
Boundary
Descriptor

 Descriptor Tag If the descriptor is present, the value shall
be 0x8F. The size of the field is one byte.

ACAP
1.0

Transport
Chapter

ACAP-X
Application
Boundary
Descriptor

 Descriptor
Length

The value represents the length of the
entire descriptor data. The size of the field
is one byte.

ACAP
1.0

Transport
Chapter

ACAP-X
Application
Boundary
Descriptor

 Label Length The value represents the length of the label
string. The size of the field is one byte.

ACAP
1.0

Transport
Chapter

ACAP-X
Application
Boundary
Descriptor

Label Character
Sequence

Label Character The variable length field is either empty or
contains a UTF-8 encoded string that
specifies the label that is associated with
the set of data for the regular expression.
The label can be used for prefetching in a
transport specific manner.

ACAP
1.0

Transport
Chapter

ACAP-X
Application
Boundary
Descriptor

Regular
Expression
Byte Sequence

Regular
Expression
Byte

The variable length field shall contain a
UTF-8 encoded string that specifies a
regular expression. See below for details.

ACAP
1.0

Transport
Chapter

The evaluation of the regular expression determines whether a resource is considered to be in
the ACAP-X application’s reference scope. The regular expression is subject to the schema and
semantics described in the ACAP-X application chapter.

10.4 Object Carousel Protocol (Informative)
This section presents an overview of the object carousel protocol. The normative requirements
come from a variety of sources, including section 10.2, GEM, MHP, and other referenced
specification.

10.4.1 Message Template

ACAP implementations support the message template described in section B.2.3 of MHP [2].

10.4.1.1 Interoperable Object Protocol

The message set of the object carousel builds on the schema of the Broadcast Interoperable
Object Protocol. This protocol extends the Interoperable Object Protocol to account for the
nature of broadcast.

10.4.1.2 Interoperable Object References

ACAP implementations support Broadcast Interoperable Object References as described in
section B.2.3.7 of MHP [2]. The Profile Body is as described in section B.2.3.7.1 of MHP. The
Lite Options are as described in section B.2.3.7.2 of MHP. The HTTP Profile and HTTPS
Profile are as specified in sections 10.2.3.1 and 10.2.3.2.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 81

10.4.1.2.1 Network Service Access Point Address

The object carousel is a collection of resources organized as a graph. The root of the graph is the
Service Gateway object, which aggregates the content for a specific service domain. To obtain
access to the object carousel, the implementation must discover the Network Service Access
Point Address. The Digital Storage Media Command and Control Specification defines the
address as shown in Table 10-9 Network Service Access Point Address.

Table 10-9 Network Service Access Point Address
AFI Type Carousel Id Specifier Private Data

1-byte 1-byte 4-byte 4-byte 10-byte

The Digital Storage Media Command and Control Specification and MHP place certain
restrictions on the fields of the structure (see Table 10-10, Network Service Access Point
Address Fields.

Table 10-10 Network Service Access Point Address Fields
Construct Structure Field Restriction Source Section

Carousel
Address

 Authorization
Format Identifier

The field is zero so as to signal that the format is
private.

MPEG
1998 DB
1.0

9.2.1

Carousel
Address

 Type The field is zero so as to signal that the address
is for another object carousel.

MPEG
1998 DB
1.0

9.2.1

Carousel
Address

 Carousel Id The field designates a specific object carousel. MPEG
1998 DB
1.0

9.2.1

Carousel
Address

 Specifier The field is 0x01, which signals the presence of
an Organization Unique Identifier (OUI)
structure. The structure implies the schema of
the private data.

MPEG
1998 DB
1.0

9.2.1

Carousel
Address

 Private Data The field is specific to this specification. See
below for details.

MPEG
1998
DB
1.0

9.2.1

The purpose of the Specifier field is to define the schema for the fields that follow. The
Specifier itself is:

Specifier {
 SpecifierType // 8 bit uimsbf
 SpecifierData // 24 bit uimsbf
}

The Digital Storage Media Command and Control Specification assigns certain values, given
in Table 10-11 Specifier Type Assignments.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 82

Table 10-11 Specifier Type Assignments
Construct Field Value Definition Source Section

Carousel
Address

Specifier Type 0x00 ISO 13818-6 Reserved. DB
1.0

9.2.1

Carousel
Address

Specifier Type 0x01 IEEE Organization Unique Identifier. DB
1.0

9.2.1

Carousel
Address

Specifier Type 0x02- 0x07 ISO 13818-6 Reserved. DB
1.0

9.2.1

Carousel
Address

Specifier Type 0x08- 0xFF The field is, for this specification, the value
assigned to the Advanced Television Systems
Committee. See below.

DB
1.0
ACAP
1.0

9.2.1

The Specifier Type field is required to be 0x01, which requires the data field to be an
Organization Unique Identifier (OUI) assignment. This is consistent with MHP, which adopts the
same technique to indicate the structure that follows. The Organization Unique Identifier is a
unique code that the Institute of Electrical and Electronics Engineers assigns to organizations.

The value of the Organization Unique Identifier that an ACAP implementation recognizes is
the assignment for the Advanced Television Systems Committee. The value is 0x000979. Table
10-12, Organization Unique Identifier Assignments, lists this and other assignments.

Table 10-12 Organization Unique Identifier Assignments
Construct Field Value Definition Source Section

Carousel
Address

Specifier Data 0x000979 Advanced Television Systems Committee
Organization

ATSC

Carousel
Address

Specifier Data 0x001000 Cable Labs Organization OC
1.0

Carousel
Address

Specifier Data 0x00015A Digital Video Broadcast Organization DB
1.0

9.2.1

If the Organization Unique Identifier is not 0x000979, the implementation may elect to abort
the carousel access. For ACAP-J applications, the implementation raises an exception to signal
carousel access failure. See Section 7 (“ACAP-J Applications and Environment”) for details.
There is no comparable exception for ACAP-X applications.

Given the Organization Unique Identifier, the implementation understands how to interpret
the last fields of structure, that is, the private data. The schema is illustrated in Table 10-13
ACAP Carousel Location.

Table 10-13 ACAP Carousel Location
Transport First 16 bits Second 16 bits Third 16 bits

 Value Semantics Value Semantics Value Semantics
Terrestrial 0x0000 Reserved 0xFFFF Reserved for

Future Use
0x0FFF Reserved for

Future Use
Terrestrial 0x0001-

0xFFFF
Source Id 0xFFFF Reserved for

Future Use
0x0FFF Reserved for

Future Use
Cable 0x0000 Source Id for

Out-of-Band
0xFFFF Reserved for

Future Use
0xFFFF Reserved for

Future Use
Cable 0x0001-

0xFFFF
Source Id for
In-Band

0xFFFF Reserved for
Future Use

0xFFFF Reserved for
Future Use

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 83

The implementation resolves the Source Id to the carousel address. For this specification, the
Source Id resolves to a virtual channel. For values between [0x0001, 0x0FFF], the scope is a
single transport stream (known through the Transport Stream Id). For values between [0x1000,
0xFFFF], the scope is region specific. There is, for the present, no single universal value space.
The network is responsible for managing the value space to avoid collisions.

If the network is terrestrial, the value of zero for Source Id is reserved. If the implementation
encounters the value zero for a broadcast network, the implementation can elect to abort the
carousel access. The implementation raises an exception for ACAP-J applications. See the
ACAP-J application section for details. There is no comparable exception for ACAP-X
applications. If the network is cable, a value of zero is valid. This specification defines the value
zero to mean that the carousel address is to be found in the out-of-band channel. See SCTE 40
[30] Sections 3.3, 4.2, and 4.3 for definitions of in-band versus out-of-band channels.

10.4.2 Service Gateway Message

The Service Gateway represents the root of the object carousel. ACAP implementations support
the Service Gateway Message of section B.2.3.6 of MHP [2], subject to the extensions defined in
section 10.2. The resulting requirements are described below.

10.4.2.1 Message Schema

The Message SubHeader structure of the message contains the Object Info structure. The
descriptor sequence inside this structure a) may include a single label descriptor and b) may
include a single Time Stamp Descriptor. These descriptors conform to the inheritance rules
presented in Section 10.4.5, “File Message”.

The Binding structure of the message also contains the ObjectInfo structure. The descriptor
sequence inside this structure a) may include a single Content Type Descriptor and b) may
include a single Time Stamp Descriptor. These descriptors conform to the inheritance rules
presented in the File Message portion of this chapter. If the Content Type Descriptor is present, it
matches a companion Content Type Descriptor of the object that the binding references.

Note: While the schema of the Content Type Descriptor is identical to that of
MHP, this specification relaxes the semantic constraint that all leaf nodes of the
object graph must include the descriptor. See Section 10.4.5 (“File Message”) for
the inheritance rules. The inheritance rules are backwards compatible for a
carousel where all leaf nodes include the descriptor.

The other constraints of the object carousel design are applicable. See section B.2.3.5 and
section B.2.3.6 of MHP [2] for details.

10.4.2.2 Message Descriptors

The ObjectInfo structure may contain a single label descriptor and a single Time Stamp Descriptor
as described under the File message.

10.4.2.2.1 Label Descriptor

The ObjectInfo structure of the ServiceGateway message may contain a single Label Descriptor as
described under the File message.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 84

10.4.2.2.2 Time Stamp Descriptor

The ObjectInfo structure of the ServiceGateway message may contain a single Time Stamp
Descriptor as described under the File message.

10.4.3 Directory Message

ACAP implementations support the Directory Message of Section B.2.3.5 of MHP [2], subject to
the clarifications and extensions of this section.

10.4.3.1 Message Schema

The Message SubHeader structure of the message contains the Object Info structure. The
descriptor sequence inside this structure a) may include a single Content Type Descriptor and b)
may include a single Time Stamp Descriptor. These descriptors conform to the inheritance rules
given in Section 10.4.5 (“File Message”). If the binding of the object that references the node
contain a Content Type Descriptor, the Object Info of the Message SubHeader of the node
contains a single Content Type Descriptor. The two descriptor are the same.

The Binding structure of the message also contains the Object Info structure. The descriptor
sequence inside this structure a) may include a single Content Type Descriptor and b) may
include a single Time Stamp Descriptor. These descriptors conform to the inheritance rules
presented in Section 10.4.5 (“File Message”). If the Content Type Descriptor is present, it
matches the companion Content Type Descriptor of the object that the binding references.

The other constraints of the object carousel design are applicable. See MHP [2], Section
B.2.3.6 for details.

10.4.4 Message Descriptors

The ObjectInfo structure may contain a single Content Type Descriptor and a single Time Stamp
Descriptor as described under the File message.

10.4.4.1.1 Label Descriptor

The ObjectInfo structure of the Directory message may contain a single Label Descriptor as
described under the File message.

10.4.4.1.2 Time Stamp Descriptor

The ObjectInfo structure of the Directory message may contain a single Time Stamp Descriptor as
described under the File message.

10.4.5 File Message

The discussion of the File Message considers both the message schema and the schema and
semantics of its descriptors.

10.4.5.1 Message Schema

ACAP implementations support the File Message of Section B.2.3.3 of MHP [2], subject to the
clarifications and extensions of this section. The Message SubHeader structure of the message
contains the Object Info structure. The descriptor sequence inside this structure a) may include a
single Content Type Descriptor and b) may include a single Time Stamp Descriptor. These
descriptors conform to the inheritance rules presented below. If the binding of the object that

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 85

references the node contain a Content Type Descriptor, the Object Info of the Message
SubHeader of the node contains a single Content Type Descriptor. The two descriptor will be the
same in a well-formed stream.

10.4.5.2 Message Descriptors

This section describes the descriptors that can be present within the File Message.

10.4.5.2.1 Content Type Descriptor

The Content Type Descriptor signals the format of the files that constitute the application. There
should be at most one such descriptor in the descriptor sequence inside the Object Info of the
Message SubHeader. If multiple formats could describe the content, the format found in the
descriptor should be the most descriptive.

In MHP, if the descriptor is not present, or is present but the string is not known to the
receiver, the receiver attempts to recognize the content through its file extension, as described in
MHP [2], Section 11.3.1.6. In ACAP, this is overridden by the file type inheritance mechanism.

10.4.5.2.1.1 Descriptor Schema

MHP [2], Section B.2.3.4, defines the schema as:

ContentTypeDescriptor() {
 DescriptorTag //8 bit uimsbf. The value is 0x72.
 DescriptorLength //8 bit uimsbf. The length of the character sequence that follows.
 for (i=0; i<DescriptorLength; i++) {
 ContentTypeDataByte //8 bit uimsbf. The character sequence that represents a MIME type.
 }
}

This specification adopts the same schema. The data within the descriptor forms a string the
syntax of which is:

ContentTypeData = type "/"subtype *(";" parameter)

The type field, subtype field, and parameter field are consistent with section 5.0 of
“MultiPurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”
(rfc2045). The character encoding of the string is UTF-8.

10.4.5.2.1.2 Descriptor Semantics

This specification relaxes the constraint that Object Info inside the Message SubHeader of Files
Messages must include the Content Type Descriptor. (To be careful, the reference specifications
do allow defaults. The Content Type Descriptor should be present if the File Object does not
match the defaults.) This specification allows content attributes to be defined at the root of the
object carousel, or at intermediate nodes, rather than just at the leaf nodes. The nodes of the
object graph inherit these attributes. The concept is applicable to both the Content Type
Descriptor and the Time Stamp Descriptor. This section considers the inheritance rules for the
Content Type Descriptor.

When the file types are fully specified in each file object, the inheritance rules of this
specification are backward-compatible to the reference specifications: the message conventions
of the reference specifications are still valid under the inheritance rules described here. The

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 86

implementation, however, does not expect the File Objects whose attributes differ from the
defaults to contain the Content Type Descriptor. The implementation derives the attributes
through inheritance rules.

Figure 10-1 Content Type Inheritance

Figure 10-1 illustrates the inheritance concept. For both object carousels shown, the leaf
nodes are file objects. The premise is that for both object carousels, the files are, left to right, are
a pair of ACAP-J applications and then a pair of ACAP-X applications.

For the object carousel on the left, the algorithm is that of MHP [2]. The algorithm requires
that File Objects whose attributes differ from the defaults include descriptors to override the
defaults. The default is that files contain ACAP-J applications. Thus for the object carousel on
the left the File Objects that relate to ACAP-X applications include the Content Type Descriptor.

The object carousel on the right is the same object carousel, but the algorithm differs. The
object carousel on the right adopts the inheritance rules described below. In the example, the root
node declares that files are ACAP-J applications, and the intermediate node above the ACAP-X
applications declares that subsequent files are ACAP-X applications. The observation is that the
algorithm conserves bandwidth, since just the root of (homogeneous) sub-graphs contain the
descriptor.

The inheritance rules are:
� The default Content Type Descriptor is “ACAP-J”. Since the default content type is “ACAP-

J”, the Service Gateway Object need not contain a Content Type Descriptor. The inheritance
rules presume the content type is “ACAP-J” and require the subgraph to include Content
Type Descriptors only if the object carousel contains files that differ from the default.

� The Service Gateway Object or the Directory Objects may contain a Content Type
Descriptors inside Object Info structure of the Message SubHeader. If the traverse to the leaf
nodes encounters such a descriptor, the descriptor replaces the descriptor encountered at
nodes above they subgraph. The attributes of the descriptor are applicable to all nodes of the
subgraph unless the nodes of the subgraph include the descriptor, which then replaces the
previous descriptor.

� The result of the inheritance evaluation should be unambiguous. If the carousel structure
includes multiple traverse paths to a node, the result of the inheritance evaluation for the
node is the same for all traverse sequences. (The implication of the last rule is that certain

Directory
CT :
ACAP-J

File
CT :
ACAP-J

File
CT :
ACAP-J

Directory

File
CT :
ACAP-

File
CT :
ACAP-

Directory

Directory
CT :
ACAP-J

File File

Directory

File File

Directory
CT :
ACAP-X

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 87

carousel structures require that file objects that relate to ACAP-J applications must include
Content Type Descriptors.)

Figure 10-2 Content Type Inheritance Conflict

Figure 10-2 Content Type Inheritance Conflict motivates the last rule. For both object
carousels, the directory on the left contains both ACAP-J applications and ACAP-X applications.
The implication is that, for the object carousel on the left, the traverse sequence though the
directory on the left side of the figure evaluates the common file to be an ACAP-J application,
since there is no descriptor to override the premise that the files are ACAP-J content. The
traverse sequence through the directory on the right side of the figure evaluates the common file
to be an ACAP-X application, since the traverse encounters a directory object that declares
subsequent files to be ACAP-X content. The distinct traverse sequences reach opposite
conclusions.

The object carousel on the right resolves the conflict. (There are other realizations that also
resolve the conflict.) The object carousel declares that the common file is an ACAP-X
application. The conclusion of the inheritance rule is consistent independent of traverse
sequence.

Directory
CT :
ACAP-J

File File

Directory

File File

Directory
CT :
ACAP-X

Directory
CT :
ACAP-J

File File

Directory

File
CT :
ACAP-

File

Directory
CT :
ACAP-X

Directory
CT :
ACAP-J

File File

Directory

File File

Directory
CT :
ACAP-X

Directory
CT :
ACAP-J

File File

Directory

File
CT :
ACAP-

File

Directory
CT :
ACAP-X

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 88

10.4.5.2.2 Time Stamp Descriptor

The Time Stamp Descriptor describes the time at which the object was last modified. The
schema is the same as that found in A/95 [59], but this specification relaxes certain semantic
restrictions of that specification. The descriptor is defined in section 10.2.4.

10.4.5.2.2.1 Descriptor Semantics

The inheritance algorithm for the Time Stamp Descriptor is as described below. The technique is
comparable to the technique for the Content Type Descriptor. The inheritance algorithm is:
� The default Time Stamp Descriptor is the special value reserved to mean that the

modification time is not available.
� The descriptor may be present in the Message SubHeader structure of a Service Gateway

Message, Directory Message, or File Message, subject to the rules below. The Message
SubHeader is at most a single descriptor.

� The descriptor may be present in the Binding structure of a Service Gateway Message or
Directory Message, in which case the Message SubHeader of the object that the binding
references will also include the same descriptor. The Binding should be at most a single
descriptor.

� The Service Gateway Object and Directory Object should include the descriptor. In addition
to the conditions of the Transport Stream File System specification (the addition of a binding,
the deletion of a binding, or the change to a binding name), a modification to an object in the
subgraphs below the Service Gateway Object or Directory Object should result in a change to
parent descriptors. If the parent descriptor is present, the time value will represent the most
recent change to the child objects.

� The File Objects should contain the descriptor. If the descriptor is present, the time value will
represent the most recent time at which the ContentTypeDescriptor, ContentLength, or ContentBytes
changed.

� The objects of the graph need not include the descriptor. If the descriptor is not present,
inheritance rules determine the time stamp. If a child node does not include the descriptor,
the node inherits the time stamp of its parent (or the default if the traverse to this point
encounters no descriptor). If a child node does include a descriptor, the time stamp becomes
the default for the children (if present) of this node as well as the node itself.

� The network is responsible for ensuring that the time stamp is unambiguous. If there are
multiple traverse sequences to the same node, all traverse sequences will result in the same
time stamp value.

10.4.6 Stream Message

The specification supports two dialects of stream messages. The Stream Object message
describes streams that do not also contain stream events. The Stream Event Object message (see
below) describes streams that also contain stream events. This section describes the Stream
Object.

The implementation supports the Stream Message of Section B.2.3.8 of MHP. The realizable
values for the Info_T:Audio, Info_ T:Video, and Info_T:Data fields are zero and one. The value zero
means such a stream is not present. The value one means such a stream (or multiple streams) is

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 89

present. If all three fields are zero, the nature of the stream was not known at the time the
message was built.

The implementation adopts the algorithm to isolate the elementary stream that contains the
object carousel described in Section B.3.1 of MHP [2]. An ACAP implementation will raise an
exception for ACAP-J applications. There is no comparable exception for ACAP-X applications.

10.4.7 Stream Event Message

The stream event object is known in other designs as a trigger. The concept is that the platform,
upon receipt, forwards the object inside the message to applications that register interest in these
events. The application then performs some action.

The object carousel design provides multiple dialects of stream objects. The Stream Message
(see above) applies if the stream does not also involve stream events. The Stream Event Message
of this section applies if the stream does involve stream events.

10.4.7.1 Stream Event Concepts

The Stream Event feature of MHP [2] supports both stream events that are not time aware and
stream events that are time aware. For stream events that are not time aware, the platform
forwards the Stream Event Object to the application upon receipt. The application then performs
(to be precise initiates) some action. The application initiates the action at once. For stream
events that are time aware, the platform forwards the Stream Event Object at a specific time.
These time aware events are also known as synchronous events. The implication of the time
aware stream events is that the platform understands some concept of media time. For a more
complete discussion of the concepts, see the companion appendix of this specification.

10.4.7.2 Message Schema

The implementation supports the Stream Event Message syntax as described in section B.2.3.9 of
MHP [2]. The realizable values for the Info_T:Audio, Info_T:Video, and Info_T:Data are as described for
the Stream Message. The interpretation of the values are as for the Stream Message. The
contents of the EventList_T: Event Names List can be just the null termination; in other words the
event name can be the empty string. (This is consistent with MHP which is silent on the
question, and thus does not preclude that the event name could be the empty string.)

10.4.7.3 Message Semantics

The scope of this specification is the device that receives the transport stream, that is the edge
node that terminates the network. An ACAP implementation supports the semantics of Section
B.2.4.1 of MHP [2]. The source nodes and intermediate nodes of the transport chain should, in
addition, support the semantics of subsections of B.2.4.1 that relate to these nodes.

10.4.7.4 Message Descriptors

In the case of time aware events, the message requires two descriptors. The first descriptor
associates the stream event with a time line. The second descriptor contains time values that
allow the device to calculate the time line. This section considers the descriptors.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 90

10.4.7.4.1 Stream Event Descriptor

An ACAP implementation supports the Stream Event Descriptor as described in Section B.2.4.2
of MHP [2].

10.4.7.4.2 NPT Reference Descriptor

Note: The NPT mechanism and scheduled stream events that depend on it are
known to be vulnerable to disruption in many digital TV distribution networks.
Existing deployed network equipment that re-generates the STC is unlikely to be
aware of NPT and hence will not make the necessary corresponding modification
to STC values inside NPT reference descriptors. This may cause scheduled stream
events to fire at the wrong time or to never fire at all. Applications should only
use scheduled stream events where they are confident that the network where they
are to be used does not have this problem.

10.5 Data Carousel Protocol (Informative)

Note (informative): As a consequence of the fact that MHP does not use the data
carousel as specified in EN 301 192 [17], ACAP doesn't either.

10.5.1 The Message Template

The data carousel design adopts certain conventions that are applicable to all messages. This
section describes the conventions.

10.5.1.1 Message Header

An ACAP implementation supports the Generic Message Header of Sections 8.1 through 8.3 and
Sections B.2.2.1 of MHP [2]. The restrictions of Section B.2.6 and B.2.7 of MHP are adopted.

10.5.1.2 Section Format

An ACAP implementation supports the Section Format construct of Section B.2.1 of MHP [2],
subject to the clarifications and extensions of this section. The Section Format schema
anticipates two error detection techniques. MHP requires support for just one technique, which is
the CRC32 algorithm. (The algorithm is described in Annex A of the Motion Pictures Experts
Group Systems specification.) This specification requires support for both techniques. The
second technique is the checksum algorithm defined in ISO 13818-6 (1998) Corrigenda 2-2001
(E) and described below:

Algorithm: The scope of the checksum is the entire section. The calculation treats the section
as a sequence of 32-bit integers and performs one's complement addition on the entire integer
sequence. The calculation begins at the most significant byte, then calculates the one's
complement of the result. For the purpose of computing the checksum, the value of the
checksum field itself is considered to be zero. If the message length is not a multiple of four
bytes, the message is considered to be appended with bytes of 0x0 for the purpose of checksum
calculation. If the result of the computation is zero, then the result is set to 0xFFFFFFFF (the
alternative value for a one's complement representation of zero). Should a checksum not be
desired, the value of checksum is set to'0x00000000' to indicate the checksum has not been

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 91

calculated. This option is available for networks where the error protection occurs at a different
strata of the protocol stack.

MHP [2] (Section B.2.1.1) requires the transport packets to contain at most two sections.
This specification does not change this constraint.

10.5.2 Download Info Indication Message

The message specifies information to locate the modules of the carousel. The discussion
considers three topics. The first describes the message structure, the second describes the Module
Info structure found inside the message, and the third the descriptors that can appear inside the
Module Info structure.

10.5.2.1 Message Schema

The Download Info Indication message is described in Section B.2.2.2 of MHP [2]. Section
10.2.5 adds the following additional constraint to this specification. The last structure of the
message is private data. This specification requires that, if the private data is used, the first
structure of the private data be the Registration Descriptor of the Motion Picture Experts Group.
The purpose of the constraint is to eliminate name collisions. The Registration Descriptor
provides the mechanism through which organizations reserve unique codes. The organization
codes scope the private data found after the structure.

The Registration Descriptor obeys the restrictions of Report T3-548 [57] and Report T3-549
[58]. In addition to these conventions, the Format Identifier of the Registration Descriptor is to
be registered with the Society of Motion Picture and Television Engineers. The web site for the
organization (http://www.smpte-ra.org) provides further information on the registration process.

10.5.2.2 Method Structures

The ModuleInfo structure is described in Section B.2.2.4 of MHP [2].

10.5.2.3 Message Descriptors

The Module Info Structure can contain a descriptor loop. This section describes the descriptors
that are to be supported.

10.5.2.3.1 Compressed Module Descriptor

The Compressed Module Descriptor is described in Section 8.2.11 of EN 301 192 [17], and
sections B.2.2.4, and B.2.9 of MHP [2].

The compression technique is the “zib” technique of rfc1950. If the Compressed Module
Descriptor is present, then the data inside the module adopts the structure described in rfc1951.
While this structure anticipates multiple compression techniques, the MHP specification requires
support for just the “deflate” technique. If the code indicates another compression technique, the
implementation can elect to abort the carousel assess. The implementation raises an exception for
ACAP-J applications. There is no comparable exception for ACAP-X applications.

The Original Size field represents the size before compression, except where the Original
Size is not known (or would require decompression on the source node to discover) in which
case the value of the Original Size field will be zero.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 92

10.5.2.3.2 Label Descriptor

The Label Descriptor is described in Section B.2.2.4.1 of MHP. The descriptor loop may contain
multiple Label Descriptors. These descriptors designate modules that the implementation should
prefetch. The information is a hint; the implementation need not prefetch the modules. (See the
description of the prefetch descriptor for details.) The character encoding of the character
sequence that represents the label is UTF-8. A label with zero characters is valid.

The specification further requires that the label be unique within the object carousel. The
implication is that modules to which label refer must reside in the same Download Info
Indication message. The label of a Label Descriptor matches the companion label found in a
Prefetch Descriptor.

10.5.2.3.3 Caching Priority Descriptor

The Caching Priority Descriptor is described in Section B.2.2.4.2 of MHP [2]. The value is a
hint. The implementation can elect to ignore the value.

10.5.3 Download Server Initiate Message

The Download Server Initiate Message is described in Section B.2.2.3 of MHP [2]. The
Download Server Initiate message bootstraps the traverse of the object carousel. The message
provides the object reference to the Service Gateway object of the carousel. The Service
Gateway object represents the root of the carousel structure.

10.5.3.1 Message Schema

The ServerId is the Network Service Access Point (NSAP) Address for the Service Gateway for
the object carousel. The address is as specified in section 10.2.1.

10.5.3.2 Method Structures

The Service Gateway Info Structure is described in Section B.2.2.5 of MHP [2].

10.5.3.3 Group Link Descriptor

The Compressed Module Descriptor is described in Section 8.2.9 of EN 301 192 [17].

10.5.3.3.1 Subgroup Association Descriptor

The Subgroup Association Descriptor is described in Section 8.2.1 of EN 301 192 [17].

10.5.3.4 Download Data Block Message

The Download Data Block message is defined in The Digital Storage Media Command and
Control Specification.

10.5.3.5 Download Cancel Message

There are no semantics defined for the Download Cancel message. An implementation may
ignore this message if present.

10.5.3.5.1 Message Schema

The message schema is described in Section 7.3.5 of Digital Storage Media Command and
Control specification. This definition is further restricted by section 10.2.5 in the case where

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 93

private data is used. The last structure of the message is this private data. This specification
requires that the first structure of the private data be the Registration Descriptor of the Motion
Picture Experts Group. The purpose of the constraint is to eliminate name collisions. The
Registration Descriptor provides the mechanism through which organizations reserve unique
codes. The organization codes scope the private data found after the structure.

The Registration Descriptor obeys the restrictions of Report T3-548 [57] and Report T3-549
[58]. In addition to these conventions, the Format Identifier of the Registration Descriptor is to
be registered with the Society of Motion Picture and Television Engineers. The web site for the
organization (http://www.smpte-ra.org) provides further information on the registration process.

10.5.3.5.2 Message Semantics

The Download Cancel Message contains the block count of the last valid block of the download
session. While an implementation is required to accept the message, the response is
implementation dependent.

10.6 Transport Protocol (Informative)

10.6.1 Introduction

The object carousel design builds on the data carousel design. The data carousel design in turn
builds on certain basic transport protocol tables. The discussion below considers the protocol
tables that relate to applications. To be specific this portion of the specification considers the
Program Map Table (PMT) and Application Information Table (AIT).

10.6.2 Program Map Table

The Program Map Table (PMT) is the first of the sequence of protocol tables that announce
applications. The Program Map Table provides information about the nature of the applications.
It also contains the Application Signaling Descriptor, which publishes the Service Component
that contains the Application Information Table (AIT). The Application Information Table, the
subject of the next section, provides further details about the applications. The applications often
require companion data streams. The Program Map Table, in this case, also includes a Data
Broadcast Id Descriptor for each data stream.

The implementation supports the descriptors listed in Table 10-14 Program Map Table.

Table 10-14 Program Map Table
Table Construct Field Description Source Section

Program Map
Table

Carousel Id
Descriptor

 The descriptor is present for object
carousels.

MHP
1.0.3 [2]

10.2.2

Program Map
Table

Deferred
Association
Tags Descriptor

 The descriptor is present. See section 9.3.3
of the Data Broadcasting Specification [17]
for details.

DB 1.0
[17]

9.9.3

Program Map
Table

Elementary
Stream
Sequence:
Generic
Descriptors

Elementary
Stream: Stream
Type

The sequence includes at least one
reference to a Program Element that
contains an Application Information Table.
The Stream Type is 0x05 for such Program
Elements.

MHP
1.0.3 [2]

10.1.1
10.2.1

Program Map
Table

Elementary
Stream
Sequence:
Generic

Elementary
Stream:
Application
Signaling

The sequence includes at least one
reference to a Program Element that
contains an Application Information Table.
The value of the Stream Type is 0x05 for

MHP
1.0.3 [2]

10.1.1
10.2.1

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 94

Descriptors Descriptor such Program Elements.
Program Map
Table

Elementary
Stream
Sequence:
Generic
Descriptors

Elementary
Stream: Stream
Type
(Broadcast
Data)

The sequence can contain references to
Program Elements that transport data. The
field is a transport specific value to signal
such Program Elements.

MHP
1.0.3 [2]

10.2.2

Program Map
Table

Elementary
Stream
Sequence:
Generic
Descriptors

Elementary
Stream: Data
Broadcast Id
Descriptor

If the reference is to a Program Element that
transports data, the descriptor can be
present.

MHP
1.0.3 [2]

10.2.2

The discussion below considers these descriptors in further detail.

10.6.2.1 Deferred Association Tags Descriptor

As required by MHP, the implementation supports the Deferred Association Tags Descriptor as
described in Section 9.3.3 of the Data Broadcast specification [17]. The Deferred Association
Tag Descriptor resides in the outer descriptor sequence of the Program Map Table. The last field
of the descriptor is the Original Network Id field. The semantics of the field is network specific.
If the network is terrestrial, the field is reserved for future specification. The value will be zero.
If the network is cable, the field is again reserved for future specification. The value will be zero.
If the network is satellite, the value of the field and its semantics are not addressed by this
specification.

10.6.2.2 Carousel Identifier Descriptor

The Carousel Identifier Descriptor is described in MHP [2] Annex B.2.10.1. The descriptor
resides in the descriptor loop of the elementary stream entry of the Program Map Table that
designates the application’s object carousel stream (stream type 0x0B).

Note: It is recommended that AUTOSTART applications use a carousel identifier
descriptor with formatId of 0x01, designating enhanced boot information.

10.6.2.3 Application Signaling Descriptor

The Application Signaling Descriptor is described in Section 10.7.1 of MHP [2] and section
10.3. The descriptor identifies the Program Element that contains the Application Information
Table. (There can be multiple such Program Elements.) The descriptor may also contain fields
that encode the Application Type and the Version Number. If the Application Type field is
present, it cam be the assignment for ACAP-J applications, DVB-J applications or ACAP-X
applications.

If both the Application Type field of the Application Signaling Descriptor and the Content
Type Descriptor of the Object Carousel messages is present, the values are to be consistent.
Table 10-15 Application Content Types, lists valid combinations for this specification. ACAP-J
and DVB-J are treated as equivalent by ACAP terminals.

Table 10-15 Application Content Types
Application Type Content Type

ACAP-J application/acap-j
DVB-J application/dvbj
ACAP-X application/acap-x

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 95

10.6.2.4 Data Broadcast Id Descriptor

The Data Broadcast Id Descriptor is described in Section 10.7.2.1 of MHP [2].
The presence of this descriptor is optional in application signaling. If the descriptor is

present, it is associated with the elementary stream that contains the Object Carousel, not the
stream that contains the Application Information Table. This restriction comes from MHP.

If the optional ApplicationType field is present, then it will be one of the values defined by
Section 10.6.3 for use with ACAP-J or ACAP-X application types. The behavior of an ACAP
terminal device in the case that this field is some other value is implementation dependent, and
may include aborting acquisition of the associated elementary stream and notifying the
application through a run-time exception as appropriate.

10.6.3 Application Information Table

The Application Information Table is specified in Section 10.8 of MHP [2] and Section 10.3.
The Application Information Table is described in Section 10.1.1, 10.1.4, 10.4.6, 10.4.7,

10.5.1, 10.5.2, and 10.8.1 of MHP [2] and section 10.3 of this specification. Table 10-16
Application Information Table, provides a brief description of each construct and the section of
the reference specification that contains the normative language.

Table 10-16 Application Information Table
Construct Structure Field Description Source Section

Application
Information
Table

 Table Id The value is 0x74 for application
information sections.

MHP
1.0.3

10.4.6

Application
Information
Table

 Section Syntax
Indicator

The value is one. MHP
1.0.3

10.4.6

Application
Information
Table

 Reserved
Future Use

The value is all ones. MHP
1.0.3

10.4.6

Application
Information
Table

 Reserved The value is all ones. MHP
1.0.3

10.4.6

Application
Information
Table

 Section Length The field represents the section length. The
value is less than 1021 (0x3FD).

MHP
1.0.3

10.4.6

Application
Information
Table

 Test Application
Flag

The value can be one, which indicates a
test application. The test application is not
visible through application interfaces.

MHP
1.0.3

10.4.6

Application
Information
Table

 Application
Type

The value is 0x0001 for GEM/DVB-J,
0x0006 for ACAP-J and 0x0007 for ACAP-
X applications. The device can ignore other
applications. See the table below.

ACAP
1.0

10.3.1

Application
Information
Table

 Reserved The value is all ones. MHP
1.0.3

10.4.6

Application
Information
Table

 Version
Number

The value increments when the contents of
the sub-table change.

MHP
1.0.3

10.4.6

Application
Information
Table

 Current Next
Indicator

The value is one. MHP
1.0.3

10.4.6

Application
Information

 Section
Number

The value of the first section of the sub-
table is zero. The value increments for

MHP
1.0.3

10.4.6

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 96

Table sections with the same Table Id and
Application Type.

Application
Information
Table

 Last Section
Number

The value matches the last section of the
sub- table.

MHP
1.0.3

10.4.6

Application
Information
Table

 Common
Descriptor
Length

The value is the length of the common
descriptor sequence. These descriptors are
generic and thus applicable to all
applications of the sub-table.

MHP
1.0.3
ACAP
1.0

10.4.6

Application
Information
Table

Generic
Application
Descriptor
Sequence

Common
Descriptor

See the description of other Common
Descriptors for details.

MHP
1.0.3
ACAP
1.0

10.4.6

Application
Information
Table

 Application
Specific
Descriptor
Length

The value represents the length of the
application specific descriptor sequence.

MHP
1.0.3

10.5.1

Application
Information
Table

Application
Specific
Descriptor

Application
Identifier

The field identifies the application. The
schema contains a unique organization
code, which then scopes an application
code. See the table below for details.

MHP
1.0.3

10.5.1

Application
Information
Table

Application
Specific
Descriptor

Application
Control Code

The field encodes the execution state of the
application. The values and semantics are
application representation specific. The
semantics for ACAP-J applications are
described in section 10 of MHP. The
semantics for ACAP-X applications are
described in ACAP-X chapter of this
specification.

ACAP
1.0 MHP
1.0.3

10.5.2
10.6.1

Application
Information
Table

 Application
Specific
Descriptor
Length

The length represents the sequence of
application representation specific
descriptors.

MHP
1.0.3

10.4.6

Application
Information
Table

Application
Representation
Specific
Descriptor
Sequence

Application
Specific
Descriptors

See discussion on Application Specific
Descriptors below.

MHP
1.0.3
ACAP
1.0

10.1.1

Application
Information
Table

 CRC32 The source node calculates the value. The
scope is the entire section. The target node
then compares its calculation with this value
so as detect the presence of bits errors.

MHP
1.0.3

10.4.6

The Application Type field is described in Section 10.4.6 of MHP [2]. This specification
adds two assignments. These and the other assignments are given in Table 10-17 Application
Type Assignments.

Table 10-17 Application Type Assignments
Application Type Description

0x0000 Reserved For Future Use
0x0001 Reserved (DVB-J Application)
0x0002 Reserved (DVB-HTML Application)
0x0006 ACAP-J Application
0x0007 ACAP-X Application
0x0008-0x7FFF Subject to Registration

An ACAP implementation is required to recognize the assignments for the ACAP-J, DVB-J
and ACAP-X application types. The response for other standard assignments above is

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 97

implementation dependent. If the assignment is not standard (i.e., in the above list) the
implementation can adopt pragmatics such as examination of file extensions, but the result is
implementation dependent.

The Application Identification Structure of the Application Information Table is given in
clause 10.5.1 of MHP [2]. The Organization Id field of the structure identifies the organization
responsible for the application. The value is required to be registered in TR 101 162. The
Application Id field of the structure identifies the application instance. It is the obligation of the
organization responsible for the application to manage the value space; the response to duplicate
values is implementation dependent.

10.6.3.1 Generic Application Descriptor Sequence

This section of the chapter considers the generic application descriptors.

10.6.3.1.1 Transport Protocol Descriptor

This Transport Protocol Descriptor is described in Section 10.8.1 of MHP [2] and Section 10.3.2.

10.6.3.1.1.1 Descriptor Schema

The schema is described in Section 10.3.1 of MHP [2]. The assignments for certain fields within
the descriptor are given in this specification.

Table 10-18, Protocol Id Assignments, presents the registered codes. An ACAP
implementation is required to support the “ACAP Object Carousel” protocol of this section. If
the code is a different value, and the implementation does not recognize or does not support the
protocol, the implementation can elect to abort the carousel access. The implementation raises an
exception for ACAP-J applications. There is no companion exception for ACAP-X applications.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 98

Table 10-18 Protocol Id Assignments
Value Description

0x0000 Reserved For Future Use
0x0001 Reserved (DVB Object Carousel)
0x0002 Reserved (DVB Protocol Encapsulation)
0x0003-0x0005 Reserved
0x0100 ACAP Object Carousel
0x0007 Reversed For Future Use
0x0100-0xFFFF Subject to Registration in TR 101 162 [32]

10.6.3.1.1.2 Object Carousel Selector Structure

The selector field of the Transport Protocol Descriptor is given in section 10.3.2

10.6.3.2 Download Info Indication Location Descriptor

The Download Info Indication Descriptor is described in Section 10.8.3.3 of MHP [2].
The Transport Protocol Label field identifies the Transport Protocol Descriptor. The Protocol

Id field of the Transport Protocol Descriptor to which the label refers is the assignment for the
“ACAP Object Carousel” protocol.

10.6.4 Application Specific Descriptor Sequence

The second descriptor sequence that can be present is the application specific descriptor
sequence. These application descriptors share a common schema, but the values and their
semantics are specific to the application instance.

10.6.4.1 Application Descriptor

The Application Specific Descriptor sequence of the Application Information Table contains at
least one Application Descriptor instance. The schema of the descriptor is given in Section
10.7.3 of MHP [2]. The Transport Protocol Label field within the descriptor identifies the
Transport Protocol Descriptor. The Protocol Id field of the Transport Protocol Descriptor to
which the label refers is the assignment for the “ACAP Object Carousel” protocol.

10.6.4.2 Application Name Descriptor

The Application Specific Descriptor sequence of the Application Information Table contains one
or more Application Descriptor Name instances. The Application Name Descriptor is described
in Section 10.7.4 of MHP [2].

10.6.4.3 Application Icon Descriptor

The Application Specific Descriptor sequence of the Application Information Table can contain
zero or one Application Icon Descriptor instance. The structure associates icons with the
application. The implementation supports the Application Icon Descriptor as described in
Section 10.7.4 of MHP [2].

10.6.4.4 Prefetch Descriptor

The Application Specific Descriptor sequence of the Application Information Table can include
a single Prefetch Descriptor. The purpose of the descriptor is to alert the implementation about

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 99

which application resources are time critical. The Prefetch Descriptor is described in Section
10.3.3 of MHP [2].

10.6.4.5 Download Info Indication Location Descriptor

The Application Specific Descriptor sequence of the Application Information Table can contain
zero or one Download Info Indication Location Descriptor as described in Section 10.8.3.3 of
MHP [2].

10.6.5 Application Representation Specific Descriptor Sequences

In addition to descriptors that are specific to application instances, there are descriptors which
are specific to the application representation. This section of the specification considers these
descriptors.

10.6.5.1 ACAP-J Application Descriptors

This section considers those descriptors that are specific to ACAP-J applications.

10.6.5.1.1 ACAP-J Application Descriptor

The Application Representation Specific Descriptor sequence includes a single ACAP-J
Application Descriptor for each ACAP-J application. It is specified in MHP clause 10.9.1, and
for this specification applies to ACAP-J/DVB-J applications. The descriptor contains a sequence
of octets that the implementation forwards to the application at application launch. The
descriptor schema is illustrated below (Table 10-19 ACAP-J Application Descriptor).

Table 10-19 ACAP-J Application Descriptor
Construct Structure Field Restriction Source Section

ACAP-J
Application
Descriptor

 Descriptor Tag MHP 10.9.1

ACAP-J
Application
Descriptor

 Descriptor
Sequence
Length

The value represents the length of the entire
descriptor data.

MHP 10.9.1

ACAP-J
Application
Descriptor

Descriptor
Sequence

Parameter
Sequence
Length

The value represents the length of the
parameter data.

MHP 10.9.1

ACAP-J
Application
Descriptor

Descriptor
Sequence

Parameter
Sequence

The sequence is initialization data that the
receiver forwards at application launch.

MHP 10.9.1

Note: The schema of the descriptor is identical to the schema of the MHP-J
Application Descriptor found in MHP.

10.6.5.1.2 ACAP-J Application Location Descriptor

The ACAP-J Application Location Descriptor contains information through which the
implementation resolves the location of the ACAP-J application. The Application Representation
Specific Descriptor sequence contains a single ACAP-J Application Location Descriptor for each
ACAP-J application. The schema is specified in MHP clause 10.9.2 and is summarized below
(Table 10-20, ACAP-J Application Location Descriptor).

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 100

Table 10-20 ACAP-J Application Location Descriptor
Construct Structure Field Restriction Source Section

ACAP-J
Application
Location
Descriptor

 Descriptor Tag MHP
1.0.3

10.9.2

ACAP-J
Application
Location
Descriptor

 Descriptor
Sequence
Length

The value represents the length of the entire
descriptor data.

MHP
1.0.3

10.9.2

ACAP-J
Application
Location
Descriptor

 Base Directory
Length

The value represents the length of the base
directory character sequence. The base
directory constitutes the first directory in the
class path. See section 10.9.2 of MHP for
details.

MHP
1.0.3

10.9.2

ACAP-J
Application
Location
Descriptor

Base Directory Base Directory
Character
Sequence

The character sequence that represents the
base directory.

MHP
1.0.3

10.9.2

ACAP-J
Application
Location
Descriptor

 Classpath
Extension
Character
Sequence
Length

The value represents the length of the
classpath extension character sequence.
The sequence specifies alternative locations
for the classpath. See section 10.9.2 of
MHP for details.

MHP
1.0.3

10.9.2

ACAP-J
Application
Location
Descriptor

Classpath
Extension
Sequence

Classpath
Extension

The string that specifies the alternative
locations for the classpath.

MHP
1.0.3

10.9.2

ACAP-J
Application
Location
Descriptor

Initial Class File Initial Class
Bytes

String specifying name of object in
filesystem that is the class implementing the
Xlet interface

MHP
1.0.3

10.9.2

10.6.5.2 ACAP-X Application Descriptors

This section considers those descriptors that are specific to ACAP-X applications.

10.6.5.2.1 ACAP-X Application Descriptor

The Application Representation Specific Descriptor sequence may contain a single ACAP-X
Application Descriptor for each ACAP-X application. The descriptor contains a sequence of
octets that the implementation forwards to the application at application launch. The descriptor is
specified in section 10.3.4.1.

10.6.5.2.2 ACAP-X Application Location Descriptor

The ACAP-X Application Location Descriptor contains information through which the
implementation resolves the location of the ACAP-X application. The Application
Representation Specific Descriptor sequence may contains a single ACAP-X Application
Location Descriptor for each ACAP-X application. The descriptor is specified in section
10.3.4.2.

The semantics of the physical root depends on the transport protocol. Table 10-18, Protocol
Id Assignments (above), lists the feasible values for the ProtocolId field.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 101

If the ProtocolId is the value for the ACAP Object Carousel, that is 0x0006, then the physical
root field represents the relative path from the root directory of the object carousel. The
implication is that if the physical root string is empty, the physical root for the application is the
physical root of the object carousel.

10.6.5.2.3 ACAP-X Application Boundary Descriptor

The descriptor may be present in the application representation specific descriptor sequence. The
descriptor provides a regular expression that defines the data elements that form the application.
If the descriptor is not present, the application boundary defaults to the complete set of all
content that resides in the transport signaled in the Transport Protocol Descriptor associated with
the application. There can be multiple ACAP-X Application Boundary Descriptor instances for
the same ACAP-X application. In this case, the equivalent global regular expression is the OR
combination (union) of the individual regular expressions. The syntax of the descriptor is given
in section 10.3.4.3.

The evaluation of the regular expression determines whether a resource is considered to be in
the ACAP-X application’s reference scope. The regular expression is subject to the schema and
semantics described in the ACAP-X application chapter.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 102

11. INTERACTION CHANNEL

11.1 Interaction Channel Protocols
This section describes the interaction channel protocols required in an ACAP device for use by
an application.

Figure 11-1 Interaction Channel Network Protocols illustrates the network protocols used for
the interaction channel.

Figure 11-1 Interaction Channel Network Protocols

11.1.1 Network Specific Protocols

A wide range of network protocols defined by standards such as DOCSIS, DAVIC, CableCARD
Module, PSTN, Ethernet, and PPP or proprietary methods may be used to provide the
interconnectivity between an ACAP device and a server. All the necessary protocols associated
with each network specific protocols shall be supported by the ACAP device.

11.1.2 Internet Protocol

An ACAP device shall support IP as described section 6.3.2 of GEM [1].

11.1.3 User Datagram Protocol (UDP)

An ACAP device shall support UDP as described section 6.3.9 of GEM [1].

11.1.4 Transmission Control Protocol (TCP)

An ACAP device shall support TCP as described section 6.3.3 of GEM [1].

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 103

11.1.5 Hyper-Text Transfer Protocol (HTTP)

In an ACAP device where the ACAP-X environment is present, HTTP 1.1 protocol shall be
supported as defined in the RFC 2616 [39] with constraints and modifications defined in the
T3/S16 Draft Specification Error! Reference source not found..

11.1.6 Domain Name Service (DNS)

An ACAP device shall support DNS as described section 6.3.10 of GEM [1].

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 104

12. SECURITY
Chapter 12 of GEM [1] shall apply with the clarifications and extensions detailed in the
following sections.

12.1 Introduction
The ACAP security model is fully conformant to the GEM security model. It addresses the same
areas of security; i.e. authentication of broadcast applications, security policies for applications,
security over the interaction channel and certificate management.

The ACAP security model additionally specifies an alternate to the GEM security model in a
way that takes into account particularities of the ACAP terrestrial environment, of the ACAP
cable environment, and the policy access to functionalities not specified in GEM [1] which are
exposed to ACAP applications. As such,
� Section 14.2, “ACAP Trust Model,” specifies extensions to the GEM trust model for ACAP

terminals as allowed by GEM [1] Section 12.1.3.
� Section 14.4.1, “ACAP Signing Framework,” specifies a modified signing framework as

allowed by GEM [1] Section 12.1.3.
� Section 14.4.2, “ACAP Extensions to Security Policies for Applications,” specifies the

syntax and semantics of the additional ACAP permissions in a new permission request file as
allowed by GEM [1] Section 12.6.

12.2 ACAP Trust Model

12.2.1 General Rules

Applications that are eligible to be trusted shall be identified with an application_id from the signed
applications range as defined by MHP [2], Table 12. Applications that are not eligible to be
trusted shall be identified with an application_id from the unsigned applications range. An
application with an application_id from the unsigned applications range is treated as not eligible to
be trusted even if the files might be transmitted with signatures.

ACAP terminals shall not grant any access rights to resources outside the sandbox to ACAP
applications that have not requested the appropriate permissions through a GEM or an ACAP
permission request file and that are not eligible to be trusted. Other criteria for deciding whether
or not to grant access to resources outside the sandbox and that are intentionally not specified in
the present document may subsequently apply such as the user own policies.

Note: See the definition of “Trusted Application” in Section 3.

12.2.2 Applications Received Over a Terrestrial Interface

Codesigning of applications received over a terrestrial interface is not required in order to
establish that the application is eligible to be trusted, and therefore may be granted the right to
access resources outside the sandbox. ACAP terminals that receive such an application are
allowed to ignore any security files apart from the GEM or ACAP permission request files (see
Section 12.4.2.1, “ACAP Permission Request File”) that could be present along the application
before establishing that the application is eligible to be trusted. By default, an unsigned

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 105

application received over a terrestrial interface will therefore be considered as eligible to be
trusted.

12.2.3 Applications Received Over a Cable Interface

Codesigning of applications received over a cable interface is required in order to establish that
the application is eligible to be trusted and therefore may be granted the right to access
ressources outside the sandbox. Either the GEM Signing Framework as defined in GEM [1]
Section 12.6 or the ACAP Signing Framework as defined in Section 12.4.1, “ACAP Signing
Framework” shall be used for content signing.

12.3 Security Policy for Applications
For clarification, GEM [1] Section 12.6 shall apply.

Note: Attention is drawn to the second paragraph of GEM [1] Section 12.6 where
the interpretation of the terms “unsigned applications” and “signed applications”
is clarified in the context of a GEM terminal specification where code signing is
not required to establish trust, which is the case in an ACAP terrestrial
environment. See Section 12.2, “ACAP Trust Model.”

Additionally, according to GEM [1] Section 12.6, an ACAP terminal is required
to be able to operate in a mode where it grants permission to provide access to all
of the functionality required by the profiles and options that it supports when
appropriately requested (e.g. via the GEM or ACAP permission request files). The
mechanism for causing the terminal to operate in this mode is implementation-
dependent. The granting of permissions for accessing functionality outside of the
claimed ACAP profile and options is not required.

Note: Broadcasters should be aware that if they chose not to sign applications
requiring access to privileged operations, then there is no guarantee that those
applications be signed at some point in the cable distribution chain and thus
become eligible to be granted access to privileged operations when executed
within a cable environment.

12.4 ACAP Extensions to GEM Security Model

12.4.1 ACAP Signing Framework

12.4.1.1 General Principles

The ACAP Signing Framework for ACAP applications exists in addition to the existing GEM
Signing Framework. It shall be based on the Signing Framework specified in GEM [1] Section
12 with the following modifications:
� The name of the hashfile shall be acap.hashfile
� The content (MIME media) type label of the hashfile shall be application/acap-digest.
� The name of the signature files shall be acap.signaturefile.<x>, where <x> is a string that

distinguishes between several possible signature files. Apart from that deviation, the rules

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 106

with respect to the format of <x> shall conform to the rules expressed in GEM [1] Section
12.4.

� The content (MIME media) type label of a signature file shall be application/acap-signature.
� The name of a certificate files shall be acap.certificates.<x>, where <x> is identical to the

extension of the signature filename that is authenticated by the ACAP certificate chain in this
file. Apart from that deviation, the rules with respect to the format of <x> shall conform to the
rules expressed in GEM [1] Section 12.4.

� The content (MIME media) type label of a certificate file shall be application/acap-certificate.
� The profile of X.509 certificates for authentication of applications shall be conformant to

OCAP 1.0 [4] Section 14.2.1.6.
� The permission request file to be used shall be the one specified in Section 12.4.2.1, “ACAP

Permission Request File”.
� The description of the content of the signature file shall conform to GEM [1] Section 12.4 as

modified by OCAP 1.0 [4] Section 14.2.1.24.
� ACAP terminals shall conform to OCAP 1.0 [4] Section 14.2.1.23.
and additions:
� The ACAP signing framework specifies the way ACAP-X applications are authenticated. See

Section 12.4.1.2, “Authentication of ACAP-X Applications.”
An ACAP terminal shall support both the GEM Signing Framework as specified in GEM [1]

Section 12 and the ACAP Signing Framework as specified in this section.
ACAP applications should only include those security files defined in either GEM [1] or

those security files defined in this specification and prefixed by «acap.». In the case that files
from both models are included, the GEM security files shall not be used to authenticate the
application but shall be listed in the appropriate ACAP hash file for the directory in which they
occur.

12.4.1.2 Authentication of ACAP-X Applications

Authentication of ACAP-X applications shall be performed in the same way than for ACAP-J
applications. If signed, an ACAP-X application shall follow either the GEM [1] signing
framework or the ACAP signing framework as specified in the present document.

As such, non-authenticated ACAP-X applications will operate within a sandbox
environment. Authenticated ACAP-X applications associated with a permission request file may
be granted permissions outside the sandbox.

Note: The GEM [1] security model is independent of the type of the application.
However, since GEM [1] only fully specifies the procedural environment, it is
clarified here that ACAP-X applications must follow the same authentication
process.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 107

12.4.2 ACAP Extensions to Security Policies for Applications

12.4.2.1 ACAP Permission Request File

12.4.2.1.1 General Principles

An ACAP terminal shall support both the GEM [1] Permission Request File (PRF) Document
Type Definition (DTD) and an extended PRF DTD called the ACAP Permission Request File
DTD defined in Annex B Section 2 (“ACAP Permission Request File Document Type”) as
allowed by GEM [1] Section 12.6.

If both a GEM Permission Request File and an ACAP Permission Request File are in the
same directory as the initial file of the ACAP application, then the GEM Permission Request File
shall be ignored.

The returnchannel element and, in particular the phonenumber element defined in GEM [1] may
not have corresponding semantics in an cable environment. For clarification, an ACAP Cable-
only implementation is required to interpret the presence of the phonenumber element. It is
however not required to process it.

The content (MIME media) type label of a permission request file shall be application/acap-
permission.

The cookie, runtime code extension and Java bridge permissions defined in Sections
12.4.2.3.1, “Cookie Permission,” 12.4.2.3.2, “Runtime Code Extension Permission,” and
12.4.2.3.3 “Inter-Environment Bridge Permission” are only meaningful for terminals supporting
the ACAP-X environment. An ACAP terminal not supporting an ACAP-X environment is
required to interpret the presence of such permissions in an ACAP Permission Request File. It is
however not required to process them.

12.4.2.1.2 DTD definition

The ACAP Permission Request File (PRF) DTD extends the GEM [1] Permission Request File
DTD since additional permissions have been added to meet ACAP requirements. However, in
order to be conformant with GEM [1], the ACAP PRF DTD includes all elements and attributes
of the GEM [1] PRF DTD.

The following Formal Public Identifier (FPI) shall be used to identify the ACAP PRF DTD:

"-//ATSC//DTD ACAP Permission Request File 1.0//EN"

and the following URL for the SystemLiteral may be used to reference this file:

http://www.org.atsc/acap/dtd/acap-permission-1.dtd

The Name used in the document type declaration shall be “permissionrequestfile”.
The ACAP PRF DTD is provided in Annex B.

12.4.2.1.3 ACAP Permission Request File Name and Location

The format for the ACAP Permission Request File name shall be ‘acap.’<application
name>.‘perm’.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 108

The prefix “acap” identifies this as a well known file defined by this specification. The
portion “application name” carries the file name of the initial file of the application excluding
any file name extension or suffix. The initial file depends on the application type as is shown in
Table 12-1 Application Name for Different Application Types for the types defined in this
specification.

Table 12-1 Application Name for Different Application Types
Application Type

Value Meaning
Path from which File Name Shall be Extracted

0x0006 ACAP-J The name initial_class_byte, see Section 10.6.5.1.2, “ACAP-J Application Location
Descriptor”

0x0007 ACAP-X The name initial_path_bytes, see Section 10.6.5.2.2, “ACAP-X Application Location
Descriptor”

The ACAP permission request file shall be located in the same directory as the initial file.

12.4.2.2 Cable Specific Security Access Policy

In this section, the listed features are only accessible in a cable environment and therefore, can
only be accessed by applications that have been signed using either the GEM or the ACAP
Signing Framework.

12.4.2.2.1 Monitor Application Features Access Policy

A Monitor Application permission can provide a set of permissions typically required by an
OCAP monitor application as specified in Section 9 (“Monitor Application Support”). Multiple
instances of the ocap:monitorapplication element may appear, one for each type of permission that is
requested. The following access policy is applied to Monitor Application Permissions:

12.4.2.2.1.1 Applications not Signed by the ACAP Signing Framework

An application not signed by the ACAP Signing Framework may not use any Monitor
Application Features.

12.4.2.2.1.2 Applications Signed by the ACAP Signing Framework

By default, an application signed by the ACAP Signing Framework may not use any Monitor
Application capabilities. However, the right to exercise specific Monitor Application capabilities
can be requested with the Monitor Application Permission that can be put in the ACAP
Permission Request File.

12.4.2.2.1.3 Privileged Monitor Application API access

This section shall conform to Section 14.2.2.2 of OCAP 1.0 [4].

12.4.2.3 ACAP Security Policy for Applications

12.4.2.3.1 Cookie Permission

12.4.2.3.1.1 Untrusted Applications

Untrusted applications have no access to cookie information items.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 109

12.4.2.3.1.2 Trusted Applications

A trusted application has by default no access to cookie information items, unless otherwise
requested by the Permission Request File and granted by the ACAP terminal.

12.4.2.3.1.3 Permission Request Syntax

<!ELEMENT %acap.cookie.qname; EMPTY>
<!ATTLIST %acap.cookie.qname;
 %acap.target.qname; CDATA #REQUIRED
 %acap.actions.qname; CDATA #REQUIRED
 %acap.xmlns.attrib;
>

The target attribute shall be specified as a URI to indicate the cookie's domain and path. A special
target value of “*” shall be used to specify any cookie.

The actions attribute shall consist of one or more of the following tokens: create, delete, read,
and write. Multiple actions may be specified in a comma-separated list with optional intervening
whitespace. If multiple actions are requested, then all requested actions shall be granted for any
requested action to be granted; i.e., if some requested action is denied, then all requested actions
shall be denied.

An acap:cookie element may appear as a child of the permissionrequestfile element of an ACAP
application’s permission request file.

12.4.2.3.2 Runtime Code Extension Permission

The following ECMAScript and DOM related operations shall be construed as privileged
runtime code extension operations:
� Global.eval()

� Function.[[constructor]]

� Window.setTimeout()

� Any function or property which permits the creation or mutation of an intrinsic event
attribute

� Any function or property which permits the creation or mutation of a script element

Notes

1. The Global.eval() operation refers to the eval() method on the ECMAScript Global
Object.

2. The Function.[[constructor]] operation refers to the internal [[constructor]] method on the
ECMAScript Function Object.

3. A function or property that permits the creation or mutation of an intrinsic event
attribute or a script element is considered to be a privileged operation only when it
is attempting to create or mutate an intrinsic event attribute or script element; i.e.,
if the function or property is used to mutate or create other attributes or elements,
then it is not considered a privileged operation.

4. The legacy (DOM-0) methods HTMLDocument::write and HTMLDocument::writeln are not
included in the above list since they are not supported by this specification.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 110

12.4.2.3.2.1 Untrusted Applications

Untrusted applications have no access to runtime code extensions.

12.4.2.3.2.2 Trusted Applications

A trusted application has by default no access to runtime code extensions, unless otherwise
requested by the Permission Request File and granted by the ACAP terminal.

12.4.2.3.2.3 Permission Request Syntax

<!ELEMENT %acap.rce.qname; EMPTY>
<!ATTLIST %acap.rce.qname;
 %acap.rce.value.qname; (true|false) #REQUIRED
 %acap.xmlns.attrib;
>

An acap:rce element may appear as a child of the permissionrequestfile element of an ACAP
Application's permission request file.

12.4.2.3.3 Inter-Environment Bridge Permission

In order to make use of the Inter-Environment Bridge as defined in Section 8.2.11.2.4, an ACAP
application shall request an appropriate permission as defined in this section.

12.4.2.3.3.1 Untrusted Applications

Untrusted applications have no access to the Inter-Environment bridge.

12.4.2.3.3.2 Trusted Applications

A trusted application has by default no access to the Inter-Environment bridge, unless otherwise
requested by the Permission Request File and granted by the ACAP terminal.

12.4.2.3.3.3 Permission Request Syntax

<!ELEMENT %acap.bridge.qname; EMPTY>
<!ATTLIST %acap.bridge.qname;
 %acap.bridge.value.qname; (true|false) #REQUIRED
 %acap.xmlns.attrib;
>

An acap:bridge element may appear as a child of the permissionrequestfile element of an ACAP
Application's Permission Request File.

12.5 Security over the Interaction Channel

Note: In contrast to the OCAP 1.0 X.509 certificate profile as used for broadcast
application authentication, GEM [1] Section 12.10 requires the use of the PKIX
profile as mandated by TLS 1.0.

12.6 Platform Minima
GEM [1] Section 12.12 is extended with the following:
� An ACAP platform hardware is required to support at least 4 root certificates in order to

support the ACAP security model

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 111

� The key lengths that an ACAP terminal is required to support is specified in the OpenCable
Security Specification [12].

12.7 ACAP Security Operational Model
The ACAP Security Operational model which defines the operational procedures in order to
implement in an end-to-end way the ACAP Security Framework is outside the scope of this
document.

Note: This Security Operational model should include the creation, delivery and
management of root certificates, the creation of application codesigning
certificates and the procedures for issuing and managing them.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 112

13. GRAPHICS REFERENCE MODEL
Section 13 of GEM [1] shall apply.

Note: Due to regulatory requirements, close captions are required to not be
obscured by application graphics.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 113

14. SYSTEM INTEGRATION

14.1 Text Presentation

14.2 Resource Reference and Locators

14.2.1 ACAP URI Scheme

14.2.1.1 Scheme Definition

This section defines the ACAP URI scheme. The format of this shown in an informal notation is
as follows.

Note: Some of the terms in these definitions have the same names as fields in
standardized MPEG-2 tables and other data structures used in television. This
does not imply any normative relationship between the term and any such field.
All normative relationships between terms in the definition and fields in
standardized MPEG-2 tables are explicitly defined below, for example in the
tables found in section 14.2.1.3.4, “Resolution of Locator Elements.”

ocap://<source_id>[.<stream_type>[,<ISO_639_language_code>]{&

<stream_type>[,<ISO_639_language_code>]}] [;<event_id>]{/<path_segments>}

ocap://<source_id>[.<stream_type>[,<index>]{&<stream_type>[,<index>]}][;<event_id>]{/

<path_segments>}

ocap://<source_id>[.+<PID>{&<PID>}][;<event_id>]{/<path_segments>}

ocap://<source_id>[.$<component_name>{&<component_name>}][;<event_id>]{/

<path_segments>}

ocap://n=<service_name>[.<stream_type>[,<ISO_639_language_code>]{&

<stream_type>[,<ISO_639_language_code>]}] [;<event_id>]{/<path_segments>}

ocap://n=<service_name>[.<stream_type>[,<index>]{&<stream_type>[,<index>]}][;<event_id

>]{/ <path_segments>}

ocap://n=<service_name>[.+<PID>{&<PID>}][;<event_id>]{/<path_segments>}

ocap://n=<service_name>[.$<component_name>{&<component_name>}][;<event_id>]{/

<path_segments>}

ocap://f=<frequency>.<program_number>[.<stream_type>[,<ISO_639_language_code>]{&

<stream_type>[,<ISO_639_language_code>]}][;<event_id>]{/<path_segments>}

ocap://f=<frequency>.<program_number>[.<stream_type>[,<index>]{&<stream_type>[,<index>

]}][;<event_id>]{/ <path_segments>}

ocap://f=<frequency>.<program_number>[.+<PID>{&<PID>}][;<event_id>]{/<path_segments>}

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 114

ocap://f=<frequency>.<program_number>[.$<component_name>{&<component_name>}][;<event_i

d>]{/ <path_segments>}

ocap:/<path_segments>

A formal specification is expressed in BNF as used in IETF RFC 2396 [29]:

acap_uri = acap_scheme ":" acap_hier_part

acap_scheme = "ocap"

acap_hier_part = acap_net_path | acap_abs_path

 (see restriction 1 below)

acap_net_path = "//" acap_entity [acap_abs_path]

 (see restriction 2 below)

acap_entity = acap_service | acap_service_component

acap_service = source_id | service_name | acap_program

acap_service_component = acap_service ["." program_elements] [";" event_id]

program_elements = language_elements | index_elements | PID_elements |

component_elements

language_elements = stream_type ["," ISO_639_language_code] * ("&" stream_type [

"," ISO_639_language_code])

 (see restriction 3 below)

index_elements = stream_type ["," index] * ("&" stream_type ["," index])

PID_elements = "+" PID * ("&" PID)

component_elements = "$" component_name * ("&" component_name)

acap_program = "f=" frequency "." program_number

service_name = “n=” 1* (unreserved_not_dot | escaped)

 (see restriction 4 below)

source_id= hex_string

component_name = 1* (unreserved | escaped)

 (see restriction 5 below)

frequency = hex_string

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 115

program_number = hex_string

stream_type = hex_string

ISO_639_language_code = alpha alpha alpha

 (see restriction 6 below)

index = hex_string

PID = hex_string

event_id = hex_string

hex_string = "0x" 1*hex

hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" | "f"

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

acap_abs_path = "/" path_segments

 (see restriction 7 below)

(path_segments is defined in IETF RFC 2396 [42].)

path_segments = segment *("/" segment)

segment = *pchar *(";" param)

param = *pchar

pchar = unreserved | escaped | ":" | "@" | "&" | "=" | "+" | "$" | ","

unreserved = alphanum | mark

unreserved_not_dot = alphanum | mark_not_dot

alphanum = alpha | digit

alpha = lowalpha | upalpha

lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m"

| "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M"

| "N" | "O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

escaped = "%" hex hex

mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"

mark_not_dot = "-" | "_" | "!" | "~" | "*" | "'" | "(" | ")"

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 116

This syntax is fully compliant with the generic syntax of URIs as specified in RFC 2396 [29]
and uses the registry-based naming authority version of that recommendation. Furthermore, all
generic definitions specified in RFC 2396 [29] must be valid for the acap URI as well (e.g.
escaping of special characters within file names, etc.).

14.2.1.1.1 Additional Restrictions

The following additional restrictions apply to the ACAP URI scheme:
1. When the acap_net_path part is missing and only the acap_abs_path is present, the URL refers to

a file in a default object carousel within the current service.
2. If the acap_entity is an acap_service (i.e. not a acap_service_component) then there shall only be one

Object Carousel in the ACAP service.
3. If the stream_type is an audio stream type, then the ISO_639_language_code may be used to select

a specific language track (namely audio). If the ISO_639_language_code is not present, then the
default language track is selected.

 The default language track is defined as follows:

o if exactly one audio stream for the default language (as defined by the "User
Language " preference in org.dvb.user.GeneralPreference) is signalled then that
stream is the default.

o if no audio streams are signalled with the default language then the first audio
stream listed in the PMT is the default.

o if more than one audio stream is signalled with the default language then the first
such stream listed in the PMT is the default.

4. The name may contain the characters other than “unreserved_not_dot” as defined above by
encoding each such character using its ASCII representation. If the name needs to include
other characters these MUST be represented using the escaped sequence defined in IETF
RFC 2396 [29]. For example, the character sequence “B&B” can be expressed as “B%26B”.
The name in the URL SHALL be translated to UTF-8 before URL byte escaping is applied.

5. The name may contain the characters other than “unreserved” as defined above by encoding
each such character using its ASCII representation. If the component_name needs to include
other characters these must be represented using the escaped sequence defined in IETF RFC
2396 [29]. For example, the character sequence “B&B” can be expressed as “B%26B”. The
name in the URL shall be translated to UTF-8 before URL byte escaping is applied.

6. The encoding format of ISO_639_Language_code is UTF-8.
7. The following restrictions apply to the acap_abs_path part of a name:

� The total length of pathnames, separators and filename shall be less than or equal to 254
bytes long.

� The following characters are not allowed in filenames and pathnames: character null
(0xC080), byte zero.

� The encoding of the filename is in UTF-8 (as defined in GEM [1] Section 7.1.5)
� The directory separator character (i.e. Java's path.separator property) shall be a slash

character (0x2F).
� An absolute filename starts with a slash character (as indicated in the BNF above).

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 117

14.2.1.2 Extended ACAP URI Scheme for ACAP-X

The following extensions to the ACAP URI scheme shall be valid when used by ACAP-X
applications.
acap_x_uri = acap_uri | acap_scheme ":" acap_x_hierpart

acap_x_hierpart = acap_x_net_path

acap_x_net_path = "//" acap_x_entity

acap_x_entity = acap_service_contextual | acap_service_component_contextual |

ait_specifier

acap_service_contextual = "current" | "original"

acap_service_component_contextual = "current.audio" | "current.video" | "current.av"

ait_specifier = ait_filter "." "ait" ait_abs_path

ait_filter = "current"

ait_abs_path = "/" ait_entity

ait_entity = ait_root_directory | ait_application

ait_root_directory = "app_root"

ait_application = org_id "." app_id ["?" ait_params]

org_id = lowercase_hex_string

app_id = lowercase_hex_string

lowercase_hex_string = “0” | lowercase_hex_not_zero 0*lowercase_hex

lowercase_hex = digit | "a" | "b" | "c" | "d" | "e" | "f"

lowercase_hex_not_zero = digit_not_zero | "a" | "b" | "c" | "d" | "e" | "f"

digit_not_zero = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

ait_params = "arg_" 1*digit "=" *uric ["&" ait_params]

14.2.1.3 Referencing Specific Entities

14.2.1.3.1 Program Streams

Where acap_entity is an acap_service, the ACAP service that consists of entire program streams
identified by the entity is referenced.

14.2.1.3.2 Program Elements

Where acap_entity is an acap_service_component, a single program element is referenced.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 118

14.2.1.3.3 Files and Directories

When a path is present in a URL where the acap_entity part identifies an ACAP service, the path
references an object in an object carousel within the service.

When a path is present in a URL where the acap_entity part identifies one component of an
ACAP service and that component carries an object carousel stream, the path references an
object in an object carousel whose “root” (i.e., DSI message) is sent within that component. In
this case the component tag set shall only contain one element. The semantics when the path is
present in URL where the acap_entity part identifies something else than the two cases described
above are not specified in this specification.

14.2.1.3.4 Resolution of Locator Elements

In cable receivers, when the CableCARD Module is present, locators shall be resolved using the
SI present in the OOB signaling. In cable receivers when the CableCARD Module is absent, the
in-band SI shall be used for resolution. See SCTE 65 [45] for out-of-band and A/65B [47] for in-
band.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 119

14.2.1.3.4.1 Contextual

Table 14-1 ACAP URI Contextual Constructs
Name Cable Terrestrial Comment

current The Virtual Channel to which the ACAP receiver is
currently tuned to.

The ACAP receiver needs to keep a record for
the Virtual Channel listing the application
making use of this identifier. Otherwise,
ambiguity may occur if the receiver has multiple
tuners.

current.av The default audio and video components of the
‘current’ service (see above) as specified in GEM [1]
Section 11.6.2.

current.audio The default audio component of the ‘current’ service
(see above) as specified in GEM [1] Section 11.6.2.

current.video The default video component of the ‘current’ service
(see above) as specified in GEM [1] Section 11.6.2.

original The Virtual Channel to which the ACAP receiver was
originally tuned to when launching the application.

14.2.1.3.4.2 Universally Resolvable

Constructs listed in Table 14-2 ACAP URI Universally Resolvable Constructs, rely on signaling
which is mandatorily present in terrestrial and all profiles of cable.

Table 14-2 ACAP URI Universally Resolvable Constructs
Name Cable Terrestrial Comment

source_id The source_id field in the
VCM_structure of the Short Form
Virtual Channel Table (Profile 1
through 5) or the source_id field in
Long Form Virtual Channel Table
(Profile 5 and 6) as defined in
ANSI/SCTE 65 [45]. If both are
present, the Short Form version shall
be used. If no CableCARD Module is
present, then the source_id field in the
Cable Virtual Channel Table as defined
in ATSC A65/B [47].

The source_id field in the
Terrestrial Virtual Channel
Table as defined in ATSC
A/65B [47].

stream_type The first program element matching
that stream type. The stream types are
defined in the stream type assignments
table of ISO 13818-1 [22] and in the
Stream Type Codes table of SCTE 54
[31].

The first program element
matching that stream type.
The stream types are
defined in the stream type
assignments table of ISO
13818-1 [22] and in A/53B
[7].

For cable, note that the
specified stream is not
guaranteed to be decoded if
the OpenCable Core
Functional Requirements
[60] does not support
decoding it.

org_id/app_id The org_id and app_id identifier shall correspond to the
organization_id and application_id field, respectively, in the
Application Identifier of an Application Information Table (AIT) as
defined in section 10.6.3.

app_root The app_root name shall correspond to the root directory path of the
application as found in the acap_x application location descriptor
within the AIT, as defined in section 10.6.5.2.2.

ISO 639
language code

The first audio program element where there is a match between the
specified ISO 639-2 3-character language code and the contents of
the ISO 639 descriptor.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 120

Where a source_id to be resolved is found in both terrestrial and cable, the source_id shall be
resolved according to the original delivery mode of the application on whose behalf the
source_id is being resolved. Hence where an ACAP application that was delivered over a
terrestrial network interface uses a source_id found in both terrestrial and cable, the source_id
shall be resolved according to the mechanism defined above for terrestrial networks and vice-
versa for applications delivered over cable network interfaces.

14.2.1.3.4.3 Environment Specific

Constructs listed in Table 14-3 ACAP URI Environment Specific Constructs, are those where
the underlying signaling is not required to be present in all of terrestrial and all cable profiles.

Table 14-3 ACAP URI Environment Specific Constructs
Name Cable Terrestrial Comment

service_name If the service information contains a Long-form Virtual Channel
Table, Terrestrial Virtual Channel Table or Cable Virtual Channel
Table, the short_name from that table is translated to a UTF-8
string and compared with the UTF-8 representation of
service_name.
 Otherwise, if the service information contains a Source Name
Sub-table in the Network Text Table, each source_name
component with mode less than 0x40 is translated to a UTF-8
string according to its mode and byte string and compared with the
UTF-8 representation of service_name. Components of
source_name using format-effector modes are ignored in the
comparison.
 Otherwise the service_name is not resolvable.

Use of this in cable
assumes the MSO ensures
these names are uniquly
correlated with source_ids in
their network. These names
are not interchangable
between cable networks.

component_tag A component_tag value in one of
the Stream Identifier Descriptors
located in the inner descriptor loop
of the TS_program_map_section
associated with the Virtual
Channel identified

Not defined. Where component tag is
used with an environment
specific virtual channel
identification (e.g.
short_name) then it is also
environment specific.

component_name The component name string in the
Component Name Descriptor
located in the inner descriptor loop
of the TS_program_map_section
associated with the Virtual
Channel (see below)..

Not defined. This identifier can only be
used with cable systems
supporting Profiles 4, 5 and
6 of ANSI/SCTE 65 [45].

event_id The event_id identifier shall
correspond to the event_ID in the
Aggregate Event Information Table
(AEIT) as defined in ANSI/SCTE
65 [45].

The event_id shall correspond
To an event_ID field in an
Event Information Table as
defined in ATSC A/65B [47].

Event identifiers shall be
scoped by a Virtual Channel
identifier.
 In cable, this identifier may
only be resolved in systems
supporting Profiles 4,5,6.

The component_name in the PMT is represented as a Multiple String Structure with each set of
string components associated with a specific language. The set of string components
corresponding to language code eng are selected, and decompressed for comparison. Each PMT
component_name string component with mode less than 0x40 is translated to a UTF-8 string
according to its mode and byte string and compared with the UTF-8 representation of the
component_name extracted from the locator. Components of the PMT component_name using format-
effector modes are ignored in the comparison.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 121

14.2.1.3.4.4 Physical Constructs

Constructs listed in Table 14-4 ACAP URI Physical Layer Constructs, below are specific to a
particular environment or cable head-end.

Note: Applications should not include hard-coded values of these. Locators using
them are intended to be dynamically constructed in the ACAP receiver based on
locally accurate information; e.g. as would be returned by
org.ocap.si.PMTElementaryStreamInfo.getElementaryPID().

Table 14-4 ACAP URI Physical Layer Constructs
Name Cable Terrestrial Comment

frequency The frequency is a 32-bit hex value in hertz, which can be used in
cable to tune to a service that is only defined within an inband PAT
and PMT.

program_number A 16-bit value as specified in ISO 13818-1 [22]z.
PID In this case the program element is indicated by the PID.
Index In this case the program element is the indexed program element

matching that stream type. The index specifies the ordinal number
of the elementary streams that have same stream_type in the
PMT. The first elementary stream of them is index = 0.

If multiple MPEG PES of the
same stream type are
present in the program, then
the index can be used to
select the first, second,
third, and so forth.

14.3 Persistent Local Storage
As specified in Section 14.6 of GEM [1].

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 122

15. MINIMUM RECEIVER REQUIREMENTS

15.1 General
Annex G of GEM [1] shall apply.

15.2 User Input
For terrestrial receivers, Section G.5 of GEM [1] shall apply.

For cable receivers, additionally Section 25.2.1.2 “Input Events” of OCAP 1.0 [4] shall
apply.

This specification recommends support for keyboard input, either provided at time of
manufacture or the option of adding a keyboard input at a later time.

15.3 Graphics
GEM [1] Section G.1.2, “Minimum Color Lookup Table,” does not apply to this specification.
No functional equivalent is provided in this specification. All ACAP receivers shall support a
graphics resolution of at least 16 bits per pixel.

The minimal set of required device resolutions that ACAP terminals must support is as
follows:
� HBackgroundDevice resolution of 640 x 480
� HVideoDevice resolution of 640 x 480
� HGraphicsDevice resolution of 640 x 480
These resolutions must be supported for display aspect ratios of 4:3 and 16:9.

If ACAP receivers either display or output HD video without down-conversion to SD then
they shall support at least the graphics resolution of 960x540 in addition to those listed above.

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 123

16. DETAILED PLATFORM PROFILE DEFINITIONS
This section defines the capabilities of platforms as presented to applications. Products that claim
to conform to a profile shall provide at least the minimum capabilities identified for the profile.
In some cases this implies that specific hardware resources are present in the platform. (See
Table 16-1 Detailed Platform Profile Definitions.)

Table 16-1 Detailed Platform Profile Definitions
Area Specification ACAP-J only

Profile
ACAP-J

and ACAP-
X Profile

GEM Compliance
GEM [1], clause 15.0, “Interactive Broadcast Profile” M M GEM Section 17.1, “Compliance with GEM” M M

Broadcast Streaming Formats
Video Section 6.3.1, “Video” M M
Audio Section 6.3.2, “Audio” M M

Broadcast Channel Protocols
Section 10.1.1, “Notation”
Section 10.2.1, “NSAP Address”
Section 10.2.2, “Content Type and Timestamp
Inheritance”
Section 10.2.5, “Usage of Private Data for non-ACAP
Extensions”
Section 10.3.1, “Application Content Types”
Section 10.3.2, “Application Protocol ID”

M M Broadcast Channel Protocols

Section 10.2.3, “Application transport over HTTP”
Section 10.2.4, “Time Stamp Descriptor”
Section 10.3.4, “ACAP-X Extensions”

- - M

Interaction Channel Protocols
Section 11.1.2, “Internet Protocol,” – Section 11.1.4,
“Transmission Control Protocol (TCP),” and Section
11.1.6, “Domain Name Service (DNS)”

M M Interaction Channel Protocols

Section 11.1.5, “Hyper-Text Transfer Protocol (HTTP)” -- M
ACAP-J environment

Section 7, “ACAP-J Applications and Environment” with
the exception of:
 Section 7.2.1.2, “Inter-Environment DOM Integration”
 Section Error! Reference source not found.,
“Error! Reference source not found.”

M M ACAP-J environment

Section 7.2.1.2, “Inter-Environment DOM Integration”
Section Error! Reference source not found., “Error!
Reference source not found.”

-- M

ACAP-X environment
ACAP-X environment , Section 8, “ACAP-X Applications and Environment” -- M

Resource Reference and Locators
Section 14.2.1.1, “Scheme” M M Resource Reference and

Locators Section 14.2.1.2, “Extended ACAP URI Scheme for
ACAP-X”

- - M

Minimum Receiver Requirements
GEM Platform Minima GEM GEM, clauses 15.1 through 15.5 M M
ACAP Platform Minima Section 15, “Minimum Receiver Requirements” M M
Security Section 12, “Security” M M

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 124

17. CONFORMANCE

17.1 Compliance with GEM
ACAP terminals shall comply in full with GEM [1]. This specification adopts the MHP
definition of the following functional equivalents, as specified in GEM [1] clause 15.6:
� Arch
� Carousel
� Application Signalling
� Text Wrapping
The following optional functional equivalents are not specified by this document, and need not
be supported in an ACAP terminal:
� IP MPE
� Broadcast IP signalling
� Subtitles
� Conditional Access
 If an ACAP terminal supports any of the optional functional equivalents listed above, it must
be minimally by the GEM requirements for that optional functionality.
 All other functional equivalents are defined in this document.

For avoidance of doubt, in the event of a conflict between GEM [1] and this specification, the
normative guarantees of GEM [1] shall take precedence except as detailed in Section 17.1.1,
“GEM errata”.

17.1.1 GEM errata

No errata to GEM have been identified.

17.1.2 Modifications to MHP Definitions of Functional Equivalents

As described in GEM [1] clause 15.6.1, GEM terminal specifications may slightly modify the
MHP defintion of a functional equivalent in constrained ways.

17.1.2.1 Application Icons Descriptor

This specification builds on the Application Icons Descriptor, which is required by the
"application signalling" functional equivalent and described in MHP [2] clause 10.7.4.2, as
follows. The table entitled "Icon Locator Semantics" is extended for the application types
introduced by section 10.3.1:

application_type description
0x0006 For ACAP-J this is a path relative to the

base directory of the application as
defined in MHP [2] clause 10.9.2, "DVB-J
application location descriptor."

ATSC Candidate Standard: Advanced Common Application Platform September 23, 2004

 125

0x0007 For ACAP-X this is a path relative to the
base directory of the application as
defined in section 10.6.5.2.2, "ACAP-X
Application Location Descriptor."

ATSC Candidate Standard: Advanced Common Application Platform (Annex A) September 23, 2004

 126

Annex A:
Content Identification API

1. PACKAGE ORG.ATSC.SI

1.1 Description
This package provides SI extensions for ACAP.

ATSC Candidate Standard: Advanced Common Application Platform (Annex A) September 23, 2004

 127

org.atsc.si: ContentIdentification

� Declaration: public interface ContentIdentification
� All Known Subinterfaces: ISANIdentification, VISANIdentification
� Description: Superinterface for all content identification system specific retrieval interfaces.

Member Summary
Methods
int getIdentificationSystem()

Returns the value of the Metadata_application_format from the content labeling descriptor as
defined in ISO/IEC 13818-1:2000/PDAM 4.

java.lang.String getIdentifier()
 Returns a string representation of the underlying content identification value.

byte[] getIdentifierBytes()
 Provides an array of n bytes that represent the underlying n byte value of the content
 identification.

Methods

getIdentificationSystem()
 public int getIdentificationSystem()

Returns the value of the Metadata_application_format from the content labeling descriptor as defined in ISO/IEC
13818-1:2000/PDAM 4

 Returns:
 integer representation of the Metadata_application_format value.

getIdentifier()
 public java.lang.String getIdentifier()
 Returns a string representation of the underlying content identification value.
 Returns:
 string representation of the content identification.

getIdentifierBytes()
 public byte[] getIdentifierBytes()
 Provides an array of n bytes that represent the underlying n byte value of the content identification.
 Returns:
 array of n bytes.

ATSC Candidate Standard: Advanced Common Application Platform (Annex A) September 23, 2004

 128

org.atsc.si: ContentIdentifications

� Declaration: public interface ContentIdentifications
� Description: Provides an array of references to the various content identifiers associated with

an instance of javax.tv.service.guide.ProgramEvent.

Member Summary
Methods
ContentIdentification[] getIdentifiers()

 Returns an array of objects that implement the ContentIdentification interface.

Methods

getIdentifiers()
 public org.atsc.si.ContentIdentification[] getIdentifiers()
 Returns an array of objects that implement the ContentIdentification interface. In the case where the underlying
 program event does not contain content identifiers, the getIdentifiers() method shall return an empty array.

 See Also:
 ContentIdentification

ATSC Candidate Standard: Advanced Common Application Platform (Annex A) September 23, 2004

 129

org.atsc.si: ISANIdentification

� Delaration: public interface ISANIdentification extends ContentIdentification
� All Superinterfaces: ContentIdentification
� All Known Superinterfaces: VISANIdentification
� Description: Interface for retrieving ISO 15706 compliant content identification value for

the underlying program event. This interface shall only be implemented when the underlying
program event is identified by a ISAN.

Member Summary
Methods
int getISANEpisodeIdentifier()

 Provides the episode segment of an ISAN content identification.
java.lang.String getISANIdentifier()

 Provides a string representation of the ISAN Identifier.
byte[] getISANIdentifierBytes()

 Provides an array of 8 bytes that represent the underlying 8 byte value of the ISAN
 content identification.

long getISANRootIdentifier()
 Provides the root portion of an ISAN content identification.

Inherited Member Summary

Methods inherited from interface ContentIdentification
getIdentificationSystem(), getIdentifier(), getIdentifierBytes()

Methods

getISANEpisodeIdentifier()
 public int getISANEpisodeIdentifier()
 Provides the episode segment of an ISAN content identification.
Returns:
 Integer value that is the episode segment of the ISAN content identification.

getISANIdentifier()
 public java.lang.String getISANIdentifier()
 Provides a string representation of the ISAN Identifier. The string representation shall be conformant with ISO
 15706.
Returns:
 String representation of the underlying ISAN content identification.

getISANIdentifierBytes()
 public byte [] getISANIdentifierBytes[]
 Provides an array of 8 bytes that represent the underlying 8 byte value of the ISAN content identification.
 Returns:
 Array of 8 Bytes.

getISANRootIdentifier()
 public long getISANRootIdentifier()
 Provides the root portion of an ISAN content identification.
 Returns:
 Long value that is the root segment of the ISAN content identification.

ATSC Candidate Standard: Advanced Common Application Platform (Annex A) September 23, 2004

 130

org.atsc.si: VISANIdentification

� Declaration: public interface VISANIdentification extends ISANIdentification

� All Superinterfaces: ContentIdentification, ISANIdentification
� Description: Interface for retrieving ISO 20925-1 compliant content identification values.

This interface shall only be implemented when the underlying program event is identified by
a V-ISAN.

Member Summary
Methods
java.lang.String getVISANIdentifier()

 Provides a string representation of the V-ISAN content identification.
byte[] getVISANIdentifierBytes()

 Provides an array of 12 bytes that represent the underlying 12 byte value of the VISAN
 content identification.

int getVISANVersionIdentifier()
 Provides the version segment of a V-ISAN content identification.

Inherited Member Summary

Methods inherited from interface ContentIdentification
getIdentificationSystem(), getIdentifier(), getIdentifierBytes()
Methods inherited from interface ISANIdentification
getISANEpisodeIdentifier(), getISANIdentifier(), getISANIdentifierBytes(), getISANRootIdentifier()

Methods

getVISANIdentifier()
 public java.lang.String getVISANIdentifier()
 Provides a string representation of the V-ISAN content identification. The string representation shall be
 conformant with ISO 20925-1.
 Returns:
 String representation of the underlying V-ISAN content identification.

getVISANIdentifierBytes()
 public byte[] getVISANIdentifierBytes()
 Provides an array of 12 bytes that represent the underlying 12 byte value of the V-ISAN content identification.
 Returns:
 Array of 12 bytes.

getVISANVersionIdentifier()
 public int getVISANVersionIdentifier()
 Provides the version segment of a V-ISAN content identification.
 Returns:
 Integer value that is the version segment of a V-ISAN content identification

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 131

Annex B:
Document Type Definitions (Normative)

1. SCOPE
This annex specifies the following document types as used by ACAP XML based content types:
� ACAP Permission Request File Document Type
� ACAP-J Font Index File Document Type
� ACAP-X Application Metadata Document Type
� ACAP-X Markup Document Type

2. ACAP PERMISSION REQUEST FILE DOCUMENT TYPE
This document type defines the ACAP permission request file schema.

2.1 acap-permission-1.dtd

<!-- ::: -->

<!-- ACAP Permission Request File 1.0 DTD -->

<!-- ::: -->

<!-- This is the DTD for the ACAP 1.0 permission request file.

 The following formal public identifier shall be used to identify it:

 "-//ATSC//DTD ACAP Permission Request File 1.0//EN"

 The following URL for the SystemLiteral may be used to reference this file :

 http://www.atsc.org/acap/dtd/acap-permission-1.dtd

-->

<!-- Basic entities definition -->

<!ENTITY % URI.datatype "CDATA" >

<!-- ... -->

<!-- The section below declares the OCAP extensions to the GEM PRF -->

<!-- ... -->

<!-- Declare the OCAP namespace -->

<!ENTITY % ocap.xmlns "http://www.cablelabs.com/ocap" >

<!-- Declare the OCAP prefix associated with this namespace -->

<!ENTITY % ocap.prefix "ocap" >

<!-- Declare the xml namespace attribute for OCAP -->

<!ENTITY % ocap.xmlns.attrib

 "xmlns:%ocap.prefix; %URI.datatype; #FIXED ’%ocap.xmlns;’ "

>

<!-- Declare the additional OCAP-defined elements and attributes -->

<!ENTITY % ocap.monitorapplication.qname "%ocap.prefix;:monitorapplication" >

<!ENTITY % ocap.monitorapplication.name.qname "name" >

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 132

<!ENTITY % ocap.monitorapplication.value.qname "value" >

<!-- ... -->

<!-- The section below declares the ACAP extensions to the GEM PRF -->

<!-- ... -->

<!-- Declare the ACAP namespace -->

<!ENTITY % acap.xmlns "http://www.atsc.org/acap#permission" >

<!-- Declare the ACAP prefix associated with this namespace -->

<!ENTITY % acap.prefix "acap" >

<!-- Declare the xml namespace attribute for ATSC -->

<!ENTITY % acap.xmlns.attrib

 "xmlns:%acap.prefix; %URI.datatype; #FIXED ’%acap.xmlns;’ "

>

!-- Declare the additional ACAP-defined elements and attributes -->

<!ENTITY % acap.cookie.qname "%acap.prefix;:cookie" >

<!ENTITY % acap.cookie.target.qname "target" >

<!ENTITY % acap.cookie.actions.qname "actions" >

<!ENTITY % acap.rce.qname "%acap.prefix;:rce" >

<!ENTITY % acap.rce.value.qname "value" >

<!ENTITY % acap.bridge.qname "%acap.prefix;:bridge" >

<!ENTITY % acap.bridge.value.qname "value" >

<!-- All elements and attributes defined in GEM 1.0.x shall be supported and -->

<!-- inserted at this level with appropriate extensions necessary for -->

<!-- ACAP (prefixed by "acap:") and CableLabs (prefixed by "ocap:") -->

<!ELEMENT permissionrequestfile

 (file?, capermission?, applifecyclecontrol?, returnchannel?, tuning?,

 servicesel?, userpreferences?, network?, dripfeed?, persistentfilecredential*,

 %acap.cookie.qname;, %acap.rce.qname;, %acap.bridge.qname;,

 %ocap.monitorapplication.qname;*)>

<!ATTLIST permissionrequestfile

 orgid CDATA #REQUIRED

 appid CDATA #REQUIRED

>

<!ELEMENT file EMPTY>

<!ATTLIST file

 value (true|false) "true"

>

<!ELEMENT capermission (casystemid)+>

<!ELEMENT casystemid EMPTY>

<!ATTLIST casystemid

 entitlementquery (true|false) "false"

 id CDATA #REQUIRED

 mmi (true|false) "false"

 messagepassing (true|false) "false"

 buy (true|false) "false"

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 133

>

<!ELEMENT applifecyclecontrol EMPTY>

<!ATTLIST applifecyclecontrol

 value (true|false) "true"

>

<!ELEMENT returnchannel (defaultisp?,phonenumber*)>

<!ELEMENT defaultisp EMPTY>

<!ELEMENT phonenumber (#PCDATA)>

<!ELEMENT tuning EMPTY>

<!ATTLIST tuning

 value (true|false) "true"

>

<!ELEMENT servicesel EMPTY>

<!ATTLIST servicesel

 value (true|false) "true"

>

<!ELEMENT userpreferences EMPTY>

<!ATTLIST userpreferences

 write (true|false) "false"

 read (true|false) "true"

>

<!ELEMENT network (host)+>

<!ELEMENT host (#PCDATA)>

<!ATTLIST host

 action CDATA #REQUIRED

>

<!ELEMENT dripfeed EMPTY>

<!ATTLIST dripfeed

 value (true|false) "true"

>

<!ELEMENT persistentfilecredential (grantoridentifier, expirationdate, filename+,

 signature, certchainfileid)>

<!ELEMENT grantoridentifier EMPTY>

<!ATTLIST grantoridentifier

 id CDATA #REQUIRED

>

<!ELEMENT expirationdate EMPTY>

<!ATTLIST expirationdate

 date CDATA #REQUIRED

>

<!ELEMENT filename (#PCDATA)>

<!ATTLIST filename

 write (true|false) "true"

 read (true|false) "true"

>

<!ELEMENT signature (#PCDATA)>

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 134

<!ELEMENT certchainfileid (#PCDATA)>

<!-- In addition, the following elements and attributes are defined in order

to support OCAP specific behaviour. -->

<!ELEMENT %ocap.monitorapplication.qname; EMPTY>

<!ENTITY % OCAPMonitorAppPermType.class

 "(registrar | service | servicemanager | security | reboot | handler.reboot |

 handler.appFilter | handler.resource | handler.closeACAPtioning |

 filterUserEvents | handler.podResource | handler.eas | setCCIBits |

 setDownRes | setVideoPort | podApplication | signal.configured)"

>

<!ATTLIST %ocap.monitorapplication.qname;

 %ocap.monitorapplication.name.qname; %OCAPMonitorAppPermType.class; #REQUIRED

 %ocap.monitorapplication.value.qname; (true | false) #REQUIRED

 %ocap.xmlns.attrib;

>

<!-- In addition, the following elements and attributes are defined in order

to support ACAP-X application specific behaviour. -->

<!-- cookie permission request -->

<!ELEMENT %acap.cookie.qname; EMPTY>

<!ATTLIST %acap.cookie.qname;

 %acap.target.qname; CDATA #REQUIRED

 %acap.actions.qname; CDATA #REQUIRED

 %acap.xmlns.attrib;

>

<!-- runtime code extension permission request -->

<!ELEMENT %acap.rce.qname; EMPTY>

<!ATTLIST %acap.rce.qname;

 %acap.rce.value.qname; (true|false) #REQUIRED

 %acap.xmlns.attrib;

>

<!-- Java bridge permission request -->

<!ELEMENT %acap.bridge.qname; EMPTY>

<!ATTLIST %acap.bridge.qname;

 %acap.bridge.value.qname; (true|false) #REQUIRED

 %acap.xmlns.attrib;

>

3. ACAP-J FONT INDEX FILE DOCUMENT TYPE
This document type defines the ACAP-J application font index file schema.

3.1 acap-j-font-index-1.dtd

<!-- ::: -->

<!-- ACAP-J Font Index File 1.0 DTD -->

<!-- ::: -->

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 135

<!-- This is the DTD for the ACAP-J 1.0 font index file.

 The following formal public identifier shall be used to identify it:

 "-//DVB//DTD Font Directory 1.0//EN"

 The following URL for the SystemLiteral may be used to reference this file :

 http://www.atsc.org/acap/dtd/acap-j-font-index-1.dtd

-->

<!ELEMENT fontdirectory (font)+>

<!ELEMENT font (name,fontformat,filename,style*,size?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT fontformat (#PCDATA)>

<!ELEMENT filename (#PCDATA)>

<!ELEMENT style (#PCDATA)>

<!ELEMENT size EMPTY>

<!ATTLIST size

 min CDATA "0"

 max CDATA "maxint"

>

<!-- ::: -->

<!-- END END END -->

<!-- ::: -->

4. ACAP-X APPLICATION METADATA DOCUMENT TYPE
This document type defines the ACAP-X application metadata schema.

4.1 acap-x-metadata-1.dtd

<!-- ::: -->

<!-- ACAP-X Application Metadata 1.0 DTD -->

<!-- ::: -->

<!--

 This is ACAP-X Application Metadata 1.0, an XML Document Type specified

 for use with ACAP-X Applications.

 This module shall be idenitifed by the following formal public identifier:

 "-//ATSC//DTD ACAP-X Application Metadata 1.0//EN"

 The following URL for the SystemLiteral may be used to reference

 this file :

 http://www.atsc.org/acap/dtd/acap-x-metadata-1.dtd

-->

<!-- ::: -->

<!-- Parameters -->

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 136

<!-- ::: -->

<!ENTITY % XMLNS "http://www.atsc.org/acap#metadata" >

<!-- ::: -->

<!-- Data Type Entity Declarations -->

<!-- ::: -->

<!-- media type, as per [RFC2045] -->

<!ENTITY % ContentType.datatype "CDATA" >

<!-- a language code, as per [LANG-TAGS] -->

<!ENTITY % LanguageCode.datatype "NMTOKEN" >

<!-- a Uniform Resource Identifier, see [URI] -->

<!ENTITY % URI.datatype "CDATA" >

<!-- ::: -->

<!-- Attribute Entity Declarations -->

<!-- ::: -->

<!ENTITY % id.attrib

 "id ID #IMPLIED"

>

<!ENTITY % lang.attrib

 "xml:lang %LanguageCode.datatype; #IMPLIED"

>

<!ENTITY % xmlns.attrib

 "xmlns %URI.datatype; #FIXED '%XMLNS;'"

>

<!-- ::: -->

<!-- Qualified Element Name Entity Declarations -->

<!-- ::: -->

<!ENTITY % application.qname "application" >

<!ENTITY % identifier.qname "identifier" >

<!ENTITY % entityset.qname "entityset" >

<!ENTITY % entity.qname "entity" >

<!ENTITY % descset.qname "descset" >

<!ENTITY % name.qname "name" >

<!ENTITY % desc.qname "desc" >

<!ENTITY % condset.qname "condset" >

<!ENTITY % cond.qname "cond" >

<!ENTITY % cacheset.qname "cacheset" >

<!ENTITY % cache.qname "cache" >

<!ENTITY % paramset.qname "paramset" >

<!ENTITY % param.qname "param" >

<!-- ::: -->

<!-- Element Classes -->

<!-- ::: -->

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 137

<!ENTITY % optsets.class "%condset.qname;|

 %cacheset.qname;|

 %paramset.qname;" >

<!-- ::: -->

<!-- Element Declarations -->

<!-- ::: -->

<!ENTITY % application.content "(%identifier.qname;,

 %entityset.qname;,

 %descset.qname;+,

 (%optsets.class;)*)" >

<!ELEMENT %application.qname; %application.content; >

<!ATTLIST %application.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

>

<!ENTITY % identifier.content "(%param.qname;)*">

<!ELEMENT %identifier.qname; %identifier.content; >

<!ATTLIST %identifier.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

 uuid CDATA #REQUIRED

>

<!ENTITY % entityset.content "(%entity.qname;)+" >

<!ELEMENT %entityset.qname; %entityset.content; >

<!ATTLIST %entityset.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

>

<!ENTITY % entity.content "EMPTY">

<!ELEMENT %entity.qname; %entity.content; >

<!ATTLIST %entity.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

 entitytype CDATA #REQUIRED

 uri %URI.datatype; #REQUIRED

>

<!ENTITY % descset.content "(%name.qname;,%desc.qname;)" >

<!ELEMENT %descset.qname; %descset.content; >

<!ATTLIST %descset.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

>

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 138

<!ENTITY % name.content "(#PCDATA)">

<!ELEMENT %name.qname; %name.content; >

<!ATTLIST %name.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

>

<!ENTITY % desc.content "(#PCDATA)">

<!ELEMENT %desc.qname; %desc.content; >

<!ATTLIST %desc.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

>

<!ENTITY % condset.content "(%cond.qname;)+" >

<!ELEMENT %condset.qname; %condset.content; >

<!ATTLIST %condset.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

>

<!ENTITY % cond.content "(%param.qname;)*">

<!ELEMENT %cond.qname; %cond.content; >

<!ATTLIST %cond.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

 capability CDATA #REQUIRED

 qualifier CDATA #IMPLIED

>

<!ENTITY % cacheset.content "(%cache.qname;)+" >

<!ELEMENT %cacheset.qname; %cacheset.content; >

<!ATTLIST %cacheset.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

>

<!ENTITY % cache.content "EMPTY">

<!ELEMENT %cache.qname; %cache.content; >

<!ATTLIST %cache.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

 target %URI.datatype; #REQUIRED

 directives CDATA #REQUIRED

>

<!ENTITY % paramset.content "(%param.qname;)+" >

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 139

<!ELEMENT %paramset.qname; %paramset.content; >

<!ATTLIST %paramset.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

>

<!ENTITY % param.content "EMPTY">

<!ELEMENT %param.qname; %param.content; >

<!ATTLIST %param.qname;

 %xmlns.attrib;

 %lang.attrib;

 %id.attrib;

 name CDATA #REQUIRED

 value CDATA #IMPLIED

>

<!-- ::: -->

<!-- END END END -->

<!-- ::: -->

5. ACAP-X MARKUP DOCUMENT TYPE
This document type defines the ACAP-X application markup schema, also known as XDML.

5.1 acap-x-xdml-1.dtd

<!-- ::: -->

<!-- XDML 1.0 DTD Driver -->

<!-- ::: -->

<!--

 This is XDML 1.0, an XHTML Host Language Document Type specified for

 use with ACAP-X applications.

 This module shall be identified by the following formal public identifier:

 "-//ATSC//DTD XHTML ACAP XDML 1.0//EN"

-->

<!-- ::: -->

<!-- XHTML Driver Parameters -->

<!-- ::: -->

<!ENTITY % XHTML.version "-//ATSC//DTD XHTML ACAP-X XDML 1.0//EN">

<!ENTITY % XHTML.profile "">

<!ENTITY % XHTML.dtd.sysid.base

 "http://www.w3.org/TR/xhtml-modularization/DTD/">

<!ENTITY % ACAP.xmlns "http://www.atsc.org/acap#markup">

<!-- ::: -->

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 140

<!-- Framework -->

<!-- ::: -->

<!-- Framework Parameter: Include BIDI support -->

<!ENTITY % XHTML.bidi "INCLUDE">

<!-- Framework Parameter: Ignore intrinsic event attributes -->

<!ENTITY % xhtml-events.module "IGNORE">

<!-- Framework Parameter: Define Content Model -->

<!ENTITY % xhtml-model.mod

 PUBLIC "-//ATSC//ENTITIES ACAP-X XDML Content Model 1.0//EN"

 "acap-x-xdml-model-1.ent">

<!-- Framework Parameter: %Core.attrib; extensions -->

<!ENTITY % base.attrib "xml:base CDATA #IMPLIED">

<!ENTITY % style.attrib "style CDATA #IMPLIED">

<!ENTITY % Core.extra.attrib "%base.attrib; %style.attrib;">

<!-- Framework Parameter: missing qnames -->

<!ENTITY % frameset.qname "frameset">

<!-- Modular Framework Module -->

<!ENTITY % xhtml-framework.mod

 PUBLIC "-//W3C//ENTITIES XHTML Modular Framework 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-framework-1.mod">

%xhtml-framework.mod;

<!-- ::: -->

<!-- Element Modules -->

<!-- ::: -->

<!-- Basic Text Module -->

<!ENTITY % xhtml-text.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Text 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-text-1.mod">

%xhtml-text.mod;

<!-- Hypertext Module -->

<!ENTITY % xhtml-hypertext.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Hypertext 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-hypertext-1.mod">

%xhtml-hypertext.mod;

<!-- Lists Module -->

<!ENTITY % xhtml-list.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Lists 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-list-1.mod">

%xhtml-list.mod;

<!-- Presentation Module -->

<!ENTITY % xhtml-pres.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Presentation 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-pres-1.mod">

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 141

%xhtml-pres.mod;

<!-- BIDI Override Element Module -->

<!ENTITY % xhtml-bdo.mod

 PUBLIC "-//W3C//ELEMENTS XHTML BIDI Override Element 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-bdo-1.mod">

%xhtml-bdo.mod;

<!-- Forms Module -->

<!ENTITY % xhtml-form.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Forms 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-form-1.mod">

%xhtml-form.mod;

<!-- Tables Module -->

<!ENTITY % xhtml-table.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Tables 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-table-1.mod">

%xhtml-table.mod;

<!-- Param Element Module -->

<!ENTITY % xhtml-param.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Param Element 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-param-1.mod">

%xhtml-param.mod;

<!-- Object Element Module -->

<!ENTITY % xhtml-object.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Embedded Object 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-object-1.mod">

%xhtml-object.mod;

<!-- Image Element Module -->

<!ENTITY % xhtml-image.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Images 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-image-1.mod">

%xhtml-image.mod;

<!-- Client-side Image Map Module -->

<!ENTITY % xhtml-csismap.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Client-side Image Maps 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-csismap-1.mod">

%xhtml-csismap.mod;

<!-- Link Element Module -->

<!ENTITY % xhtml-link.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Link Element 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-link-1.mod">

%xhtml-link.mod;

<!-- Base Element Module -->

<!ENTITY % xhtml-base.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Base Element 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-base-1.mod">

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 142

%xhtml-base.mod;

<!-- Document Metainformation Module -->

<!ENTITY % xhtml-meta.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Metainformation 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-meta-1.mod">

%xhtml-meta.mod;

<!-- Scripting Module -->

<!ENTITY % xhtml-script.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Scripting 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-script-1.mod">

%xhtml-script.mod;

<!-- Stylesheets Module -->

<!ENTITY % xhtml-style.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Style Sheets 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-style-1.mod">

%xhtml-style.mod;

<!-- Target Attribute Module -->

<!ENTITY % xhtml-target.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Target 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-target-1.mod">

%xhtml-target.mod;

<!-- Frames Module -->

<!ENTITY % xhtml-frames.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Frames 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-frames-1.mod">

%xhtml-frames.mod;

<!-- Document Structure Module -->

<!ENTITY % xhtml-struct.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Document Structure 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-struct-1.mod">

%xhtml-struct.mod;

<!-- Name Identifier Module -->

<!ENTITY % xhtml-nameident.mod

 PUBLIC "-//W3C//ELEMENTS XHTML Name Identifier 1.0//EN"

 "%XHTML.dtd.sysid.base;xhtml-nameident-1.mod">

%xhtml-nameident.mod;

<!-- ::: -->

<!-- Non-Parameterized Extensions -->

<!-- ::: -->

<![%legend.attlist;[

<!ATTLIST %legend.qname;

 align (top | bottom | left | right) #IMPLIED

>

]]>

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 143

<![%param.attlist;[

<!ATTLIST %param.qname;

 %base.attrib;

>

]]>

<![%frameset.attlist;[

<!ATTLIST %frameset.qname;

 acap:onload %Script.datatype; #IMPLIED

 acap:onunload %Script.datatype; #IMPLIED

 acap:ondomstable %Script.datatype; #IMPLIED

 xmlns:acap %URI.datatype; #FIXED '%ACAP.xmlns;'

>

]]>

<![%body.attlist;[

<!ATTLIST %body.qname;

 acap:onload %Script.datatype; #IMPLIED

 acap:onunload %Script.datatype; #IMPLIED

 acap:ondomstable %Script.datatype; #IMPLIED

 xmlns:acap %URI.datatype; #FIXED '%ACAP.xmlns;'

>

]]>

<![%meta.attlist;[

<!ATTLIST %meta.qname;

 %base.attrib;

>

]]>

<![%script.attlist;[

<!ATTLIST %script.qname;

 %base.attrib;

>

]]>

<![%style.attlist;[

<!ATTLIST %style.qname;

 %base.attrib;

>

]]>

<![%title.attlist;[

<!ATTLIST %title.qname;

 %base.attrib;

>

]]>

<![%head.attlist;[

<!ATTLIST %head.qname;

 %base.attrib;

>

]]>

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 144

<![%html.attlist;[

<!ATTLIST %html.qname;

 %base.attrib;

>

]]>

<!-- ::: -->

<!-- END END END -->

<!-- ::: -->

5.2 acap-x-xdml-model-1.ent

<!-- ::: -->

<!-- XDML 1.0 Document (Content) Model -->

<!-- ::: -->

<!--

 This is the XDML 1.0 Document (Content) Model Module for use with the

 XDML 1.0 Document Type specified for ACAP Declarative Applications.

 This module declares certain parameter entities that define groupings

 of elements employed in the definition of XDML 1.0 content models.

 This module shall be idenitifed by the following formal public identifier:

 "-//ATSC//ENTITIES ACAP XDML Content Model 1.0//EN"

-->

<!-- ::: -->

<!-- Non-Empty Content Group Classes -->

<!-- ::: -->

<!ENTITY % BlkStruct.class "%p.qname;

 |%div.qname;">

<!ENTITY % InlStruct.class "%br.qname;

 |%span.qname;">

<!-- ::: -->

<!-- Optionally Empty Content Group Classes -->

<!-- ::: -->

<!ENTITY % Anchor.class "|%a.qname;">

<!ENTITY % BlkPhras.class "|%pre.qname;

 |%blockquote.qname;

 |%address.qname;">

<!ENTITY % BlkPres.class "|%hr.qname;">

<!ENTITY % Heading.class "|%h1.qname;

 |%h2.qname;

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 145

 |%h3.qname;

 |%h4.qname;

 |%h5.qname;

 |%h6.qname;">

<!ENTITY % I18n.class "|%bdo.qname;">

<!ENTITY % InlPhras.class "|%abbr.qname;

 |%acronym.qname;

 |%cite.qname;

 |%code.qname;

 |%dfn.qname;

 |%em.qname;

 |%kbd.qname;

 |%q.qname;

 |%samp.qname;

 |%strong.qname;

 |%var.qname;">

<!ENTITY % InlPres.class "|%b.qname;

 |%big.qname;

 |%i.qname;

 |%small.qname;

 |%sub.qname;

 |%sup.qname;

 |%tt.qname;">

<!ENTITY % InlForm.class "|%input.qname;

 |%select.qname;

 |%textarea.qname;

 |%label.qname;

 |%button.qname;">

<!ENTITY % InlSpecial.class "|%map.qname;

 |%img.qname;

 |%object.qname;">

<!ENTITY % List.class "|%ul.qname;

 |%ol.qname;

 |%dl.qname;">

<!ENTITY % Table.class "|%table.qname;">

<!ENTITY % Misc.class "|%script.qname;

 |%noscript.qname;">

<!-- ::: -->

<!-- Optionally Empty Content Group Class Extras -->

<!-- ::: -->

<!ENTITY % Block.extra "%Table.class;

 |%form.qname;

 |%fieldset.qname;">

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 146

<!ENTITY % BlkNoForm.extra "%Table.class;">

<!ENTITY % BlkNoTable.extra "|%form.qname;

 |%fieldset.qname;">

<!ENTITY % Inline.extra "">

<!-- ::: -->

<!-- Aggregate Content Group Classes -->

<!-- ::: -->

<!ENTITY % Block.class "%BlkStruct.class;

 %BlkPhras.class;

 %BlkPres.class;

 %Block.extra;">

<!ENTITY % BlkNoForm.class "%BlkStruct.class;

 %BlkPhras.class;

 %BlkPres.class;

 %BlkNoForm.extra;">

<!ENTITY % BlkNoTable.class "%BlkStruct.class;

 %BlkPhras.class;

 %BlkPres.class;

 %BlkNoTable.extra;">

<!ENTITY % Inline.class "%InlStruct.class;

 %I18n.class;

 %InlPhras.class;

 %InlPres.class;

 %InlSpecial.class;

 %InlForm.class;

 %Inline.extra;

 %Anchor.class;">

<!ENTITY % InlNoAnchor.class "%InlStruct.class;

 %I18n.class;

 %InlPhras.class;

 %InlPres.class;

 %InlSpecial.class;

 %InlForm.class;

 %Inline.extra;">

<!-- ::: -->

<!-- Content Group Mixes -->

<!-- ::: -->

<!ENTITY % Block.mix "%Block.class;

 %List.class;

 %Heading.class;

 %Misc.class;">

<!ENTITY % BlkNoForm.mix "%BlkNoForm.class;

 %List.class;

ATSC Candidate Standard: Advanced Common Application Platform (Annex B) September 23, 2004

 147

 %Heading.class;

 %Misc.class;">

<!ENTITY % BlkNoTable.mix "%BlkNoTable.class;

 %List.class;

 %Heading.class;

 %Misc.class;">

<!ENTITY % HeadOpts.mix "(%script.qname;

 |%style.qname;

 |%meta.qname;

 |%link.qname;

 |%object.qname;)*">

<!ENTITY % Flow.mix "%Block.class;

 %List.class;

 %Heading.class;

 |%Inline.class;

 %Misc.class;">

<!ENTITY % FlowNoTable.mix "%BlkNoTable.class;

 %List.class;

 %Heading.class;

 |%Inline.class;

 %Misc.class;">

<!ENTITY % Inline.mix "%Inline.class;

 %Misc.class;">

<!ENTITY % InlNoAnchor.mix "%InlNoAnchor.class;

 %Misc.class;">

<!-- ::: -->

<!-- Element Content Model Predeclarations -->

<!-- ::: -->

<!ENTITY % html.content "(%head.qname;,

 (%body.qname; | %frameset.qname;))">

<!ENTITY % noscript.content "(#PCDATA | %Flow.mix;)*">

<!ENTITY % blockquote.content "(#PCDATA | %Flow.mix;)*">

<!-- ::: -->

<!-- END END END -->

<!-- ::: -->

