Rec. UIT-R BT.1619

RECOMENDACIÓN UIT-R BT.1619

Correspondencia de datos auxiliares verticales para interfaz digital en serie

(Cuestiones UIT-R 42/6 y UIT-R 20/6)

(2003)

La Asamblea de Radiocomunicaciones de la UIT,

considerando

a) que muchos países están instalando dispositivos de producción de televisión digital basados en la utilización de componentes de vídeo digital conformes a las Recomendaciones UIT-R BT.601, UIT-R BT.656, UIT-R BT.709, UIT-R BT.799 y UIT-R BT.1120;

b) que conforme a las Recomendaciones UIT-R BT.656, UIT-R BT.799 o UIT-R BT.1120 una señal tiene la capacidad de aceptar señales de datos adicionales para su multiplexión con la propia señal de datos de vídeo;

c) que se pueden lograr beneficios de explotación y económicos mediante la multiplexión de señales de datos auxiliares con la señal de datos de vídeo;

d) que las ventajas de la explotación serán mayores cuanto menor sea el número de formatos diferentes que se utilicen para las señales de datos auxiliares;

e) que el formato de los paquetes de datos auxiliares se especifica en la Recomendación UIT-R BT.1364;

f) que el encaminamiento de servicios de radiodifusión de datos destinados al público, así como las comunicaciones y el control internos de los organismos de radiodifusión en la interfaz digital en serie (SDI), beneficia a las operaciones de transmisión de radiodifusión,

recomienda

1 que se utilice el formato de los datos auxiliares descrito en la Norma SMPTE 334M-2000, «Vertical Ancillary Data Mapping for Bit-Serial Interface», como método para transportar información de control y comunicación en la SDI.

NOTA 1 – La Norma SMPTE 334M comprende una referencia normativa a la Norma SMPTE 292M, «Bit-Serial Digital Interface for High-Definition Television Systems». El formato de 50 Hz, 1250 líneas que figura en el Cuadro 1, columna C de la Norma SMPTE 292M, no se debe considerar parte de esta Recomendación.

Resumen de la Norma SMPTE 334M-2000

La presente Recomendación define un método de codificación que permite transportar servicios de datos en el espacio de datos auxiliares verticales de una señal de televisión con componente binaria en serie conforme a las Recomendaciones UIT-R BT.656 o UIT-R BT.1120 y ponerlos en el formato de la Recomendación UIT-R BT.1364.

Se incluyen los servicios de radiodifusión de datos destinados al público, así como las comunicaciones y el control internos de los organismos de radiodifusión. A pesar de la referencia a la interfaz binaria en serie, ningún elemento de esta especificación impide su utilización en una interfaz digital paralela para señales de vídeo digitales. Los datos que se describen en la presente Norma también se pueden transportar en formato clave longitud valor, de conformidad con la Recomendación UIT-R BT.1563 (Norma SMPTE 336M-2001), o a través de otros medios.

NOTA 1 – Las Normas SMPTE 334M-2000 y 292M-1998 figuran en los Anexos 1 y 2. Las Normas SMPTE 334M-2000 y 292M-1998 se refieren únicamente a las versiónes 2000 y 1998 respectivamente, que sen las aprobadas el 3.05.03 por las Administraciones de los Estados Miembros de la UIT en cumplimiento de lo dispuesto en la Resolución UIT-R 1-3. En virtud del acuerdo entre la UIT y la SMPTE, la SMPTE ha facilitado y autorizado la utilización de estas versiones y el UIT-R ha aceptado su inclusión en la presente Recomendación. Cualquier versión posterior de las Normas SMPTE 334M y 292M que no hayan sido aceptadas y aprobadas por la Comisión de Estudio 6 de Radiocomunicaciones no formará parte de la presente Recomendación. Las últimas versiones de los Documentos de la SMPTE se pueden consultar en el sitio web de la SMPTE: http://www.smpte.org/.

SMPTE STANDARD

This standard defines a method of coding which

allows data services to be carried in the vertical ancil-

lary data space of a bit-serial component television signal conforming with SMPTE 292M or ANSI/SMPTE

This includes data broadcast services intended for the

public as well as broadcaster internal control and

Despite the reference to the bit-serial interface,

nothing in this specification precludes its use in a

parallel digital interface for component digital video

The data described in this standard may also be transported in KLV format according to SMPTE 336M,

The following standards contain provisions which,

through reference in this text, constitute provisions of

this standard. At the time of publication, the editions

indicated were valid. All standards are subject to revision, and parties to agreements based on this

standard are encouraged to investigate the possibility of applying the most recent edition of the standards

ANSI/SMPTE 125M-1995, Television - Component

ANSI/SMPTE 259M-1997, Television — 10-Bit 4:2:2

Component and 4fsc Composite Digital Signals -

Video Signal 4:2:2 — Bit-Parallel Digital Interface

1 Scope

259M.

signals.

communications.

or via other means.

indicated below.

Serial Digital Interface

2 Normative references

for Television — Vertical Ancillary Data Mapping for Bit-Serial Interface

Page 1 of 4 pages

SMPTE 291M-1998, Television — Ancillary Data Packet and Space Formatting

SMPTE 292M-1998, Television — Bit-Serial Digital Interface for High-Definition Television Systems

ANSI/EIA-608-1994, Recommended Practice for Line 21 Data Service

EIA-708-B, Digital Television Closed-Captioning (DTVCC)

EIA-766-1998, U.S. Region Rating Table (RRT) and Content Advisory Descriptor for Transport of Content Advisory Information Using ATSC A/65 Program and System Information Protocol (PSIP)

3 Location of vertical ancillary data

The data packets are located in the active line portion of one or more lines in the vertical ancillary space. Data may be located in any lines in the area from the second line after the line specified for switching to the last line before active video, inclusively.

Individual data services are not assigned to any specific data lines; receiving equipment should identify and select services on the basis of their ANC DID and SDID fields.

Because ANC data may be located in the lines immediately preceding active video, manufacturers of video compression equipment should ensure that these data bits are not included in video compression calculations.

The chrominance (C_b/C_r) and luminance (Y) data are carried in two separate streams within the SMPTE 292M signal with their own ANC data flags and CRCs.

Copyright © 2000 by THE SOCIETY OF MOTION PICTURE AND TELEVISION ENGINEERS 595 W. Hartsdale Ave., White Plains, NY 10607 (914) 761-1100

Approved May 12, 2000

3

SMPTE 334M-2000

SMPTE 334M-2000

Defined data services shall be carried in the Y stream. Other data services may be inserted into either one of these streams without restrictions.

In the 259M/125M signal, the chrominance and luminance data are carried in a single stream. In this case, all data services shall be carried in this stream with a single ANC data flag and CRC.

4 Format of VANC data packets

Each data packet follows the format defined in SMPTE 291M for a type 2 ANC packet. It consists of the ancillary data flag (ADF), the data ID (DID), the secondary data ID (SDID), the data count (DC), the user data words (UDW), and the checksum (CS). The UDW consists of the data payload plus forward error correction overhead.

4.1 ANC packet header format

The ADF has the value 000h 3FFh 3FFh.

The following value of DID is used for the closedcaptioning services defined in this standard: 161_h $(61_h \text{ plus parity bits per 291M})$. A second value of DID $(162_h = 62_h \text{ plus parity})$ is used for other services which are identified by this standard, and whose format is specified by recommended practices. Other data services which are internal to a broadcast network may use DID values in the ranges specified for user application data $(40_h-5F_h \text{ and } C0_h-DF_h)$. These DID values are not registered.

The specified values of DID $(61_h \text{ and } 62_h)$ identify type 2 ANC packets. In each packet, the SDID code identifies the type of data. Table 1 shows the values of DID and SDID for services defined within this standard. Table 2 shows the values of DID and SDID for other services.

DC is a count of the number of words in the UDW; bits b7-b0 of DC represent the number of words of user data; bits b8 and b9 are parity per 291M.

For defined services such as captioning, the format of the data in the UDW is defined in this specification or in a normative reference. For other data services, the data content is not specified here, and the value of DC is variable.

4.2 UDW format

All data services consist of 8-bit data bytes, which are transmitted in bits b7-b0 of the 10-bit data word. Bit b8 is even parity for b7 through b0, and b9 = not b8. In addition to providing a simple error detection capability, this avoids transmitting data which match one of the code words 0-3 and 1020-1023 which are prohibited by SMPTE 292M and ANSI/SMPTE125M.

Service	DID	SDID	DC
Closed captioning (EIA-708-B)	61 _h (161 _h)	1 (101 _h)	Variable
EIA-608 data	61 _h (161 _h)	2 (102 _h)	3 (203 _h)

Table 1 – Defined data services

Table 2 – Variable-format data services

Service	DID	SDID	DC
Program description (DTV)	62 _h (162 _h)	1 (101 _h)	Variable
Data broadcast (DTV)	62 _h (162 _h)	2 (102 _h)	Variable
VBI data	62 _h (162 _h)	3 (203 _h)	Variable

The data payload for each service is inserted into the UDW of the ANC packet as a sequence of 10-bit words. The number of words is indicated in the DC field of the ANC packet header.

4.3 Defined services

The services shown in table 1 have their format defined in this clause. The values in parentheses for DID, SDID, and DC include parity bits b8 and b9.

4.3.1 Format of the closed captioning (EIA-708-B) packet

The payload of the closed captioning (EIA-708-B) packet is the caption distribution packet (CDP) defined in EIA-708-B. This packet has a variable length.

4.3.2 Format of the ANC EIA-608 (VBI) packet

In NTSC video, the closed captioning, content advisory, and other services are carried in a format defined by the EIA-608 standard. Closed captioning may be carried in line 21 of either field. Content advisory and other data may be in line 21 of field 2 only.

These can be carried in an ANC packet in a 292M stream to allow the EIA-608 data waveform to be recreated and reinserted into an NTSC signal produced by converting the DTV signal into an analog signal at a station. The format of this ANC packet is defined in annex A.

Annex A (normative) Format of the ANC EIA-608 packet

The data payload for EIA-608 data is 2 bytes per line. The ANC packet encapsulates these two bytes without modification, and adds a byte which identifies the VBI line and field to be used for insertion. The data count (DC) is therefore $3 (203_h)$.

The format of the packet is as follows:

Header:

 $\begin{array}{l} \text{ADF (3 words)} \\ \text{DID} = 161_h \\ \text{SDID} = 102_h \\ \text{DC} = 203_h \end{array}$

UDW:

LINE (1 word) EIA-608 data (2 words)

4.4 Other data services

Table 2 lists other data services whose format is not specified by this standard. Their DID and SDID values are specified here to ensure that they can be correctly and consistently recognized and routed.

The DTV program description service carries data which pertain to the video and audio programs. Its contents are defined in the forthcoming SMPTE RP 207.

The DTV data broadcast service carries data intended for broadcast to the public along with the video and audio programs. Its contents are the subject of a future recommended practice.

The VBI data service is intended for use in reconstituting data in the VBI of a standard-definition analog video signal produced from the digital video program. Its contents are defined in the forthcoming SMPTE RP 208.

5 Timing of data and video

There is no specific provision in this standard for ensuring that the relative timing between the video and its embedded VANC data is correct. The only timing relationship that exists is created when the data are embedded in the video. Once that relationship is established, the deterministic nature of 292M or 259M transport ensures that the relationship is preserved.

Suffix:

CS (1 word)

The LINE value at the start of the UDW represents the field number and VBI line where the data are intended to be carried. Bit b7 of the LINE value is the field number (0 for field 2; 1 for field 1). Bits b6 and b5 are 0. Bits b4-b0 form a 5-bit unsigned integer which represents the offset (in lines) of the data insertion line, relative to the base VBI frameline (line 9 of 525-line field 1, line 318 of 625-line field 2).

SMPTE 334M-2000

Annex B (informative) Bibliography

ANSI/SMPTE 296M-1997, Television — 1280 × 720 Scanning, Analog and Digital Representation and Analog Interface

ANSI/SMPTE 299M-1997, Television — 24-Bit Digital Audio Format for HDTV Bit-Serial Interface

ATSC A/53, ATSC Digital Television Standard

ATSC A/65, Program and System Information Protocol for Terrestrial Broadcast and Cable

SMPTE 274M-1998, Television — 1920 \times 1080 Scanning and Analog and Parallel Digital Interfaces for Multiple Picture Rates

Forthcoming SMPTE 336M, Television — Data Encoding Protocol Using Key-Length-Value

Forthcoming SMPTE RP 207, Transport of Program Description Data in Ancillary Data Packets

Forthcoming SMPTE RP 208, Transport of VBI Packet Data in Ancillary Data Packets

SMPTE STANDARD

SM PTE 292M -1998 Revision of ANSI/SM PTE 292M -1996

forTelevision — Bit-SerialDigitalInterface for High-Definition Television System s

1 Scope

This standard defines a bit-serial digital coaxial and fiber-optic interface for HDTV component signals operating at data rates of 1.485 Gb/s and 1.485/1.001 Gb/s. Bit-parallel data derived from specified source form ats are multiplexed and serialized to form the serial data stream .A common data form at and channel coding are used based on the source form at parallel data for a given high-definition television system . Coaxial cable interfaces are suitable for application where the signal base does not exceed an amount specified by the receiver manufacturer. Typical base amounts would be in the range of up to 20 dB at one-half the cbck frequency. F beroptic interfaces are suitable for application at up to 2 km of distance using single-mode fiber.

Several source form ats are referenced and others operating within the covered data rate range may be serialized based on the techniques defined by this standard. Revisions to this standard may add other source form ats when approved docum ents are available. Mechanisms for transporting bwer data-rate form ats overthis interface are underdeve bpm entand willbe specified in other docum ents.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent edition of the standards indicated below. Page 1 of 9 pages

ANSI/SMPTE 295M -1997, Television — 1920 × 1080 50 Hz — Scanning and Interface

SMPTE 260M-1999, Television — 1125/60 High-Definition Production System — Digital Representation and Bit-ParalelInterface

SMPTE 274M -1998, Television — 1920 × 1080 Scanning and Anabg and ParallelDigital Interfaces forMultiple Picture Rates

SMPTE 291M -1998, Television — Ancillary Data Packetand Space Form atting

SMPTE RP 184-1996, Specification of Jitter in Bit-SerialDigitalSystems

EC 60169-8 (1978-01), Radio Frequency Connectors, Part8:R F.CoaxialConnectors with InnerDiam eterof OuterConductor65mm (0256 in) with BayonetLock — Characteristic Impedance 500hms (Type BNC), andAppendixA (1990), and AmendmentNo.1 (1996-03)

EC 60793-2 (1992-06), Optical Fibres — Part 2: ProductSpecifications

EC 60874-7 (1993-04), Connectors for OpticalF bres and Cables — Part 7: Sectional Specifications for Fbre Optic Connector — Type FC

3 Definition of terms

3.1 source form at: Data structure and docum entation which defines the bit-parallel input to the serialization process for a given high-definition

Copyright® 1998 by THE SOC ETY OF MOTION PICTURE AND TELEVISION ENGINEERS 595 W.Hautsdale Ave., White Phins, NY 10607 (914) 761-1100

Approved 0 ctober1,1998

television system . Source form ats are referenced in SMPTE 260M and ANS $I\!/\!\text{SMPTE}$ 274M .

32 interim specifications: Values given in brackets are interim and subject to revision following further investigation by the SMPTE Committee on Television Signal Technology (see 8.1.2, 8.1.9, 8.2.1, and 9.1).

4 Source form at data

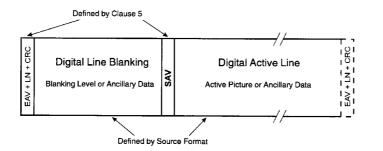
4.1 Source data shall be 10-bit words representing an $E_{Y}', E_{C_B}', E_{C_R}'$ signal, where E_{Y}' is one form atted parallel data stream and E_{C_B}', E_{C_R}' is a second form atted parallel data stream. This lim its the serial data rate to 1.5 Gb/s although the source form at parallel data may allow higher data rates for RGB or Y, C_B , C_R keytype operation.

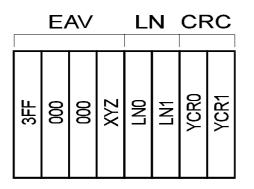
4.2 Data foreach television line are divided into four areas: SAV (start of active video) tim ing reference, digital active line, EAV (end of active video) tim ing reference, and digital line blanking as shown in figure 1. The num berofwords and defined data in each area are specified by the source form at docum ent.

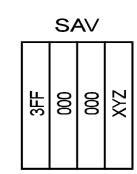
4.3 Since not all bit-parallel digital television data form ats have the same timing reference data, a modification may be required prior to multiplexing and serialization in order to meet the requirements of clause 5. Where additional words are required for EAV/SAV, data words from the adjacent digital blanking area shall be used. Modifications are typically made using a coprocessor in the parallel domain.

4.4 Parameters for referenced source formats are shown in table 1.

4.5 The total data rate is either 1.485 Gb/s or 1.485/1.001 Gb/s. In table 1, the form er is indicated by a data rate division of 1 and the latter by a divsorof M, which equals 1.001.




Figure 1 – Television horizontal line data


Table 1 – Source	form	atparam	eters
------------------	------	---------	-------

Reference SMPTE standard	26	0M	295M				27	4M				29	6M
Format	A	В	С	D	Е	F	G	Н	I	J	K	L	М
Lines per fram e	1125	1125	1250	1125	1125	1125	1125	1125	1125	1125	1125	750	750
W ords peractive line (each channely C_B/C_R)	1920	1920	1920	1920	1920	1920	1920	1920	1920	1920	1920	1280	1280
Totalactive lines	1035	1035	1080	1080	1080	1080	1080	1080	1080	1080	1080	720	720
W ords pertotal line (each channel Y C_B/C_R)	2200	2200	2376	2200	2200	2640	2200	2200	2640	2750	2750	1650	1650
Framerate (Hz)	30	30/M	25	30	30/M	25	30	30/M	25	24	24 <i>/</i> M	60	60/M
Fields perfram e	2	2	2	2	2	2	1	1	1	1	1	1	1
Data rate divisor (see 4.5)	1	М	1	1	М	1	1	М	1	1	М	1	М

5 Data form at

51 Digital active line and digital line blanking consist of 10-bit words as defined by the source form at docum ent. Data values 000_h to 003_h and $3FC_h$ to $3FF_h$ are excluded.

52 Timing references SAV, EAV, line number,

and CRCs for each of the two parallel data stream s shall be form atted as shown in figure 2 (see 4.3 $\,$

regarding possible modification of source data).

5.3 Timing reference codes shallbe as shown in

Figure 2 - Tim ing reference form at (lum inance channelshown)

table 2.

Table 2 - Tim ing reference codes

W ord	9 (MSB)	8	7	6	5	4	3	2	1	0 (LSB)
3FF	1	1	1	1	1	1	1	1	1	1
000	0	0	0	0	0	0	0	0	0	0
000	0	0	0	0	0	0	0	0	0	0
XYZ	1	F	V	Н	P 3	P 2	P1	P 0	0	0
4 MSB) in SAV;H = mostsig	nificantb	it;LSB = 1							
5 P0,1	P1, P2, P3 a	are prote	ction bits (defined be	ebw.					
	9	are protec	rtion bits o	defined be	ebw. 5	4	3	2	1	0 (TSP)
5 P0,E Bắ		_				4 P2	3 P1	2 ₽0	1 0 Fixed	0 (LSB) 0 Fixed
	9 (MSB) 1	8	7	6	5		-		0	(LSB) 0
BÌL	9 (MSB) 1 Fixed	8 F	7 V	6 H	5 ₽3	P2	P1	P 0	0 Fixed	(LSB) 0 Fixed
B並 200h	9 (MSB) 1 Fixed 1	8 F 0	7 V 0	6 H 0	5 P 3 0	P 2 0	P1 0	P 0 0	0 Fixed 0	(LSB) 0 Fixed 0
Bit 200h 274h	9 (MSB) 1 Fixed 1 1	8 F 0 0	7 V 0 0	6 H 0 1	5 P3 0 1	P2 0 1	P1 0 0	P0 0 1	0 Fixed 0 0	(LSB) 0 Fixed 0 0
Bit 200h 274h 2ACh	9 (MSB) 1 Fixed 1 1 1	8 F 0 0 0	7 V 0 0 1	6 H 0 1 0	5 P3 0 1 1	P2 0 1 0	P1 0 0 1	P0 0 1 1	0 Fixed 0 0 0	(LSB) 0 Fixed 0 0 0
Bit 200h 274h 2ACh 2D8h	9 MSB) 1 Fixed 1 1 1 1 1	8 F 0 0 0 0 0	7 V 0 0 1 1	6 H 0 1 0 1	5 P3 0 1 1 0	P2 0 1 0 1	P1 0 0 1 1	P 0 0 1 1 0	0 Fixed 0 0 0 0	(LSB) 0 Fixed 0 0 0 0 0
Bit 200h 274h 2ACh 2D8h 31Ch	9 MSB) 1 Fixed 1 1 1 1 1 1	8 F 0 0 0 0 0 1	7 V 0 0 1 1 0	6 H 0 1 0 1 0 0	5 P3 0 1 1 0 0	P2 0 1 0 1 1 1	P1 0 0 1 1 1	P 0 0 1 1 0 1	0 Fixed 0 0 0 0 0	(LSB) 0 Fixed 0 0 0 0 0 0

5.4 Line num berdata are com posed of two words and shallbe as shown in table 3.

5.5 CRC (cyclic redundancy codes) are used to detect errors in the active digital line and the EAV which follows it. The error detection code consists of two words determ ined by the polynom ialgenerator equation:

 $CRC(X) = X^{18} + X^5 + X^4 + 1$

The initialvalue of the CRC is set to zero. The calcuation starts at the first active line word and ends at the finalword of the line num ber, LN1.TwoCRCs are calculated, one for lum inance data, YCR, and one for cobr difference data, CCR. CRC data shall be as shown in table 4.

5.6 Available ancillary data space is defined by the source format. The ancillary data header shallconsist of the three words 000_h , $3FF_h$, $3FF_h$ with formatting of the ancillary data packet defined by SMPTE 291M . Data values $000_{\rm h}$ to $003_{\rm h} \text{ and } 3FC_{\rm h}$ to $3FF_{\rm h}$ are excluded from user ancillary data.

6 Serialdata form at

6.1 The two source form at parallel data stream s, with EAV and SAV constructed as defined in 5.3 through 5.5, shallbe interhaved as shown in figure 3.

6.2 Interleaved data shall be serialized with the LSB (least significant bit) of each data word transm itted first.

7 Channelcoding

7.1 The channelcoding scheme shallbe scram bled NRZI (non-return to zero inverted). (See annex A .)

72 The generator polynom alfor the scram bled NRZ shallbe $G_1(X) = X^9 + X^4 + 1$. Polarity-free scrambled NRZI sequence data shall be produced by $G_2(X) = X + 1$. The input signal to the scrambler shall be positive bgic. (The highest voltage represents data 1 and the bwestvoltage represents data 0.)

7.3 Data word length shallbe 10 bits.

Word	9 (MSB)	8	7	6	5	4	3	2	1	0 (LSB)
LN 0	notb8	L6	L5	L4	L3	L2	L1	L0	R	R
LN 1	notb8	R	R	R	L10	L9	L8	L7	R	R
NOTES	5									

Table 3 - Line num berdata

1 L0 - L10 = line num ber in binary code.

2 R = reserved, set to "0."

Table 4 – CRC data

W ord	9 (MSB)	8	7	6	5	4	3	2	1	0 (LSB)
YCR0	notb8	CRC8	CRC7	CRC6	CRC5	CRC4	CRC3	CRC2	CRC1	CRC0
YCR1	notb8	CRC17	CRC16	CRC15	CRC14	CRC13	CRC12	CRC11	CRC10	CRC9
CCRO	notb8	CRC8	CRC7	CRC6	CRC5	CRC4	CRC3	CRC2	CRC1	CRC0
CCR1	notb8	CRC17	CRC16	CRC15	CRC14	CRC13	CRC12	CRC11	CRC10	CRC9

8 Coaxialcable interface

8.1 Signal levels and specifications

These specifications are defined form easurem entof the serial output of a source derived from a parallel dom an signal whose tin ing and other characteristics meet good studio practices. Specifications at the output of equipment boated at other places in an all-serial digital chain are not addressed by this standard. 811 The output of the generators hall be measured across a 75-ohm resistive load connected through a 1-m coaxial cable. Figure 4 depicts the measurement dimensions for amplitude, risetime, and overshoot.

8.1.2 The generator shall have an unbalanced output circuit with a source impedance of 75 ohm s and a return bss of at least [15 dB] over a frequency range of 5 M H z to the clock frequency of the signal being transmitted.

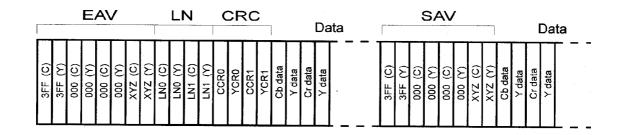


Figure 3 - Interleaved data stream

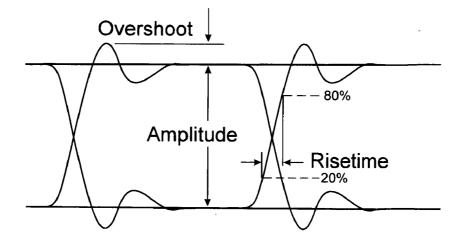


Figure 4 - W aveform m easurem entdim ensions

Page 5 of 9 pages

813 The peak-to-peak signalam plitude shall be $800 \text{ mV} \pm 10\%$ measured as specified in 811.

814 The dc offset, as defined by the m idam plitude point of the signal, shall be nom in ally 0.0 V \pm 0.5 V.

815 The rise and fall times, determined between the 20% and 80% amplitude points shall be no greater than 270 ps and shallnot differ by more than 100 ps.

81.6 Overshootof the rising and falling edges of the waveform shallnot exceed 10% of the amplitude.

81.7 Output am plitude excursions due to signals with a significant dc component occurring for a horizontal line (pathological signals) shall not exceed 50 m v above or bebw the average peak-to-peak signal envelope. (In effect, this specification defines a m inim um output coupling tim e constant.)

81.8 The jitter in the tim ing of the transitions of the data signalshallbe measured in accordance with SMPTE RP 184.Measurement parameters are defined in SMPTE RP 184 and shallhave the values shown in table 5 for com pliance with this standard.

NOTE —This clause will be updated editorially to bring tinto compliance with current SM PTE practices.

819 The receiver of the serial interface signal shall present an impedance of 75 ohm s with a return bss of at least [15 dB] over a frequency range of 5 MHz to the clock frequency of the signal being transmitted.

8.1.10 Receivers operating with input cable bases in the range of up to 20 dB at one-half the clock frequency are nom inal; however, receivers designed to work with greater or lesser signal attenuation are acceptable.

8.1.11 W hen connected to a line driver operating at the bwer lim it of voltage perm itted by 8.1.3, the receiverm ust sense correctly the binary data in the presence of the superim posed interfering signalat the following levels:

dc	±25V
Bebw 5 kHz	< 2.5 V p-p
5 kHz to 27 MHz	< 100 m V p-p
Above 27 MHz	<40 mVp-p

	ICD & S O MEI DP	
B1	10 H z	Tim ing jitter bwerband edge
B 2	100 kH z	A lignm ent jitter bw erband edge
В3	> 1/10 the clock rate	Upperband edge
A1	1 U I	Timing jitter (Note 1)
A2	.2 U I	Alignment jitter (UI= unit interval)
Testsignal	Cobrbartestsignal	(Note 2)
n	≠10 (preferred)	Serialclock divided (Note 3)

Table 5 – Jitter specifications

NOTES

1 Designers are cautioned that parallel signals conform ing to interconnection standards, such as SM PTE 260M, may contain jitter up to 2 ns p-p.D inect conversion of such signals from parallel to serial could result in excessive serial signal jitter.

2 Cobrbars are chosen as a nonstressing test signal for jitter measurements. Use of a stressing signal with long runs of zeros may give misleading results.

3 Use of a serial clock divider value of 10 m ay mask word correlated jtter components.

4 See SMPTE RP 184 for definition of terms.

NOTE - Receivers intended for use in environments with m inim um interfering signal levels do not need to meet the bw-frequency interference specifications of 8.1.11 (see annex B).

8.2 Connector and cable types

821 The connector shall have the mechanical characteristics conforming to the 50-ohm BNC type. Mechanical dimensions of the connector may produce either a nom inal 50-ohm ornom inal 75-ohm impedance and shall be usable at frequencies up to 2.4 GHz based on a return bss at1.5 GHz that is greater than [15 dB]. How ever, the electrical characteristics of the connector and its associated interface circuitry shall provide a resistive impedance of 75 ohms. W here a 75-ohm connector is used, its m echanical characteristics must reliably interface with the nom inal 50-ohm BNC type defined by IEC 60169-8.

822 Application of this standard does not require a particular type of coax. It is necessary for the frequency response of the coax bss, in

decibels, to be approximately proportional to $1\sqrt{f}$ from 1 MHz to the clock frequency of the signalbeing transm itted to ensure correctoperation of autom atic cable equalizers overm oderate to maximum lengths.

823 Return loss of the correctly term inated transmission line shall be greater than 15 dB over a frequency range of 5 $\rm M\,H\,z$ to the clock frequency of the signal being transmitted.

9 Optical fiber interface

The interface consists of one transmitter and one receiver in a point-to-point connection.

9.1 Source characteristics shallbe as shown in table 6.

92 Optical fiber characteristics shall be as shown in table 7.

93 Receiver characteristics shall be as shown in table 8.

0 ptical wave length	1310 nm ± 40 nm
Maximum spectalline width between half-powerpoints	10 nm
Outputpowermaximum	— 7.5 dBm
Outputpowerm in in um	—12 dBm
Rise and falltin es	< 270 ps (20% to 80%)
Extinction ratio	5:1 m in, 30:1 m ax
Jitter	[0.2 U I]
Maximum reflected power	4%

Table 6 - Optical source characteristics

1 Power is average powerm easured with an average-reading powerm eter. 2 R ise and fall times in the electrical dom ain must meet the requirements of8.1.5.

Table 7 – Optical fiber link characteristics

Fibertype	Single mode (EC 60793-2)
Connector (see figure 5)	Type SC/PC (EC 60874-7)

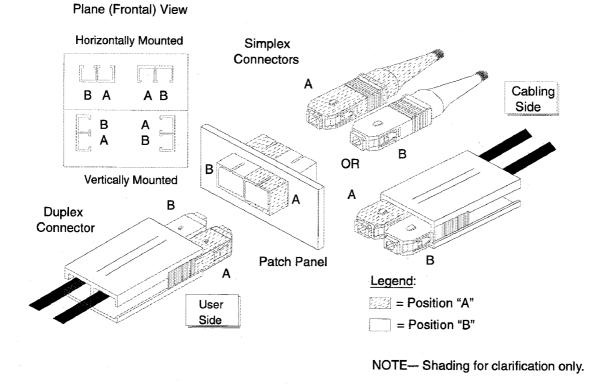


Figure 5 -SC connector (patch panelshown for inform ation only)

Table 8 – Optical n	eceiver characteristics
---------------------	-------------------------

Maximum inputpower	— 7.5 dBm
Minimum inputpower	-20 dBm
Detector dam age threshold	+ 1 dBm
Output rise and fall times	see 8.1.5
0 utput jitter	see 8.1.8

Annex A (informative) Channelcode

W hen scram bled NRZIchannelcoding is applied to certain video signals (informally called pathological signals), repeated bng strings of 19 or 20 zeros may occur during the period of one horizontal television line. A stressing test signal (SDIcheckfield, SM PTE RP 178) that produces this effect has been defined for 525- and 625-line component digital systems conform ing to ANSI/SMPTE 259M. An equivalent test signal is being developed by SMPTE for the serial HDTV system defined in this standard. Additional SMPTE work is in process to recommend methods that may be used to avoid the occurrence of pathological signals in normal television operations.

Annex B (informative) Receivertype

Receivers conforming to the specifications of 8.1.11 should be labeled "Type A."Receivers that may not conform to the specifications of 8.1.11 should be labeled "Type B."

Annex C (informative) Bibliography

ANSI/SMPTE 259M-1997, Television — 10-Bit 4:2:2 Component and $4f_{\rm gc}$ Composite Digital Signals — Serial Digital Interface

SM PTE RP 178-1996, SerialD igital Interface Checkfield for 10-B it 4:2:2 Component and $4\,f_{sc}$ Composite D igitalS ignals