

Рекомендация МСЭ-R BT.1618-1 (03/2011)

Структура данных для основанных на стандарте DV аудиосигналов, данных и сжатых видеоизображений, передаваемых со скоростью 25 и 50 Мбит/с

> Серия ВТ ная служба

Предисловие

Роль Сектора радиосвязи заключается в обеспечении рационального, справедливого, эффективного и экономичного использования радиочастотного спектра всеми службами радиосвязи, включая спутниковые службы, и проведении в неограниченном частотном диапазоне исследований, на основании которых принимаются Рекомендации.

Всемирные и региональные конференции радиосвязи и ассамблеи радиосвязи при поддержке исследовательских комиссий выполняют регламентарную и политическую функции Сектора радиосвязи.

Политика в области прав интеллектуальной собственности (ПИС)

Политика МСЭ-R в области ПИС излагается в общей патентной политике МСЭ-Т/МСЭ-R/ИСО/МЭК, упоминаемой в Приложении 1 к Резолюции 1 МСЭ-R. Формы, которые владельцам патентов следует использовать для представления патентных заявлений и деклараций о лицензировании, представлены по адресу: http://www.itu.int/ITU-R/go/patents/en, где также содержатся Руководящие принципы по выполнению общей патентной политики МСЭ-Т/МСЭ-R/ИСО/МЭК и база данных патентной информации МСЭ-R.

	Серии Рекомендаций МСЭ-R
	(Представлены также в онлайновой форме по адресу: http://www.itu.int/publ/R-REC/en .)
Серия	Название
во	Спутниковое радиовещание
BR	Запись для производства, архивирования и воспроизведения; пленки для телевидения
BS	Радиовещательная служба (звуковая)
BT	Радиовещательная служба (телевизионная)
F	Фиксированная служба
M	Подвижная спутниковая служба, спутниковая служба радиоопределения, любительская спутниковая служба и относящиеся к ним спутниковые службы
P	Распространение радиоволн
RA	Радиоастрономия
RS	Системы дистанционного зондирования
S	Фиксированная спутниковая служба
SA	Космические применения и метеорология
SF	Совместное использование частот и координация между системами фиксированной спутниковой службы и фиксированной службы
SM	Управление использованием спектра
SNG	Спутниковый сбор новостей
TF	Передача сигналов времени и эталонных частот
V	Словарь и связанные с ним вопросы

Примечание. – Настоящая Рекомендация МСЭ-R утверждена на английском языке в соответствии с процедурой, изложенной в Резолюции 1 МСЭ-R.

Электронная публикация Женева, 2011 г.

© ITU 2011

Все права сохранены. Ни одна из частей данной публикации не может быть воспроизведена с помощью каких бы то ни было средств без предварительного письменного разрешения МСЭ.

РЕКОМЕНДАЦИЯ МСЭ-R ВТ.1618-1

Структура данных для основанных на стандарте DV аудиосигналов, данных и сжатых видеоизображений, передаваемых со скоростью 25 и 50 Мбит/с

(Вопрос МСЭ-R 12/6)

(2003-2011)

Сфера применения

В настоящей Рекомендации установлена основанная на стандарте DV структура данных для интерфейса цифрового аудиосигнала, данных субкода и сжатых видеоизображений со следующими параметрами:

- система 525/60 структура дискретизации изображения 4:1:1, скорость передачи данных 25 Мбит/с;
- система 525/60 структура дискретизации изображения 4:2:2, скорость передачи данных 50 Мбит/с;
- система 625/50 структура дискретизации изображения 4:1:1, скорость передачи данных 25 Мбит/с;
- система 625/50 структура дискретизации изображения 4:2:2, скорость передачи данных 50 Мбит/с.

Ассамблея радиосвязи МСЭ,

учитывая,

- а) что в рамках профессионального телевизионного производства и постпроизводства были определены применения, для которых сжатие видеоизображений, основанных на стандарте DV, может предоставить эксплуатационные и экономические преимущества;
- b) что в рамках того же семейства алгоритмов сжатия были предложены три скорости передачи данных для обслуживания различных применений (25 Мбит/с, 50 Мбит/с и 100 Мбит/с);
- с) что сетки дискретизации для каждого из трех применений являются различными;
- d) что элементы аудиосигналов, вспомогательных данных и метаданных составляют неотъемлемую часть этих применений;
- е) что эти элементы мультиплексируются в один поток данных для транспортирования и дальнейшей обработки;
- f) что качество сжатия и функциональные характеристики должны быть идентичными и воспроизводимыми в комплексных производственных цепочках;
- g) что с этой целью следует определить все подробные данные, касающиеся параметров, которые используются для кодирования и мультиплексирования,

рекомендует

- 1 использовать параметры, приведенные в Приложении 1, для применений в профессиональном телевизионном производстве и постпроизводстве, в которых используется основанное на стандарте DV сжатие при скоростях 25 Мбит/с и 50 Мбит/с;
- 2 чтобы соблюдение положений настоящей Рекомендации осуществлялось на добровольной основе. Однако эта Рекомендация может содержать некоторые обязательные положения (например, для обеспечения функциональной совместимости или возможности применения), и в таком случае соблюдение Рекомендации достигается при выполнении всех этих обязательных положений. Для выражения требований используются слова "должен" ("shall") или некоторые другие обязывающие выражения, такие как "обязан" ("must"), а также их отрицательные формы. Употребление таких слов ни коим образом не следует интерпретировать как обязанность частичного или полного соблюдения положений настоящей Рекомендации.

Приложение 1

1 Интерфейс

1.1 Введение

Как показано на рисунке 1, обрабатываемые аудиосигналы, видеоизображения и данные субкода подаются для различных применений через порт цифрового интерфейса.

1.2 Структура данных

Структура данных сжатого потока на цифровом интерфейсе показана на рисунках 2 и 3. На рисунке 2 показана структура данных в структуре 50 Мбит/с, а на рисунке 3 показана структура данных в структуре 25 Мбит/с.

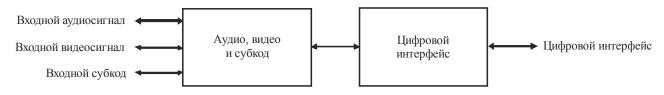
В структуре 50 Мбит/с данные одного кадра видеоизображения делятся на два канала. Каждый канал делится на 10 последовательностей DIF для системы 525/60 и на 12 последовательностей DIF для системы 625/50.

В структуре 25 Мбит/с данные одного кадра видеоизображения делятся на 10 последовательностей DIF для системы 525/60 и на 12 последовательностей DIF для системы 625/50.

Каждая последовательность DIF включает секцию заголовка, секцию субкода, секцию VAUX, секцию аудиосигнала и секцию видеоизображения, содержащие, соответственно следующее число блоков DIF:

 Секция заголовка:
 1 блок DIF

 Секция субкода:
 2 блока DIF


 Секция VAUX:
 3 блока DIF

 Секция аудиосигнала:
 9 блоков DIF

 Секция видеоизображения:
 135 блоков DIF.

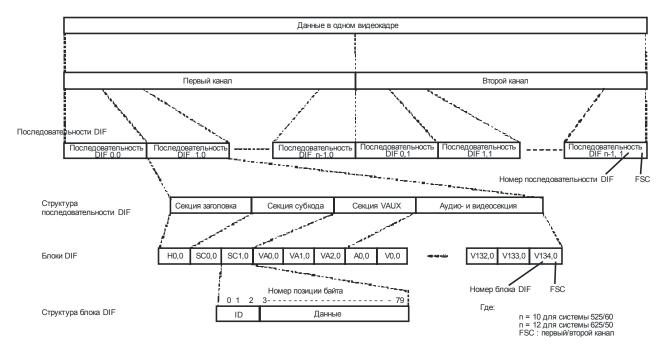

Как показано на рисунках 2 и 3, каждый блок DIF включает 3-байтовый идентификатор и данные в размере 77 байтов. Байты данных DIF пронумерованы от 0 до 79. На рисунке 4 показана структура данных последовательности DIF для структуры 50 или 25 Мбит/с.

РИСУНОК 1 Блок-схема цифрового интерфейса

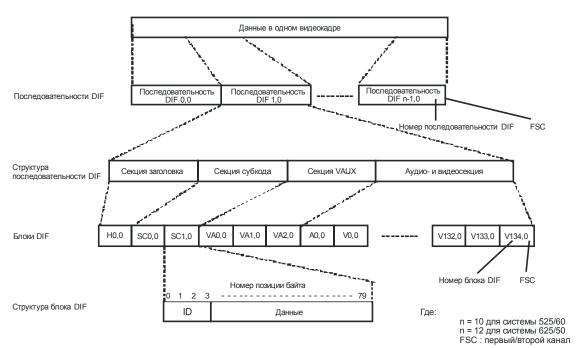

BT.1618-01

РИСУНОК 2 Структура данных одного видеокадра в структуре 50 Мбит/с

BT.1618-02

РИСУНОК 3 Структура данных одного видеокадра в структуре 50 Мбит/с

BT.1618-03

РИСУНОК 4

Структура данных последовательности DIF

Блоки DIF	H0,i	SC0,i	SC1,i	VA0,i	VA1,i	VA2,i	1									
							-									
	A0,i	V0,i	V1,i	V2,i	V3,i	V4,i	V5,i	V6,i	V7,i	V8,i	V9,i	V10,i	V11,i	V12,i	V13,i	V14,i
	A1,i	V15,i	V16,i	V17,i	V18,i	V19,i	V20,i	V21,i	V22,i	V23,i	V24,i	V25,i	V26,i	V27,i	V28,i	V29,i
	A2,i	V30,i	V31,i	V32,i	V33,i	V34,i	V35,i	V36,i	V37,i	V38,i	V39,i	V40,i	V41,i	V42,i	V43,i	V44,i
	A3,i	V45,i	V46,i	V47,i	V48,i	V49,i	V50,i	V51,i	V52,i	V53,i	V54,i	V55,i	V56,i	V57,i	V58,i	V59,i
	A4,i	V60,i	V61,i	V62,i	V63,i	V64,i	V65,i	V66,i	V67,i	V68,i	V69,i	V70,i	V71,i	V72,i	V73,i	V74,i
	A5,i	V75,i	V76,i	V77,i	V78,i	V79,i	V80,i	V81,i	V82,i	V83,i	V84,i	V85,i	V86,i	V87,i	V88,i	V89,i
	A6,i	V90,i	V91,i	V92,i	V93,i	V94,i	V95,i	V96,i	V97,i	V98,i	V99,i	V100,i	V101,i	V102,i	V103,i	V104,i
	A7,i	V105,i	V106,i	V107,i	V108,i	V109,i	V110,i	V111,i	V112,i	V113,i	V114,i	V115,i	V116,i	V117,i	V118,i	V119,i
	A8,i	V120,i	V121,i	V122,i	V123,i	V124,i	V125,i	V126,i	V127,i	V128,i	V129,I	V130,i	V131,i	V132,i	V133,i	V134,i
														ŀ		пока DIF Г.1618-04
															Б	1.1010-04

где:

i: FSC

i=0 для структуры 25 Мбит/с

i = 0,1 для структуры 50 Мбит/с

H0,i: блок DIF в секции заголовка

SC0,i-SC1,i: блоки DIF в секции субкода

VA0,i-VA2,i: блоки DIF в секции VAUX

A0,i-A8,i: блоки DIF в секции аудиосигнала

V0,i-V134,i: блоки DIF в секции видеоизображения.

1.3 Секция заголовка

1.3.1 Идентификатор

Часть идентификатора каждого блока DIF в секции заголовка, показанной на рисунках 2 и 3, состоит из трех байтов (ID0, ID1, ID2). В таблице 1 показано содержание идентификатора блока DIF.

ТАБЛИЦА 1 Данные идентификатора блока DIF

	Номер позиции байта								
	Байт 0 (ID0)	Байт 1 (ID1)	Байт 2 (ID2)						
MSB	SCT ₂	Dseq ₃	DBN ₇						
	SCT_1	Dseq ₂	DBN_6						
	SCT_0	$Dseq_1$	DBN_5						
	Res	$Dseq_0$	$\mathrm{DBN_4}$						
	Arb	FSC	DBN_3						
	Arb	Res	DBN_2						
	Arb	Res	DBN_1						
LSB	Arb	Res	DBN_0						

Идентификатор содержит следующую информацию:

SCT: тип секции (см. таблицу 2)

Dseq: номер последовательности DIF (см. таблицы 3 и 4)

FSC: обозначение блока DIF в каждом канале структуры 50 Мбит/с

FSC = 0: первый канал

FSC = 1: второй канал структуры 25 Мбит/с

FSC = 0

DBN: номер блока DIF (см. таблицу 5)

Arb: произвольный бит

Res: бит, зарезервированный для будущего использования

Значение по умолчанию должно быть установлено в 1.

ТАБЛИЦА 2

Тип секции

SCT ₂	SCT ₁	SCT ₀	Тип секции
0	0	0	Заголовок
0	0	1	Субкод
0	1	0	VAUX
0	1	1	Аудиосигнал
1	0	0	Аудиосигнал
1	0	1	
1	1	0	Зарезервировано
1	1	1	

ТАБЛИЦА 3 Номер последовательности DIF для системы **525/60**

Dseq ₃	Dseq ₂	Dseq ₁	Dseq ₀	Значение
0	0	0	0	Номер последовательности DIF 0
0	0	0	1	Номер последовательности DIF 1
0	0	1	0	Номер последовательности DIF 2
0	0	1	1	Номер последовательности DIF 3
0	1	0	0	Номер последовательности DIF 4
0	1	0	1	Номер последовательности DIF 5
0	1	1	0	Номер последовательности DIF 6
0	1	1	1	Номер последовательности DIF 7
1	0	0	0	Номер последовательности DIF 8
1	0	0	1	Номер последовательности DIF 9
1	0	1	0	Не используется
1	0	1	1	Не используется
1	1	0	0	Не используется
1	1	0	1	Не используется
1	1	1	0	Не используется
1	1	1	1	Не используется

ТАБЛИЦА 4 Номер последовательности DIF для системы 625/50

Dseq ₃	Dseq ₂	Dseq ₁	Dseq ₀	Значение
0	0	0	0	Номер последовательности DIF 0
0	0	0	1	Номер последовательности DIF 1
0	0	1	0	Номер последовательности DIF 2
0	0	1	1	Номер последовательности DIF 3
0	1	0	0	Номер последовательности DIF 4
0	1	0	1	Номер последовательности DIF 5
0	1	1	0	Номер последовательности DIF 6
0	1	1	1	Номер последовательности DIF 7
1	0	0	0	Номер последовательности DIF 8
1	0	0	1	Номер последовательности DIF 9
1	0	1	0	Номер последовательности DIF 10
1	0	1	1	Номер последовательности DIF 11
1	1	0	0	Не используется
1	1	0	1	Не используется
1	1	1	0	Не используется
1	1	1	1	Не используется

ТАБЛИЦА 5

Номер блока DIF

Dseq ₇	Dseq ₆	Dseq ₅	Dseq ₄	Dseq ₃	Dseq ₂	Dseq ₁	Dseq ₀	Значение
0	0	0	0	0	0	0	0	Номер последовательности DIF 0
0	0	0	0	0	0	0	1	Номер последовательности DIF 1
0	0	0	0	0	0	1	0	Номер последовательности DIF 2
0	0	0	0	0	0	1	1	Номер последовательности DIF 3
:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:
:	:	:	:	•	•	:		:
1	0	0	0	0	1	1	0	Номер блока DIF 134
1	0	0	0	0	1	1	1	Не используется
:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	1	Не используется

1.3.2 Данные

Часть данных (полезная нагрузка) каждого блока DIF в секции заголовка показана в таблице 6. Байты 3–7 являются активными, а байты 8–79 зарезервированы.

ТАБЛИЦА 6 Данные (полезная нагрузка) в блоке DIF заголовка

Номер позиции байта блока DIF заголовка

	3	4	5	6	7	8	_	79
MSB	DSF	Res	TF1	TF2	TF3	Res	Res	Res
	0	Res	Res	Res	Res	Res	Res	Res
	Res	Res	Res	Res	Res	Res	Res	Res
	Res	Res	Res	Res	Res	Res	Res	Res
	Res	Res	Res	Res	Res	Res	Res	Res
	Res	APT2	AP12	AP22	AP32	Res	Res	Res
	Res	APT1	AP11	AP21	AP31	Res	Res	Res
LSB	Res	APT0	AP10	AP20	AP30	Res	Res	Res

DSF: флаг последовательности DIF

DSF = 0: 10 последовательностей DIF, включенных в канал (система 525/60)

DSF = 1: 12 последовательностей DIF, включенных в канал (система 625/50)

APTn, AP1n, AP2n и AP3n: эти данные должны быть идентичны идентификаторам применения дорожки (APTn = 001, AP1n = 001, AP2n = 001, AP3n = 001), если источником сигнала является цифровой кассетный видеомагнитофон (VCR). Если источник сигнала неизвестен, то все биты для этих данных должны быть установлены в 1.

ТГ: флаг передачи

TF1: флаг передачи блоков DIF аудиосигнала

TF2: флаг передачи блоков DIF VAUX и видеоизображения

TF3: флаг передачи блоков DIF субкода

TFn = 0: данные должны быть действительными

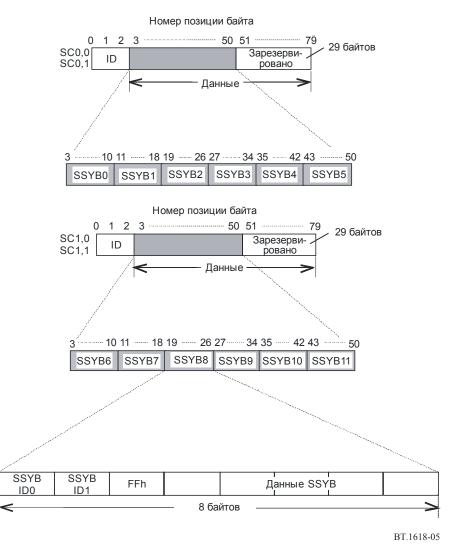
TFn = 1: данные должны быть недействительными

Res: бит, зарезервированный для будущего использования

Значение по умолчанию должно быть установлено в 1.

1.4 Секция субкода

1.4.1 Идентификатор


Часть идентификатора каждого блока DIF в секции субкода должна быть такой же, как описано в п. 1.3.1. Тип секции должен быть 001.

1.4.2 Данные

Часть данных (полезная нагрузка) каждого блока DIF в секции субкода показана на рисунке 5. Данные субкода состоят из 6 блоков SSYB, длина каждого из которых равна 8 байтов, и зарезервированной области размером 29 байтов в каждом соответствующем блоке DIF. Блоки SSYB в последовательности DIF пронумерованы от 0 до 11. Каждый блок SSYB должен состоять из идентификатора SSYB длиной 2 байта, FF_h и полезной нагрузки данных SSYB длиной 5 байтов.

РИСУНОК 5

Данные в секции субкода

1.4.2.1 Идентификатор SSYB

В таблице 7 показан идентификатор SSYB (ID0, ID1). Эти данные содержат идентификатор FR, идентификатор применения ($AP3_2$, $AP3_1$, $AP3_0$) и номер SSYB (Syb_3 , Syb_2 , Syb_1 , Syb_0).

Идентификатор FR служит для обозначения первой и второй половины каждого канала:

FR = 1: первая половина каждого канала

FR = 0: вторая половина каждого канала

Первая половина каждого канала

Номер последовательности DIF 0, 1, 2, 3, 4 для системы 525/60

Номер последовательности DIF 0, 1, 2, 3, 4, 5 для системы 625/50

Вторая половина каждого канала

Номер последовательности DIF 5, 6, 7, 8, 9 для системы 525/60

Номер последовательности DIF 6, 7, 8, 9, 10, 11 для системы 625/50

Если информация недоступна, все биты должны быть установлены в 1.

ТАБЛИЦА 7	'
Идентификатор	SSYB

Позиция	· · · · · · · · · · · · · · · · · · ·		Номер 1-5 и		Hoмер SSYB 11		
бита	ID0	ID1	ID0	ID1	ID0	ID1	
b7 (MSB)	FR	Arb	FR	Arb	FR	Arb	
b6	AP3 ₂	Arb	Res	Arb	APT_2	Arb	
b5	AP3 ₁	Arb	Res	Arb	APT_1	Arb	
b4	$AP3_0$	Arb	Res	Arb	APT_0	Arb	
b3	Arb	Syb ₃	Arb	Syb_3	Arb	Syb_3	
b2	Arb	Syb_2	Arb	Syb_2	Arb	Syb_2	
b1	Arb	Syb_1	Arb	Syb_1	Arb	Syb_1	
b0 (LSB)	Arb	Syb_0	Arb	Syb_0	Arb	Syb_0	

ПРИМЕЧАНИЕ 1. – Arb = произвольный бит.

1.4.2.2 Данные SSYB

Каждая полезная нагрузка данных SSYB состоит из пакета размером 5 байтов, как показано на рисунке 6. Таблица 8 представляет собой таблицу заголовка пакета (организация байта PC0). В таблице 9 показана структура пакета в данных SSYB для каждого канала.

РИСУНОК 6 Пакет в данных SSYB

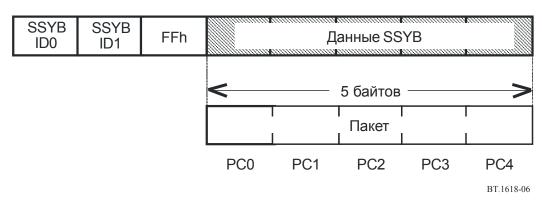


ТАБЛИЦА 8

Таблица заголовка пакета

ВЕРХНИЙ НИЖНИЙ	0000	0001	0010	0011	0100	0101	0110	0111	-	1111
0000						источник	ИСТОЧНИК			
0001						УПРАВЛЕНИЕ ИСТОЧНИКОМ	УПРАВЛЕНИЕ ИСТОЧНИКОМ			
0010										
0011		ВРЕМЕННОЙ КОД								
0100		ДВОИЧНАЯ ГРУППА								
0101										
1111										НЕТ ИНФОР- МАЦИИ

ТАБЛИЦА 9 Преобразование пакета в данные SSYB

Номер SSYB	Первая половина каждого канала	Вторая половина каждого канала
0	Зарезервировано	Зарезервировано
1	Зарезервировано	Зарезервировано
2	Зарезервировано	Зарезервировано
3	TC	TC
4	BG	Зарезервировано
5	TC	Зарезервировано
6	Зарезервировано	Зарезервировано
7	Зарезервировано	Зарезервировано
8	Зарезервировано	Зарезервировано
9	TC	TC
10	BG	Зарезервировано
11	TC	Зарезервировано

ПРИМЕЧАНИЕ 1. – ТС = пакет временного кода.

ПРИМЕЧАНИЕ 2. – BG = пакет двоичного кода.

ПРИМЕЧАНИЕ 3. – Зарезервировано = значение по умолчанию всех битов должно быть установлено в 1.

ПРИМЕЧАНИЕ 4. – Данные TC и BG одинаковы в пределах одного кадра. Тип данных временного кода – LCT.

1.4.2.2.1 Пакет временного кода

В таблице 10 показано преобразование пакета временного кода (ТС). Данные временного кода, преобразуемые в пакеты временного кода, остаются одинаковыми в пределах каждого видеокадра.

ТАБЛИЦА 10 Преобразование пакета временного кода

Система 525/60

	MSB							LSB
PC0	0	0	0	1	0	0	1	1
PC1	CF	DF	ДЕСЯТКИ КАДРОВ		ЕДИНИЦЫ КАДРОВ			
PC2	PC	ДЕСЯТ	ГКИ СЕК	СУНД	EД	циниць	І СЕКУІ	НД
PC3	BGF0	ДЕСЯ	ТКИ МИ	НУТ	E	диниці	ы минх	/T
PC4	BGF2	BGF1		ЯТКИ СОВ	E,	диниц	Ы ЧАСС	В

Система 625/50

	MSB							LSB
PC0	0	0	0	1	0	0	1	1
PC1	CF	Arb	ДЕСЯТКИ КАДРОВ		ЕЛИНИНЫ КАЛРОВ			ОВ
PC2	BGF0	ДЕСЯТ	ДЕСЯТКИ СЕКУНД			циниць	і СЕКУІ	НД
PC3	BGF2	ДЕСЯ	ДЕСЯТКИ МИНУТ			диниці	Ы МИНХ	/T
PC4	PC	BGF1	BGF1 ДЕСЯТКИ ЧАСОВ ЕДИНИЦЫ ЧАС		Ы ЧАСС	В		

ПРИМЕЧАНИЕ 1. – Подробная информация содержится в Рекомендации МСЭ R BR.780-2.

СГ: цветовой кадр

0 = несинхронизированный режим

1 = синхронизированный режим

DF: флаг пропуска кадров

0 = временной код без пропуска кадров

1 = временной код с пропуском кадров

РС: коррекция полярности двухфазной метки

0 =четный

1 = нечетный

BGF: флаг двоичной группы

Arb: произвольный бит.

1.4.2.2.2 Пакет двоичной группы

В таблице 11 показано преобразование пакета двоичной группы (ВG). Данные двоичной группы, преобразуемые в пакеты двоичной группы, остаются одинаковыми в пределах каждого кадра.

ТАБЛИЦА 11 Преобразование пакета двоичной группы

	MSB						LSB		
PC0	0	0	0	1	0	1	0	0	
PC1	ДВО	ОИЧНАЯ	ГРУПП	A 2	ДВОИЧНАЯ ГРУППА 1				
PC2	ДВО	ОИЧНАЯ	ГРУПП	A 4	ДВ	ОИЧНАЯ	Я ГРУПГ	IA 3	
PC3	ДВО	РИЧНАЯ	І ГРУПП	A 6	ДВ	ОИЧНА	Я ГРУПГ	IA 5	
PC4	ДВО	ОИЧНАЯ	ГРУПП	A 8	ДВ	ОИЧНАЯ	Я ГРУПГ	IA 7	

1.5 Секция VAUX

1.5.1 Идентификатор

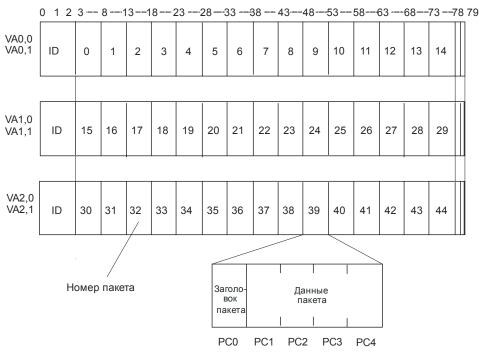
Часть идентификатора каждого блока DIF в секции VAUX описана в п. 1.3.1. Тип секции должен быть 010.

1.5.2 Данные

Часть данных (полезная нагрузка) каждого блока DIF в секции VAUX показана на рисунке 7. На этом рисунке показана структура пакета VAUX для каждой последовательности DIF.

Имеется 15 пакетов, длина каждого из которых равна 5 байтам, и два зарезервированных байта в каждой полезной нагрузке блока DIF секции VAUX. Значение по умолчанию зарезервированного байта установлено в FF_h .

Таким образом, в последовательности DIF насчитывается 45 пакетов. Пакеты VAUX в блоках DIF последовательно пронумерованы от 0 до 44. Этот номер называется номером видеопакета.


В таблице 12 показано преобразование пакетов VAUX блоков DIF VAUX. В каждом кадре сжатого видеоизображения должны быть один пакет источника VAUX (VS) и один пакет управления источником VAUX (VSC). Оставшиеся пакеты VAUX блоков DIF в последовательности DIF зарезервированы, и значение всех зарезервированных слов установлено в FF_h.

Если данные VAUX не передаются, то передается пакет "HET ИНФОРМАЦИИ" (NO INFO), который заполнен FF_h .

РИСУНОК 7

Данные в секции VAUX

Номер позиции байта

BT 1618-07

ТАБЛИЦА 12 Преобразование пакета VAUX в последовательность DIF

Номер		
Четная последовательность DIF	Нечетная последовательность DIF	Данные пакета
39	0	VS
40	1	VSC

где:

Четная последовательность DIF:

Номер 0, 2, 4, 6, 8 последовательности DIF для системы 525/60

Номер 0, 2, 4, 6, 8, 10 последовательности DIF для системы 625/50.

Нечетная последовательность DIF:

Номер 1, 3, 5, 7, 9 последовательности DIF для системы 525/60

Номер 1, 3, 5, 7, 9, 11 последовательности DIF для системы 625/50.

1.5.2.1 Пакет источника VAUX (VS)

В таблице 13 показано преобразование пакета источника VAUX.

LSB

ТАБЛИЦА 13

Преобразование пакета источника VAUX

PC0	0	1	1	0	0	0	0	0
PC1	Res	Res	Res	Res	Res	Res	Res	Res
PC2	B/W	EN	CLF		Res	Res	Res	Res
PC3	Res	Res	50/60	STYPE				
PC4	VISC							

В/W: флаг черно-белого изображения

MSB

0 = черно-белое изображение

1 = цветное изображение

EN: флаг включения для цветовых кадров

0 = CLF действительный

1 = CLF недействительный

CLF: код идентификации цветового кадра (см. МСЭ-R BT.1700)

Для системы 525/60:

00b = цветовой кадр A

01b = цветовой кадр В

Другие = зарезервированы

Для системы 625/50:

00b = 1-е, 2-е поле

01b = 3-e, 4-e поле

10b = 5-e, 6-e поле

11b = 7-е, 8-е поле

50/60:

0 = система 60 полей

1 = система 50 полей

STYPE: STYPE определяет тип сигнала для видеосигнала

00000b = формат сжатия 4:1:1

00001b = зарезервировано

00011b = зарезервировано

00100b = формат сжатия 4:2:2

00101b = зарезервировано

11111b = зарезервировано

VISC:

Res: бит, зарезервированный для будущего использования

Значение по умолчанию должно быть установлено в 1.

1.5.2.2 Пакет управления источником VAUX (VSC)

В таблице 14 показано преобразование пакета управления источником VAUX.

ТАБЛИЦА 14 Преобразование пакета управления источником VAUX

LSB

PC₀ 1 0 0 0 1 0 PC1 **CGMS** Res Res Res Res Res Res Res PC2 0 0 Res DISP Res PC3 FF FS FCIL Res Res 0 0 PC4 Res Res Res Res Res Res Res Res

CGMS: система управления созданием копий

MSB

CGMS	Возможность создания копии
0 0	Без создания копии
0 1	
1 0	Зарезервировано
1 1	

DISP: режим выбора формата отображения

DISP	Формат кадра и формат отображения Положение					
0 0 0	4:3, полноформатное изображение Не применяется					
0 0 1	Зарезервировано					
0 1 0	16:9, полноформатное (сжатое) изображение Не применяется					
0 1 1						
	Зарезервировано					
1 1 1						

FF: флаг кадра/поля

Флаг FF указывает, доставляются ли два последовательных поля или одно поле повторяется дважды в течение одного периода кадра.

0 = только одно из двух полей доставляется дважды

1 = оба поля доставляются по порядку

FS: флаг первого/второго поля

Флаг FS указывает поле, которое доставляется в течение периода одного поля.

0 = доставляется поле 2

1 =доставляется поле 1.

FF	FS	Поле на выходе
1	1	Поле 1 и поле 2 подаются на выход в этом порядке (последовательность 1, 2)
1	0	Поле 2 и поле 1 подаются на выход в этом порядке (последовательность 2, 1)
0	1	Поле 1 подается на выход дважды
0	1	Поле 2 подается на выход дважды

FC: флаг изменения кадра

Флаг FC указывает, повторяется ли изображение текущего кадра на основе непосредственно предшествующего ему кадра.

0 = такое же изображение, как и в предыдущем кадре

1 = изображение, отличное от предыдущего кадра

IL: флаг чересстрочной развертки

0 = прогрессивная развертка

1 = чересстрочная развертка

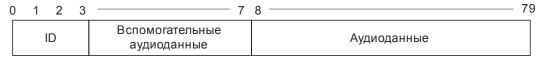
Res: бит, зарезервированный для будущего использования

Значение по умолчанию должно быть установлено в 1.

1.6 Секция аудиосигнала

1.6.1 Идентификатор

Часть идентификатора каждого блока DIF в секции аудиосигнала описана в п. 1.3.1. Тип секции должен быть 011.


1.6.2 Данные

Часть данных (полезная нагрузка) каждого блока DIF в секции аудиосигнала показана на рисунке 8. Данные блока DIF в аудиосекции состоят из 5 байтов вспомогательных аудиоданных (AAUX) и 72 байтов аудиоданных, которые закодированы и перемешаны в соответствии с процессом, описанным в пп. 1.6.2.1 и 1.6.2.2.

РИСУНОК 8

Данные в секции аудиосигнала

Номер позиции байта

BT.1618-08

1.6.2.1 Кодирование аудиосигнала

1.6.2.1.1 Кодирование источника

Каждый входной аудиосигнал должен быть дискретизирован с частотой 48 кГц при 16-битовом квантовании. Система обеспечивает два аудиоканала для структуры 25 Мбит/с или четыре аудиоканала для структуры 50 Мбит/с. Аудиоданные для каждого аудиоканала расположены в соответствующем аудиоблоке.

Аудиоблок состоит из 45 блоков DIF (9 блоков DIF \times 5 последовательностей DIF) для системы 525/60; и из 54 блоков DIF (9 блоков DIF \times 6 последовательностей DIF) для системы 625/50.

1.6.2.1.2 Предыскажение

Кодирование аудиосигнала осуществляется с использованием предыскажения первого порядка 50/15 мкс. При записи аналогового входного сигнала предыскажение в состоянии по умолчанию должно быть отключено.

1.6.2.1.3 Код ошибки аудиосигнала

В закодированных данных аудиосигнала значение 8000_h следует присвоить в качестве кода ошибки аудиосигнала для указания недействительного отсчета аудиосигнала. Этот код соответствует отрицательному полномасштабному значению, представленному в обычном дополнительном коде. Если закодированные данные включают значение 8000_h , то оно должно быть преобразовано в 8001_h .

1.6.2.1.4 Относительная синхронизация аудио- и видеосигналов

Длительность аудиокадра равна периоду видеокадра. Аудиокадр начинается с отсчета аудиосигнала, сделанного в пределах длительности минус 50 отсчетов относительно нулевых отсчетов, считая от первого уравнивающего переднего импульса в полевом интервале гашения входного видеосигнала. Первый уравнивающий передний импульс означает начало строки номер 1 для системы 525/60 и середину строки номер 623 для системы 625/50.

1.6.2.1.5 Обработка аудиокадра

В настоящей Рекомендации приводится описание обработки аудиокадра в синхронном режиме.

Частота дискретизации аудиосигнала синхронизируется с частотой видеокадров. Аудиоданные обрабатываются покадрово. Для одного аудиоканала в каждом кадре содержится 1602 или 1600 отсчетов аудиосигнала для системы 525/60 или 1920 отсчетов аудиосигнала для системы 625/50. Для системы 525/60 число отсчетов аудиосигналов на один аудиокадр должно соответствовать последовательности из пяти кадров, как показано ниже:

1600, 1602, 1602, 1602, 1602 отсчетов.

Применительно к отсчетам аудиосигналов должна обеспечиваться возможность формирования 1620 отсчетов на кадр для системы 525/60 или 1944 отсчетов на кадр для системы 625/50. Неиспользованное пространство в конце каждого кадра заполняется произвольными значениями.

1.6.2.2 Перемешивание аудиоданных

16-битовое слово аудиоданных делится на два байта: верхний байт, который содержит самый старший двоичный разряд (MSB), и нижний байт, содержащий самый младший двоичный разряд (LSB), как показано на рисунке 9. Аудиоданные должны быть перемешаны в пределах последовательностей DIF и блоков DIF в рамках кадра. Байты данных определяются последовательностью D_n ($n=0,1,2,\ldots$), разбитой в рамках аудиокадра на n выборок, в которой каждый элемент D_n перемешан.

Данные должны быть перемешаны с помощью процесса, выражаемого следующими уравнениями:

Система 525/60:

Номер последовательности DIF:

$$(INT (n/3) + 2 \times (n \mod 3)) \mod 5$$
 для каналов CH1, CH3

(INT
$$(n/3) + 2 \times (n \mod 3)$$
) mod $5 + 5$ для каналов CH2, CH4

Номер аудиоблока DIF:

$$3 \times (n \mod 3) + INT ((n \mod 45) / 15)$$

 Γ де FSC = 0: CH1, CH2

Номер позиции байта:

 $8 + 2 \times INT(n/45)$ для самого старшего двоичного разряда

 $9 + 2 \times INT(n/45)$ для самого младшего двоичного разряда

где n = от 0 до 1619

Система 625/50:

Номер последовательности DIF:

(INT
$$(n/3) + 2 \times (n \mod 3)$$
) mod 6 для каналов CH1, CH3

(INT
$$(n/3) + 2 \times (n \mod 3)$$
) mod $6 + 6$ для каналов CH2, CH4

Номер аудиоблока DIF:

$$3 \times (n \mod 3) + INT ((n \mod 54) / 18)$$

где FSC = 0: CH1, CH2

Номер позиции байта:

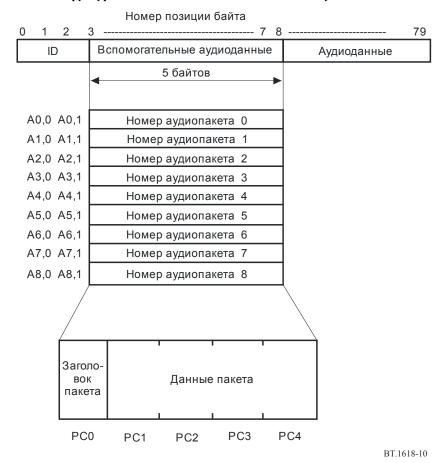

 $8 + 2 \times INT(n/54)$ для самого старшего двоичного разряда

 $9 + 2 \times INT(n/54)$ для самого младшего двоичного разряда

где n = от 0 до 1943

РИСУНОК 9

Преобразование отсчета аудиосигнала в байты аудиоданных



BT.1618-09

1.6.2.3 Вспомогательные аудиоданные

Вспомогательные аудиоданные (AAUX) должны добавляться к перемешанным аудиоданным, как показано на рисунках 8 и 10. Пакет AAUX должен включать заголовок пакета AAUX и данные (полезная нагрузка AAUX). Длина пакета AAUX должна составлять 5 байтов, как показано на рисунке 10, описывающем структуру пакета AAUX. Пакеты пронумерованы от 0 до 8, как показано на рисунке 10. Этот номер называется номером аудиопакета.

РИСУНОК 10 Структура пакетов AAUX во вспомогательных аудиоданных

В таблице 15 показано преобразование пакета AAUX. В сжатый поток должны быть включены один пакет источника AAUX (AS) и один пакет управления источником (ASC).

ТАБЛИЦА 15 Преобразование пакета AAUX в последовательность DIF

Номер ауд		
Четная последовательность DIF	Нечетная последовательность DIF	Данные пакета
3	0	AS
4	1	ASC

где:

Четная последовательность DIF:

номер 0, 2, 4, 6, 8 последовательности DIF для системы 525/60

номер 0, 2, 4, 6, 8, 10 последовательности DIF для системы 625/50.

Нечетная последовательность:

номер 1, 3, 5, 7, 9 последовательности DIF для системы 525/60

номер 1, 3, 5, 7, 9, 11 последовательности DIF для системы 625/50.

1.6.2.3.1 Пакет источника AAUX

Пакет источника (AS) имеет структуру, приведенную в таблице 16.

ТАБЛИЦА 16 Преобразование пакета источника AAUX

	MSB							LSB
PC0	0	1	0	1	0	0	0	0
PC1	LF	Res		AF SIZE				
PC2	0	CI	ΗN	Res	AUDIO MODE			
PC3	Res	Res	50/60	STYPE				
PC4	Res	Res	SMP		QU			

LF: флаг синхронного режима

Условие синхронизации частоты дискретизации аудиосигнала с видеосигналом

0 =синхронный режим; 1 =зарезервировано

AF SIZE: количество отсчетов аудиосигнала на кадр

 $010100b = 1\ 600\$ отсчетов/кадр (система 525/60)

010110b = 1 602 отсчетов/кадр (система 525/60)

011000b = 1 920 отсчетов/кадр (система 625/50)

Другие = зарезервированы

CHN: количество аудиоканалов в аудиоблоке

00b = один аудиоканал на аудиоблок

Другие = зарезервированы

Аудиоблок состоит из 45 блоков DIF секции аудиосигнала в пяти последовательных последовательностях DIF для системы 525/60 и 54 блоков DIF секции аудиосигнала в пяти последовательных последовательностях DIF для системы 625/50.

AUDIO MODE: содержание аудиосигнала в каждом аудиоканале

0000b = аудиоканалы СН1 (СН3)

0001b = аудиоканалы CH2 (CH4)

1111b = недействительные аудиоданные

Другие = зарезервированы

50/60:

0 = система 60 полей

1 = система 50 полей

STYPE: STYPE определяет количество аудиоблоков на видеокадр

00000b = 2 аудиоблока

00010b = 4 аудиоблока

Другие = зарезервированы

SMP: частота дискретизации

 $000b = 48 \ к\Gamma$ ц

Другие = зарезервированы

QU: квантование

000b = линейное 16-битовое

MSB

Другие = зарезервированы

Res: бит, зарезервированный для будущего использования

Значение по умолчанию должно быть установлено в 1.

1.6.2.3.2 Пакет управления источником AAUX

Пакет управления источником AAUX (ASC) имеет структуру, приведенную в таблице 17.

ТАБЛИЦА 17 Преобразование пакета управления источником AAUX

LSR

	MISD							ESB
PC0	0	1	0	1	0	0	0	1
PC1	CGMS		Res	Res	Res	Res	EI	FC
PC2	REC ST	REC END	FADE ST	FADE END	Res	Res	Res	Res
PC3	DRF		SPEED					
PC4	Res	Res	Res	Res	Res	Res	Res	Res

CGMS: система управления созданием копий.

CGMS	Возможность создания копии
0 0	Без создания копии
0 1	
1 0	Зарезервировано
1 1	

EFC: флаг предыскажения аудиоканала

00b = предыскажение выключено

01b = предыскажение включено

Другие = зарезервированы

ЕГС должно быть установлено для каждого аудиоблока.

REC ST: точка начала записи

0 = точка начала записи

1 = не точка начала записи

В кадре начала записи значение REC ST = 0 сохраняется в течение длительности одного аудиоблока, равной пяти или шести последовательностям DIF для каждого аудиоканала.

REC END: конец записи

0 = конец записи

1 = не конец записи

В кадре окончания записи значение REC END = 0 сохраняется в течение длительности одного аудиоблока, равной пяти или шести последовательностям DIF для каждого аудиоканала.

FADE ST: плавный ввод в момент начала записи

0 = отключение плавного ввода

1 = включение плавного ввода

Информация FADE ST является действительной только в кадре начала записи (REC ST = 0). Если значение FADE ST равно 1 в кадре начала записи, то выходной аудиосигнал должен быть плавно введен, начиная с первого сигнала дискретизации кадра. Если значение FADE ST равно 0 в кадре начала записи, то уровень выходного аудиосигнала не должен подвергаться плавному изменению.

FADE END: плавный вывод в конце записи

0 = отключение плавного вывода

1 = включение плавного вывода

Информация FADE END является действительной только в кадре окончания записи (REC END = 0). Если значение FADE END равно 1 в кадре окончания записи, то выходной аудиосигнал должен быть плавно выведен к моменту последнего сигнала кадра. Если значение FADE END равно 0 в кадре окончания записи, то выходной аудиосигнал не должен подвергаться плавному изменению.

DRF: флаг направления

0 = направление "назад"

1 = направление "вперед"

SPEED: скорость перемотки изображения в видеомагнитофоне (ВМ).

	Скорость перемотки ВМ					
SPEED	Система 525/60	Система 625/50				
0000000	0/120 (=0)	0/100 (=0)				
0000001	1/120	1/100				
:	:	:				
1100100	100/120	100/100 (=1)				
:	:	Зарезервировано				
1111000	120/120 (=1)	Зарезервировано				
:	Зарезервировано	Зарезервировано				
1111110	Зарезервировано	Зарезервировано				
1111111	Недействительные данные Недействительные данны					

RES: бит, зарезервированный для будущего использования.

Значение по умолчанию должно быть установлено в 1.

1.7 Секция видеоизображения

1.7.1 Идентификатор

Часть идентификатора каждого блока DIF в секции видеоизображения описана в п. 1.3.1. Тип секции должен быть 100.

1.7.2 Данные

Часть данных (полезная нагрузка) каждого блока DIF в видеосекции состоит из 77 байтов видеоданных, которые должны быть дискретизированы, перемешаны и закодированы. Видеоданные каждого видеокадра обрабатываются так, как описано в пункте 2.

1.7.2.1 Блок DIF и сжатый макроблок

Соответствие между блоками DIF видеоизображения и сжатыми макроблоками видеоизображения показано в таблицах 18 и 19. В таблице 18 показано соответствие между блоками DIF видеоизображения для структуры 50 Мбит/с и сжатыми макроблоками видеоизображения в формате сжатия 4:2:2. В таблице 19 показано соответствие между блоками DIF видеоизображения для структуры 25 Мбит/с и сжатыми макроблоками видеоизображения в формате сжатия 4:1:1.

Правило, определяющее соответствие между блоками DIF видеоизображения и сжатыми макроблоками, представлено ниже:

```
Структура 50 Мбит/с – формат сжатия 4:2:2
```

```
if (525/60 system) n = 10 else n = 12;

for (i = 0; i<n; i++){

a = i;

b = (i-6) mod n;

c = (i-2) mod n;

d = (i-8) mod n;

e = (i-4) mod n;
```

```
p = a;
     q = 3;
     for (j = 0; j < 5; j++){
for (k = 0; k<27; k++){
     V (5 \times k + q),0 \text{ of DSNp} = CM 2i,j,k;
              V (5 \times k + q), 1 \text{ of } DSNp = CM 2i + 1, j, k;
}
     if (q == 3) \{p = b; q = 1;\}
else if (q == 1) \{p = c; q = 0;\}
else if (q == 0) \{p = d; q = 2;\}
else if (q == 2) \{p = e; q = 4;\}
   }
Структура 25 Мбит/с – формат сжатия 4:1:1
   if (525/60 \text{ system}) n = 10 else n = 12;
   for (i = 0; i < n; i++)
       a = i;
      b = (i-6) \mod n;
      c = (i-2) \mod n;
       d = (i-8) \mod n;
      e = (i-4) \mod n;
      p = a;
      q = 3;
       for (j = 0; j < 5; j++){
          for (k = 0; k<27; k++){
      V (5 \times k + q), 0 of DSNp = CM i, j, k;
      }
            if (q == 3) \{p = b; q = 1;\}
      else if (q == 1) \{p = c; q = 0;\}
       else if (q == 0) \{p = d; q = 2;\}
       else if (q == 2) \{p = e; q = 4;\}
  }
```

ТАБЛИЦА 18 Блоки DIF видеоизображения и сжатые макроблоки для структуры 50 Мбит/с – формат сжатия 4:2:2

Номер последовательности DIF	Блок DIF	Сжатый макроблок			
	V0,0	CM 4,2,0			
	V0,1	CM 5,2,0			
	V1,0	CM 12,1,0			
	V1,1	CM 13,1,0			
0	V2,0	CM 16,3,0			
	V2,1	CM 17,3,0			
	:	:			
	V134,0	CM 8,4,26			
	V134,1	CM 9,4,26			
	V0,0	CM 6,2,0			
	V0,1	CM 7,2,0			
	V1,0	CM 14,1,0 CM 15,1,0 CM 18,3,0 CM 19,3,0			
	V1,1				
1	V2,0				
	V2,1				
	:	:			
	V134,0	CM 10,4,26			
	V134,1	CM 11,4,26			
:	:	:			
:	:	:			
	V0,0	CM 2,2,0			
	V0,1	CM 3,2,0			
	V1,0	CM 10,1,0			
	V1,1	CM 11,1,0			
n-1	V2,0	CM 14,3,0			
	V2,1	CM 15,3,0			
	:	:			
	V134,0	CM 6,4,26			
	V134,1	CM 7,4,26			

ПРИМЕЧАНИЕ 1. – Для системы 525/60 n = 10; для системы 625/50 n = 12.

ТАБЛИЦА 19 Блоки DIF видеоизображения и сжатые макроблоки для структуры 25 Мбит/с – формат сжатия 4:1:1

Номер последовательности DIF	Блок DIF	Сжатый макроблок
	V0,0	CM 2,2,0
	V1,0	CM 6,1,0
	V2,0	CM 8,3,0
0	V3,0	CM 0,0,0
0	V4,0	CM 4,4,0
	:	:
	V133,0	CM 0,0,26
	V134,4	CM 4,4,26
	V0,0	CM 3,2,0
	V1,0	CM 7,1,0
	V2,0	CM 9,3,0
1	V3,0	CM 1,0,0
1	V4,0	CM 5,4,0
	:	:
	V133,0	CM 1,0,26
	V134,0	CM 5,4,26
:	:	:
:	:	:
	V0,0	CM 1,2,0
	V1,0	CM 5,1,0
	V2,0	CM 7,3,0
	V3,0	CM n – 1,0,0
n-1	V4,0	CM 3,4,0
	:	:
	V133,0	CM n – 1,0,26
	V134,0	CM 3,4,26

ПРИМЕЧАНИЕ 1. – Для системы 525/60 n = 10; для системы 625/50 n = 12.

2 Сжатие видеоизображения

В этом разделе описан процесс сжатия видеоизображения для форматов сжатия 4:2:2 и 4:1:1.

ПРИМЕЧАНИЕ 1. – Значения Y, C_R , C_B , используемые в этом пункте, равны значениям Y', C_R' , C_B' , которые имеют нелинейные характеристики, обычно называемые гамма-корректированными.

2.1 Структура видеоизображения

Видеосигнал дискретизируется с частотой 13,5 МГц для сигнала яркости (Y) и с частотой 6,75 МГц для цветоразностных сигналов (C_R , C_B). Данные области полевого интервала гашения и строчного интервала гашения не учитываются, а оставшаяся часть видеоданных перемешивается в видеокадре. Исходное количество видеоданных должно быть сокращено за счет использования методов сокращения цифрового потока, в которых применяется дискретное косинусное преобразование (DCT) и кодирование с переменной скоростью (VLC).

Процесс сокращения цифрового потока заключается в следующем: видеоданные присваиваются блоку DCT (8×8 отсчетов). В формате сжатия 4:2:2 макроблок образуется из двух блоков DCT сигнала яркости и двух блоков DCT цветоразностных сигналов. В формате сжатия 4:1:1 макроблок образуется из четырех блоков DCT сигнала яркости и двух блоков DCT цветоразностных сигналов. Пять макроблоков составляют видеосегмент. Далее видеосегмент сжимается с использованием методов DCT и VLC, образуя пять сжатых макроблоков.

2.1.1 Структура дискретизации

Структура дискретизации аналогична структуре дискретизации компонентных телевизионных сигналов 4:2:2, описанных в Рекомендации МСЭ-R ВТ.601. Дискретизация сигнала яркости (Y) и двух цветоразностных сигналов (C_R , C_B) в структуре 4:2:2 описана в таблице 20.

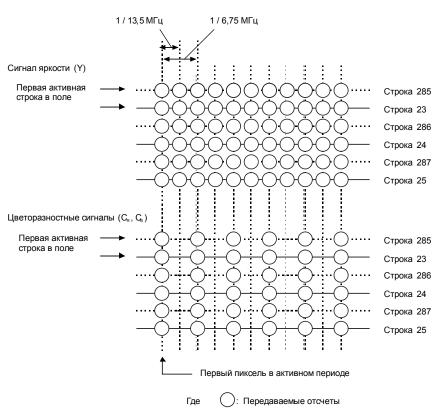
ТАБЛИЦА 20 Схема дискретизации видеосигнала (4:2:2)

		Система 525/60	Система 625/50			
11	Y	13,5 МГц				
Частота дискретизации	C_R, C_B	6,75 МГц				
Общее количество	Y	858	864			
пикселей в строке	C_R, C_B	429	432			
Количество активных	Y	720				
пикселей в строке	C_R, C_B	360				
Общее количество строк в	кадре	525	625			
Количество активных стро	к в кадре	480	576			
**	Поле 1	23–262	23–310			
Номера активных строк	Поле 2	285–524	335–622			
Квантование		Каждый отсчет сигналов Y , C_R , C_B линейно квантуется с использованием 8 бит				
Соотношение между уровнем видеосигнала и уровнем квантования	Шкала	1–254				
	37	Видеосигнал с уровнем белого: 235	V			
	Y	Видеосигнал с уровнем черного: 16	Уровень квантования 220			
Jr	C_R, C_B	Видеосигнал с уровнем серого: 128	Уровень квантования 225			

Структура строки в одном кадре

В системе 525/60 должны передаваться 240 строк для сигналов Y, C_R и C_B каждого поля. В системе 625/50 должны передаваться 288 строк для сигналов Y, C_R и C_B каждого поля. Число строк, передаваемых в одном телевизионном кадре, определено в таблице 20.

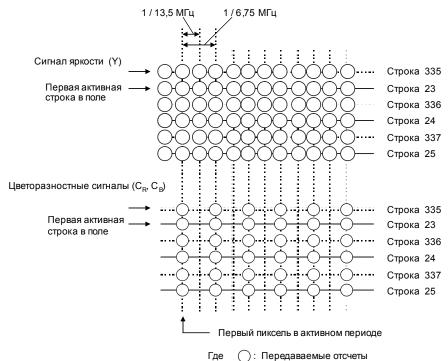
Структура пикселей в одном кадре


Формат сжатия 4:2:2:

Все дискретизированные пиксели, т. е. 720 пикселей сигнала яркости на строку и 360 пикселей цветоразностного сигнала, сохраняются для обработки, как показано на рисунках 11 и 12. Процесс дискретизации начинается одновременно для сигнала яркости и цветоразностных сигналов. Каждый пиксель принимает значение от -127 до +126, которое получается путем вычитания 128 из уровня входного оцифрованного видеосигнала.

Формат сжатия 4:1:1:

Все дискретизированные пиксели яркости, т. е. 720 пикселей на строку, сохраняются для обработки. Из 360 дискретизированных пикселей цветоразностного сигнала на строку каждый второй пиксель отбрасывается, и для обработки остается 180 пикселей. Процесс дискретизации начинается одновременно для сигнала яркости и цветоразностных сигналов. На рисунках 13 и 14 приведено подробное изображение процесса дискретизации. Каждый пиксель принимает значение от –127 до +126, которое получается путем вычитания 128 из уровня входного оцифрованного видеосигнала.


РИСУНОК 11 Передача отсчетов системы 525/60 в формате сжатия 4:2:2

BT.1618-11

РИСУНОК 12

Передача отсчетов системы 625/50 в формате сжатия 4:2:2

BT.1618-12

РИСУНОК 13

Передача отсчетов системы 525/60 в формате сжатия 4:1:1

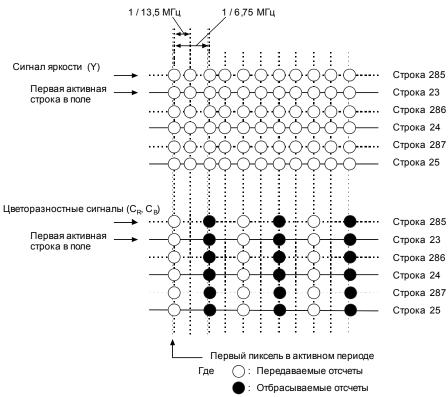
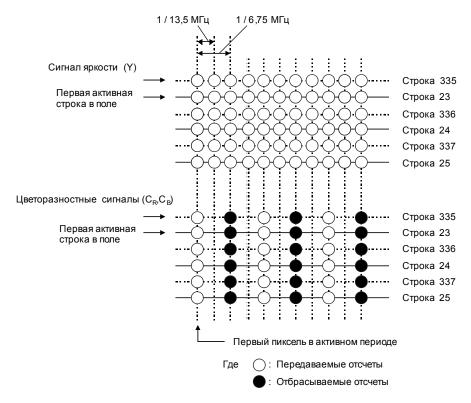



РИСУНОК 14 Передача отсчетов системы 625/50 в формате сжатия 4:1:1

BT.1618-14

2.1.2 Блок DCT

Пиксели Y, C_R и C_B в одном кадре должны быть поделены на блоки DCT, как показано на рисунке 15. Все блоки DCT в формате сжатия 4:2:2 и блоки DCT в формате сжатия 4:1:1, за исключением крайних правых блоков DCT сигналов C_R и C_B в формате сжатия 4:1:1, структурируются в виде прямоугольной области, состоящей из восьми вертикальных строк и восьми горизонтальных пикселей в каждом блоке DCT. Значение х показывает горизонтальную координату относительно левой стороны, а значение у – вертикальную координату относительно вершины.

В формате сжатия 4:1:1 крайние правые блоки DCT сигналов C_R и C_B структурируются в виде 16 вертикальных строк и четырех горизонтальных пикселей. Крайний правый блок DCT должен преобразовываться в восемь вертикальных строк и восемь горизонтальных пикселей путем перемещения нижней части, состоящей из восьми вертикальных строк и четырех горизонтальных пикселей к верхней части, состоящей из восьми вертикальных строк и четырех горизонтальных пикселей, как показано на рисунке 16.

Структура блока DCT в одном кадре системы 525/60.

Структура горизонтальных блоков DCT в одном кадре в формате сжатия 4:2:2 показана на рисунке 17, а в формате сжатия 4:1:1 — на рисунке 18. Одна и та же структура в горизонтальном направлении повторяется для 60 блоков DCT в вертикальном направлении. Пиксели одного кадра делятся на 10 800 блоков DCT для сжатия 4:2:2 и на 8100 блоков DCT для сжатия 4:1:1.

Формат сжатия 4:2:2:

Y: 60 вертикальных блоков DCT \times 90 горизонтальных блоков DCT = 5400 блоков DCT

 C_R : 60 вертикальных блоков DCT × 45 горизонтальных блоков DCT = 2700 блоков DCT

 C_B : 60 вертикальных блоков DCT × 45 горизонтальных блоков DCT = 2700 блоков DCT.

Формат сжатия 4:1:1:

Y: 60 вертикальных блоков DCT × 90 горизонтальных блоков DCT = 5400 блоков DCT

 C_R : 60 вертикальных блоков DCT × 22,5 горизонтальных блока DCT = 1350 блоков DCT

 C_B : 60 вертикальных блоков DCT × 22,5 горизонтальных блока DCT = 1350 блоков DCT.

Структура блока DCT в одном кадре системы 625/50.

Структура горизонтальных блоков DCT в одном кадре в формате сжатия 4:2:2 показана на рисунке 17, а в формате сжатия 4:1:1 — на рисунке 18. Одна и та же структура в горизонтальном направлении повторяется для 72 блоков DCT в вертикальном направлении. Пиксели одного кадра делятся на 12 960 блоков DCT для сжатия 4:2:2 и на 9720 блоков DCT для сжатия 4:1:1.

Формат сжатия 4:2:2:

Y: 72 вертикальных блока DCT × 90 горизонтальных блоков DCT = 6480 блоков DCT

 C_R : 72 вертикальных блока DCT × 45 горизонтальных блоков DCT = 3240 блоков DCT

 C_B : 72 вертикальных блока DCT × 45 горизонтальных блоков DCT = 3240 блоков DCT.

Формат сжатия 4:1:1:

Y: 72 вертикальных блока DCT × 90 горизонтальных блоков DCT = 6480 блоков DCT

 C_R : 72 вертикальных блока DCT × 22,5 горизонтальных блока DCT = 1620 блоков DCT

 $C_{\rm B}$: 72 вертикальных блока DCT × 22,5 горизонтальных блока DCT = 1620 блоков DCT.

2.1.3 Макроблок

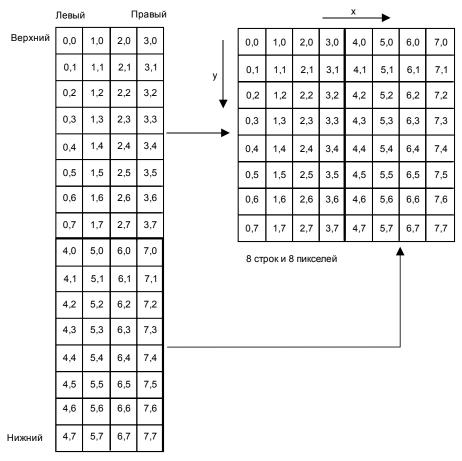

Как показано на рисунке 19, каждый макроблок в формате сжатия 4:2:2 состоит из четырех блоков DCT. Как показано на рисунке 20, каждый макроблок в формате сжатия 4:1:1 состоит из шести блоков DCT. В формате сжатия 4:1:1 каждый макроблок состоит из четырех соседних по горизонтали блоков DCT сигнала Y, одного блока DCT сигнала C_R и одного блока DCT сигнала C_R на телевизионном экране. Крайний правый макроблок на телевизионном экране состоит из четырех соседних по вертикали и по горизонтали блоков DCT сигнала Y, одного блока DCT сигнала C_R и одного блока DCT сигнала C_R и одного блока DCT сигнала C_R и

РИСУНОК 15 Блок DCT и координаты пикселей

	Левый	i			х	→	П	равый	
Верхний	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	← Поле 2
	0,1	1,1	2,1	3,1	4,1	5,1	6,1	7,1	← Поле 1
	0,2	1,2	2,2	3,2	4,2	5,2	6,2	7,2	← Поле 2
у	0,3	1,3	2,3	3,3	4,3	5,3	6,3	7,3	← Поле 1
↓	0,4	1,4	2,4	3,4	4,4	5,4	6,4	7,4	← Поле 2
	0,5	1,5	2,5	3,5	4,5	5,5	6,5	7,5	← Поле 1
	0,6	1,6	2,6	3,6	4,6	5,6	6,6	7,6	← Поле 2
Нижний	0,7	1,7	2,7	3,7	4,7	5,7	6,7	7,7	← Поле 1
Пиксель x = 6 y = 7									

BT.1618-15

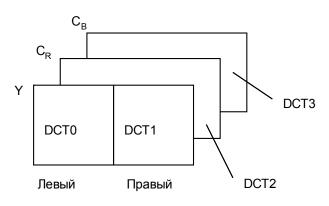
РИСУНОК 16 Крайний правый блок DCT цветоразностного сигнала в формате сжатия 4:1:1

16 строк и 4 пикселя

BT.1618-16

РИСУНОК 17 Структура блоков DCT в формате сжатии 4:2:2

BT.1618-17

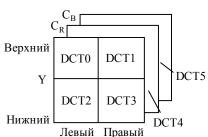

РИСУНОК 18

Структура блоков DCT в формате сжатии 4:1:1

Блок DCT сигнала яркости

РИСУНОК 19 Макроблок и блоки DCT в формате сжатия 4:2:2

BT.1618-19


РИСУНОК 20

Макроблок и блоки DCT в формате сжатия 4:1:1

За исключением крайнего правого макроблока

Для крайнего правого макроблока

BT.1618-20

Структура макроблоков в одном кадре для системы 525/60:

Структура макроблоков в одном кадре показана на рисунке 21 для формата сжатия 4:2:2 и на рисунке 22 — для формата сжатия 4:1:1. В каждом небольшом прямоугольнике показан один макроблок. Пиксели одного кадра распределены по 2700 макроблокам в формате сжатия 4:2:2 и по 1350 макроблокам в формате сжатия 4:1:1.

Формат сжатия 4:2:2:

60 вертикальных макроблоков × 45 горизонтальных макроблоков = 2700 макроблоков.

Формат сжатия 4:1:1:

60 вертикальных макроблоков × 22,5 горизонтальных макроблока = 1350 макроблоков.

Структура макроблоков в одном кадре для системы 625/50:

Структура макроблоков в одном кадре показана на рисунке 23 для формата сжатия 4:2:2 и на рисунке 24 — для формата сжатия 4:1:1. В каждом небольшом прямоугольнике показан один макроблок. Пиксели одного кадра распределены по 3240 макроблокам в формате сжатия 4:2:2 и по 1620 макроблокам в формате сжатия 4:1:1.

Формат сжатия 4:2:2:

72 вертикальных макроблока \times 45 горизонтальных макроблоков = 3240 макроблоков.

Формат сжатия 4:1:1:

72 вертикальных макроблока × 22,5 горизонтальных макроблока = 1620 макроблоков.

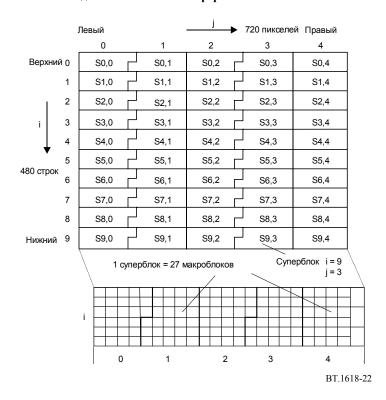
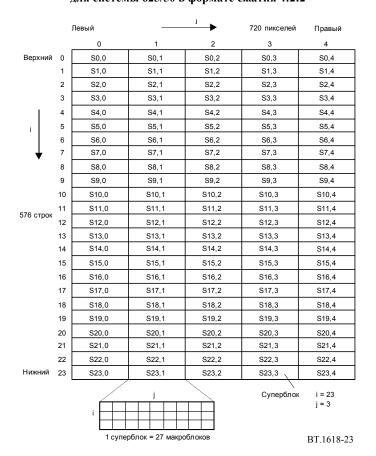
РИСУНОК 21

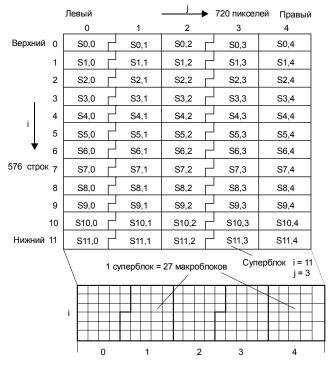
Суперблоки и макроблоки в одном телевизионном кадре для системы 525/60 в формате сжатия 4:2:2

	По	вый	j		720 пикселей	Правый
	116	0	1	2	3	1 гравыи
Верхний	i 0	S0,0	S0,1	S0,2	S0,3	S0,4
	1	\$1,0	S1,1	S1,2	S1,3	S1,4
	2	S2,0	S2,1	S2,2	S2,3	S2,4
	3	S3,0	S3,1	S3,2	S3,3	S3,4
1	4	S4,0	S4,1	S4,2	\$4,3	S4,4
i	5	S5,0	S5,1	S5,2	S5,3	S5,4
.	6	S6,0	S6,1	S6,2	S6,3	S6,4
. ↓	7	S7,0	S7,1	S7,2	\$7,3	S7,4
,	8	S8,0	S8,1	S8,2	S8,3	S8,4
	9	S9,0	S9,1	S9,2	\$9,3	S9,4
	10	S10,0	S10,1	S10,2	S10,3	S10,4
	11	S11,0	S11,1	S11,2	S11,3	S11,4
480 строк	12	S12,0	S12,1	S12,2	S12,3	S12,4
	13	S13,0	S13,1	S13,2	S13,3	S13,4
	14	S14,0	S14,1	S14,2	S14,3	S14,4
	15	S15,0	S15,1	S15,2	S15,3	S15,4
	16	S16,0	S16,1	S16,2	S16,3	S16,4
	17	S17,0	S17,1	S17,2	S17,3	S17,4
	18	S18,0	S18,1	S18,2	S18,3	S18,4
Нижний	19	S19,0	S19,1	S19,2	S19,3 、	S19,4
		·	j		Суперблок	i = 19 j = 3
		1 супе	рблок = 27 макроб	олоков Опоков		
						BT.1618-21

РИСУНОК 22

Суперблоки и макроблоки в одном телевизионном кадре для системы 525/60 в формате сжатия 4:1:1


РИСУНОК 23

Суперблоки и макроблоки в одном телевизионном кадре для системы 625/50 в формате сжатия 4:2:2

РИСУНОК 24

Суперблоки и макроблоки в одном телевизионном кадре для системы 625/50 в формате сжатия 4:1:1

BT.1618-24

2.1.4 Суперблок

Каждый суперблок состоит из 27 макроблоков.

Структура суперблоков в одном кадре для системы 525/60.

Структура суперблоков в одном кадре показана на рисунке 21 для формата сжатия 4:2:2 и на рисунке 22 – для формата сжатия 4:1:1. Каждый суперблок состоит из 27 соседних макроблоков, и его границы выделены жирной линией. Общее число пикселей в кадре распределено по 100 суперблокам в формате сжатия 4:2:2 или по 50 суперблокам в формате сжатия 4:1:1.

Формат сжатия 4:2:2:

– 20 вертикальных суперблоков × 5 горизонтальных суперблоков = 100 суперблоков.

Формат сжатия 4:1:1:

- 10 вертикальных суперблоков \times 5 горизонтальных суперблоков = 50 суперблоков.

Структура суперблоков в одном кадре для системы 625/50.

Структура суперблоков в одном кадре показана на рисунке 23 для формата сжатия 4:2:2 и на рисунке 24 — для формата сжатия 4:1:1. Каждый суперблок состоит из 27 соседних макроблоков, и его границы выделены жирной линией. Общее число пикселей в кадре распределено по 120 суперблокам в формате сжатия 4:2:2 или по 60 суперблокам в формате сжатия 4:1:1.

Формат сжатия 4:2:2:

- 24 вертикальных суперблока× 5 горизонтальных суперблоков = 120 суперблоков.

Формат сжатия 4:1:1:

– 12 вертикальных суперблоков × 5 горизонтальных суперблоков = 60 суперблоков.

2.1.5 Определение номера суперблока, номера макроблока и значения пикселя

Номер суперблока

Номер суперблока в кадре выражается как S i, j, как представлено на рисунках 21, 22, 23 и 24.

S i, j, где i: позиция суперблока по вертикали

$$i = 0, ..., n-1$$

где:

п: номер вертикальных суперблоков в видеокадре

n = 10 x m для системы 525/60

n = 12 x m для системы 625/50

т: формат сжатия

т = 1 для формата сжатия 4:1:1

т = 2 для формата сжатия 4:2:2

ј: позиция суперблока по горизонтали

$$j = 0, ..., 4$$

Номер макроблока

Номер макроблока выражается как M i, j, k. Символ k – это позиция макроблока в суперблоке, как представлено на рисунке 25 для формата сжатия 4:2:2 и на рисунке 26 для формата сжатия 4:1:1. Небольшой прямоугольник на этих рисунках показывает макроблок, а номер в этом небольшом прямоугольнике обозначает k.

М і, ј, k, где і, ј: номер позиции суперблока

k: позиция макроблока в суперблоке

$$k = 0, ..., 26$$

РИСУНОК 25
Позиция макроблока в суперблоке для формата сжатия 4:2:2

			Супе	рблок S	_{i,j} (i = 0,,n-1,	j = 0,,4)	
0	5	6	11	12	17	18	23	24
1	4	7	10	13	16	19	22	25
2	3	8	9	14	15	20	21	26

Где n = 20: система 525/60 n = 24: система 625/50

BT.1618-25

РИСУНОК 26

Позиция макроблока в суперблоке для формата сжатия 4:1:1

Суперблок S i, 0, S i, 2 (i = 0, ..., n-1)

0	11	12	23	24
1	10	13	22	25
2	9	14	21	26
3	8	15	20	
4	7	16	19	
5	6	17	18	

Суперблок S i, 1, S i, 3 (i = 0, ..., n-1)

•	8	9	20	21
	7	10	19	22
	6	11	18	23
0	5	12	17	24
1	4	13	16	25
2	3	14	15	26

Суперблок S i, 4 (i = 0, ..., n-1)

0	11	12	23	24
1	10	13	22	24
2	9	14	21	25
3	8	15	20	25
4	7	16	19	26
5	6	17	18	20

Где n = 10: система 525/60 n = 12: система 625/50

BT.1618-26

Местоположение пикселя

Местоположение пикселя выражается как P i, j, k, I (x, y). Пиксель указывается как индекс i, j, k, I (x, y). Символ обозначает порядок блока DCT в макроблоке, как показано на рисунках 19 и 20. Прямоугольник на рисунке демонстрирует блок DCT, а номер DCT в этом прямоугольнике выражает I. Символы x и y – это координата пикселя в блоке DCT, как описано в I0. I1.2.

P i, j, k, I (x, y) где i, j, k: номер макроблока

I: позиция блока DCT в макроблоке

(х, у): координата пикселя в блоке DCT

x = 0, ..., 7

y = 0, ..., 7.

2.1.6 Определение видеосегмента и сжатого макроблока

Видеосегмент состоит из пяти макроблоков, составленных из различных областей в кадре видеоизображения:

Ma, 2, k где $a = (i + 2m) \mod n$

Mb, 1, k где $b = (i + 6m) \mod n$

Mc, 3, k где $c = (i + 8m) \mod n$

Md, 0, k где $d = (i + 0) \mod n$

Me, 4, k где $e = (i + 4m) \mod n$

где:

і: позиция суперблока по вертикали

$$i = 0, ..., n-1$$

п: номер вертикальных суперблоков в видеокадре

 $n = 10 \times m$ для системы 525/60

 $n = 12 \times m$ для системы 625/50

т: формат сжатия

т = 1 для формата сжатия 4:1:1

m = 2 для формата сжатия 4:2:2

k: позиция макроблока в суперблоке

$$k = 0, ..., 26.$$

Каждый видеосегмент перед снижением скорости передачи цифрового потока выражается как V i, k, состоящий из Ma, 2, k; Mb, 1, k; Mc, 3, k; Md, 0, k; и Me, 4, k.

Процесс снижения скорости цифрового потока осуществляется последовательно от Ma, 2, k до Me, 4, k. Данные в видеосегменте сжимаются и преобразуются в поток данных объемом 385 байтов. Набор сжатых видеоданных состоит из пяти сжатых макроблоков. Каждый сжатый макроблок состоит из 77 байтов и выражается как CM. Каждый видеосегмент после снижения скорости передачи цифрового потока выражается как CV i, k, состоящий из CM a, 2, k; CM b, 1, k; CM c, 3, k; CM d, 0, k; и CM e, 4, k, как показано ниже.

CMa, 2, k:

Этот блок включает все части или большинство частей сжатых данных из макроблока Ma, 2, k и может содержать сжатые данные макроблока Mb, 1, k; или Mc, 3, k; или Md, 0, k; или Me, 4, k.

CMb, 1, k:

Этот блок включает все части или большинство частей сжатых данных из макроблока Mb, 1, k и может содержать сжатые данные макроблока Ma, 2, k; или Mc, 3, k; или Md, 0, k; или Me, 4, k.

CMc, 3, k:

Этот блок включает все части или большинство частей сжатых данных из макроблока Mc, 3, k и может содержать сжатые данные макроблока Ma, 2, k; или Mb, 1, k; или Md, 0, k; или Me, 4, k.

CMd, 0, k:

Этот блок включает все части или большинство частей сжатых данных из макроблока Md, 0, k и может содержать сжатые данные макроблока Ma, 2, k; или Mb, 1, k; или Mc, 3, k; или Me, 4, k.

CMe, 4, k:

Этот блок включает все части или большинство частей сжатых данных из макроблока Me, 4, k и может содержать сжатые данные макроблока Ma, 2, k; или Mb, 1, k; или Mc, 3, k; или Md, 0, k.

2.2 Обработка DCT

Блоки DCT образуются из двух полей; каждое поле включает пиксели 4 вертикальных строк и 8 горизонтальных пикселей. В этом пункте описывается преобразование DCT 64 пикселей в блоке DCT, номерами которых являются i, j, k, I (x, y), в 64 коэффициента, номера которых i, j, k, I (h, v). Р i, j, k, I (x, y) – это значение пикселя, а C i, j, k, I (h, v) – это значение коэффициента.

Коэффициент с h=0 и v=0 называется коэффициентом DC. Другие коэффициенты называются коэффициентами AC.

2.2.1 Режим DCT

В зависимости от того, насколько отличается содержание двух полей видеокадра, для оптимизации процесса сжатия данных используются два режима DCT – 8-8-DCT и 2-4-8-DCT, которые определены следующим образом:

Режим 8-8-DCT

DCT

$$7 \qquad 7$$
 C, i, j, k, l (h, v) = C (v) C (h) $\Sigma \qquad \Sigma$
$$y = 0 \quad x = 0$$
 (P i, j, k, l (x, y) COS(π v(2y + 1)/16) COS (π h(2x + 1)/16))

Обратное DCT:

P, i, j, k, l (x, y) =
$$\sum_{v=0}^{7} \sum_{h=0}^{7} (C(v) C(h))$$

 $v = 0 \quad h = 0$
C, i, j, k, l (h, v) COS $(\pi v(2y + 1)/16)$ COS $(\pi h(2x + 1)/16)$)

где:

$$C(h) = 0, 5 / \sqrt{2}$$
 для $h = 0$
 $C(h) = 0, 5$ для $h = \text{ от } 1$ до 7
 $C(v) = 0, 5 / \sqrt{2}$ для $v = 0$
 $C(v) = 0, 5$ для $v = \text{ от } 1$ до 7

Режим 2-4-8 DCT

DCT

$$3$$
 7

 $C, i, j, k, l (h, u) = C (u) C (h) \Sigma \Sigma$
 $z = 0 \quad x = 0$
 $((P i, j, k, l (x, 2z) + P i, j, k, l (x, 2z + 1)) KC)$
 3 7

C, i, j, k, l (h, u + 4) = C (u) C (h)

 Σ

 Σ

2.2.2 Взвешивание

Взвешивание коэффициентов DCT должно осуществляться с использованием процесса, описанного ниже. W(h,v) обозначает веса для C i,j,

k, l (h, v) коэффициента DCT

Режим 8-8-DCT

Для
$$h = 0$$
 и $v = 0$ W(h, v) = 1 / 4

Для других значений W(h, v) = w(h) w(v) / 2

Режим 2-4-8-DCT

Для
$$h = 0$$
 и $v = 0$ $W(h, v) = 1/4$

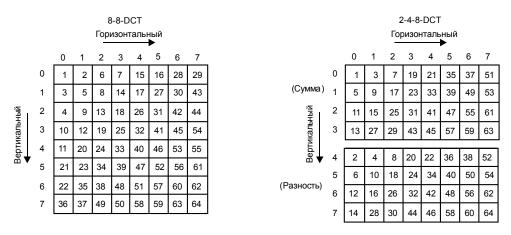
Для
$$v < 4$$
 $W(h, v) = w(h) w(2 v) / 2$

Для других значений W(h, v) = w(h) w(2 (v-4)) / 2

где:

$$w(0) = 1$$

 $w(1) = CS4 / (4 \times CS7 \times CS2)$
 $w(2) = CS4 / (2 \times CS6)$
 $w(3) = 1 / (2 \times CS5)$


$$w(4) = 7 / 8$$

 $w(5) = CS4 / CS3$
 $w(6) = CS4 / CS2$
 $w(7) = CS4 / CS1$

где $CSm = COS (m\pi / 16) m = от 1 до 7.$

2.2.3 Позиция на выходе

На рисунке 27 показана позиция взвешенных коэффициентов на выходе.

РИСУНОК 27 Позиция взвешенных коэффициентов DCT на выходе

BT.1618-27

2.2.4 Допустимая погрешность DCT при использовании взвешивания

Ошибка на выходе между эталонным DCT и тестовым DCT должна удовлетворять допускам по следующим параметрам:

- вероятность возникновения ошибки;
- среднеквадратические ошибки всех коэффициентов;
- максимальное значение среднеквадратической ошибки для каждого блока DCT;
- все входные значения пикселей какого-либо блока DCT являются одинаковыми.

2.3 Квантование

2.3.1 Введение

Взвешенные коэффициенты DCT первоначально квантуются в 9-битовые слова, а затем разделяются путем квантования, для того чтобы ограничить объем данных в одном видеосегменте пятью сжатыми макроблоками.

2.3.2 Распределение битов при квантовании

Взвешенные коэффициенты DCT выражаются следующим образом:

Значение коэффициента DC (9 битов):

b8 b7 b6 b5 b4 b3 b2 b1 b0

дополнительный код (от -255 до 255)

значение коэффициента АС (10 битов):

s b8 b7 b6 b5 b4 b3 b2 b1 b0

1 бит знака + 9 битов абсолютного значения (от -511 до 511).

2.3.3 Номер класса

Каждый блок DCT должен быть отнесен к одному из четырех классов на основе определений, представленных в таблице 21. Номер класса используется для выбора шага квантования. Значения с1 и с0 выражают номер класса и хранятся в коэффициенте DC сжатых блоков DCT, как описано в п. 2.5. Для удобства использования в таблице 22 показан пример классификации.

2.3.4 Первоначальное масштабирование

Первоначальное масштабирование является операцией над коэффициентами AC по их преобразованию из 10-битовой формы в 9-битовую. Первоначальное масштабирование должно осуществляться следующим образом:

Для номера класса = 0, 1, 2

входные данные s b8 b7 b6 b5 b4 b3 b2 b1 b0

выходные данные s b7 b6 b5 b4 b3 b2 b1 b0

Для номера класса = 3

входные данные s b8 b7 b6 b5 b4 b3 b2 b1 b0

выходные данные s b8 b7 b6 b5 b4 b3 b2 b1

ТАБЛИЦА 21 Номер класса и блок DCT

Не	омер клас	eca	Бл	юк DCT
	c1	c0	Шумы квантования	Максимальное абсолютное значение коэффициента АС
0	0	0	Видимые	
1	0	1	Меньше, чем в классе 0	Mayr wa way paper 255
2	1	0	Меньше, чем в классе 1	Меньше или равно 255
2	1	1	Меньше, чем в классе 2	
3	3 1 1 -		_	Больше 255

ТАБЛИЦА 22 Пример классификации для удобства использования

	Максимал	Максимальное абсолютное значение коэффициента АС									
	от 0 до 11	от 12 до 23	от 24 до 35	>35							
Y	0	1	2	3							
C_R	1	2	3	3							
C_{B}	2	3	3	3							

2.3.5 Номер области

Номер области используется для выбора шага квантования. Коэффициенты АС в рамках блока DCT должны разделяться на четыре области с номерами, показанными на рисунке 28.

2.3.6 Шаг квантования

Шаг квантования должен определяться номером класса, номером области и числом уровней квантования (QNO), как указано в таблице 23. QNO выбирается для ограничения объема данных в одном сегменте видеоизображения пятью сжатыми макроблоками.

2.4 Кодирование с переменной длиной

Кодирование с переменной длиной (VLC) — это операция преобразования квантованных коэффициентов AC в коды переменной длины. Один или несколько последовательных коэффициентов AC в блоке DCT кодируются в один код переменной длины в соответствии с позицией, показанной на рисунке 27. Длина серии и амплитуда определяются следующим образом:

Длина серии: количество последовательных коэффициентов AC, квантованных к 0 (run = 0, ..., 61).

Амплитуда: абсолютное значение сразу после квантования последовательных коэффициентов AC κ 0 (amp = 0, ..., 255).

(run, amp): пара значений – длина серии и амплитуда.

В таблице 24 показана длина кодовых слов, соответствующих (run, amp). В этой таблице бит знака не включен в длину кодовых слов. Если амплитуда не равна нулю, то длина кода должна увеличиться на единицу, поскольку необходим бит знака. В случае пустых клеток длина кодовых слов (run, amp) равна сумме длин слов (run -1, 0) и (0, amp).

Код переменной длины должен быть таким, как показано в таблице 25. В этой таблице крайний левый разряд кодовых слов является MSB, а крайний правый разряд кодовых слов – LSB. MSB последующего кодового слова является соседним с LSB кодового слова, следующего непосредственно перед ним. Бит знака "s" должен быть следующим:

- Если квантованный коэффициент AC больше нуля, то s = 0.
- Если квантованный коэффициент AC меньше нуля, то s = 1.

Если значения всех остальных квантованных коэффициентов равны нулю в пределах блока DCT, то процесс кодирования завершается добавлением кодового слова EOB (конец блока) 0110b сразу после последнего кодового слова.

РИСУНОК 28 **Номера областей**

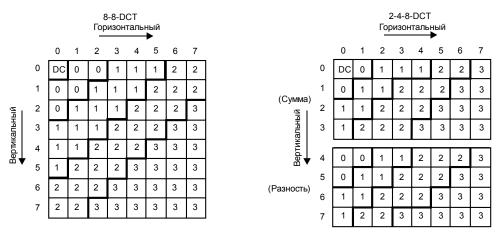


ТАБЛИЦА 23

Шаг квантования

		Номер	класса			Номер	области	
	0	1	2	3	0	1	2	3
	15				1	1	1	1
	14				1	1	1	1
	13				1	1	1	1
	12	15			1	1	1	1
	11	14			1	1	1	1
	10	13		15	1	1	1	1
	9	12	15	14	1	1	1	1
	8	11	14	13	1	1	1	2
	7	10	13	12	1	1	2	2
Число уровней	6	9	12	11	1	1	2	2
квантования	5	8	11	10	1	2	2	4
(QNO)	4	7	10	9	1	2	2	4
	3	6	9	8	2	2	4	4
	2	5	8	7	2	2	4	4
	1	4	7	6	2	4	4	8
	0	3	6	5	2	4	4	8
		2	5	4	4	4	8	8
	_	1	4	3	4	4	8	8
		0	3	2	4	8	8	16
			2	1	4	8	8	16
			1	0	8	8	16	16
			0		8	8	16	16

ТАБЛИЦА 24

Длина кодовых слов

		Амплитуда																								
	•		l _	Ι .	Ι.	l _	Ι.	I _			10	1	1		1			l	1.0	1.0	•				1	
Длина серии	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	_	255
0	11	2	3	4	4	5	5	6	6	7	7	7	8	8	8	8	8	8	9	9	9	9	9	15	_	15
1	11	4	5	7	7	8	8	8	9	10	10	10	11	11	11	12	12	12								
2	12	5	7	8	9	9	10	12	12	12	12	12														
3	12	6	8	9	10	10	11	12																		
4	12	6	8	9	11	12																				
5	12	7	9	10																						
6	13	7	9	11																						
7	13	8	12	12																						
8	13	8	12	12																						
9	13	8	12																							
10	13	8	12																							
11	13	9																								
12	13	9																								
13	13	9																								
14	13	9																								
15	13																									
				_	_		_																			
61	13																									

ПРИМЕЧАНИЕ 1. – Бит знака не включен.

ПРИМЕЧАНИЕ 2. – Длина слова ЕОВ = 4.

ТАБЛИЦА 25 Кодирование с кодовыми словами различной длины

(Ri	un, ıp)	Код	Длина		un, ıp)	Код	Длина	,	lun, np)		Код		Длина
0	1	00s	2+1	11	1	111100000s		7	2	111	110110000s		
0	2	010s	3+1	12	1	111100001s		8	2	111	110110001s		
EC	ЭB	0110	4	13	1	111100010s		9	2	111	110110010s		
1	1	0111s		14	1	111100011s		10	2	111	110110011s		
0	3	1000s	4+1	5	2	111100100s		7	3	111	110110100s		
0	4	1001s		6	2	111100101s		8	3	111	110110101s		
2	1	10100s		3	3	111100110s		4	5	111	110110110s		
1	2	10101s	5 . 1	4	3	111100111s	0 + 1	3	7	111	110110111s		10 - 1
0	5	10110s	5+1	2	4	111101000s	9+1	2	7	111	110111000s		12+1
0	6	10111s		2	5	111101001s		2	8	111	110111001s		
3	1	110000s		1	8	111101010s		2	9	111	110111010s		
4	1	110001s	C 1 1	0	18	111101011s		2	10	111	110111011s		
0	7	110010s	6+1	0	19	111101100s		2	11	111	110111100s		
0	8	110011s		0	20	111101101s		1	15	111	110111101s		
5	1	1101000s		0	21	111101110s		1	16	11	111011110s		
6	1	1101001s		0	22	111101111s		1	17	11	111011111s		
2	2	1101010s		5	3	1111100000s		6	0	111	1110000110		
1	3	1101011s		3	4	1111100001s		7	0	111	1110000111		
1	4	1101100s	7+1	3	5	1111100010s			1		Двоичное		
0	9	1101101s		2	6	1111100011s	10+1	R	0	1111110	представле- ние R		13
0	10	1101110s		1	9	1111100100s					ние К R = от 6 до 61		
0	11	1101111s		1	10	1111100101s		61	0	111	1110111101	1	
7	1	1110000s		1	11	1111100110s		0	23	1111	11100010111s		
8	1	1110001s		0	0	11111001110	4.4	0	24	1111	11100011000s		
9	1	11100010s		1	0	11111001111	11				Двоичное		
10	1	11100011s		6	3	11111010000s					представле-		15+1
3	2	11100100s		4	4	11111010001s		0	A	1111111	ние А A = от 23 до	S	
4	2	11100101s		3	6	11111010010s	11.1		'		255		
2	3	11100110s		1	12	11111010011s	11+1	0	255	1111	11111111111s		
1	5	11100111s		1	13	11111010100s							
1	6	11101000s	8+1	1	14	11111010101s							
1	7	11101001s]	2	0	111110101100							
0	12	11101010s		3	0	111110101101	12						
0	13	11101011s]	4	0	111110101110	12						
0	14	11101100s]	5	0	111110101111							
0	15	11101101s						-					
0	16	11101110s]										
0	17	11101111s											

ПРИМЕЧАНИЕ 1. -(R, 0): 1111110 r5 r4 r3 r2 r1 r0, где 32r5 + 16r4 + 8r3 + 4r2 + 2r1 + r0 = R.

ПРИМЕЧАНИЕ 2. -(0, A): 1111111 a7 a6 a5 a4 a3 a2 a1 a0 s, где 128a7 + 64a6 + 32a5 + 16a4 + 8a3 + 4a2 + 2a1 + a0 = A.

ПРИМЕЧАНИЕ 3. – S – это бит знака. ЕОВ означает конец блока.

2.5 Структура сжатого макроблока

Сжатый сегмент видеоизображения состоит из пяти сжатых макроблоков. Каждый сжатый макроблок включает 77 байтов данных. Структура сжатого макроблока должна быть такой, как показано на рисунке 29 для формата сжатия 4:2:2 и на рисунке 30 для формата сжатия 4:1:1. Каждый сжатый макроблок формата сжатия 4:2:2 включает двухбайтовую область данных (X0, X1). Структура данных изображена на рисунке 29. Формат данных зарезервированной области не определен, за исключением 100000000000.

РИСУНОК 29 Структура сжатого макроблока в формате сжатия **4:2:2**

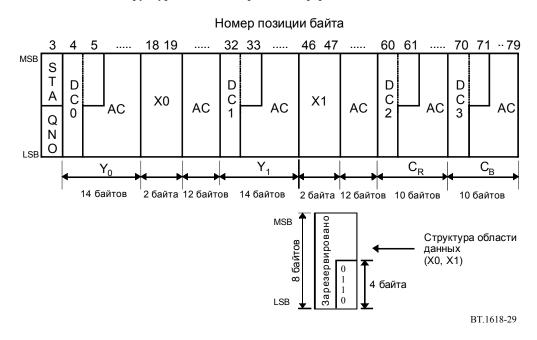
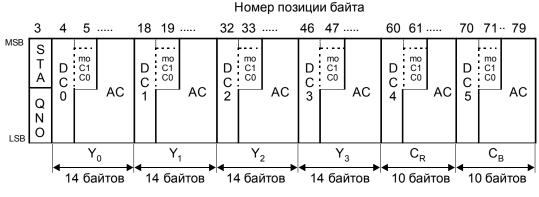



РИСУНОК 30 Структура сжатого макроблока в формате сжатия 4:1:1

BT.1618-30

STA: состояние ошибки

QNO: число уровней квантования

DC: компонент DCAC: компонент ACEOB: конец блока (0110)

mo: режим DCT co, c1: номер класса

STA (состояние сжатого макроблока)

STA выражает ошибку и скрытую информацию о сжатом макроблоке и содержит четыре бита: s3, s2, s1, s0. В таблице 26 представлены определения STA.

QNO (число уровней квантования)

QNO является числом уровней квантования, применяемым к макроблоку. Кодовые слова QNO должны быть такими, как показано в таблице 27.

ТАБЛИЦА 26 Определение STA

	ST	ΓΑ		И	нформация о сжатом макробло	ке
s3	s2	s1	s0	Ошибка	Маскирование ошибок	Непрерывность
0	0	0	0		Не применяется	_
0	0	1	0	Нет ошибки	Тип А	
0	1	0	0	петошиоки	Тип В	Тип а
0	1	1	0		Тип С	
0	1	1	1	Ошибка существует	-	_
1	0	1	0		Тип А	
1	1	0	0	Нет ошибки	Тип В	Тип b
1	1	1	0		Тип С	
1	1	1	1	Ошибка существует	_	
	Дру	_л гие			-	

где:

Тип А: Заменен сжатым макроблоком с тем же номером сжатого макроблока в непосредственно предыдущем кадре.

Тип В: Заменено сжатым макроблоком с тем же номером сжатого макроблока в непосредственно следующем кадре.

Тип С: Этот сжатый макроблок является скрытым, однако метод маскирования не указывается.

Тип а: Непрерывность последовательности обработки данных с другими сжатыми макроблоками, для которых s0 = 0 и s3 = 0 в том же видеосегменте, гарантируется.

Тип b: Непрерывность последовательности обработки данных с другими сжатыми макроблоками не гарантируется.

ПРИМЕЧАНИЕ 1. — Для STA = 0111b код ошибки вставлен в сжатый макроблок, что является дополнительной возможностью.

ПРИМЕЧАНИЕ 2. – Для STA = 1111b позиция ошибки является неопределенной.

ТАБЛИЦА 27

Кодовые слова QNO

q3	q2	q1	q0	QNO
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

DC

DCI (где I — позиция блока DCT в макроблоке, I = 0, ..., 3 для формата сжатия 4:2:2, I = 0, ..., 5 для формата сжатия 4:1:1) состоит из коэффициента DC, режима DCT и номера класса блока DCT.

MSB LSB

DCI: b8 b7 b6 b5 b4 b3 b2 b1 b0 mo c1 c0

где:

b8-b0: значение коэффициента DC

то: режим DCT mo = 0 для режима 8-8-DCT

mo = 1 для режима 2-4-8-DCT

с1 с0: номер класса

AC

AC — общее обозначение кодированных коэффициентов AC переменной длины в рамках видеосегмента V i, k. Для режима сжатия 4:2:2 области Y0, Y1, C_R и C_B определяются как области сжатых данных, при этом каждая из областей Y0 и Y1 состоит из 112 битов, а каждая из областей C_R и C_B состоит из 80 битов, как показано на рисунке 29. Для режима сжатия 4:1:1 области Y0, Y1, Y2, Y3, C_R и C_B определяются как области сжатых данных, при этом каждая из областей Y0, Y1, Y2 и Y3 состоит из Y00 битов, а каждая из областей Y00 как показано на рисунке Y00 код переменной длины для коэффициентов Y00 в блоке Y00 битов, как показано на рисунке Y00 код переменной длины для коэффициентов Y00 в блоке Y00 кодовое слово переменной длины расположено начиная от Y01 который показан в верхней левой части, и Y01 который показан в нижней правой части. Поэтому данные Y01 распределяются от верхнего левого угла до нижнего правого угла.

2.6 Структура видеосегмента

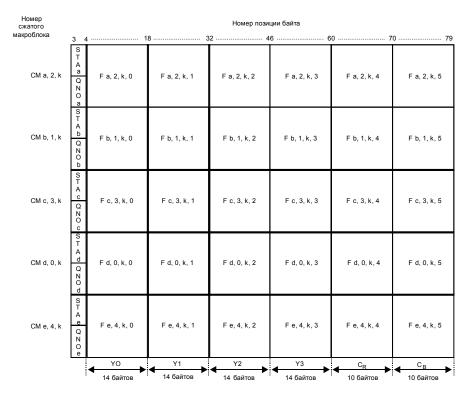

В настоящем пункте описан метод распределения квантованных коэффициентов АС. На рисунках 31 и 32 показана структура видеосегмента CV i, k после снижения скорости цифрового потока. В каждой строке содержится сжатый макроблок. Столбцами F i, j, k, l выражается область сжатых данных для блоков DCT с номерами i, j, k, l. Символ E i, j, k, l выражает дополнительную области АС для записи данных, оставшихся от фиксированной области АС.

РИСУНОК 31 Структура видеосегмента после снижения скорости цифрового потока в режиме сжатия 4:2:2

Номер сжатого	Номер позиции байта						
макроблока	3 4	1	8 3	2 4	6 6	i0 7	0 79
CM a, 2, k	Q N O a	F a, 2, k, 0	E a, 2, k, 0	F a, 2, k, 1	E a, 2, k, 1	F a, 2, k, 2	F a, 2, k, 3
CM b, 1, k	ST Ab QZOb	F b, 1, k, 0	E b, 1, k, 0	F b, 1, k, 1	E b, 1, k, 1	F b, 1, k, 2	F b, 1, k, 3
CM c, 3, k	ST A c QXO c	F c, 3, k, 0	E c, 3, k, 0	F c, 3, k, 1	E c, 3, k, 1	F c, 3, k, 2	F c, 3, k, 3
CM d, 0, k	Q N O d	F d, 0, k, 0	E d, 0, k, 0	F d, 0, k, 1	E d, 0, k, 1	F d, 0, k, 2	F d, 0, k, 3
CM e, 4, k	S T A e Q N O e	F e, 4, k, 0	E e, 4, k, 0	F e, 4, k, 1	E e, 4, k, 1	F e, 4, k, 2	F e, 4, k, 3
	4	YO	←	4 Y1	←	C _R ▶	C _B
	- 17	14 байтов	14 байтов	14 байтов	14 байтов	10 байтов	10 байтов

BT.1618-31

РИСУНОК 32 Структура видеосегмента после снижения скорости цифрового потока в режиме сжатия 4:1:1

BT.1618-32

где:

 $a=(i+2)\ mod\ n$ і: позиция суперблока по вертикали $b=(i+6)\ mod\ n$ і 0,...,n-1 пі номер вертикальных суперблоков в видеокадре $d=(i+0)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер вертикальных суперблоков в видеокадре $d=(i+4)\ mod\ n$ пі номер

k = 0, ..., 26.

Последовательность битов, определенная как Bi, j, k, l, состоит из следующих сцепленных данных: коэффициента DC, информации о режиме DCT, номера класса и кодовых слов коэффициента AC для блоков DCT с номерами i, j, k, l. Кодовые слова для коэффициентов AC последовательности B i, j, k, l должны быть соединены в соответствии с порядком, показанным на рисунке 27, и последним кодовым словом должно быть слово EOB. MSB последующего кодового слова должен следовать за LSB предыдущего кодового слова.

Алгоритм структурирования видеосегмента должен состоять из трех следующих проходов:

Проход 1: Распределение последовательности В і, і, k, l по области сжатых данных.

Проход 2: Распределение переполняющей последовательности B i, j, k, l, которая остается после выполнения прохода 1 в том же сжатом макроблоке.

Проход 3: Распределение переполняющей последовательности B i, j, k, l, которая остается после выполнения прохода 2 в том же видеосегменте

Алгоритм структурирования видеосегмента

```
Формат сжатия 4:2:2:
 if (525/60 \text{ system}) n = 20 else n = 24;
 for (i = 0; i < n; i++)
   a = (i + 4) \mod n;
   b = (i + 12) \mod n;
   c = (i + 16) \mod n;
   d = (i + 0) \mod n;
   e = (i + 8) \mod n;
 for (k = 0; k < 27; k++)
   q = 2;
   p = a;
   VR = 0
   /* VR - последовательность бит для данных, которые не распределены видеосегменту CV i, k за
проход 2. */
/* проход 1 */
   for (j = 0; j < 5; j++) {
     MRq = 0;
     /* MRq – последовательность бит для данных, которые не распределены макроблоку M i, q, k за
проход 1. */
     for (1 = 0, 1 < 4; 1 ++) {
       remain = distribute (B p, q, k, l, F p, q, k, l);
       MRq = connect (MRq, remain);
     }
 if (q == 2) \{q = 1; p = b;\}
     else if (q == 1) \{q = 3; p = c;\}
     else if (q == 3) \{q = 0; p = d;\}
     else if (q == 0) \{q = 4; p = e; \}
     else if (q == 4) \{q = 2; p = a; \}
    }
/* проход 2 */
   for (j = 0; j < 5; j++) {
     for (1 = 0; 1 < 4; 1 ++)
       MRq = distribute (MRq, F p, q, k, l);
       if ((1 == 0) || (1 == 1))
         MRq = distribute (MRq, E p, q, k, l);
```

```
}
      VR = connect (VR, MRq);
           if (q == 2) \{q = 1; p = b;\}
      else if (q == 1) \{q = 3; p = c;\}
      else if (q == 3) \{q = 0; p = d;\}
      else if (q == 0) \{q = 4; p = e;\}
      else if (q == 4) \{q = 2; p = a;\}
      }
/* проход 3 */
    for (j = 0; j < 5; j++) {
      for (1 = 0; 1 < 4; 1 ++) {
        VR = distribute (VR, F p, q, k, l);
        if ((1 == 0) || (1 == 1))
          VR = distribute (VR, E p, q, k, l);
      }
           if (q == 2) \{q = 1; p = b;\}
      else if (q == 1) \{q = 3; p = c;\}
      else if (q == 3) \{q = 0; p = d;\}
      else if (q == 0) \{q = 4; p = e;\}
      else if (q == 4) \{q = 2; p = a;\}
Формат сжатия 4:1:1
  if (525/60 \text{ system}) n = 10 else n = 12;
  for (i = 0; i < n; i++)
    a = (i + 2) \mod n;
    b = (i + 6) \mod n;
    c = (i + 8) \mod n;
    d = (i + 0) \mod n;
    e = (i + 4) \mod n;
    for (k = 0; k < 27; k++)
     q = 2;
     p = a;
      VR = 0
```

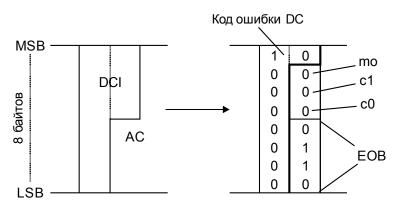
```
/* VR последовательность бит для данных, которые не распределены видеосегменту CV i, k за
проход 2.*/
/* проход 1 */
   for (j = 0; j < 5; j++) {
      MRq = 0;
     /* MRq – последовательность бит для данных, которые не распределены макроблоку M i, q, k за
проход 1. */
      for (1 = 0, 1 < 6; 1 ++)
       remain = distribute (B p, q, k, l, F p, q, k, l);
       MRq = connect (MRq, remain);
      }
           if (q == 2) \{q = 1; p = b;\}
      else if (q == 1) \{q = 3; p = c;\}
      else if (q == 3) \{q = 0; p = d; \}
      else if (q == 0) \{q = 4; p = e;\}
      else if (q == 4) \{q = 2; p = a; \}
/* проход 2 */
   for (j = 0; j < 5; j++) {
      for (1 = 0; 1 < 6; 1 ++) {
       MRq = distribute (MRq, F p, q, k, l);
      }
      VR = connect (VR, MRq);
           if (q == 2) \{q = 1; p = b;\}
      else if (q == 1) \{q = 3; p = c;\}
      else if (q == 3) \{q = 0; p = d; \}
      else if (q == 0) \{q = 4; p = e;\}
      else if (q == 4) \{q = 2; p = a; \}
/* проход 3 */
   for (j = 0; j < 5; j++){
      for (1 = 0; 1 < 6; 1 ++) {
         VR = distribute (VR, Fp, q, k, l);
        }
             if (q == 2) \{q = 1; p = b;\}
        else if (q == 1) \{q = 3; p = c;\}
```

```
else if (q == 3) \{q = 0; p = d; \}
       else if (q == 0) \{q = 4; p = e; \}
       else if (q == 4) \{q = 2; p = a; \}
     }
где:
  distribute (data 0, area 0) {
     /* Распределить data 0 от MSB в пустую область area 0. */
     /* area 0 заполняется, начиная с MSB. */
   remain = (remaining data);
     /* Remaining data – это данные, которые не распределены. */
   return (remain);
  }
  connect (data 1, data 2) {
   /* Соединить MSB data 2 с LSB data 1. */
   data 3 = (connecting data)
   /* Connecting_data – это данные, которые соединены. */
   /* data 2 c data 1. */
   return (data 3);
  }
```

Остальные данные, которые не могут быть распределены в рамках неиспользованного пространства макроблока, будут пропущены. Поэтому если в отношении сжатого макроблока реализуется маскирование ошибок, то некоторые данные, распределенные при проходе 3, могут быть не воспроизведены.

Обработка кода ошибки видеоизображения

Если в сжатом макроблоке, воспроизводимом и обрабатываемом с использованием коррекции ошибок, обнаруживаются ошибки, то область сжатых данных, содержащую эти ошибки, следует заменить кодом ошибки видеоизображения. При этом процессе первые два байта данных области сжатых данных заменяются следующим кодом:


```
MSB LSB
100000000000110b
```

Первые 9 битов – это код ошибки DC, следующие 3 бита – информация о режиме DCT и номере класса, последние 4 бита – это EOB, как показано на рисунке 33.

Если после обработки с использованием кода ошибки сжатые макроблоки поступают в декодер, который не работает с кодом ошибки видеоизображения, то все данные в этом сжатом макроблоке должны обрабатываться как недействительные.

РИСУНОК 33

Код ошибки видеоизображения

BT.1618-33

Дополнение **А** (для информации)

Различия между стандартом МЭК 61834 и Рекомендацией МСЭ-R BT.1618

ТАБЛИЦА 28 Краткий обзор различий между стандартом МЭК 61834 и Рекомендацией МСЭ-R BT.1618

		Стандарт DV МЭК 61834	На основе стандарта DV MCЭ-R BT.1618		
		MJK 61834	Структура 25 Мбит/с	Структура 50 Мбит/с	
Структура данных		МЭК 61834	Совпадает с МЭК 61834	См. рисунок 2	
Заголовок	Название битов АРТ АР1 АР2 АР3	000 000 000 000	001 001 001 001		
Идентифи- катор	FSC	FSC не определено (установлено в 0)	См п. 1.3.1		
Видео	Структура дискретизации	525: 4:1:1 625: 4:2:0	525: 4:1:1 625: 4:1:1	525: 4:2:2 625: 4:2:2	
VAUX	VS VSC Другое	МЭК 61834 МЭК 61834 МЭК 61834	См п. 1.5.2.1 См п. 1.5.2.2 Зарезервировано		
Аудио	Дискретизация Синхронный режим	48 кГц (16 бит, 2 кан.) 44,1 кГц (16 бит, 2 кан.) 32 кГц (16 бит, 2 кан.) 32 кГц (12 бит, 4 кан.) Синхронный/несинхронный	48 кГц (16 бит, 2 кан.) Синхронный	48 кГц (16 бит, 4 кан.) Синхронный	
AAUX	AS ASC Другое	МЭК 61834 МЭК 61834 МЭК 61834	см п. 1.6.2.3.1 см п. 1.6.2.3.2 Зарезервировано		
Субкод	Идентификатор SSYB TC BG Другое	МЭК 61834 МЭК 61834 МЭК 61834 МЭК 61834	См п. 1.4.2.1 См п. 1.4.2.2.1 Совпадает с МЭК 61834 Зарезервировано		

Дополнение В

Термины и сокращения

AAUX	Audio auxiliary data	Вспомогательные данные аудиосигнала		
AP1	·	·		
	Audio application ID	Идентификатор применения аудиосигнала		
AP2	Video application ID	Идентификатор применения видеосигнала		
AP3	Subcode application ID	Идентификатор применения субкода		
APT	Track application ID	Идентификатор применения дорожки		
Arb	Arbitrary	Произвольно		
AS	AAUX source pack	Пакет источника AAUX		
ASC	AAUX source control pack	Пакет управления источником AAUX		
B/W	Black-and-white flag	Флаг черно-белого изображения		
CGMS	Copy generation management system	Система управления созданием копий		
CM	Compressed macro block	Сжатый макроблок		
DBN	DIF block number	Номер блока DIF		
DCT	Discrete cosine transform	Дискретное косинусное преобразование		
DIF	Digital interface	Цифровой интерфейс		
DRF	Direction flag	Флаг направления		
Dseq	DIF sequence number	Номер последовательности DIF		
DSF	DIF sequence flag	Флаг последовательности DIF		
DV	Identification of a compression family	Обозначение семейства стандартов сжатия		
EFC	Emphasis audio channel flag	Флаг предыскажения в аудиоканале		
EOB	End of block	Конец блока		
FR	Identification for the first or second half of each channel	Обозначение первой или второй половины каждого канала		
FSC	Identification of a DIF block in each channel	Обозначение блока DIF в каждом канале		
LF	Locked mode flag	Флаг синхронного режима		
QNO	Quantization number	Число уровней квантования		
QU	Quantization	Квантование		
Res	Reserved for future use	Зарезервировано для будущего использования		
SCT	Section type	Тип секции		
SMP	Sampling frequency	Частота дискретизации		
SSYB	Subcode sync block	Синхроблок субкода		
STA	Status of the compressed macro block	Состояние сжатого макроблока		
STYPE	Signal type	Тип сигнала (см. Примечание)		
Syb	Subcode sync block number	Номер синхроблока субкода		
-	-	* *		

TF Transmitting flag Флаг передачи

VAUX Video auxiliary data Вспомогательные данные

видеоизображения

VLC Variable length coding Кодирование с переменной скоростью

VS VAUX source pack Пакет источника VAUX

VSC VAUX source control pack Пакет управления источником VAUX

ПРИМЕЧАНИЕ 1. – Использование выражения STYPE в этой Рекомендации отличается от его использования в ANSI/IEEE 1394.