

Recommandation UIT-R BT.1618-1 (03/2011)

Structure de données des signaux audio, de données et de vidéo compressée en format vidéonumérique aux débits de 25 et 50 Mbit/s

Série BT Service de radiodiffusion télévisuelle

Avant-propos

Le rôle du Secteur des radiocommunications est d'assurer l'utilisation rationnelle, équitable, efficace et économique du spectre radioélectrique par tous les services de radiocommunication, y compris les services par satellite, et de procéder à des études pour toutes les gammes de fréquences, à partir desquelles les Recommandations seront élaborées et adoptées.

Les fonctions réglementaires et politiques du Secteur des radiocommunications sont remplies par les Conférences mondiales et régionales des radiocommunications et par les Assemblées des radiocommunications assistées par les Commissions d'études.

Politique en matière de droits de propriété intellectuelle (IPR)

La politique de l'UIT-R en matière de droits de propriété intellectuelle est décrite dans la «Politique commune de l'UIT-T, l'UIT-R, l'ISO et la CEI en matière de brevets», dont il est question dans l'Annexe 1 de la Résolution UIT-R 1. Les formulaires que les titulaires de brevets doivent utiliser pour soumettre les déclarations de brevet et d'octroi de licence sont accessibles à l'adresse http://www.itu.int/ITU-R/go/patents/fr, où l'on trouvera également les Lignes directrices pour la mise en oeuvre de la politique commune en matière de brevets de l'UIT-R, l'ISO et la CEI et la base de données en matière de brevets de l'UIT-R.

	Séries des Recommandations UIT-R
	(Egalement disponible en ligne: http://www.itu.int/publ/R-REC/fr)
Séries	Titre
во	Diffusion par satellite
BR	Enregistrement pour la production, l'archivage et la diffusion; films pour la télévision
BS	Service de radiodiffusion sonore
BT	Service de radiodiffusion télévisuelle
F	Service fixe
M	Services mobile, de radiorepérage et d'amateur y compris les services par satellite associés
P	Propagation des ondes radioélectriques
RA	Radio astronomie
RS	Systèmes de télédétection
S	Service fixe par satellite
SA	Applications spatiales et météorologie
SF	Partage des fréquences et coordination entre les systèmes du service fixe par satellite et du service fixe
SM	Gestion du spectre
SNG	Reportage d'actualités par satellite
TF	Emissions de fréquences étalon et de signaux horaires
V	Vocabulaire et sujets associés

Note: Cette Recommandation UIT-R a été approuvée en anglais aux termes de la procédure détaillée dans la Résolution UIT-R 1.

Publication électronique Genève, 2011

© UIT 2011

Tous droits réservés. Aucune partie de cette publication ne peut être reproduite, par quelque procédé que ce soit, sans l'accord écrit préalable de l'UIT.

RECOMMANDATION UIT-R BT.1618-1

Structure de données des signaux audio, de données et de vidéo compressée en format vidéonumérique aux débits de 25 et 50 Mbit/s

(Question UIT-R 12/6)

(2003-2011)

Domaine d'application

La présente Recommandation définit la structure de données au format vidéonumérique pour l'interfaçage du son, des données de sous-code et de vidéo compressée numériques avec les paramètres suivants:

- Système 525/60 structure d'échantillonnage d'image 4:1:1, débit 25 Mbit/s
- Système 525/60 structure d'échantillonnage d'image 4:2:2, débit 50 Mbit/s
- Système 625/50 structure d'échantillonnage d'image 4:1:1, débit 25 Mbit/s
- Système 625/50 structure d'échantillonnage d'image 4:2:2, débit 50 Mbit/s

L'Assemblée des radiocommunications de l'UIT,

considérant

- a) que l'on a identifié des applications de production et de postproduction de télévision professionnelle dans lesquelles la compression vidéo au format vidéonumérique est susceptible de présenter des avantages opérationnels et économiques;
- b) que, dans le même groupe de compression, trois débits de données destinés aux différentes applications (25 Mbit/s, 50 Mbit/s et 100 Mbit/s) ont été proposés;
- c) que les grilles d'échantillonnage de ces trois applications sont différentes;
- d) que les éléments audio, de données auxiliaires et de métadonnées font partie intégrante de ces applications;
- e) que ces éléments sont multiplexés dans un flux de données unique en vue de leur transport et de leur traitement ultérieur;
- f) que la qualité de compression et les caractéristiques fonctionnelles doivent être identiques et reproductibles dans des chaînes de production complexes;
- g) qu'à cette fin, il faut définir tous les détails des paramètres utilisés pour le codage et le multiplexage,

recommande

- d'utiliser, pour des applications de la production et de la postproduction de télévision professionnelle utilisant la compression au format vidéonumérique à 25 et à 50 Mbit/s, les paramètres spécifiés dans l'Annexe 1:
- que la conformité avec la présente Recommandation soit facultative. Toutefois, la présente Recommandation pourra contenir des dispositions obligatoires (pour garantir par exemple l'interopérabilité et l'applicabilité) et il y a conformité avec la présente Recommandation dès lors que toutes ces dispositions obligatoires sont appliquées. L'utilisation du verbe «devoir» ou de toute autre expression exprimant une obligation, comme le verbe «falloir», ainsi que l'utilisation de leur forme négative, servent à énoncer des exigences et ne doivent en aucun cas être interprétées comme impliquant la conformité partielle ou totale avec la présente Recommandation.

Annexe 1

1 Interface

1.1 Introduction

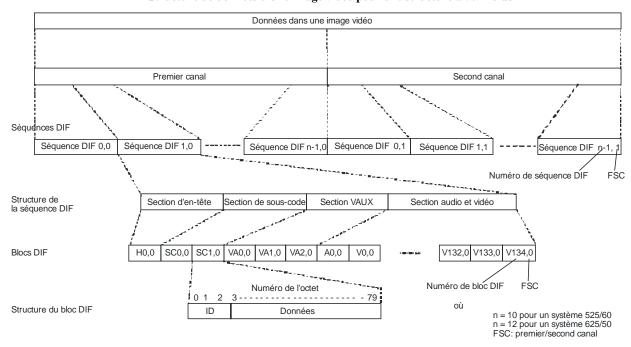
Comme l'indique la Fig. 1, les données audio, vidéo et de sous-code traitées sont produites en sortie en vue d'une utilisation par diverses applications via un port d'interface numérique.

1.2 Structure de données

La structure des données compressées au niveau de l'interface numérique est présentée dans les Fig. 2 et 3. La Fig. 2 montre la structure des données compressées pour une structure à 50 Mbit/s, tandis que la Fig. 3 donne la structure des données compressées pour une structure à 25 Mbit/s.

Dans la structure à 50 Mbit/s, les données d'une image vidéo sont réparties entre deux voies. Chaque voie est divisée en 10 séquences d'interface numérique (DIF, *digital interface*) pour le système 525/60, en 12 pour le système 625/50.

Dans la structure à 25 Mbit/s, les données d'une image vidéo sont réparties en 10 séquences d'interface numérique pour le système 525/60, en 12 pour le système 625/50.


Chaque séquence DIF est composée d'une section d'en-tête, d'une section de sous-code, d'une section VAUX, d'une section audio et d'une section vidéo, chaque section étant composée de blocs DIF comme suit:

Section d'en-tête: 1 bloc DIF
Section de sous-code: 2 blocs DIF
Section VAUX: 3 blocs DIF
Section audio: 9 blocs DIF
Section vidéo: 135 blocs DIF.

Comme l'indiquent les Fig. 2 et 3, chaque bloc DIF est composé d'un identifiant (ID) sur 3 octets et d'une partie données sur 77 octets. Les octets de données DIF sont numérotés de 0 à 79. La Fig. 4 illustre la structure de données d'une séquence DIF pour une structure à 50 ou 25 Mbit/s.

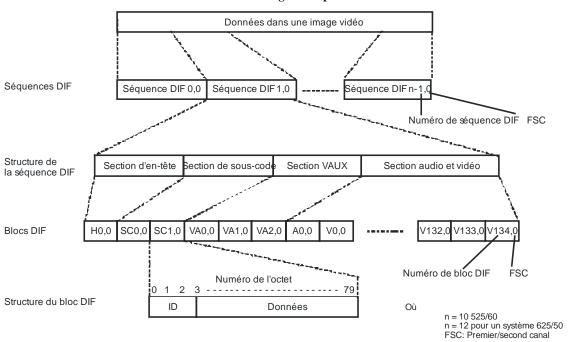

FIGURE 1 Schéma fonctionnel de l'interface numérique Données audio en entrée Traitement des données Données vidéo Formatage de audio, vidéo et Interface en entrée l'interface numérique de sous-code numérique Données de sous-code en entrée

FIGURE 2 Structure de données d'une image vidéo pour une structure à 50 Mbit/s

BT.1618-02

FIGURE 3 Structure de données d'une image vidéo pour une structure à 25 Mbit/s

FIGURE 4 Structure de données d'une séquence DIF

Blocs DIF	H0,i	SC0,i	SC1,i	VA0,i	VA1,i	VA2,i	1									
		•		,												
	A0,i	V0,i	V1,i	V2,i	V3,i	V4,i	V5,i	V6,i	V7,i	V8,i	V9,i	V10,i	V11,i	V12,i	V13,i	V14,i
	A1,i	V15,i	V16,i	V17,i	V18,i	V19,i	V20,i	V21,i	V22,i	V23,i	V24,i	V25,i	V26,i	V27,i	V28,i	V29,i
	A2,i	V30,i	V31,i	V32,i	V33,i	V34,i	V35,i	V36,i	V37,i	V38,i	V39,i	V40,i	V41,i	V42,i	V43,i	V44,i
	A3,i	V45,i	V46,i	V47,i	V48,i	V49,i	V50,i	V51,i	V52,i	V53,i	V54,i	V55,i	V56,i	V57,i	V58,i	V59,i
	A4,i	V60,i	V61,i	V62,i	V63,i	V64,i	V65,i	V66,i	V67,i	V68,i	V69,i	V70,i	V71,i	V72,i	V73,i	V74,i
	A5,i	V75,i	V76,i	V77,i	V78,i	V79,i	V80,i	V81,i	V82,i	V83,i	V84,i	V85,i	V86,i	V87,i	V88,i	V89,i
	A6,i	V90,i	V91,i	V92,i	V93,i	V94,i	V95,i	V96,i	V97,i	V98,i	V99,i	V100,i	V101,i	V102,i	V103,i	V104,i
	A7,i	V105,i	V106,i	V107,i	V108,i	V109,i	V110,i	V111,i	V112,i	V113,i	V114,i	V115,i	V116,i	V117,i	V118,i	V119,i
							_									
	A8,i	V120,i	V121,i	V122,i	V123,i	V124,i	V125,i	V126,i	V127,i	V128,i	V129,I	V130,i	V131,i	V132,i	V133,i	V134,i
														K I	umára d	blas Dir
														IN	umero de	e bloc DIF

BT.1618-04

où:

i: FSC

i = 0 pour une structure à 25 Mbit/s

i = 0,1 pour une structure à 50 Mbit/s

H0,i: bloc DIF de section d'en-tête

de SC0,i à SC1,i: blocs DIF de section de sous-code

de VA0,i à VA2,i: blocs DIF de section VAUX de A0,i à A8,i: blocs DIF de section audio de V0,i à V134,i: blocs DIF de section vidéo.

1.3 Section d'en-tête

1.3.1 ID

La partie ID située dans la section d'en-tête de chaque bloc DIF (voir les Fig. 2 et 3) sera composée de 3 octets (ID0, ID1, ID2). Le Tableau 1 donne le contenu de l'ID d'un bloc DIF.

TABLEAU 1 **Données d'ID d'un bloc DIF**

	Numéro de l'octet									
	Octet 0 (ID0)	Octet 1 (ID1)	Octet 2 (ID2)							
MSB	SCT_2	Dseq ₃	DBN ₇							
	SCT_1	Dseq ₂	DBN_6							
	SCT_0	Dseq ₁	DBN_5							
	Res	Dseq_0	$\mathrm{DBN_4}$							
	Arb	FSC	DBN_3							
	Arb	Res	DBN_2							
	Arb	Res	DBN_1							
LSB	Arb	Res	DBN_0							

L'ID est composé des champs suivants:

SCT: Type de section (voir le Tableau 2)

Dseq: Numéro de séquence DIF (voir les Tableaux 3 et 4)

FSC: Identification d'un bloc DIF dans chaque canal pour une structure à 50 Mbit/s

FSC = 0: premier canal

FSC = 2: second canal dans une structure à 25 Mbit/s

FSC = 0

DBN: Numéro de bloc DIF (voir Tableau 5)

Arb: Bit arbitraire

Res: Bit réservé à un usage ultérieur

La valeur par défaut sera mise à 1.

TABLEAU 2 **Type de section**

SCT ₂	SCT ₁	SCT ₀	Type de section
0	0	0	En-tête
0	0	1	Sous-code
0	1	0	VAUX
0	1	1	Audio
1	0	0	Audio
1	0	1	
1	1	0	Réservé
1	1	1	

TABLEAU 3 Numéro de séquence DIF pour un système 525/60

Dseq ₃	Dseq ₂	Dseq ₁	Dseq ₀	Signification			
0	0	0	0	Séquence DIF numéro 0			
0	0	0	1	Séquence DIF numéro 1			
0	0	1	0	Séquence DIF numéro 2			
0	0	1	1	Séquence DIF numéro 3			
0	1	0	0	Séquence DIF numéro 4			
0	1	0	1	Séquence DIF numéro 5			
0	1	1	0	Séquence DIF numéro 6			
0	1	1	1	Séquence DIF numéro 7			
1	0	0	0	Séquence DIF numéro 8			
1	0	0	1	Séquence DIF numéro 9			
1	0	1	0	Non utilisé			
1	0	1	1	Non utilisé			
1	1	0	0	Non utilisé			
1	1	0	1	Non utilisé			
1	1	1	0	Non utilisé			
1	1	1	1	Non utilisé			

TABLEAU 4 Numéro de séquence DIF pour un système 625/50

Dseq ₃	Dseq ₂	Dseq ₁	Dseq ₀	Signification				
0	0	0	0	Séquence DIF numéro 0				
0	0	0	1	Séquence DIF numéro 1				
0	0	1	0	Séquence DIF numéro 2				
0	0	1	1	1 Séquence DIF numéro 3				
0	1	0	0	Séquence DIF numéro 4				
0	1	0	1	Séquence DIF numéro 5				
0	1	1	0	Séquence DIF numéro 6				
0	1	1	1	Séquence DIF numéro 7				
1	0	0	0	Séquence DIF numéro 8				
1	0	0	1	Séquence DIF numéro 9				
1	0	1	0	Séquence DIF numéro 10				
1	0	1	1	Séquence DIF numéro 11				
1	1	0	0	Non utilisé				
1	1	0	1	Non utilisé				
1	1	1	0	Non utilisé				
1	1	1	1	Non utilisé				

TABLEAU 5

Numéro de bloc DIF

Dseq ₇	Dseq ₆	Dseq ₅	Dseq ₄	Dseq ₃	Dseq ₂	Dseq ₁	Dseq ₀	Signification
0	0	0	0	0	0	0	0	Séquence DIF numéro 0
0	0	0	0	0	0	0	1	Séquence DIF numéro 1
0	0	0	0	0	0	1	0	Séquence DIF numéro 2
0	0	0	0	0	0	1	1	Séquence DIF numéro 3
:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:
1	0	0	0	0	1	1	0	Bloc DIF numéro 134
1	0	0	0	0	1	1	1	Non utilisé
:	:	:	:	:	:	:	÷	•
1	1	1	1	1	1	1	1	Non utilisé

1.3.2 Données

La partie données (charge utile) de la section d'en-tête de chaque bloc DIF est présentée dans le Tableau 6. Les octets 3 à 7 sont actifs et les octets 8 à 79 sont réservés.

TABLEAU 6

Données (charge utile) dans le bloc DIF d'en-tête

Numéro de l'octet du bloc DIF d'en-tête

	3	4	5	6	7	8	_	79
MSB	DSF	Res	TF1	TF2	TF3	Res	Res	Res
	0	Res	Res	Res	Res	Res	Res	Res
	Res	Res	Res	Res	Res	Res	Res	Res
	Res	Res	Res	Res	Res	Res	Res	Res
	Res	Res	Res	Res	Res	Res	Res	Res
	Res	APT2	AP12	AP22	AP32	Res	Res	Res
	Res	APT1	AP11	AP21	AP31	Res	Res	Res
LSB	Res	APT0	AP10	AP20	AP30	Res	Res	Res

DSF: Fanion de séquence DIF

DSF = 0: 10 séquences DIF dans un canal (système 525/60)

DSF = 1: 12 séquences DIF dans un canal (système 625/50)

Les données APTn, AP1n, AP2n, AP3n: ces données seront identiques aux ID d'application de piste (APTn = 001, AP1n = 001, AP2n = 001, AP3n = 001) si le signal source provient de l'enregistreur numérique sur bande magnétique. Si la source du signal est inconnue, tous les bits correspondant à cette donnée seront mis à 1.

TF: Fanion d'émission

TF1: Fanion d'émission de blocs DIF audio

TF2: Fanion d'émission de blocs DIF VAUX et vidéo

TF3: Fanion d'émission de blocs DIF de sous-code

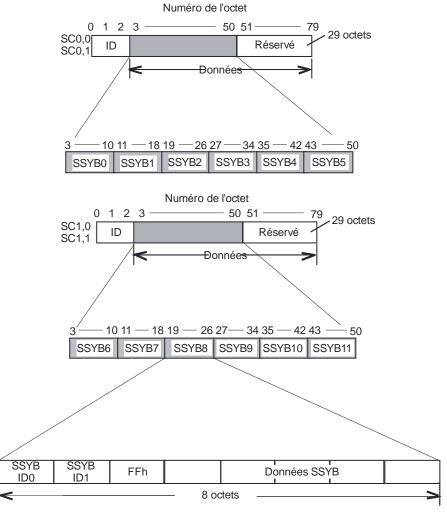
TFn = 0: Données valides

TFn = 1: Données non valides

Res: Bit réservé à un usage ultérieur

La valeur par défaut sera mise à 1.

1.4 Section de sous-code


1.4.1 ID

La partie ID de chaque bloc DIF dans la section de sous-code est décrite au § 1.3.1. Le type de section sera mis à 001.

1.4.2 Données

La partie données (charge utile) de la section de sous-code de chaque bloc DIF est présentée à la Fig. 5. Les données de sous-code sont composées de 6 blocs SSYB de 8 octets chacun et d'une zone réservée de 29 octets dans chaque bloc DIF correspondant. Les blocs SSYB d'une séquence DIF sont numérotés de 0 à 11. Chaque bloc SSYB est composé d'un ID de bloc SSYB de 2 octets, FF_h , et d'une charge utile de données SSYB de 5 octets.

FIGURE 5 **Données de la section de sous-code**

BT.1618-05

1.4.2.1 ID de bloc SSYB

Le tableau 7 décrit l'ID de bloc SSYB (ID0, ID1). Ces données comprennent un ID FR, un ID d'application (AP3₂, AP3₁, AP3₀) et un numéro de bloc SSYB (Syb₃, Syb₂, Syb₁, Syb₀).

L'ID FR correspond à l'identification de la première moitié ou de la seconde moitié de chaque canal.

FR = 1: première moitié de chaque canal

FR = 0: seconde moitié de chaque canal

Première moitié de chaque canal

Numéros de séquence DIF 0, 1, 2, 3, 4 pour le système 525/60

Numéros de séquence DIF 0, 1, 2, 3, 4, 5 pour le système 625/50

Seconde moitié de chaque canal

Numéros de séquence DIF 5, 6, 7, 8, 9 pour le système 525/60

Numéros de séquence DIF 6, 7, 8, 9, 10, 11 pour le système 625/50

Si l'information n'est pas disponible, tous les bits sont mis à 1.

TABLEAU 7 **ID de bloc SSYB**

Numéro du bit		SYB 0 et 6	SSY N° 1 à 5		SSYB N° 11		
au bit	ID0	ID1	ID0	ID1	ID0	ID1	
b7 (MSB)	FR	Arb	FR	Arb	FR	Arb	
b6	$AP3_2$	Arb	Res	Arb	APT_2	Arb	
b5	$AP3_1$	Arb	Res	Arb	APT_1	Arb	
b4	$AP3_0$	Arb	Res	Arb	APT_0	Arb	
b3	Arb	Syb_3	Arb	Syb ₃	Arb	Syb_3	
b2	Arb	Syb_2	Arb	Syb_2	Arb	Syb_2	
b1	Arb	Syb_1	Arb	Syb_1	Arb	Syb ₁	
b0 (LSB)	Arb	Syb_0	Arb	Syb_0	Arb	Syb_0	

NOTE 1 - Arb = bit arbitraire.

1.4.2.2 Données SSYB

Chaque charge utile de données SSYB est composée d'un paquet de 5 octets, comme indiqué dans la Fig. 6. Au Tableau 8 figure la table des en-têtes de paquet (structure de l'octet PC0). Le Tableau 9 présente la disposition des paquets dans la zone de données SSYB pour chaque canal.

FIGURE 6
Paquet SSYB

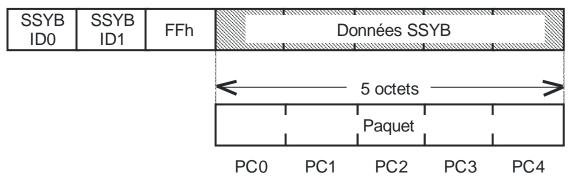


TABLEAU 8 **Table des en-têtes de paquet**

Poids fort/ Poids faible	0000	0001	0010	0011	0100	0101	0110	0111	_	1111
0000						SOURCE	SOURCE			
0001						COMMANDE DE SOURCE	COMMANDE DE SOURCE			
0010										
0011		CODE TEMPOREL								
0100		GROUPE BINAIRE								
0101										
1111										PAS D'INFO

TABLEAU 9

Mappage des paquets dans la zone de données SSYB

Numéro du bloc SSYB	Première moitié de chaque canal	Seconde moitié de chaque canal		
0	Réservé	Réservé		
1	Réservé	Réservé		
2	Réservé	Réservé		
3	TC	TC		
4	BG	Réservé		
5	TC	Réservé		
6	Réservé	Réservé		
7	Réservé	Réservé		
8	Réservé	Réservé		
9	TC	TC		
10	BG	Réservé		
11	TC	Réservé		

NOTE 1 - TC = paquet code temporel.

NOTE 2 - BG = paquet groupe binaire.

NOTE 3 – Réservé = la valeur par défaut de tous les bits sera mise à 1.

NOTE 4 – Les données TC et BG sont identiques à l'intérieur d'une même image vidéo. Le code temporel est de type LTC.

1.4.2.2.1 Paquet code temporel (TC)

MOD

Le Tableau 10 présente un mappage du paquet code temporel (TC, *time code*). Les données de code temporel, mappées sur les paquets code temporel, ne changent pas à l'intérieur d'une même image vidéo.

TABLEAU 10

Mappage du paquet code temporel

Système 525/60

T CD

	MSB							LSB		
PC0	0	0	0	1	0	0	1	1		
PC1	CF	DF		INES AGES	UNITÉS d'IMAGES					
PC2	PC	DIZAINES de SECONDES			UNI	NITÉS de SECONDES				
PC3	BGF0		ZAINES INUTES			UNITÉS de MINUTES				
PC4	BGF2	BGF1	BGF1 DIZAINES UNITÉS d'HEUR				l'HEURI	ES		

Système 625/50

	MSB							LSB
PC0	0	0	0	1	0	0	1	1
PC1	CF	Arb	DIZAINES d'IMAGES		UNITÉS d'IMAGES			ES
PC2	BGF0	DIZAINES de SECONDES			UNI	TÉS de	SECON	DES
PC3	BGF2	DIZAINES de MINUTES					ÉS de UTES	
PC4	PC	BGF1	DIZAINES d'HEURES		U.	NITÉS (HEUR	ES

NOTE 1 – Des informations détaillées figurent dans la Recommandation UIT-R BR.780.

CF: Image couleur

0 = Mode non synchronisé

1 = Mode synchronisé

DF: Fanion de saut d'image

0 = Code temporel en mode d'absence de saut d'image

1 = Code temporel en mode de saut d'image

PC: Correction de polarité par codage biphase mark

0 = Paire

1 = Impaire

T 01

BGF: Fanion de groupe binaire

Arb: Bit arbitraire

1.4.2.2.2 Paquet groupe binaire (BG)

Le Tableau 11 présente le mappage du paquet groupe binaire (BG, binary group). Les données de groupe binaire, mappées sur les paquets groupe binaire, ne changent pas à l'intérieur de chaque image vidéo.

TABLEAU 11

Mappage du paquet groupe binaire

	MSB							LSB
PC0	0	0	0	1	0	1	0	0
PC1	GROUPE BINAIRE 2				GROUPE BINAIRE 1			
PC2	GROUPE BINAIRE 4				GF	ROUPE I	BINAIR	E 3
PC3	GROUPE BINAIRE 6			GF	ROUPE I	BINAIR	E 5	
PC4	GR	OUPE E	BINAIRE	E 8	GF	ROUPE I	BINAIR	E 7

1.5 Section VAUX

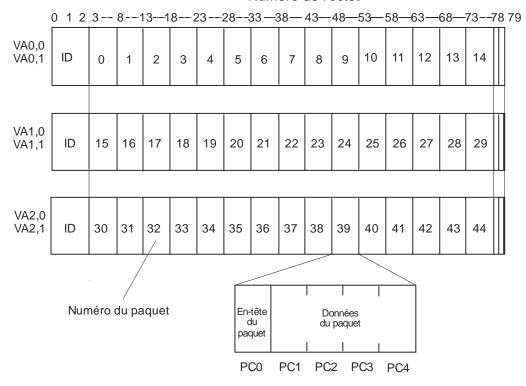
1.5.1 ID

La partie ID de la section VAUX de chaque bloc DIF est décrite au § 1.3.1. Le type de section sera mis à 010.

1.5.2 Données

La partie données (charge utile) de la section VAUX de chaque bloc DIF est présentée dans la Fig. 7, qui montre l'ordonnancement des paquets VAUX pour chaque séquence DIF.

La charge utile d'un bloc DIF de type VAUX est composée de 15 paquets de 5 octets et de deux octets de réserve. La valeur par défaut des octets de réserve sera FF_h.


On comptera donc 45 paquets dans une séquence DIF. Les paquets VAUX des blocs DIF sont numérotés séquentiellement de 0 à 44. Le numéro correspondant est appelé «numéro de paquet vidéo».

Le Tableau 12 présente le mappage des paquets VAUX des blocs DIF de type VAUX. Chaque image vidéo compressée doit comprendre un paquet source VAUX (VS) et un paquet commande de source VAUX (VSC). Les autres paquets VAUX des blocs DIF d'une séquence DIF sont réservés et la valeur de tous les mots réservés est mise à FF_h.

Si aucune donnée VAUX n'est transmise, un paquet NO INFO, dont tous les octets sont à FFh, doit être émis.

FIGURE 7 Structure des données de la section VAUX

Numéro de l'octet

BT.1618-07

TABLEAU 12

Mappage d'un paquet VAUX dans une séquence DIF

Numéro (
Séquence DIF paire	Séquence DIF impaire	Données du paquet	
39	0	VS	
40	1	VSC	

Où:

Séquence DIF paire:

numéros de séquence DIF 0, 2, 4, 6, 8 pour le système 525/60 numéros de séquence DIF 0, 2, 4, 6, 8, 10 pour le système 625/50

Séquence DIF impaire:

numéros de séquence DIF 1, 3, 5, 7, 9 pour le système 525/60 numéros de séquence DIF 1, 3, 5, 7, 9, 11 pour le système 625/50

1.5.2.1 Paquet source VAUX (VS)

Le Tableau 13 présente le mappage d'un paquet source VAUX.

TABLEAU 13

Mappage d'un paquet source VAUX

	MSB							LSB
PC0	0	1	1	0	0	0	0	0
PC1	Res	Res	Res	Res	Res	Res	Res	Res
PC2	B/W	EN	CLF		Res	Res	Res	Res
PC3	Res	Res	50/60	STYPE				

VISC

B/W: fanion noir et blanc

PC4

0 = noir et blanc

1 = couleur

EN: fanion d'activation des images couleur

0 = CLF est valide

1 = CLF n'est pas valide

CLF: code d'identification des images couleur (voir UIT-R BT.1700)

Pour un système 525/60

00b = Image couleur A

01b = Image couleur B

Autres = Réservé

Pour un système 625/50

00b = 1er, 2ème trame

01b = 3ème, 4ème trame

10b = 5ème, 6ème trame

11b = 7ème, 8ème trame

50/60:

0 = système 60 trames

1 = système 50 trames

STYPE: STYPE définit un type de signal vidéo

00000b = compression 4:1:1

00001b = réservé

00011b = réservé

00100b= compression 4:2:2

00101b = réservé

11111b = réservé

VISC:

Autre = réservé

MSB

Res: Bit réservé à un usage ultérieur

La valeur par défaut sera mise à 1

1.5.2.2 Paquet commande de source VAUX (VSC)

Le Tableau 14 présente le mappage d'un paquet commande de source VAUX.

TABLEAU 14

Mappage d'un paquet commande de source VAUX

LSB

PC0 0 1 1 0 0 0 CGMS PC1 Res Res Res Res Res Res PC2 Res Res 0 0 Res DISP PC3 FF FS FC IL 0 0 Res Res PC4 Res Res Res Res Res Res Res Res

CGMS: Système de gestion de génération de copie

CGMS	Génération possible de copie
0 0	Copie autorisée
0 1	
1 0	Réservé
1 1	

DISP: Mode d'affichage

DISP	Aspect ratio and format	Position
0 0 0	Plein écran 4:3	Sans objet
0 0 1	Réservé	
0 1 0	Plein écran 16:9 (comprimé)	Sans objet
0 1 1		
	Réservé	
1 1 1		

FF: Fanion image/trame

FF indique si deux trames consécutives sont produites ou si une trame est répétée deux fois pendant le laps de temps correspondant à une image.

0 = Une seule des deux trames est produite deux fois

1 = Les deux trames sont produites consécutivement.

FS: Fanion de première/seconde trame

FS indique une trame qui est produite pendant l'intervalle correspondant à la trame.

0 = La trame 2 est produite

1 = La trame 1 est produite

FF	FS	Champ en sortie
1	1	Le champ 1 et le champ 2 sont produits en sortie dans cet ordre (séquence 1, 2).
1	0	Le champ 2 et le champ 1 sont produits en sortie dans cet ordre (séquence 2, 1).
0	1	Le champ 1 est produit en sortie deux fois.
0	1	Le champ 2 est produit en sortie deux fois.

FC: Fanion de changement d'image

FC indique si l'image de la trame en cours est une répétition de la trame qui la précède immédiatement.

0 = Même image que la trame précédente

1 = Image différente de la trame précédente

IL: fanion d'entrelacement

0 = non entrelacée

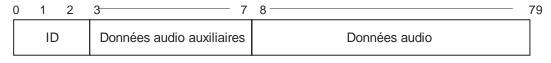
1 = entrelacée

Res: Bit réservé à un usage ultérieur

La valeur par défaut sera mise à 1.

1.6 Section audio

1.6.1 ID


La partie ID de la section audio de chaque bloc DIF est décrite au § 1.3.1. Le type de section sera mis à 011.

1.6.2 Données

La partie données (charge utile) de la section audio de chaque bloc DIF est présentée dans la Fig. 8. Les données de la section audio d'un bloc DIF sont composées de 5 octets de données audio auxiliaires (AAUX) et de 72 octets de données audio codées et brassées selon la procédure décrite aux § 1.6.2.1 et 1.6.2.2.

FIGURE 8 Structure des données de la section audio

Numéro de l'octet

BT.1618-08

1.6.2.1 Codage audio

1.6.2.1.1 Codage de la source

Chaque signal audio en entrée est échantillonné à 48 kHz, avec une quantification sur 16 bits. Le système prend en charge deux canaux audio pour une structure à 25 Mbit/s et quatre canaux audio pour une structure à 50 Mbit/s. Les données audio de chaque canal audio se trouvent dans un bloc audio correspondant.

Un bloc audio est composé de 45 blocs DIF (9 blocs DIF x 5 séquences DIF) dans le cas d'un système 525/60 et de 54 blocs DIF (9 blocs DIF \times 6 séquences DIF) dans le cas d'un système 625/50.

1.6.2.1.2 Accentuation

Le codage audio est réalisé avec une préaccentuation du premier ordre de 50/15 µs. Dans le cas d'un enregistrement analogique en entrée, l'accentuation sera désactivée.

1.6.2.1.3 Code d'erreur audio

Dans les données audio codées, la valeur 8000_h sera assignée au code d'erreur audio et indiquera un échantillon audio invalide. Ce code correspond à la valeur négative maximale dans la représentation classique du complément à 2. Si les données codées comprennent la valeur 8000_h , celle-ci sera remplacée par 8001_h .

1.6.2.1.4 Répartition relative de l'audio et de la vidéo dans le temps

La durée d'une trame audio est égale à une période d'une image vidéo. Une trame audio commence par un échantillon audio acquis pendant une durée de moins 50 échantillons par rapport aux échantillons «zéro» à partir de la première impulsion de pré-égalisation de la période de suppression vertical du signal vidéo d'entrée. La première impulsion de pré-égalisation désigne le début de la ligne n°1 dans le cas d'un système 525/60 et le milieu de la ligne N° 263 dans le cas d'un système 625/50.

1.6.2.1.5 Traitement des trames audio

La présente Recommandation décrit le traitement des trames audio en mode verrouillé.

La fréquence d'échantillonnage du signal audio est synchrone avec la fréquence de l'image vidéo. Les données audio sont traitées dans des trames. Dans le cas d'un canal audio, chaque trame audio contient 1 602 ou 1 600 échantillons audio (système 525/60), ou 1 920 échantillons audio (système 625/50). Pour un système 525/60, le nombre d'échantillons audio par trame audio suivra la séquence à cinq trames suivante:

1 600, 1 602, 1 602, 1 602, 1 602 échantillons.

La capacité audio de l'échantillon devra permettre de prendre en charge 1 620 échantillons par trame pour un système 525/60 ou 1 944 échantillons par trame pour un système 625/50. La zone non utilisée à la fin de chaque trame est remplie avec des valeurs arbitraires.

1.6.2.2 Brassage audio

Le mot de données audio de 16 bits est divisé en deux octets. L'octet de poids fort contient le MSB et l'octet de poids faible le LSB, comme indiqué dans la Fig. 9. Les données audio seront brassées sur les séquences DIF et sur les blocs DIF à l'intérieur d'une trame. Les octets de données sont désignés par D_n (n = 0, 1, 2, ...), n correspondant à l'ordre d'échantillonnage dans une trame audio. Le brassage s'effectue par unité D_n .

Les données seront brassées conformément à une procédure définie par les équations suivantes:

Système 525/60:

Numéro de séquence DIF:

(INT
$$(n/3) + 2 \times (n \mod 3)$$
) mod 5 pour les canaux CH1, CH3
(INT $(n/3) + 2 \times (n \mod 3)$) mod 5 + 5 pour les canaux CH2, CH4

Numéro de bloc audio DIF:

$$3 \times (n \mod 3) + INT ((n \mod 45) / 15)$$

où FSC = 0: canaux CH1, CH2

Position des octets:

 $8 + 2 \times INT(n/45)$ pour l'octet de plus fort poids

 $9 + 2 \times INT(n/45)$ pour l'octet de plus faible poids

où n = de 0 à 1 619

Système 625/50:

Numéro de séquence DIF:

(INT
$$(n/3) + 2 \times (n \text{ mod } 3)$$
) mod 6 pour les canaux CH1, CH3

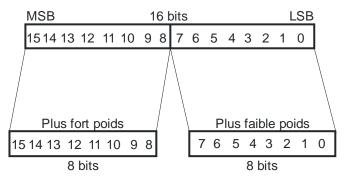
$$(INT (n/3) + 2 \times (n \mod 3)) \mod 6 + 6$$
 pour les canaux CH2, CH4

Numéro de bloc audio DIF:

$$3 \times (n \mod 3) + INT ((n \mod 54) / 18)$$

où FSC = 0: canaux CH1, CH2

Position des octets:

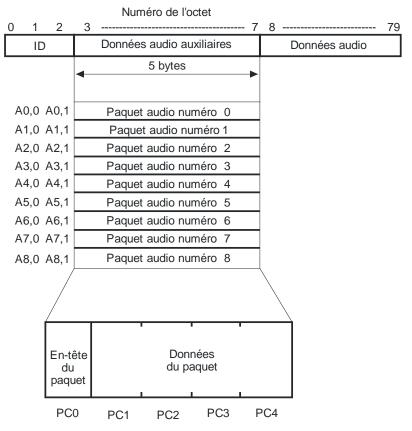

$$8 + 2 \times INT(n/54)$$
 pour l'octet de plus fort poids

$$9 + 2 \times INT(n/54)$$
 pour l'octet de plus faible poids

où $n = de \ 0 \ a \ 1 \ 943$

FIGURE 9

Conversion d'un échantillon audio en octets de données audio



BT.1618-09

1.6.2.3 Données audio auxiliaires

Les données audio auxiliaires (AAUX) seront ajoutées aux données audio brassées comme indiqué dans les Fig. 8 et 10. Le paquet AAUX sera composé d'un en-tête de paquet AAUX et des données (charge utile AAUX). La longueur du paquet AAUX sera de 5 octets, comme l'indique la Fig. 10 qui illustre l'organisation du paquet. Les paquets sont numérotés de 0 à 8, comme indiqué dans la Fig. 10. Ce numéro est appelé «numéro de paquet audio».

 ${\bf FIGURE}~10$ Organisation des paquets AAUX dans les données audio auxiliaires

Le Tableau 15 présente le mappage d'un paquet AAUX. Le flux compressé doit comprendre un paquet source AAUX (AS) et un paquet commande de source AAUX (ASC).

TABLEAU 15

Mappage d'un paquet AAUX dans une séquence DIF

Numéro de p			
Séquence DIF paire	Séquence DIF impaire	Données du paquet	
3	0	AS	
4	1	ASC	

où:

Séquence DIF paire:

numéros de séquence DIF 0, 2, 4, 6, 8 pour le système 525/60 numéros de séquence DIF 0, 2, 4, 6, 8, 10 pour le système 625/50

Séquence DIF impaire:

numéros de séquence DIF 1, 3, 5, 7, 9 pour le système 525/60 numéros de séquence DIF 1, 3, 5, 7, 9, 11 pour le système 625/50

1.6.2.3.1 Paquet source AAUX

Le paquet source AAUX (AS) est organisé comme indiqué dans le Tableau 16.

TABLEAU 16

Mappage du paquet source AAUX

	MSB							LSB
PC0	0	1	0	1	0	0	0	0
PC1	LF	Res	AF SIZE					
PC2	0	CI	-IN Res		es AUDIO MODE			
PC3	Res	Res	50/60	0/60 STYPE				
PC4	Res	Res	SMP QU					

LF: Fanion de mode verrouillé

Etat de verrouillage de la fréquence d'échantillonnage audio avec le signal vidéo.

0 = Mode verrouillé; 1 = Réservé

AF SIZE: Nombre d'échantillons audio par trame

010100b = 1 600 échantillons/trame (système525/60)

010110b = 1 602 échantillons/trame (système525/60)

011000b = 1 920 échantillons/trame (système625/50)

Autre = Réservé

CHN: Nombre de canaux audio par bloc audio

00b = Un canal audio par bloc audio

Autre = Réservé

Un bloc audio est composé des 45 blocs DIF de la section audio dans cinq séquences DIF consécutives dans le cas d'un système 525/60 et des 54 blocs DIF de la section audio dans six séquences DIF consécutives dans le cas d'un système 625/50.

AUDIO MODE: Contenu du signal audio dans chaque canal audio

0000b = CH1(CH3)

0001b = CH2 (CH4)

1111b = Données audio invalides

Autre = Réservé

50/60:

0 =Système à 60 trames

1 =Système à 50 trames

STYPE: STYPE définit le nombre de blocs audio par image vidéo

00000b = 2 blocs audio

00010b = 4 blocs audio

Autre = Réservé

SMP: Fréquence d'échantillonnage

000b = 48 kHz

Autre = Réservé

QU: Quantification

000b = 16 bits linéaire

Autre = Réservé

Res: Bit réservé à un usage ultérieur

La valeur par défaut sera mise à 1.

1.6.2.3.2 Paquet commande de source AAUX

Le paquet commande de source AAUX (ASC) est organisé comme indiqué dans le Tableau 17.

TABLEAU 17 Mappage d'un paquet commande de source AAUX

MSB

PC0	0	1	0	1	0	0	0	1
PC1	CG	MS	Res	Res	Res	Res	EFC	
PC2	REC ST	REC END	FADE ST	FADE END	Res	Res	Res	Res
PC3	DRF		SPEED					
PC4	Res	Res	Res	Res	Res	Res	Res	Res

CGMS: Système de gestion de génération de copie.

CGMS	Génération possible de copie
0 0	Copie autorisée
0 1	
1 0	Réservé
1 1	

EFC: Fanion d'accentuation du canal audio

00b = Accentuation désactivée

01b = Accentuation activée

Autre = Réservé

Le fanion EFC sera positionné pour chaque bloc audio.

REC ST: Début d'enregistrement

0 = Point du début de l'enregistrement

1 = N'est pas le point du début de l'enregistrement

Dans la trame de début d'enregistrement, le fanion REC ST 0 fait la durée d'un bloc audio, qui est égal à 5 ou 6 séquences DIF pour chaque canal audio.

REC END: Fin d'enregistrement

0 = Point de fin de l'enregistrement

1 = n'est pas le point de la fin de l'enregistrement

Dans la trame de fin d'enregistrement, le fanion REC END 0 fait la durée d'un bloc audio, qui est égal à 5 ou 6 séquences DIF pour chaque canal audio.

FADE ST: Ouverture en fondu du début d'enregistrement

0 = Fondu désactivé

1 = Fondu activé

Le fanion FADE ST n'a d'effet qu'au niveau de la trame de début d'enregistrement (REC ST = 0). Si le fanion FADE ST est mis à 1 dans cette trame, le signal audio en sortie doit être ouvert en fondu à

partir du premier signal échantillonné de la trame. Si le fanion FADE ST est mis à 0 dans la trame de début d'enregistrement, le signal audio en sortie ne doit pas être ouvert en fondu.

FADE END: Fermeture en fondu de la fin d'enregistrement

0 = Fondu désactivé

1 = Fondu activé

Le fanion FADE END n'a d'effet qu'au niveau de la trame de fin d'enregistrement (REC END = 0). Si le fanion FADE END est mis à 1 dans cette trame, le signal audio en sortie doit être fermé en fondu jusqu'au dernier signal échantillonné de la trame. Si le fanion FADE END est mis à 0 dans la trame de fin d'enregistrement, le signal audio en sortie ne doit pas être fermé en fondu.

DRF: Fanion de direction

0 = Direction vers l'arrière

1 = Direction vers l'avant

SPEED: Vitesse de navette de l'enregistreur vidéo sur bande magnétique (VTR, video tape recorder)

	Vitesse de navette du VTR				
VITESSE	Système 525/60	Système 625/50			
0000000	0/120 (=0)	0/100 (=0)			
0000001	1/120	1/100			
:	:	:			
1100100	100/120	100/100 (=1)			
:	:	Réservé			
1111000	120/120 (=1)	Réservé			
:	Réservé	Réservé			
1111110	Réservé	Réservé			
1111111	Données invalides	Données invalides			

RES: Bit réservé à un usage ultérieur

La valeur par défaut sera mise à 1.

1.7 Section vidéo

1.7.1 ID

La partie ID de la section vidéo de chaque bloc DIF est décrite au § 1.3.1. Le type de section sera mis à 100.

1.7.2 Données

La partie données (charge utile) de la section vidéo d'un bloc DIF consiste en 77 octets de données vidéo, qui sont échantillonnés, brassés et codés. Les données vidéo de chaque image vidéo sont traitées selon la procédure décrite au § 2.

1.7.2.1 Bloc DIF et macrobloc compressé

La correspondance entre blocs vidéo DIF et macroblocs vidéo compressés est présentée dans les Tableaux 18 et 19. Le Tableau 18 montre la correspondance entre les blocs vidéo DIF pour une structure à 50 Mbit/s et les macroblocs vidéo compressés (compression 4:2:2). Le Tableau 19 présente la correspondance entre les blocs vidéo DIF pour une structure à 25 Mbit/s et les macroblocs vidéo compressés (compression 4:1:1).

La règle qui définit cette correspondance est indiquée ci-dessous:

```
Structure à 50 Mbit/s – compression 4:2:2
   if (525/60 \text{ system}) n = 10 else n = 12;
   for (i = 0; i < n; i++)
     a = i;
     b = (i-6) \mod n;
     c = (i-2) \mod n;
     d = (i-8) \mod n;
     e = (i-4) \mod n;
     p = a;
     q = 3;
     for (j = 0; j < 5; j++)
for (k = 0; k<27; k++)
     V (5 \times k + q),0 of DSNp = CM 2i,j,k;
               V (5 \times k + q), 1 \text{ of } DSNp = CM 2i + 1, j, k;
}
     if (q == 3) \{p = b; q = 1;\}
else if (q == 1) \{ p = c; q = 0; \}
else if (q == 0) \{ p = d; q = 2; \}
else if (q == 2) \{ p = e; q = 4; \}
   }
Structure à 25 Mbit/s -- compression 4:1:1
   if (525/60 \text{ system}) n = 10 else n = 12;
   for (i = 0; i < n; i++)
       a = i;
       b = (i-6) \mod n;
       c = (i-2) \mod n;
       d = (i-8) \mod n;
       e = (i-4) \mod n;
```

p = a;

```
q = 3;
for (j = 0; j < 5; j + +) \{
for (k = 0; k < 27; k + +) \{
V (5 \times k + q), 0 \text{ of DSNp} = CM i, j, k;
\}
if (q == 3) \{p = b; q = 1; \}
else if (q == 1) \{p = c; q = 0; \}
else if (q == 0) \{p = d; q = 2; \}
else if (q == 2) \{p = e; q = 4; \}
\}
```

TABLEAU 18

Blocs vidéo DIF et macroblocs compressés pour une structure à 50 Mbit/s – compression 4:2:2

Bloc DIF	Macrobloc compressé
V0,0	CM 4,2,0
V0,1	CM 5,2,0
V1,0	CM 12,1,0
V1,1	CM 13,1,0
V2,0	CM 16,3,0
V2,1	CM 17,3,0
:	÷
V134,0	CM 8,4,26
V134,1	CM 9,4,26
V0,0	CM 6,2,0
V0,0	CM 7,2,0
V1,0	CM 14,1,0
V1,1	CM 15,1,0
V2,0	CM 18,3,0
V2,1	CM 19,3,0
:	:
V134,0	CM 10,4,26
V134,1	CM 11,4,26
:	:
:	:
	V0,1 V1,0 V1,1 V2,0 V2,1 : V134,0 V134,1 V0,0 V1,0 V1,0 V1,1 V2,0 V2,1 : V134,0

TABLEAU 18 (fin)

Numéro de séquence DIF	Bloc DIF	Macrobloc compressé
n-1	V0,0	CM 2,2,0
	V0,1	CM 3,2,0
	V1,0	CM 10,1,0
	V1,1	CM 11,1,0
	V2,0	CM 14,3,0
	V2,1	CM 15,3,0
	:	:
	V134,0	CM 6,4,26
	V134,1	CM 7,4,26

NOTE - n = 10 pour les systèmes 525/60; n = 12 pour les systèmes 625/50.

TABLEAU 19

Blocs vidéo DIF et macroblocs compressés pour une structure à 25 Mbit/s – compression 4:1:1

Numéro de séquence DIF	Bloc DIF	Macrobloc compressé
	V0,0	CM 2,2,0
	V1,0	CM 6,1,0
	V2,0	CM 8,3,0
0	V3,0	CM 0,0,0
0	V4,0	CM 4,4,0
	;	:
	V133,0	CM 0,0,26
	V134,4	CM 4,4,26
	V0,0	CM 3,2,0
	V1,0	CM 7,1,0
	V2,0	CM 9,3,0
1	V3,0	CM 1,0,0
1	V4,0	CM 5,4,0
	;	:
	V133,0	CM 1,0,26
	V134,0	CM 5,4,26
:	:	:
:	:	:
•	<u> </u>	:

Numéro de séquence DIF	Bloc DIF	Macrobloc compressé
n-1	V0,0	CM 1,2,0
	V1,0	CM 5,1,0
	V2,0	CM 7,3,0
	V3,0	CM n-1,0,0
	V4,0	CM 3,4,0
	:	:
	V133,0	CM n-1,0,26
	V134,0	CM 3,4,26

NOTE – n = 10 pour les systèmes 525/60; n = 12 pour les systèmes 625/50.

2 Compression vidéo

La présente section décrit le traitement de compression vidéo pour des compressions 4:2:2 et 4:1:1. NOTE 1 – Les valeurs Y, C_R, C_B utilisées dans la présente section sont équivalentes aux valeurs Y', C_R', C_B' qui ont les caractéristiques de transfert non linéaire communément décrites comme corrigées en gamma.

2.1 Structure vidéo

Le signal vidéo est échantillonné à une fréquence de 13,5 MHz pour la luminance (Y) et à 6,75 MHZ pour la chrominance (C_R, C_B). Les données de la zone de suppression verticale et de la zone de suppression horizontale sont écartées; le reste des données vidéo est ensuite brassé dans l'image vidéo. La quantité de données vidéo de départ doit être réduite à l'aide de techniques DCT ou VLC pour diminuer le débit.

Le processus de réduction du débit est le suivant: les données vidéo sont attribuées à un bloc DCT (8×8 échantillons). Dans le cas d'une compression 4:2:2, un macrobloc est composé de deux blocs DCT de luminance et de deux blocs DCT de chrominance. Dans le cas d'une compression 4:1:1, un macrobloc est composé de quatre blocs DCT de luminance et de deux blocs DCT de chrominance. Un segment vidéo est composé de cinq macroblocs. Un segment vidéo est ensuite compressé en cinq macroblocs compressés en utilisant les techniques DCT et VLC.

2.1.1 Structure d'échantillonnage

La structure d'échantillonnage est identique à la structure d'échantillonnage des signaux télévisuels des composantes 4:2:2 décrite dans la Recommandation UIT-R BT.601. Le Tableau 20 présente l'échantillonnage de la luminance (Y) et de deux signaux de chrominance (C_R, C_B) dans une structure 4:2:2.

TABLEAU 20 Construction de l'échantillonnage d'un signal vidéo (4:2:2)

		Système 525/60	Système 625/50	
Enérgia d'échantillanna ca	Y	13,5 MHz		
Fréquence d'échantillonnage	C_R, C_B	6,75 MHz		
Nombre total de pixels par ligne	Y	858	864	
	C_R, C_B	429	432	
Nombre de pixels actifs par	Y	720		
ligne	C_R, C_B	360		
Nombre total de lignes par image		525	625	
Nombre de lignes actives par image		480	576	
NT / 1 1' /'	Trame 1	23 à 262	23 à 310	
Numéros des lignes actives	Trame 2	285 à 524	335 à 622	
Quantification		Chaque échantillon de Y, C _R et C _B est codé sur 8 bits par quantification linéaire		
	Echelle	1 à 254		
Relation entre le niveau du signal vidéo et le niveau quantifié	Y	Niveau de signal vidéo correspondant au blanc: 235	Ni	
	Y	Niveau de signal vidéo correspondant au noir: 16	Niveau quantifié 220	
	C_R, C_B	Niveau de signal vidéo correspondant au gris: 128	Niveau quantifié 225	

Structure en ligne d'une image

Pour un système 525/60, 240 lignes correspondant aux signaux Y, CR et CB de chaque trame doivent être transmises. Pour un système 625/50, 288 lignes correspondant aux signaux Y, CR et CB de chaque trame doivent être transmises. Les lignes transmises sur une image de télévision sont définies dans le Tableau 20.

Structure en pixels d'une image

Compression 4:2:2

Tous les pixels échantillonnés (720 pixels de luminance par ligne et 360 pixels de chrominance) sont conservés et traités comme indiqué dans les Fig. 11 et 12. Le processus d'échantillonnage commence en même temps pour les signaux de luminance et les signaux de chrominance. Chaque pixel a une valeur comprise entre –127 et +126, obtenue en retirant 128 au niveau du signal d'entrée vidéo numérisé.

Compression 4:1:1

Tous les pixels de luminance échantillonnés (720 pixels par ligne) sont conservés et traités. Sur les 360 pixels de chrominance échantillonnés par ligne, un sur deux est écarté, 180 pixels étant donc traités. Le processus d'échantillonnage commence en même temps pour les signaux de luminance et les signaux de chrominance. Les Fig. 13 et 14 présentent le processus d'échantillonnage de façon détaillée. Chaque pixel a une valeur comprise entre –127 et +126, obtenue en retirant 128 au niveau du signal d'entrée vidéo numérisé.

FIGURE 11
Echantillons transmis dans un système 525/60 pour une compression 4:2:2

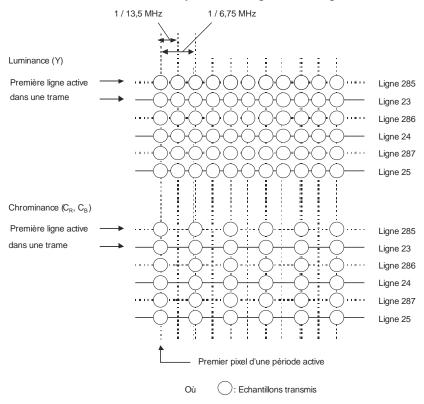


FIGURE 12
Echantillons transmis dans un système 625/50 pour une compression 4:2:2

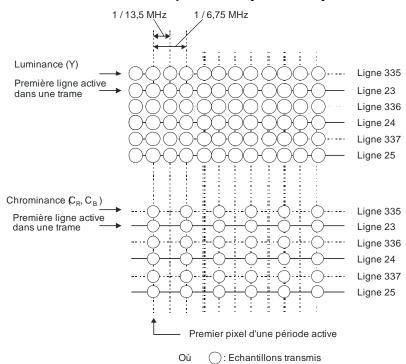


FIGURE 13

Echantillons transmis dans un système 525/60 pour une compression 4:1:1

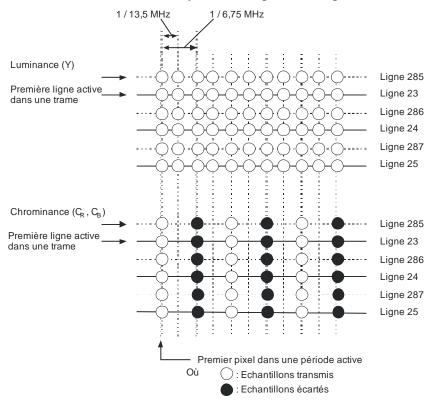
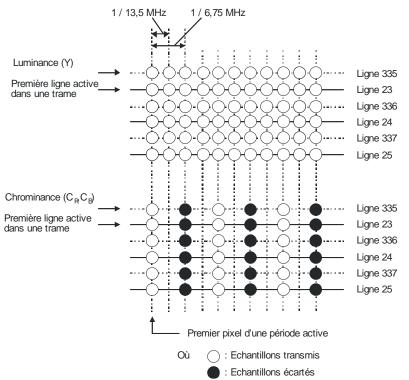



FIGURE 14

Echantillons transmis dans un système 625/50 pour une compression 4:1:1

2.1.2 Bloc DCT

Les pixels Y, C_R et C_B d'une image seront divisés en blocs DCT, comme indiqué à la Fig. 15. Tous les blocs DCT dans le cas de la compression 4:2:2 et tous les blocs DCT, à l'exception des blocs DCT situés le plus à droite dans C_R et C_B dans le cas de la compression 4:1:1, sont organisés de telle manière que chaque bloc DCT forme une zone rectangulaire de huit lignes verticales sur huit pixels dans le sens horizontal. La valeur x correspond à la coordonnée horizontale en partant de la gauche et la valeur y à la coordonnée verticale en partant du haut.

En mode compression 4:1:1, les blocs DCT situés le plus à droite dans C_R et C_B sont composés de seize lignes verticales sur quatre pixels dans le sens horizontal. On reconstituera le bloc DCT le plus à droite sous la forme d'une zone de huit lignes verticales sur huit pixels dans le sens horizontal en déplaçant la partie inférieure de la zone de huit lignes verticales sur quatre pixels dans le sens horizontal vers la partie supérieure de la zone de huit lignes verticales sur quatre pixels dans le sens horizontal comme indiqué dans la Fig. 16.

Ordonnancement des blocs DCT dans une image pour un système 525/60.

Les blocs DCT horizontaux dans une image sont organisés comme indiqué dans la Fig. 17 dans le cas d'une compression 4:2:2 et dans la Fig. 18 dans le cas d'une compression 4:1:1. Le même ordonnancement horizontal est répété sur 60 blocs DCT dans le sens vertical. Les pixels d'une image sont répartis en 10 800 blocs DCT dans le cas d'une compression 4:2:2 et en 8 100 blocs DCT dans le cas d'une compression 4:1:1.

Compression 4:2:2

Y: $60 \text{ blocs DCT verticaux} \times 90 \text{ blocs DCT horizontaux} = 5 400 \text{ blocs DCT}$

 C_{R} : 60 blocs DCT verticaux × 45 blocs DCT horizontaux = 2 700 blocs DCT

 C_{B} 60 blocs DCT verticaux × 45 blocs DCT horizontaux = 2 700 blocs DCT.

Compression 4:1:1

Y: 60 blocs DCT verticaux × 90 blocs DCT horizontaux = 5 400 blocs DCT

 C_R : 60 blocs DCT verticaux × 22,5 blocs DCT horizontaux = 1 350 blocs DCT

C_B: 60 blocs DCT verticaux × 22.5 blocs DCT horizontaux = 1 350 blocs DCT.

Ordonnancement des blocs DCT dans une image pour un système 625/50

Les blocs DCT horizontaux d'une image sont organisés comme indiqué dans la Fig. 17 dans le cas d'une compression 4:2:2 et dans la Fig. 18 dans le cas d'une compression 4:1:1. Le même ordonnancement horizontal est répété sur 72 blocs DCT dans le sens vertical. Les pixels d'une image sont répartis en 12 960 blocs DCT pour une compression 4:2:2 et en 9 720 blocs DCT pour une compression 4:1:1.

Compression 4:2:2

Y: 72 blocs DCT verticaux × 90 blocs DCT horizontaux = 6 480 blocs DCT

C_R: 72 blocs DCT verticaux × 45 blocs DCT horizontaux = 3 240 blocs DCT

C_B: 72 blocs DCT verticaux × 45 blocs DCT horizontaux = 3 240 blocs DCT.

Compression 4:1:1

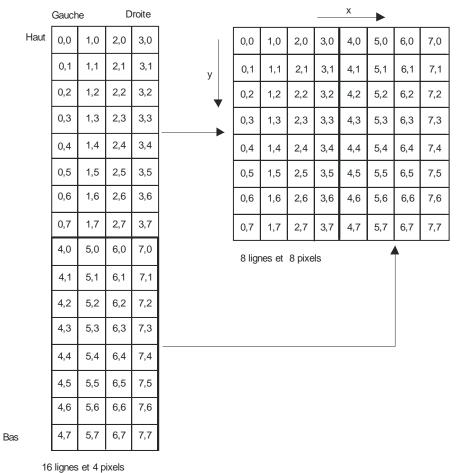
Y 72 blocs DCT verticaux \times 90 blocs DCT horizontaux = 6 480 blocs DCT

 C_R : 72 blocs DCT verticaux × 22,5 blocs DCT horizontaux = 1 620 blocs DCT

 C_B : 72 blocs DCT verticaux × 22,5 blocs DCT horizontaux = 1 620 blocs DCT.

2.1.3 Macrobloc

Un macrobloc est composé de quatre blocs DCT dans le cas d'une compression 4:2:2 (voir la Fig. 19) et de six blocs DCT dans le cas d'une compression 4:1:1 (voir la Fig. 20). Pour une compression 4:1:1, chaque macrobloc est composé de quatre blocs DCT du signal Y adjacents dans la direction horizontale, d'un bloc DCT du signal C_R et d'un bloc DCT du signal C_B sur un écran de télévision. Le macrobloc situé le plus à droite sur l'écran de télévision est composé de quatre blocs DCT du signal Y adjacents dans les directions horizontale et verticale, d'un bloc DCT du signal C_R et d'un bloc DCT du signal C_B .


FIGURE 15

Bloc DCT et coordonnées des pixels Droite Gauche Haut 1,0 2,0 3,0 4,0 5,0 6,0 7,0 Champ 2 0,0 Champ 1 0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 Champ 2 - Champ 1 2,3 3,3 4,3 5,3 6,3 7,3 У 0,3 1,3 7,4 - Champ 2 0,4 1,4 2,4 3,4 4,4 5,4 6,4 0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 - Champ 1 0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 - Champ 2 0,7 1,7 2,7 3,7 4,7 5,7 6,7 Bas 7,7 Champ 1 Pixel x = 6y = 7

BT.1618-15

FIGURE 16

Bloc DCT situé le plus à droite dans le signal de chrominance en mode compression 4:1:1

BT.1618-16

FIGURE 17
Ordonnancement des blocs DCT pour la compression 4:2:2

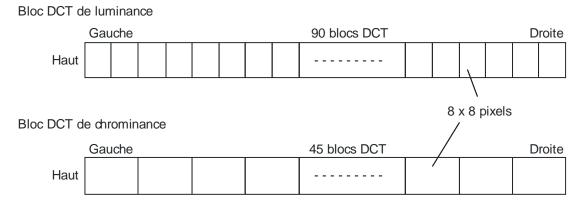


FIGURE 18

Ordonnancement des blocs DCT pour la compression 4:1:1

Bloc DCT de luminance

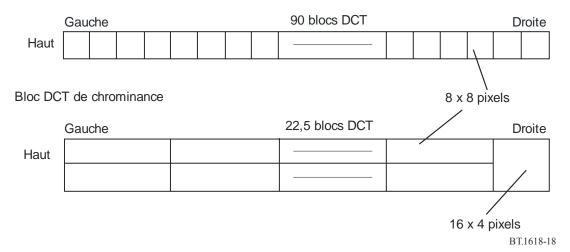
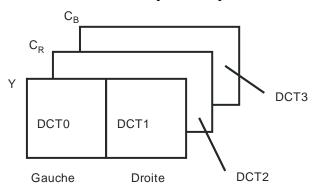
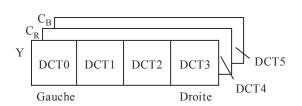



FIGURE 19


Macrobloc et blocs DCT pour la compression 4:2:2

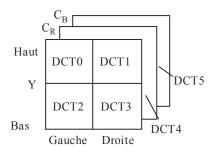

BT.1618-19

FIGURE 20
Macrobloc et blocs DCT pour la compression 4:1:1

A l'exception du macrobloc situé le plus à droite

Macrobloc situé le plus à droite

Ordonnancement des blocs DCT dans une image pour un système 525/60:

Les macroblocs d'une image sont organisés comme indiqué dans la Figure 21 dans le cas d'une compression 4:2:2 et dans la Fig. 22 dans le cas d'une compression 4:1:1. Un macrobloc est représenté par un petit rectangle. Les pixels d'une image sont répartis en 2 700 macroblocs dans le cas d'une compression 4:2:2 et en 1 350 macroblocs dans le cas d'une compression 4:1:1.

Compression 4:2:2

60 macroblocs verticaux \times 45 macroblocs horizontaux = 2 700 macroblocs

Compression 4:1:1

60 macroblocs verticaux \times 22,5 macroblocs horizontaux = 1 350 macroblocs

Ordonnancement des macroblocs dans une image pour un système 625/50:

Les macroblocs d'une image sont organisés comme indiqué dans la Fig. 23 dans le cas d'une compression 4:2:2 dans la Fig. 24 dans le cas d'une compression 4:1:1. Un macrobloc est représenté par un petit rectangle. Les pixels d'une image sont répartis en 3 240 macroblocs dans le cas d'une compression 4:2:2 et en 1 620 macroblocs dans le cas d'une compression 4:1:1.

Compression 4:2: 2

72 macroblocs verticaux \times 45 macroblocs horizontaux = 3 240 macroblocs

Compression 4:1:1

72 macroblocs verticaux \times 22,5 macroblocs horizontaux = 1 620 macroblocs

FIGURE 21
Superblocs et macroblocs dans une image de télévision pour un système 525/60 avec compression 4:2:2

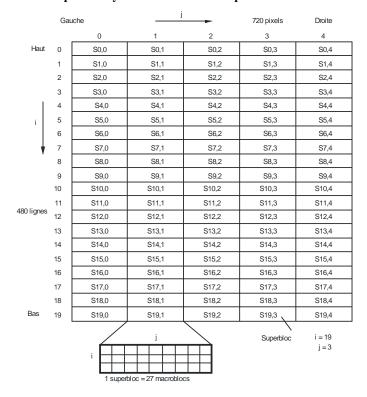


FIGURE 22
Superblocs et macroblocs dans une image de télévision pour un système 525/60 avec compression 4:1:1

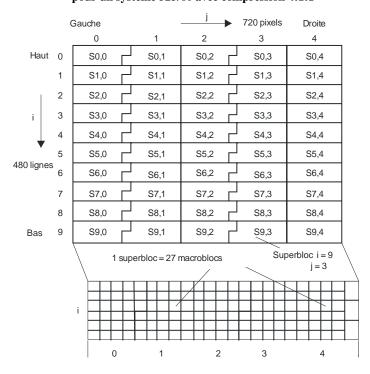


FIGURE 23
Superblocs et macroblocs dans une image de télévision pour un système 625/50 avec compression 4:2:2

		Gauche		j	720 pixels	Droite
		0	1	2	3	4
Haut	0	S0,0	S0,1	\$0,2	S0,3	\$0,4
	1	\$1,0	S1,1	\$1,2	\$1,3	S1,4
	2	\$2,0	S2,1	\$2,2	\$2,3	\$2,4
	3	\$3,0	S3,1	\$3,2	\$3,3	\$3,4
	4	\$4,0	S4,1	\$4,2	\$4,3	\$4,4
i	5	\$5,0	S5,1	S5,2	\$5,3	S5,4
.	6	\$6,0	S6,1	\$6,2	\$6,3	\$6,4
\downarrow	7	S7,0	S7,1	S7,2	\$7,3	S7,4
	8	S8,0	S8,1	S8,2	\$8,3	S8,4
	9	\$9,0	S9,1	\$9,2	\$9,3	\$9,4
	10	\$10,0	\$10,1	\$10,2	\$10,3	\$10,4
F70 !:	11	S11,0	S11,1	S11,2	S11,3	S11,4
576 ligne	s 12	S12,0	S12,1	S12,2	S12,3	S12,4
	13	S13,0	S13,1	S13,2	\$13,3	S13,4
	14	S14,0	S14,1	S14,2	S14,3	S14,4
	15	S15,0	S15,1	S15,2	S15,3	S15,4
	16	S16,0	S16,1	S16,2	S16,3	S16,4
	17	S17,0	S17,1	S17,2	\$17,3	S17,4
	18	S18,0	S18,1	S18,2	\$18,3	S18,4
	19	S19,0	S19,1	S19,2	S19,3	S19,4
	20	\$20,0	S20,1	\$20,2	S20,3	\$20,4
	21	S21,0	S21,1	S21,2	S21,3	S21,4
	22	S22,0	S22,1	S22,2	S22,3	S22,4
Bas	23	S23,0	S23,1	S23,2	S23,3 、	S23,4
		i H	j		Superbloc	i = 23 j = 3
		1 superblo	oc = 27 macroblo			
		i superbic	- 21 maorobio			

► 720 pixels Gauche Droite 2 4 Haut 0 S0,0 S0,2 S0,3 S0.4 S0.1 S1.0 S1.1 S1.2 S1,3 S1.4 S2,1 S2,2 S2,3 S2,4 2 S2.0 3 S3.0 S3,1 S3,2 S3,3 S3,4 S4,3 S4,4 4 S4.0 S4.1 5 S5,0 S5,1 S5,2 S5,3 S5,4 6 S6.0 S6,2 S6,3 S6,1 S6,4 576 lignes 7 S7,0 S7,1 S7,2 S7,3 S7,4 8 S8.0 S8.1 S8.2 S8.4 S9,0 S9,1 S9,2 S9,3 S9,4 9 10 S10,0 S10,1 S10,2 S10,3 S10.4 Bas S11,3 S11.0 S11.1 S11.2 S11.4 Superbloc i = 11 1 superbloc = 27 macroblocs 2 3 4

FIGURE 24
Superblocs et macroblocs dans une image de télévision pour un système 625/50 avec compression 4:1:1

2.1.4 Superbloc

Chaque superbloc est composé de 27 macroblocs.

Ordonnancement des superblocs dans une image pour un système 525/60.

Les superblocs d'une image sont ordonnés comme indiqué dans la Fig. 21 pour la compression 4:2:2 et dans la Fig. 22 pour la compression 4:1:1. Chaque superbloc est composé de 27 macroblocs adjacents et son contour est indiqué par une ligne épaisse. Les pixels d'une image sont répartis en 100 superblocs dans le cas d'une compression 4:2:2 et en 50 superblocs dans le cas d'une compression 4:1:1.

Compression 4:2:2

- 20 superblocs verticaux \times 5 superblocs horizontaux = 100 superblocs.

Compression 4:1:1

10 superblocs verticaux × 5 superblocs horizontaux = 50 superblocs

Ordonnancement des superblocs dans une image pour un système 625/50.

Les superblocs d'une image sont ordonnés comme indiqué dans la Fig. 23 pour la compression 4:2:2 et dans la Fig. 24 pour la compression 4:1:1. Chaque superbloc est composé de 27 macroblocs adjacents et son contour est indiqué par une ligne épaisse. Les pixels d'une image sont répartis en 120 superblocs dans le cas d'une compression 4:2:2 et en 60 superblocs dans le cas d'une compression 4:1:1.

Compression 4:2:2

- 24 superblocs verticaux \times 5 superblocs horizontaux = 120 superblocs.

Compression 4:1:1

12 superblocs verticaux × 5 superblocs horizontaux = 60 superblocs.

2.1.5 Définitions: numéro de superbloc, numéro de macrobloc et valeur de pixel

Numéro de superbloc

Le numéro de superbloc dans une image est exprimé sous la forme S i, j, comme indiqué dans les Fig. 21, 22, 23 et 24.

S i, j où i: position verticale du superbloc

$$i = 0, ..., n-1$$

où:

n: nombre de superblocs verticaux dans une image vidéo

 $n = 10 \times m$ pour un système 525/60

 $n = 12 \times m$ pour un système 625/50

m: type de compression

m = 1 pour la compression 4:1:1

m = 2 pour la compression 4:2:2

j: position horizontale du superbloc

$$j = 0, ..., 4$$

Numéro de macrobloc

Le numéro de macrobloc est exprimé sous la forme M i, j, k. Le symbole k représente la position du macrobloc à l'intérieur du superbloc comme indiqué dans la Fig. 25 pour la compression 4:2:2 et dans la Fig. 26 pour la compression 4:1:1. Dans ces Figures, un macrobloc est représenté par un petit rectangle au centre duquel figure le symbole k.

M i, j, k où i, j: numéro du superbloc

k: position du macrobloc dans le superbloc

$$k = 0, ..., 26$$

 ${\bf FIGURE~25}$ Position des macroblocs dans un superbloc pour la compression 4:2:2

::

Superbloc S

			1		1,] \	-, ,	, , -, , ,	
0	5	6	11	12	17	18	23	24
1	4	7	10	13	16	19	22	25
2	3	8	9	14	15	20	21	26

Où n = 20: système 525/60

n = 24: système 625/50

(i = 0, ..., n-1, i = 0, ..., 4)

 ${\bf FIGURE~26}$ Position des macroblocs dans un superbloc pour la compression 4:1:1

Superbloc S i, 0, S i, 2 (i = 0, ..., n-1)

0	11	12	23	24
1	10	13	22	25
2	9	14	21	26
3	8	15	20	
4	7	16	19	
5	6	17	18	

Superbloc S i, 1, S i, 3 (i = 0, ..., n-1)

	8	9	20	21
	7	10	19	22
	6	11	18	23
0	5	12	17	24
1	4	13	16	25
2	3	14	15	26

Superbloc S i, 4 (i = 0,..., n-1)

0	11	12	23	24
1	10	13	22	24
2	9	14	21	25
3	8	15	20	25
4	7	16	19	26
5	6	17	18	20

Où n = 10: système 525/60 n = 12: système 625/50

BT.1618-26

Position d'un pixel

La position d'un pixel est symbolisée par P i, j, k, I (x,y). La position du pixel (x, y) est indiquée en suffixe des symboles i, j, k et I. Le symbole représente la position d'un bloc DCT dans un macrobloc, comme indiqué dans les Fig. 19 et 20. Dans ces Figures, un bloc DCT est représenté par un rectangle et le numéro de bloc DCT dans le rectangle correspond au symbole I. Les symboles x et y représentent les coordonnées d'un pixel dans le bloc DCT, comme décrit au § 2.1.2.

P i, j, k, I (x,y) où i, j, k: numéro du macrobloc

I: position du bloc DCT dans le macrobloc

(x, y): coordonnées d'un pixel dans le bloc DCT

$$x = 0, ..., 7$$

$$y = 0, ..., 7.$$

2.1.6 Définitions: segment vidéo et macrobloc compressé

On désigne par segment vidéo le regroupement de cinq macroblocs provenant de diverses zones de l'image vidéo:

Ma, 2, k où $a = (i + 2m) \mod n$

Mb, 1, k où $b = (i + 6m) \mod n$

Mc, 3, k où $c = (i + 8m) \mod n$

Md, 0, k où d = (i + 0) mod n

Me, 4, k où $e = (i + 4m) \mod n$

où:

i: position verticale du superbloc

$$i = 0, ..., n-1$$

n: nombre de superblocs verticaux dans une image vidéo

 $n = 10 \times m$ pour un système 525/60

 $n = 12 \times m$ pour un système 625/50

m: type de compression

m = 1 pour la compression 4:1:1

m = 2 pour la compression 4:2:2

k: position du macrobloc dans le superbloc

$$k = 0, ..., 26$$

Avant réduction du débit, chaque segment vidéo est désigné par V i, k. Le segment V i, k est composé de Ma, 2, k; Mb, 1, k; Mc, 3, k; Md, 0, k; et Me, 4, k.

La procédure de réduction du débit est exécutée de façon séquentielle à partir de Ma, 2, k jusqu'à Me, 4, k. Les données du segment vidéo sont compressées et transformées en un flux de données de 385 octets. Un ensemble de données vidéo compressées est composé de cinq macroblocs compressés. Chacun de ces macroblocs compressé comprend 77 octets et est désigné par CM. Après réduction du débit, chaque segment vidéo est exprimé sous la forme CV i, k. Le segment CV i, k est composé de CM a, 2, k; CM b, 1, k; CM c, 3, k; CM d, 0, k; et CM e, 4, k, comme indiqué ci-dessous:

CMa, 2, k:

Ce bloc comprend l'ensemble ou la plus grande partie des données compressées du macrobloc Ma, 2, k et peut inclure les données compressées du macrobloc Mb, 1, k; ou Mc, 3, k; ou Md, 0, k; ou Me, 4, k. .

CMb, 1, k:

Ce bloc comprend l'ensemble ou la plus grande partie des données compressées du macrobloc Mb, 1, k et peut inclure les données compressées du macrobloc Ma, 2, k; ou Mc, 3, k; ou Md, 0, k; ou Me, 4, k.

CMc, 3, k:

Ce bloc comprend l'ensemble ou la plus grande partie des données compressées du macrobloc Mc, 3, k et peut inclure les données compressées du macrobloc Ma, 2, k; ou Mb, 1, k; ou Md, 0, k; ou Me, 4, k.

CMd, 0, k:

Ce bloc comprend l'ensemble ou la plus grande partie des données compressées du macrobloc Md, 0, k et peut inclure les données compressées du macrobloc Ma, 2, k; ou Mb, 1, k; ou Mc, 3, k; ou Me, 4, k.

CMe, 4, k:

Ce bloc comprend l'ensemble ou la plus grande partie des données compressées du macrobloc Me, 4, k et peut inclure les données compressées du macrobloc Ma, 2, k; ou Mb, 1, k; ou Mc, 3, k; ou Md, 0, k.

2.2 Traitement des blocs DCT

Les blocs DCT sont composés de deux trames offrant 4 rangées verticales de pixels et 8 pixels horizontaux chacune. La présente section décrit la procédure permettant de transformer les 64 pixels d'un bloc DCT numérotés i, j, k, I (x, y) en 64 coefficients numérotés i, j, k, I (h, v). P i, j, k, I (x, y) correspond à la valeur du pixel et C i, j, k, I (h, v) est la valeur du coefficient.

Pour h = 0 et v = 0, le coefficient est appelé coefficient DC. Les autres coefficients sont appelés coefficients AC.

2.2.1 Mode DCT

En fonction du niveau de variation du contenu entre les deux trames d'une image vidéo, on choisit entre deux modes, le mode 8-8-DCT ou le mode 2-4-8-DCT, pour optimiser le processus de réduction des données. Les deux modes DCT sont définis comme suit:

Mode 8-8-DCT

DCT:

$$7 \qquad 7 \\ C, i, j, k, l (h, v) = C (v) C (h) \qquad \Sigma \qquad \Sigma \\ y = 0 \quad x = 0 \\ (P i, j, k, l (x, y) COS(\pi v (2y + 1)/16) COS (\pi h (2x + 1)/16))$$

DCT inverse:

où:

C(h) = 0, 5 /
$$\sqrt{2}$$
 pour h = 0
C(h) = 0, 5 pour h = 1 à 7
C(v) = 0, 5 / $\sqrt{2}$ pour v = 0
C(v) = 0, 5 pour v = 1 à 7

Mode 2-4-8 DCT

DCT

$$C, i, j, k, l (h, u) = C (u) C (h) \qquad \Sigma \qquad \Sigma$$

$$z = 0 \qquad x = 0$$

$$((P i, j, k, l (x, 2z) + P i, j, k, l (x, 2z + 1)) KC)$$

$$3 \qquad 7$$

$$C, i, j, k, l (h, u + 4) = C (u) C (h) \qquad \Sigma \qquad \Sigma$$

$$z = 0 \qquad x = 0$$

$$((P i, j, k, l (x, 2z) - P i, j, k, l (x, 2z + 1)) KC)$$
 DCT inverse:
$$3 \qquad 7$$

$$P, i, j, k, l (x, 2z) = \sum \qquad \Sigma$$

$$u = 0 \qquad h = 0$$

$$(C i, j, k, l (h, u) + C, i, j, k, l (h, u + 4)) KC)$$

$$3 \qquad 7$$

$$P, i, j, k, l (x, 2z + 1) = \sum \qquad \Sigma \qquad (C (u) C (h) u = 0 h = 0$$

$$(C i, j, k, l (h, u) - C, i, j, k, l (h, u + 4)) KC)$$
 où:
$$u = 0, ..., 3$$

$$z = INT (y / 2)$$

$$KC = COS (\pi u(2z + 1) / 8) COS (\pi h(2x + 1) / 16)$$

$$C(h) = 0, 5 / \sqrt{2} \qquad pour h = 0$$

$$C(h) = 0, 5 \qquad pour h = 1 à 7$$

$$C(u) = 0, 5 / \sqrt{2} \qquad pour u = 0$$

2.2.2 Pondération

Les coefficients DCT seront pondérés selon la manière décrite ci-après. W (h, v) exprime la pondération pour C i, j,

pour u = 1 à 7

k, l (h, v) du coefficient DCT.

C(u) = 0, 5

Mode 8-8 DCT

Pour
$$h = 0$$
 et $v = 0$ W(h, v) = 1 / 4

Pour les autres
$$W(h, v) = w(h) w(v) / 2$$

Mode 2-4-8- DCT

Pour
$$h = 0$$
 et $v = 0$ W(h, v) = 1 / 4

Pour
$$v < 4$$
 $W(h, v) = w(h) w(2 v) / 2$

Pour les autres
$$W(h, v) = w(h) w(2 (v-4)) / 2$$

où:

$$w(0) = 1$$

$$w(1) = CS4 / (4 \times CS7 \times CS2)$$

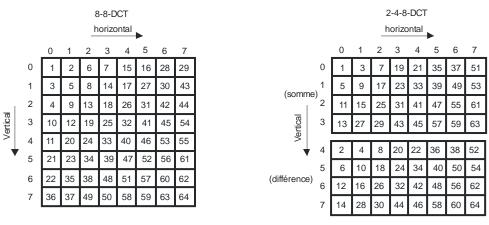
$$w(2) = CS4 / (2 \times CS6)$$

$$w(3) = 1 / (2 \times CS5)$$

$$w(4) = 7 / 8$$

$$w(5) = CS4 / CS3$$

$$w(6) = CS4 / CS2$$


$$w(7) = CS4 / CS1$$

où CSm = COS $(m\pi / 16) m = 1 à 7$

2.2.3 Ordre de sortie

La Fig. 27 illustre l'ordre de sortie des coefficients pondérés.

FIGURE 27 Ordre de sortie des blocs DCT pondérés

BT.1618-27

2.2.4 Tolérance de bloc DCT avec pondération

L'erreur en sortie entre le bloc DCT de référence et le bloc DCT testé devrait être conforme aux tolérances pour les éléments suivants:

- probabilité d'apparition d'une erreur;
- erreurs quadratiques moyennes pour tous les coefficients;
- valeur maximale de l'erreur quadratique moyenne pour chaque bloc DCT;
- toutes les valeurs des pixels à l'entrée d'un bloc DCT sont identiques.

2.3 Quantification

2.3.1 Introduction

Les coefficients DCT pondérés sont d'abord quantifiés en mots de 9 bits, puis divisés par quantification afin de limiter le volume de données présentes dans un segment vidéo à cinq macroblocs compressés.

2.3.2 Allocation des bits pour la quantification

Les coefficients DCT pondérés seront représentés comme suit:

Valeur des coefficients DCT (9 bits):

b8 b7 b6 b5 b4 b3 b2 b1 b0

complément à 2 (-255 à 255)

Valeur des coefficients AC (10 bits):

s b8 b7 b6 b5 b4 b3 b2 b1 b0

1 bit de signe + 9 bits de valeur absolue (-511 à 511).

2.3.3 Numéro de classe

Chaque bloc DCT doit être classé dans l'une des quatre catégories décrites dans le Tableau 21. Pour choisir le pas de quantification, on utilise le numéro de classe. Les valeurs c1 et c0 expriment toutes deux le numéro de classe et sont stockées dans le coefficient DC des blocs DCT compressés comme indiqué au § 2.5. Le Tableau 22 donne à titre de référence un exemple de la classification.

2.3.4 Mise à l'échelle initiale

La mise à l'échelle initiale est une opération permettant de faire passer les coefficients AC de 10 à 9 bits. Elle est effectuée de la manière suivante:

Pour numéro de classe = 0, 1, 2

données d'entrée s b8 b7 b b5 b4 b3 b2 b1 b0

données de sortie s b7 b6 b5 b4 b3 b2 b1 b0

Pour numéro de classe = 3

données d'entrée s b8 b7 b6 b5 b4 b3 b2 b1 b0

données de sortie s b8 b7 b6 b5 b4 b3 b2 b2 b1

TABLEAU 21

Numéro de classe et bloc DCT

Nu	ıméro de	classe	Bloc DCT				
	c1	c0	Bruits de quantification	Valeur absolue maximale du coefficient AC			
0	0	0	Visibles				
1	0	1	Inférieurs à classe 0	Infóriaura ou ágala à 255			
2	1	0	Inférieurs à classe 1	Inférieure ou égale à 255			
2	1	1	Inférieurs à classe 2				
3	1	1	_	Supérieure à 255			

Valeur absolue maximale du coefficient AC 0 à 11 12 à 23 24 à 35 >35 Y 0 1 2 3 2 3 3 C_R 1 C_{B} 2 3 3 3

TABLEAU 22 Exemple de classification donné à titre de référence

2.3.5 Numéro de zone

On utilise un numéro de zone pour sélectionner le pas de quantification. Les coefficients AC à l'intérieur d'un bloc DCT sont répartis dans quatre zones associées à un numéro comme indiqué dans la Fig. 28.

2.3.6 Pas de quantification

Le pas de quantification sera choisi en fonction du numéro de classe, du numéro de zone et du numéro de quantification (QNO, *quantization number*), comme indiqué dans le Tableau 23. Le QNO est choisi de façon à limiter à cinq macroblocs compressés le volume de données dans un segment vidéo.

2.4 Codage à longueur variable

Le codage à longueur variable (VLC, *variable length coding*) est une opération visant à produire des codes de longueur variable à partir des coefficients AC quantifiés. Un ou plusieurs coefficients AC successifs d'un bloc DCT sont codés en un code de longueur variable en suivant l'ordre indiqué dans la Fig. 27. La longueur de plage et l'amplitude sont définis de la manière suivante:

Longueur de plage: nombre de coefficients AC successifs quantifiés à 0 (plage = 0, ..., 61).

Amplitude: valeur absolue qui suit immédiatement des coefficients AC successifs quantifiés à 0 (amp = 0, ..., 255).

(plage, amp): couple associant la longueur de plage et l'amplitude.

Le Tableau 24 indique la longueur des mots de code correspondant à un couple (plage, amp) donné. Dans ce tableau, la longueur des mots de code ne comprend pas le bit de signe. Il convient donc d'incrémenter la longueur du code de 1 lorsque l'amplitude n'est pas égale à zéro car il faut un bit de signe. La longueur des mots de code correspondant à des couples (plage, amp) pour lesquels la colonne est vide s'obtient en ajoutant les valeurs correspondant à (plage -1, 0) et (0, amp).

Le code à longueur variable doit être conforme au Tableau 25. Dans le Tableau 25, le bit le plus à gauche d'un mot de code correspond au MSB; le bit le plus à droite au LSB. Le MSB d'un mot de code est accolé au LSB du mot de code qui le précède immédiatement. Le bit de signe «s» est le suivant:

- si le coefficient AC quantifié est supérieur à zéro, s = 0;
- si le coefficient AC quantifié est inférieur à zéro, s = 1.

Lorsque tous les coefficients quantifiés restants dans un bloc DCT sont égaux à zéro, il est mis fin au processus de codage en ajoutant le mot de code EOB (end of bloc, fin de bloc) = 0110b immédiatement après le dernier mot de code.

FIGURE 28 **Numéros de zone**

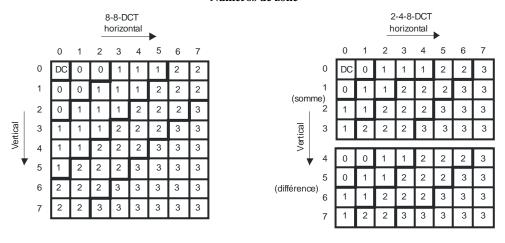


TABLEAU 23 **Pas de quantification**

		Numéro	de classe			Numéro	de zone	
	0	1	2	3	0	1	2	3
	15				1	1	1	1
	14				1	1	1	1
	13				1	1	1	1
	12	15			1	1	1	1
	11	14			1	1	1	1
	10	13		15	1	1	1	1
	9	12	15	14	1	1	1	1
	8	11	14	13	1	1	1	2
	7	10	13	12	1	1	2	2
Numéro de	6	9	12	11	1	1	2	2
quantification	5	8	11	10	1	2	2	4
(QNO)	4	7	10	9	1	2	2	4
	3	6	9	8	2	2	4	4
	2	5	8	7	2	2	4	4
	1	4	7	6	2	4	4	8
	0	3	6	5	2	4	4	8
		2	5	4	4	4	8	8
		1	4	3	4	4	8	8
		0	3	2	4	8	8	16
			2	1	4	8	8	16
			1	0	8	8	16	16
			0		8	8	16	16

TABLEAU 24

Longueur des mots de code

		Amplitude																								
Longueur de plage	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	_	255
0	11	2	3	4	4	5	5	6	6	7	7	7	8	8	8	8	8	8	9	9	9	9	9	15	ı	15
1	11	4	5	7	7	8	8	8	9	10	10	10	11	11	11	12	12	12								
2	12	5	7	8	9	9	10	12	12	12	12	12														
3	12	6	8	9	10	10	11	12																		
4	12	6	8	9	11	12																				
5	12	7	9	10																						
6	13	7	9	11																						
7	13	8	12	12																						
8	13	8	12	12																						
9	13	8	12																							
10	13	8	12																							
11	13	9																								
12	13	9																								
13	13	9																								
14	13	9																								
15	13																									
61	13																									

NOTE 1 – Le bit de signe n'est pas inclus.

NOTE 2 - Longueur de EOB = 4.

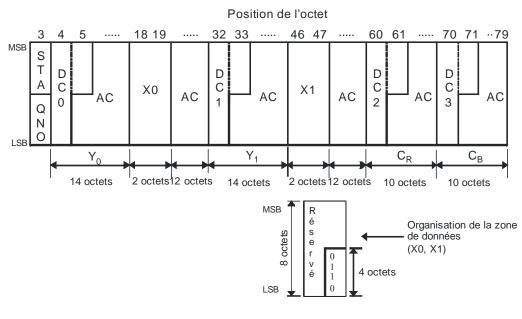
TABLEAU 25

Mots de code à longueur variable

	age, 1p)	Code	Longueur		age, ıp)	Code	Longueur		age, np)	(Code		Longueur
0	1	00s	2+1	11	1	111100000s		7	2	11111	0110000s		
0	2	010s	3+1	12	1	111100001s		8	2	11111	0110001s		
EC	ЭB	0110	4	13	1	111100010s		9	2	11111	0110010s		
1	1	0111s		14	1	111100011s		10	2	11111	0110011s		
0	3	1000s	4+1	5	2	111100100s		7	3	11111	0110100s		
0	4	1001s		6	2	111100101s		8	3	11111	0110101s		
2	1	10100s		3	3	111100110s		4	5	11111	0110110s		
1	2	10101s	5+1	4	3	111100111s	9+1	3	7	11111	0110111s		12+1
0	5	10110s	J ⁺¹	2	4	111101000s	9+1	2	7	11111	0111000s		12+1
0	6	10111s		2	5	111101001s		2	8	11111	0111001s		
3	1	110000s		1	8	111101010s		2	9	11111	0111010s		
4	1	110001s	6+1	0	18	111101011s		2	10	11111	0111011s		
0	7	110010s	0+1	0	19	111101100s		2	11	11111	0111100s		
0	8	110011s		0	20	111101101s		1	15	11111	0111101s		
5	1	1101000s		0	21	111101110s		1	16	1111	1011110s		
6	1	1101001s		0	22	111101111s		1	17	1111	1011111s		
2	2	1101010s		5	3	1111100000s		6	0	11111	10000110		13
1	3	1101011s	7.1	3	4	1111100001s		7	0	11111	10000111		13
1	4	1101100s	7+1	3	5	1111100010s					Rotation		
0	9	1101101s		2	6	1111100011s	10+1	R	0	1111110	binaire de R		
0	10	1101110s		1	9	1111100100s					$R = 6 \grave{a} 61$		
0	11	1101111s		1	10	1111100101s		61	0	11111	10111101		
7	1	1110000s		1	11	1111100110s		0	23	111111	100010111s		15.1
8	1	1110001s		0	0	11111001110	1.1	0	24	111111	100011000s		15+1
9	1	11100010s		1	0	11111001111	11				Rotation		
10	1	11100011s		6	3	11111010000s				1111111	binaire		
3	2	11100100s		4	4	11111010001s		0	A	1111111	de A A = 23 à	S	
4	2	11100101s		3	6	11111010010s	11.1	ı	'		255		
2	3	11100110s		1	12	11111010011s	11+1	0	255	111111	111111111s		
1	5	11100111s	0 + 1	1	13	11111010100s							
1	6	11101000s	8+1	1	14	11111010101s							
1	7	11101001s		2	0	111110101100							
0	12	11101010s		3	0	111110101101	12						
0	13	11101011s		4	0	1111101011110	12						
0	14	11101100s		5	0	111110101111							
0	15	11101101s						•					
0	16	11101110s											
0	17	11101111s											

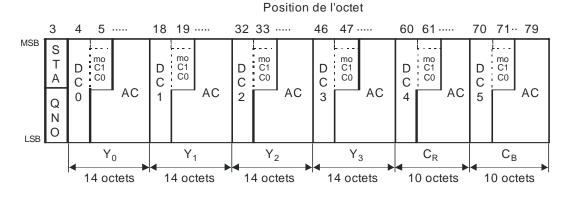
NOTE 1 - (R, 0): 11111110 r5 r4 r3 r2 r1 r0, où 32r5 + 16r4 + 8r3 + 4r2 + 2r1 + r0 = R.

NOTE 2 - (0, A): 1111111 a7 a6 a5 a4 a3 a2 a1 a0 s, où 128a7 + 64a6 + 32a5 + 16a4 + 8a3 + 4a2 + 2a1 + a0 = A.


NOTE 3 - S est le bit de signe. EOB = fin de bloc.

2.5 Organisation d'un macrobloc compressé

Un segment vidéo compressé est composé de cinq macroblocs compressés. Chaque macrobloc compressé contient 77 octets de données, organisés comme indiqué dans la Fig. 29 pour la compression 4:2:2 et dans la Fig. 30 pour la compression 4:1:1. Chaque macrobloc compressé en mode 4:2:2 comprend une zone de données de deux octets (X0, X1). Les données sont organisées comme indiqué dans la Fig.29. Le format des données de la zone réservée n'est pas défini sauf pour 100000000000.


FIGURE 29

Organisation d'un macrobloc compressé (compression 4:2:2)

BT.1618-29

FIGURE 30
Organisation d'un macrobloc compressé (compression 4:1:1)

BT.1618-30

STA: statut d'erreur

QNO: numéro de quantification

DC: composante DC AC: composante AC

EOB: fin de bloc (0110)

mo: mode DCT

c0, c1: numéro de classe

STA (statut du macrobloc compressé).

STA, qui exprime l'erreur et le masquage du macrobloc compressé, est composé de quatre bits: s3, s2, s1, s0. On trouvera dans le Tableau 26 les définitions du statut STA.

QNO (numéro de quantification)

QNO correspond au numéro de quantification appliqué au macrobloc. Les mots de code représentant le QNO seront conformes au Tableau 27.

TABLEAU 26 **Définition du statut STA**

	ST	ΓΑ		Informa	tions relatives au macrobloc co	ompressé				
s3	s2	s1	s0	Erreur	Masquage d'erreur	Continuité				
0	0	0	0		Non effectué					
0	0	1	0	A baan aa dlarrayr	Type A					
0	1	0	0	Absence d'erreur	bsence d'erreur Type B					
0	1	1	0		Type C					
0	1	1	1	Présence d'erreur	-	_				
1	0	1	0		Type A					
1	1	0	0	Absence d'erreur	Type B	Type b				
1	1	1	0		Type C					
1	1	1	1	Présence d'erreur						
	Au	itre		Réservé						

où:

Type A: remplacé par un macrobloc compressé de même numéro dans l'image qui précède immédiatement.

Type B: remplacé par un macrobloc compressé de même numéro dans l'image qui suit immédiatement.

Type C: ce macrobloc compressé est masqué, mais la méthode de masquage n'est pas précisée.

Type a: la continuité de séquence de traitement des données avec les autres macroblocs compressés tels que s0 = 0

et

s3 = 0 dans le même segment vidéo est garantie.

Type b: la continuité de séquence de traitement des données avec les autres macroblocs compressés n'est pas garantie.

NOTE 1 – Pour STA = 0111b, le code d'erreur est inséré dans le macrobloc compressé. Cela est facultatif.

NOTE 2 – Pour STA = 1111b, la position de l'erreur n'est pas identifiée.

TABLEAU 27

Mots de code du QNO

q3	q2	q1	q0	QNO
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

DC

DCI (où I correspond au numéro d'ordre du bloc DCT dans le macrobloc, $I=0,\ldots,3$ pour la compression 4:2:2, $I=0,\ldots,5$ pour la compression 4:1:1) est composé d'un coefficient DC, du mode DCT et du numéro de classe du bloc DCT.

MSB LSB

DCI: b8 b7 b6 b5 b4 b3 b2 b1 b0 mo c1 c0

où:

b8 à b0: valeur du coefficient DC

mo: mode DCT mo = 0 pour mode 8-8-DCT

mo = 1 pour mode 2-4-8-DCT

c1 c0: numéro de classe

AC

AC est un terme générique pour les coefficients AC codés en longueur variable dans le segment vidéo V i, k. Pour une compression 4:2:2, les zones Y0, Y1, C_R, et C_B sont définies comme des zones de données compressées, et Y0 et Y1 sont composées de 112 bits et C_R et C_B de 80 bits, comme indiqué dans la Fig. 29. Pour une compression 4:1:1, les zones Y0, Y1, Y2, Y3, C_R, et C_B sont définies comme des zones de données compressées, et Y0, Y1, Y2, et Y3 sont composées de 112 bits et C_R et C_B de 80 bits, comme indiqué dans la Fig. 30. Le DCI et le code de longueur variable des coefficients AC dans le bloc DCT de numéro i, j, k, l seront attribués à partir du début

de la zone de données compressées dans le macrobloc compressé CM i, j, k. Dans les Fig. 29 et 30, le mot de code de longueur variable est positionné en commençant par le MSB dans le coin supérieur gauche, le LSB se trouvant dans le coin inférieur droit. Les données AC sont donc réparties du coin supérieur gauche au coin inférieur droit.

2.6 Organisation d'un segment vidéo

La présente section décrit la méthode de répartition des coefficients AC quantifiés. Les Fig. 31 et 32 montrent l'organisation d'un segment vidéo CV i, k après réduction du débit. Chaque colonne contient un macrobloc compressé. Les colonnes F i, j, k, l représentent la zone de données compressées correspondant aux blocs DCT de numéros i, j, k, l. Le symbole E i, j, k, l représente une zone AC supplémentaire permettant d'enregistrer les données restantes de la zone AC fixe.

Organisation d'un segment vidéo après réduction du débit pour la compression 4:2:2 compressé CM a, 2, k E a, 2, k, 0 F a, 2, k, 3 CM b, 1, k F b. 1. k. 0 E b. 1. k. 0 F b. 1. k. 1 E b. 1. k. 1 F b. 1. k. 2 F b, 1, k, 3 CM c. 3, k F c, 3, k, 0 E c, 3, k, 0 F c, 3, k, 1 E c, 3, k, 1 F c, 3, k, 2 F c, 3, k, 3 CM d, 0, k F d, 0, k, 0 E d, 0, k, 0 F d, 0, k, 1 E d, 0, k, 1 F d, 0, k, 2 F d, 0, k, 3 E e, 4, k, 0 E e, 4, k, 1 F e, 4, k, 2 F e, 4, k, 0 Y1

14 octets 14 octets 14 octets

FIGURE 31
Organisation d'un segment vidéo après réduction du débit pour la compression 4:2:2

Numéro du macrobloc Position de l'octet compressé F a, 2, k, 0 F a, 2, k, 1 Fa, 2, k, 2 Fa, 2, k, 3 Fa, 2, k, 4 Fa, 2, k, 5 CM b, 1, k F b, 1, k, 1 F b, 1, k, 2 F b, 1, k, 3 F b, 1, k, 4 F b, 1, k, 5 CM c. 3. k F c. 3, k. 0 F c. 3. k. 1 F c. 3, k. 2 F c. 3, k. 3 F c. 3, k. 4 F c. 3, k. 5 Q N O CM d, 0, k F d, 0, k, 2 F d, 0, k, 3 F d, 0, k, 4 F d, 0, k, 5 F d, 0, k, 0 F d, 0, k, 1 ΥO Y1 Y2 Y3 C_R CB

FIGURE 32
Organisation d'un segment vidéo après réduction du débit pour la compression 4:1:1

10 octets

où:

$$a = (i+2) \bmod n \qquad \qquad i: position verticale \ du \ superbloc \\ b = (i+6) \bmod n \qquad \qquad i = 0, ..., n-1. \\ c = (i+8) \bmod n \qquad \qquad n: nombre \ de \ superblocs \ verticaux \ dans \ une \ image \ vidéo \\ d = (i+0) \bmod n \qquad \qquad n = 10 \ pour \ un \ système \ 525/60 \\ e = (i+4) \bmod n \qquad \qquad n = 12 \ pour \ un \ système \ 625/50 \\ k: position \ du \ macrobloc \ dans \ le \ superbloc$$

14 octets

14 octets

10 octets

$$k = 0, ..., 26$$

La séquence binaire B i, j, k, l est la concaténation des données suivantes: coefficient DC, information relative au mode DCT, numéro de classe et mots de code des coefficients AC pour les blocs DCT numérotés i, j, k, l. Les mots de code correspondant aux coefficients AC de la séquence B i, j, k, l seront concaténés dans l'ordre indiqué à la Fig. 27, le dernier mot de code étant EOB. Le MSB du mot de code suivant sera accolé au LSB du mot de code qui le précède immédiatement.

L'algorithme d'organisation du segment vidéo sera composé de trois passes:

14 octets

14 octets

Passe Nº 1: Répartition des séquences B i, j, k, l dans la zone de données compressées.

Passe Nº 2: Répartition des B i, j, k, l restantes après la première passe dans le même macrobloc compressé.

Passe Nº 3: Répartition des B i, j, k, l restantes après la deuxième passe dans le même segment vidéo.

Algorithme d'organisation d'un segment vidéo

```
Compression 4:2:2
  if (525/60 \text{ system}) n = 20 else n = 24;
  for (i = 0; i < n; i++)
   a = (i + 4) \mod n;
   b = (i + 12) \mod n;
   c = (i + 16) \mod n;
   d = (i + 0) \mod n;
   e = (i + 8) \mod n;
  for (k = 0; k < 27; k++)
   q = 2;
   p = a;
   VR = 0
   /* VR représente la séquence binaire pour les données qui ne sont pas réparties dans le segment
vidéo CV i,k par la passe N° 2. */
/* passe 1 */
   for (j = 0; j < 5; j++) {
     MRq = 0;
     /* MRq représente la séquence binaire pour les données qui ne sont pas réparties dans le
macrobloc M i, q, k par la passe N° 1. */
     for (1 = 0, 1 < 4; 1 ++)
       remain = distribute (B p, q, k, l, F p, q, k, l);
       MRq = connect (MRq, remain);
      }
 if (q == 2) \{q = 1; p = b; \}
      else if (q == 1) \{q = 3; p = c; \}
      else if (q == 3) \{q = 0; p = d; \}
     else if (q == 0) \{q = 4; p = e; \}
      else if (q == 4) \{q = 2; p = a; \}
/* passe 2 */
   for (j = 0; j < 5; j++) {
     for (1 = 0; 1 < 4; 1 ++)
       MRq = distribute (MRq, F p, q, k, l);
       if ((1 == 0) || (1 == 1))
         MRq = distribute (MRq, E p, q, k, l);
```

```
}
      VR = connect (VR, MRq);
           if (q == 2) \{q = 1; p = b;\}
      else if (q == 1) \{q = 3; p = c;\}
      else if (q == 3) \{q = 0; p = d;\}
      else if (q == 0) \{q = 4; p = e;\}
      else if (q == 4) \{q = 2; p = a;\}
/* pass 3 */
    for (j = 0; j < 5; j++) {
      for (1 = 0; 1 < 4; 1 ++) {
        VR = distribute (VR, F p, q, k, l);
        if ((1 == 0) || (1 == 1))
          VR = distribute (VR, E p, q, k, l);
      }
           if (q == 2) \{q = 1; p = b;\}
      else if (q == 1) \{q = 3; p = c;\}
      else if (q == 3) \{q = 0; p = d;\}
      else if (q == 0) \{q = 4; p = e;\}
      else if (q == 4) \{q = 2; p = a; \}
      }
    }
Compression 4:1:1
  if (525/60 \text{ system}) n = 10 else n = 12;
  for (i = 0; i < n; i++)
    a = (i + 2) \mod n;
    b = (i + 6) \bmod n;
    c = (i + 8) \mod n;
    d = (i + 0) \mod n;
    e = (i + 4) \mod n;
    for (k = 0; k < 27; k++){
      q = 2;
      p = a;
      VR = 0
```

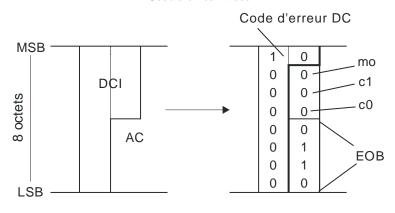
```
/* VR représente la séquence binaire pour les données qui ne sont pas réparties dans le
segment vidéo CV i, k par la passe N° 2 */
/* passe 1 */
   for (j = 0; j < 5; j++)
     MRq = 0;
     /* MRq représente la séquence binaire pour les données qui ne sont pas réparties dans le
macrobloc M i, q, k par la passe N° 1. */
      for (1 = 0, 1 < 6; 1 ++)
       remain = distribute (B p, q, k, l, F p, q, k, l);
       MRq = connect (MRq, remain);
      }
           if (q == 2) \{q = 1; p = b;\}
      else if (q == 1) \{q = 3; p = c;\}
      else if (q == 3) \{q = 0; p = d; \}
      else if (q == 0) \{q = 4; p = e; \}
      else if (q == 4) \{q = 2; p = a;\}
    }
/* passe 2 */
   for (j = 0; j < 5; j++) {
     for (1 = 0; 1 < 6; 1 ++)
       MRq = distribute (MRq, F p, q, k, l);
      }
      VR = connect (VR, MRq);
           if (q == 2) \{q = 1; p = b; \}
      else if (q == 1) \{q = 3; p = c; \}
      else if (q == 3) \{q = 0; p = d;\}
      else if (q == 0) \{q = 4; p = e; \}
      else if (q == 4) \{q = 2; p = a; \}
    }
/* passe 3 */
   for (j = 0; j < 5; j++)
      for (1 = 0; 1 < 6; 1 ++)
          VR = distribute (VR, F p, q, k, l);
        }
             if (q == 2) \{q = 1; p = b; \}
```

else if $(q == 1) \{q = 3; p = c;\}$

```
else if (q == 3) \{q = 0; p = d; \}
       else if (q == 0) \{q = 4; p = e; \}
       else if (q == 4) \{q = 2; p = a; \}
     }
    }
  }
où:
  distribute (data 0, area 0) {
     /* Répartit data 0 à partir du MSB dans la zone vide de area 0. */
     /* Area 0 est remplie en commençant par le MSB. */
   remain = (remaining data);
     /* Remaining data correspond aux données non réparties. */
   return (remain);
  }
  connect (data 1, data 2) {
   /* Connecte le MSB de data 2 avec le LSB de data 1. */
   data 3 = (connecting data)
   /* Connecting_data correspond aux données connectées. */
   /* data 2 avec data 1. */
   return (data 3);
  }
```

Les données restantes qui ne peuvent pas être réparties dans l'espace non utilisé du macrobloc seront ignorées. Par conséquent, lorsqu'un macrobloc compressé fait l'objet d'un masquage d'erreur, certaines données réparties par la passe N° 3 peuvent ne pas être reproduites.

Traitement des codes d'erreur vidéo


Lorsque des erreurs sont détectées dans un macrobloc compressé qui est reproduit et qui fait l'objet d'une correction d'erreurs, la zone de données compressées contenant ces erreurs est remplacée par le code d'erreur vidéo. Ce processus consiste à remplacer les deux premiers octets de données de la zone de données compressées par le code suivant:

```
MSB LSB
100000000000110b
```

Les 9 premiers bits correspondent au code d'erreur DC, les 3 bits suivants à l'information relative au mode DCT et au numéro de classe et les 4 derniers bits à l'EOB, comme indiqué dans la Fig. 33.

Lorsque les macroblocs compressés, après correction d'erreurs, sont présentés à l'entrée d'un décodeur qui ne gère par le code d'erreur vidéo, toutes les données du macrobloc concerné doivent être considérées comme invalides.

FIGURE 33 Code d'erreur vidéo

Appendice A (Pour information)

Différences entre CEI 61834 et la Recommandation UIT-R BT.1618

TABLEAU 28 Récapitulatif des différences entre CEI 61834 et UIT-R BT.1618

		FORMAT DV CEI 61834	FORM. UIT-R F				
		CLI 01054	Structure à 25 Mb/s	Structure à 50 Mb/s			
Structur	e des données	CEI 61834	Identique à CEI 61834	Voir Fig. 2			
En-tête	Nom du bit APT AP1 AP2 AP3	000 000 000 000	001 001 001 001				
ID	FSC	FSC non définie (mise à 0)	Voir §	1.3.1			
Vidéo	Structure d'échantil- lonnage	525: 4:1:1 625: 4:2:0	525: 4:1:1 625: 4:1:1	525: 4:2:2 625: 4:2:2			
VAUX	VS VSC Autre	CEI 61834 CEI 61834 CEI 61834	Voir § 1.5.2.1 Voir § 1.5.2.2 Réservé				
Audio	Echantil- lonnage Mode verrouillé	48 kHz (16 bits, 2 canaux) 44,1 kHz (16 bits, 2 canaux) 32 kHz (16 bits, 2 canaux) 32 kHz (12 bits, 4 canaux) Verrouillé / non verrouillé	48 kHz (16 bits, 2 canaux) Verrouillé	48 kHz (16 bits, 4 canaux) Verrouillé			
AAUX	AS ASC Autre	CEI 61834 CEI 61834 CEI 61834	Voir § 1 Voir § 1 Rése	.6.2.3.2			
Sous- code	ID SSYB TC BG Autre	CEI 61834 CEI 61834 CEI 61834 CEI 61834	Voir § Voir § 1 Identique à Rése	.4.2.2.1 CEI 61834			

Appendice B

Termes et acronymes

AAUX données audio auxiliaires

AP1 identificateur d'application audio AP2 identificateur d'application vidéo

AP3 identificateur d'application de sous-code

APT identificateur d'application de piste

Arb arbitraire

AS paquet source AAUX

ASC paquet commande de source AAUX

B/W fanion noir et blanc

CGMS système de gestion de génération de copie

CM macrobloc compressé
DBN numéro de bloc DIF

DCT transformée en cosinus discrète

DIF interface numérique
DRF fanion de direction

Dseq numéro de séquence DIF DSF fanion de séquence DIF

DV identifiant d'une famille de compression

EFC fanion d'accentuation du canal audio

EOB fin de bloc

FR identifiant de la première ou de la deuxième moitié de chaque canal

FSC identifiant d'un bloc DIF dans chaque canal

LF fanion de mode verrouillé QNO numéro de quantification

QU quantification

Res réservés à un usage ultérieur

SCT type de section

SMP fréquence d'échantillonnage

SSYB bloc de synchronisation de sous-code

STA statut du macrobloc compressé

STYPE type de signal (voir la Note)

Syb numéro de bloc de synchronisation de sous-code

TF fanion d'émission

VAUX données vidéo auxiliaires

VLC codage à longueur variable

VS paquet source VAUX

VSC paquet commande de source VAUX

NOTE 1 – Le type STYPE utilisé dans la présente Recommandation est différent de celui utilisé dans ANSI/IEEE 1394.